
University of Latvia

Faculty of Computing · Institute of Mathematics and
Computer Science

Renārs Liepiņš

Definition Methods and
Implementation of Domain-Specific

Modeling Language Tools

in partial fulfilment of the requirements

of the doctor degree in Computer Science

Field: Computer Science

Subdiscipline: Programming Languages and Systems

Thesis Supervisor:
Prof. Jānis Bārzdiņš

Dr.habil.Sc.Comp.

Rı̄ga, 2015



The doctoral thesis was carried out at the Institute of Mathematics and Computer

Science, University of Latvia, from 2009 to 2015.

This work has been supported by the European Social Fund

within the project «Support for Doctoral Studies at University of Latvia - 2».

The thesis contains the introduction, 8 chapters, the conclusion, and the list of

references.

Form of the thesis: dissertation in Computer Science, subdiscipline of Programming

Languages and Systems.

Supervisor:

Prof., Dr.habil.Sc.Comp. Jānis Bārzdiņš

University of Latvia

Reviewers:

1) Dr.sc.comp. J.Bičevskis

2) Dr.habil.sc.ing. J.Grundspeņķis

3) Dr.sc.comp. U.Sarkans

The thesis will be defended at the public session of the Doctoral Committee of

Computer Science, University of Latvia, at 16:30 on August 31, 2015, at the Institute

of Mathematics and Computer Science (Raiņa blvd. 29, Rı̄ga), Room 413.

The thesis is available at the Library of University of Latvia (Multi-branched Library:

Computer Science, Law and Theology), Raiņa blvd. 19, Room 203.

Chairman of the Doctoral Committee: ............................... /Jānis Bārzdiņš/

Secretary of the Doctoral Committee: ............................... /Ruta Ikauniece/



A B S T R A C T

In this thesis, two new approaches for Domain-specific modeling lan-

guage tool definition are considered – the model-based approach and

the ontology-based approach. The research is done in the context of

the tool building platform GRAF developed at IMCS UL, first by in-

vestigating the technologies needed for its implementation, and sec-

ondly, by developing a vision and base components for its future

evolution. In the model-based direction, the main result is a new effi-

cient transformation language lQuery that is specifically designed for

tool building tasks. In the ontology-based direction, the author pro-

poses a vision and architecture for the future version of the platform,

that will use ontologies as the base metamodeling layer. To approach

the vision, the author has developed a conceptually new metamodel

and notation for the ontology language OWL and an orthogonal ex-

tension of OWL with transformation language expressions for the

non-monotonic reasoning tasks.

Keywords: graphical tool building platform, domain-specific lan-

guages, transformation language, ontology-based development

iii



C O N T E N T S

i introduction and theoretical background 1

1 introduction 3

1.1 Objectives and Tasks of the Research 3

1.2 The Clause and Research Directions 4

1.3 Research Methods Used 5

1.4 Main Results of the Thesis 5

1.5 Scientific and Practical Significance of the Re-

sults 6

1.6 Validation of the Results 8

1.6.1 Publications on the Topic of the Thesis 8

1.6.2 Presentations at Scientific Conferences 10

1.6.3 Scientific Projects in Which the Results Where

Used 11

1.6.4 Applying the Results in Practice 12

1.7 Size and Structure of the Thesis 12

2 theoretical background 14

2.1 Domain Specific Languages 14

2.2 Model Driven Engineering 14

2.3 Ontologies and Reasoners 16

ii mde based tool building 17

3 model-based tool building framework

graf 18

3.1 Graph Diagramming Metamodel and Engine 22

3.2 Tool Definition Metamodel: the Core 26

3.3 Tool Definition Metamodel: Extensions 32

4 lquery – a transformation language for tool

building 38

4.1 Brief Overview of Lua 39

4.2 Overview of the Metamodel 41

iv



contents v

4.3 lQuery 42

4.3.1 Example Model 42

4.3.2 lQuery Core 44

4.3.3 Selector Combinators 46

4.3.4 Selector Reuse and Custom Selector Combina-

tors 50

4.3.5 Custom Primitive Selectors 50

4.3.6 Shorthand Notation 53

4.3.7 Manipulation with Whole Sets of Objects 55

4.4 Related Work 58

4.5 Conclusions 61

iii towards ontology based tool building 62

5 why ontology based tool building – a motivat-

ing example 63

6 uml-inspired metamodel and notation for the

owl ontology language 68

6.1 OWL as a Description Layer Above Class Dia-

grams 69

6.2 Extension of the Core Metamodel 72

6.2.1 Equivalent and Disjoint Classes and Proper-

ties 72

6.2.2 Class Expressions 75

6.2.3 Anonymous Classes 76

6.2.4 Enumerated Classes 76

6.2.5 Further Metamodel Extensions 77

6.3 The Editor for the Proposed Notation – OWL-

GrEd 78

6.4 Related Work 80

6.5 Conclusions 81

7 extending owl ontologies with query-based

constructor classes 83

7.1 Motivating Example – a University Ontology 84

7.2 lQuery selectors in Ontologies 87

7.2.1 Integration with Ontology 87



contents vi

7.2.2 Some Examples from the University Ontol-

ogy 89

7.2.3 Advanced Example from the University Ontol-

ogy 91

7.3 Integration with a Reasoner 93

7.4 Related Work 95

7.5 Conclusions 96

8 ontology-based tool building framework : ar-

chitecture proposal 98

8.1 A Runtime Example in the Proposed Architec-

ture 101

8.2 Conclusions 108

conclusions 109

bibliography 111



L I S T O F F I G U R E S

Figure 1 The graph diagramming metamodel 24

Figure 2 The tool definition metamodel. 27

Figure 3 Tool definition metamodel: extensions. 33

Figure 4 Metamodeling Language Used by

lQuery 42

Figure 5 Example model and instances 43

Figure 6 The lQuery selector expression grammar in a

BNF notation 55

Figure 7 Flowchart validity constraints written in a nat-

ural language and in OWL 64

Figure 8 Validity constraint examples during the edit-

ing process 66

Figure 9 “mini-university” ontology (UML notation

and OWL Functional Syntax) 71

Figure 10 UMLOWLCoreExtended metamodel; classes

in bright yellow are UMLOWLCore meta-

model (equivalent to metamodel shown in Fig-

ure 4) 73

Figure 11 “mini-university” ontology (UMLOWLCore-

Extended notation) 74

Figure 12 An African Wildlife ontology in OWLGrEd ed-

itor 79

Figure 13 OWLGrEd downloads by cities outside Latvia

from Nov 1st, 2013 till May 31st, 2015 81

Figure 14 Simplified University Ontology. 85

Figure 15 Fragment of the University Ontology with in-

stances. 86

Figure 16 OWL metamodel extension with lQuery con-

structor classes 88

vii



Figure 17 Demonstration of the OWLGrEd syntax exten-

sion for the lQuery expressions 89

Figure 18 lQuery expressions as annotation properties in

Manchester syntax 89

Figure 19 Demonstration of the lQuery semantics in con-

trast to OWL semantics 90

Figure 20 Demonstration of the lQuery aggregation ex-

pressions. 91

Figure 21 Extended example from Figure 15. 92

Figure 22 Overall architecture of the MDA based tool

building framework from Chapter 3. 99

Figure 23 New overall architecture of OWL-based tool

building framework. 100

Figure 24 Fragment of the Tool Definition metamodel in

the New Repository – Logical View and Inter-

nal Representation 102

Figure 25 Fragment of the tool definition metamodel

with activity diagram specific subclasses (Log-

ical View and Internal Representation) 103

Figure 26 The state of the tool definition metamodel with

one empty activity diagram (Logical View and

Internal Representation) 105

Figure 27 The state of the tool definition metamodel with

one empty activity diagram (Logical View and

Internal Representation) 107

L I S T O F TA B L E S

Table 1 Compartment type subclasses 29

Table 2 Call points from XElementType 34

Table 3 Call points from XCompartmentType 36

Table 4 Primitive Selector Constructors 45

viii



List of Tables ix

Table 5 Selector Combinators 49

Table 6 Custom Primitive Selector Constructors 53

Table 7 Selector Shorthand Notation 54

Table 8 Object Collection Methods 59



Part I

I N T R O D U C T I O N A N D T H E O R E T I C A L

B A C K G R O U N D



The research presented here was carried out at the Institute of Mathe-

matics and Computer Science, University of Latvia (IMCS UL) in the

Research Laboratory of Modeling and Software Technologies contin-

uing the research in graphical tool building that began at IMCL UL

in 1980s.

2



1
I N T R O D U C T I O N

Domain-specific modeling is a software engineering methodology for

system specification. Its main principle is using of domain-specific

modeling languages [58] (DSMLs) to describe various parts of a

system. Compared to traditional system specification approaches,

domain-specific modeling requires fewer low-level details and re-

duces the effort required to specify a system. However, efficient use

of domain-specific modeling requires tool support (such as editors

and compilers). To develop a proper tool support for a new mod-

eling language from scratch would require a large market to cover

the development costs. Thus, GDSLs are mainly developed for large

domains, such as BPM for the business process modeling domain.

Since 1990s, there has been an ongoing research to enable rapid,

cost-effective development of DSMLs for small domains. Moreover, cur-

rently there are some commercial and open source tools (called Meta-

Case Tools [40]) for the creation of DSML tool support. However, a

satisfactory solution for the development of DSML support tools still

does not exist, because all of the existing MetaCase Tools require sub-

stantial additional programming effort to achieve a fully functional

and usable domain specific tool.

We will approach this problem in two novel ways. First, by apply-

ing the Model Driven Engineering [62] (MDE) principles and tech-

nologies, and secondly by exploring how ontologies and reasoning

software can be used for DSML support tool development.

1.1 objectives and tasks of the research

In 2007 an initiative was started at IMCS UL to develop a graphical

tool building framework GRAF [68] that would be based on meta-

models and model transformations. From the very beginning of the

3



1.2 the clause and research directions 4

initiative, the author participated in the development of the ideas and

concepts of this framework. The goal of this Thesis is to provide a sig-

nificant contribution to the further development of the GRAF frame-

work, and also to advance the principles for the future versions of

the framework, that would be based on the ontologies and reasoning

software. To achieve these goals the following tasks were formulated:

• provide a significant contribution (at least 20% of the total ef-

fort involved) to the further development of the principles and

architecture of the tool building framework GRAF;

• develop a new kind of transformation language (lQuery) that

is specifically designed for the tasks that occur in tool build-

ing frameworks. Create an effective implementation for the lan-

guage;

• develop principles for the future version of the framework that

would be based on ontologies and reasoning software, and to

create the necessary services and extensions so that the frame-

work can be used in practice. Specifically:

• develop and implement a graphical notation and metamodel for

the ontology language OWL;

• develop an orthogonal extension for the ontology language

OWL that augments it with transformation language selector

expressions for non-monotonic reasoning tasks.

1.2 the clause and research directions

1. Model-based tool building tasks have distinct requirements for

transformation languages, in comparison to traditional model-

based software development use-cases. Thus, a new transforma-

tion language is needed; that is specifically designed for such

tasks;

2. A graphical Domain Specific Language for the ontology lan-

guage OWL can be created by using the ideas from the UML



1.3 research methods used 5

Class Diagrams notation, thus, solving one of the main prob-

lems of adopting ontologies for the task of DSML tool specifica-

tion.

1.3 research methods used

The main research methods where:

• comparative analysis of existing solutions;

• logical deduction to derive new solutions based on the knowledge

of the existing shortcomings and requirements;

• experimental implementations to validate the ideas of the pro-

posed solutions.

1.4 main results of the thesis

• Development of the principles and architecture of the Tool

Building framework GRAF. Author’s contribution is approxi-

mately 20% of the total effort involved;

• Design and implementation of an original transformation lan-

guage (lQuery): notation, semantics, and compiler software;

• Development of the principles and architecture for a new kind

of tool building framework that is based on ontologies and rea-

soning software. To enable a practical development of such a

framework the following two problems were solved:

• A novel metamodel and graphical notation for the ontology lan-

guage OWL that combines the familiar notation of the UML

Class Diagrams with the class expressions and semantics of the

OWL;

• An orthogonal extension of the ontology language OWL that

merges logical inference strengths of the semantic reasoners

with the closed world query and navigation expressions from



1.5 scientific and practical significance of the results 6

a transformation language, thus providing a much richer ex-

pressive power than each technology separately.

• A sophisticated editor for the proposed UML-inspired graphical

notation for the ontology language OWL; the editor is actively

used worldwide (approximately 100 downloads each month);

• A metamodel for the ontology language OWL, which enables

easy porting of UML Class Diagram based transformation lan-

guages to work with OWL ontologies.

1.5 scientific and practical significance of the re-

sults

The three scientific main results of the thesis are: a transformation lan-

guage (lQuery); a novel UML-inspired metamodel and graphical no-

tation for ontology language OWL; and an extension of the ontology

language OWL with the query expressions from the transformation

language lQuery.

The scientific significance of the transformation language (lQuery)

is the demonstration that when model transformations are used at

runtime, they have significantly different requirements from the tra-

ditional model transformation use-cases, and thus require consider-

ation of different tradeoffs than the traditional transformation lan-

guages.

The practical significance of the lQuery: it is the main transforma-

tion language used in the GRAF Tool Building framework developed

at IMCS UL. In fact, all the transformation runtime software and

graphical tool configurator software (developed by Artūrs Sproǧis

as part of his thesis [67]) were implemented in lQuery. This lan-

guage is also used for the implementation of all the extension trans-

formations for DSML tools that are defined by using the GRAF Tool

Building framework. An example of the specific DSML tool devel-

oped in this way: the tool [28] used in the Latvian State Social In-

surance Agency (VSAA in Latvian) for business process modeling.

Also, lQuery is a demonstration how a transformation language can



1.5 scientific and practical significance of the results 7

be bootstrapped in an existing high-level general purpose program-

ming language (Lua) while being just as expressive as transformation

languages developed from scratch.

The scientific significance of the UML-inspired notation and the

graphical tool (OWLGrEd) for the ontology language OWL: it is the

first notation for OWL that combines the best features of graphical

and textual notations in one syntax. That is, the graphics are used for

the structural description, and the textual form is used for class ex-

pressions. Thus, the resulting notation is both compact and readable.

The practical significance of the OWLGrEd: it facilitates a wider use

of OWL among “non-ontologists”, thus making it easier to encode

their information in machine readable form. The notation has also

been used to document the developed ontologies, thus facilitating

ontology reuse. As evidence for its usefulness, currently, it is down-

loaded approximately 100 times each month from its homepage (owl-

gred.lumii.lv). Furthermore, the existence of the notation makes it

possible to adopt OWL as the metamodeling language for the GRAF

Tool Building framework.

The scientific significance of the orthogonal extension of the ontol-

ogy language OWL with the query expressions and semantics from

the transformation language lQuery: it shows how the “open world

assumption” of the OWL semantics can interoperate with the “closed

world assumption” semantics of the transformation language selector

expressions. Moreover, the combined language has wider expressive

power than each language separately.

The practical significance of the orthogonal extension: its use in

the future versions of the GRAF Tool Building framework will enable

even more declarative specification of the DSML tools.



1.6 validation of the results 8

1.6 validation of the results

1.6.1 Publications on the Topic of the Thesis

The main results of this thesis have been published in 16 research

papers. 12 of the papers are published in editions with recognized

citation index (SCOPUS, ACM). The following list contains all of the

papers and the level of the author’s contribution to each of them:

1. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace,

R. Liepins and A. Sprogis, GrTP: Transformation Based Graphi-

cal Tool Building framework, Proc. of MoDELS 2007 Workshop

on Model Driven Development of Advanced User Interfaces,

MDDAUI 2007; Nashville, TN; USA. (SCOPUS)

• Contribution 15%

2. J. Barzdins, K. Cerans, A. Kalnins, M. Grasmanis, S. Kozlovics,

L. Lace, R. Liepins, E. Rencis, A. Sprogis and A. Zarins, Domain

Specific Languages for Business Process Management: a Case

Study, Proc. of Workshop on Domain-Specific Modeling (Vol. 9,

pages 34–40), OOPSLA 2009, Florida, USA.

• Contribution 15%

3. J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, R. Liepins, E. Ren-

cis, A. Sprogis, A. Zarins, MDE-based Graphical Tool Build-

ing Framework, Scientific Papers, University of Latvia, vol. 756,

pages 121 – 138, 2010.

• Contribution 15%

4. J. Barzdins, G. Barzdins, K. Cerans, R. Liepins, A. Sprogis, OWL-

GrEd: a UML Style Graphical Editor for OWL, Proc. of 1st Work-

shop on Ontology Repositories and Editors for the Semantic

Web, ORES 2010; Hersonissos, Crete; Greece. (SCOPUS)

• Contribution 50%

5. J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, A. Sproǧis, OWL-

GrEd: a UML Style Graphical Notation and Editor for OWL 2,



1.6 validation of the results 9

Proc. of 7th International Workshop on OWL: Experiences and

Directions, OWLED 2010; San Francisco, CA; USA. (SCOPUS)

• Contribution 50%

6. A.Sproǧis, R.Liepiņš, J. Bārzdiņš, K. Čerāns, S. Kozlovičs, L.

Lāce, E. Rencis, A. Zariņš, GRAF: a Graphical Tool Building

Framework, Proc. of ECMFA 2010, Paris, France.

• Contribution 15%

7. J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, A.Sproǧis, UML

Style Graphical Notation and Editor for OWL 2. Lecture Notes

in Business Information Processing, Volume 64 LNBIP, 2010,

pages 102–114. (SCOPUS)

• Contribution 70%

8. J. Barzdins, K. Cerans, R. Liepins and A. Sprogis, Advanced on-

tology visualization with OWLGrEd, Proc. of 8th International

Workshop on OWL: Experiences and Directions, OWLED 2011;

San Francisco, CA; USA. (SCOPUS)

• Contribution 50%

9. R. Liepiņš, lQuery: A Model Query and Transformation Library.

In Scientific Papers, University of Latvia, volume 770, pages 27–

45, 2011.

• Contribution 100%

10. R. Liepiņš. Library for model querying – lQuery, Proc. of 12th

Workshop on OCL and Textual Modeling, OCL 2012 - Being

Part of the ACM/IEEE 15th International Conference on Model

Driven Engineering Languages and Systems, MODELS 2012;

Innsbruck; Austria. (SCOPUS)

• Contribution 100%

11. R. Liepiņš, K. Čerāns, and A. Sproǧis. Visualizing and editing

ontology fragments with OWLGrEd, Proc. of 8th International

Conference on Semantic Systems; Graz; Austria. (SCOPUS)



1.6 validation of the results 10

• Contribution 80%

12. K. Čerāns, R. Liepiņš, J. Ovčiņņikova, and A. Sproǧis. Advanced

OWL 2.0 ontology visualization in OWLGrEd. Frontiers in Ar-

tificial Intelligence and Applications, Volume 249, 2013, pages

41–54. (SCOPUS)

• Contribution 30%

13. K. Čerāns, G. Bārzdiņš, R. Liepiņš, J. Ovčiņņikova, S. Rikačovs,

and A. Sproǧis. Graphical schema editing for StarDog OWL/

RDF databases using OWLGrEd/S, Proc. of OWL: Experiences

and Directions Workshop 2012, OWLED 2012; Heraklion, Crete;

Greece. (SCOPUS)

• Contribution 20%

14. L. Lāce, R. Liepiņš, and E. Rencis. Architecture and language for

semantic reduction of domain-specific models in BPMS. Lecture

Notes in Business Information Processing Volume 128 LNBIP,

2012, pages 70–84. (SCOPUS)

• Contribution 40%

15. R. Liepiņš, J. Bārzdiņš, and L. Lāce. OWL orthogonal extension.

Lecture Notes in Business Information Processing Volume 128

LNBIP, 2012, pages 13–25. (SCOPUS)

• Contribution 90%

16. R. Liepiņš, M. Grasmanis, and U. Bojars. OWLGrEd ontology vi-

sualizer, Proc of ISWC Developers Workshop 2014, ISWC-DEV

2014, Co-Located with the 13th International Semantic Web

Conference, ISWC 2014; Riva del Garda; Italy. (SCOPUS)

• Contribution 50%

1.6.2 Presentations at Scientific Conferences

The main results of this thesis have been presented at five interna-

tional conferences:



1.6 validation of the results 11

1. ORES2010, Heraklion, Grece, 31.05 2010, “OWLGrED: a UML

Style Graphical Editor for OWL”, J. Bārzdiņš, G. Bārzdiņš, K.

Čerāns, R. Liepiņš, A. Sproǧis

2. OWLED2012, Heraklion, Grece, 27–28 05 2010, “Graphical

Schema Editing for Stardog OWL/RDF Databases using OWLGrEd/

S”, K. Čerāns, G. Barzdins, R. Liepiņš, J. Ovčiņnikova, S.

Rikačovs and A. Sprogis

3. I-SEMANTICS, September 5–7, 2012, Graz, Austria, “Visual-

izing and Editing Ontology Fragments with OWLGrEd”, R.

Liepiņš, K. Čerāns and A. Sprogis

4. BIR2012, September 24–26, 2012, Nizhny Novgorod, Russia,

“OWL Orthogonal Extension”, R. Liepiņš, J. Barzdins, and L.

Lace

5. OCL2012, Sept. 30th - Oct. 5th, 2012, Innsbruck, Austria, “Li-

brary for Model Querying – lQuery”, R. Liepiņš

1.6.3 Scientific Projects in Which the Results Where Used

The main results of the thesis have been developed and applied in the

following scientific projects:

• VPP Projekts Nr. 1 „Uz modeļu transformācijām bāzētu sistēmu

būves tehnoloǧiju izstrāde"

• Projekts VPD1/ERAF/CFLA/05/APK/2.5.1./000009/004:

“Jaunas paaudzes sistēmu modelēšanas rı̄ka izstrāde”

• VPP Nr. 2, 5.projekts „Jaunas informācijas tehnoloǧijas balstı̄tas

uz ontoloǧijām un modeļu transformācijām"

• ERAF Nr.2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112: „Se-

mantisko datubāzu frameworka nozaru speciālistiem"

• ERAF Nr.2010/0325/2DP/2.1.1.1.0/10/APIA/VIAA/109: „Pro-

cesu pārvaldı̄bas programmsistēmu būves tehnoloǧija un tās at-

balsta rı̄ki"



1.7 size and structure of the thesis 12

1.6.4 Applying the Results in Practice

Industrial DSML tools built by using the GRAF Tool Building frame-

work and the transformation language lQuery:

• OWLGrEd – tool and notation for OWL ontology language;

• ProMod – tool for the Latvian State Social Insurance Agency

(VSAA in Latvian), developed at IMCS UL;

• BiLingva – business process management tool, developed by the

company “Datorikas Institūts DIVI” (Riga, Latvia).

1.7 size and structure of the thesis

The thesis consists of an introduction, three parts containing eight

exposition chapters, and a conclusions chapter. The first part (“Intro-

duction and Theoretical Background”) gives an introduction to the

problem domain and the context material used throughout the rest

of the thesis. The second part (“MDE Based Graphical Tool Build-

ing”) introduces the GRAF tool building framework and describes a

transformation language designed specifically for the task of model

interpretation. The third part (“Towards Ontology-Based Graphical

Tool Building”) presents the motivation and proposal for an ontology-

based tool building framework and offers solutions to two fundamen-

tal problems for the realization of this.

Part I (“Introduction and Theoretical Background”)

Chapter 1 (“General Description of the Thesis”) (this chapter) con-

tains the formal description of the thesis.

Chapter 2 (“Theoretical Background”) contains the background ma-

terial used throughout the rest of the thesis. It introduces the ideas

of domain-specific languages, tools, and meta-tools. The chapter also

provides information about models, model transformations, and an

introduction to ontology concepts needed for the third part of the

thesis.

Part II (“MDE Based Graphical Tool Building”)



1.7 size and structure of the thesis 13

Chapter 3 (“Model-Based Tool Building framework GRAF”)

presents a detailed description of the Tool Building framework GRAF.

Although this framework is not one of the main results of the thesis,

the description is included for completeness and because the main

results all are developed either for it or by using it.

Chapter 4 (“lQuery – a Transformation Language for Tool Build-

ing”) presents a transformation language for model interpreta-

tion–lQuery. It is the author’s main contribution to the Tool Build-

ing framework GRAF. Its design enables the runtime extension of

the tools build with the framework, interoperation with external data

sources and environment. Finally, lQuery serves as an example of

how to bootstrap a transformation language in any modern general

purpose programming language.

Part III (“Towards Ontology-Based Graphical Tool Building”)

Chapter 5 (“Why Ontology-Based Tool Building – a Motivating Ex-

ample”) presents an example showing how ontologies can be used

in graphical tool building for constraint specification, style definition,

and validity checking.

Chapter 6 (“UML-inspired Metamodel and Notation for the Ontol-

ogy Language OWL”) describes the graphical notation and tool for

OWL ontologies – OWLGrEd developed by the author. It is based

on the familiar UML class diagram notation. It presents the research

behind the notation, its semantics and comparison with alternatives.

Chapter 7 (“Extending OWL Ontologies with lQuery-based Con-

structor Classes”) discusses the shortcomings of OWL for the use in

closed systems and offers a solution to this problem by combining

ontologies with selector languages. Also, a way is shown how this so-

lution can be implemented by using the lQuery in combination with

OWL semantic reasoners.

Chapter 8 (“Ontology-Based Tool Building Framework: Architec-

ture Proposal”) proposes the architecture for an ontology-based tool

building framework.

The Conclusions summarizes the results of the thesis and offers

some future research directions.



2
T H E O R E T I C A L B A C K G R O U N D

This chapter presents the background material needed to understand

the rest of the thesis. There are three main themes: the Model-Driven

Engineering, the graphical Domain Specific Languages, and the Se-

mantic Web technologies.

2.1 domain specific languages

Domain Specific Languages (DSLs) are languages that are using

terms native to the domain for which they have been developed [58].

The main benefit of such languages is that they significantly decrease

the required effort to specify problems and solutions in their domain.

DSL can be either textual or graphical. Examples of textual DSLs are

regular expressions [39] and database query language SQL [35]. An

examples of a graphical DSL is the well-known Business Process Mod-

eling Notation (BPMN) [73]. In this thesis, we will concentrate on the

graphical DSLs, and, therefore, from now on, “DSL” means a graphi-

cal DSL.

An efficient use of a DSL requires tool support: first, to help with

the creation of syntactically valid models; secondly, for model valida-

tion, simulation, and compilation. Over the time, a number of frame-

works have been developed to help with the creation of tool support

for DSLs. Some examples of such frameworks are MetaEdit+ [70],

Microsoft DSL Tools [33], Eclipse GMF [42].

2.2 model driven engineering

In 2001, OMG (Object Management Group) started a new initiative –

Model Driven Architecture (MDA) [53]. The main idea was to look

at a system in three different ways: CIM (Computation Independent

14



2.2 model driven engineering 15

Model), PIM (framework Independent Model), and PSM (framework

Specific Model). The CIM describes what the system should do, with-

out specifying how it should be done. The PIM describes the abstract

algorithm how the system works without any reference to the imple-

mentation environment. Finally, the PSM describes how the abstract

algorithm is implemented by using a particular technology. The goal

of MDA was to obtain an executable software by successive model

transformations: a CIM into a PIM and then, the PIM into a PSM.

The premise was that the model transformations could be written

once, and then reused for multiple systems. Thus all that the system

designers would need to do, was to create a high-level description of

the system (CIM) and the rest would be generated automatically by

use of already implemented transformations.

As part of the MDA initiative, multiple base concepts and tech-

nologies were developed. First, the notion of model was formalized,

to make it usable for computers. In this thesis, by a model we under-

stand (adapted from A. Kleppe et all [53]) a description of a system

written in a language with fixed syntax and semantics, which is suit-

able for automated interpretation on a computer. Models can also be

used to describe other models, in that case, they are called metamod-

els.

When the term model is formally defined, the next step and fun-

damental technology is the model repository. It is a system used for

storing and working with models that are stored according to the

metamodel. Usually, the MOF standard [4] is used as a metamodel-

ing language.

The final part of the MDA concepts are transformation languages

in which models transformations (rules how to transform one model

into another) could be written. Many languages were developed for

this purpose: ATL [48], ATOM3 [56], Fujaba [60], to name a few.

Some of the languages were developed at the IMCS LU, such as Lx

[26] and MOLA [50]. Notably most of them were developed for the

batch tasks of transforming one model into another.

As it turned out, the original vision of the MDA failed to material-

ize, but the underlying idea of using models for system development



2.3 ontologies and reasoners 16

tasks was retained as useful. Now, the extended use of models as

primary artifacts for system development, but no longer restricted to

the three standard models (CIM, PIM, PSM), is called Model Driven

Engineering [62].

2.3 ontologies and reasoners

The vision of the Semantic Web [22] predicts that in the future the

current Web of unstructured documents (human readable web pages)

would be augmented with semantic (structured) data. Thus, the web

pages would be understandable not only for humans, but also for

computers, which could help humans more easily find, share, and

combine information available on the web. The origin of the concept

was the famous article by Berners-Lee [30] where the vision of how

the existing Web could evolve into a Semantic Web was described.

Since the original formulation of the vision, the Semantic Web com-

munity has come up with multiple technologies to make the dream

a reality. The first building block is the language standard (Resource

Description Framework (RDF) [12]) for publishing the data in a struc-

tured form. RDF consists of statements. Each statement is a triplet

subject-predicate-object. Each resource is identified by a uniform re-

source identifier (URI). On top of RDF another standard is built –

the Web Ontology Language (OWL) [7]. OWL is used as a knowl-

edge representation language. OWL has a formal semantics based on

description logic [23]. This enables computers to process the knowl-

edge represented in OWL ontologies in an automated way, similar

to the deductive reasoning and inference as done by humans. Thus,

computers will be able to gather information and conduct research

for humans automatically. The programs that can perform the deduc-

tion and inference are called (Semantic) Reasoners. Currently, there a

number of such programs, most widely used being Pellet [65], Her-

miT [63], and FaCT++ [71].



Part II

M D E B A S E D T O O L B U I L D I N G



3
M O D E L - B A S E D T O O L B U I L D I N G F R A M E W O R K

G R A F

As was mentioned in the introduction, most of the general purpose

modeling languages and tools are often not very useful in everyday

situations. Being very complicated, they are, of course, very useful

for large systems. However, smaller and more specialized systems

usually need only a small part of the facilities provided by the univer-

sal languages. Therefore, it is better to develop a specialized language

for each domain, and that is where the DSLs (Domain Specific Lan-

guages) come into play. Although some of the universal languages

make advances towards specific tool builders (e.g., UML offers its

stereotype mechanism), they can never provide such a broad spec-

trum of facilities as DSLs. Moreover, buying and adapting some ex-

pensive universal language tool for one’s small and concrete use-case

can often outweigh the expected benefits of using it afterward. On

the other hand, the development of a DSL could give little benefit if

its implementation would be very expensive. So a simple and unified

way of building domain specific languages and tools is needed.

There already exists a class of tools (called meta-case tools) that

are designed for building of DSL tools. Some of the most popular

are MetaEdit+ [20], Microsoft DSL Tools [33], and Eclipse GMF [1].

However, most of these tools have significant shortcomings. First, they

all are generators, i.e., the DSL tool designer can use a wizard to spec-

ify the desired DSL tool configuration, and then the meta-case tool

generates the executable program. The generation approach is ade-

quate when the DSL notation and behavior is known beforehand, but

to use DSLs in novel contexts, it is increasingly the case that the DSL

specification is arrived at incrementally, by rapid prototyping. Thus,

there is a desire for an interpreted approach, where the tool specifi-

cation can be changed at runtime. Secondly, because meta-case tools

18



model-based tool building framework graf 19

are generators, they output C# or Java code, which is compiled to an

executable DSL tool. For example, in the Eclipse GMF the metamod-

els for tool definition are provided explicitly: the domain, graphical

definition, tooling, and mapping metamodels. The concrete DSL tool

is defined by instances of these metamodels. To obtain an executable

tool, metamodel instances are converted to Java code. Thus, for the

developer to extend the functionality of a DSL tool, she needs to know

the object level structure of the whole system. It would be more con-

venient for the developer if the tool specification and runtime struc-

ture would remain in a declarative metamodel structure that could

be queried and changed by model transformations.

In 2006, at IMCS LU, the Laboratory of Modeling and Software

Technologies started work on a meta-case tool that is based on model-

driven engineering principles. The main insight was that a graphical

modeling tool at the core is a graph diagram, where each graphical

element (node, edge) has attached to it a number of textual labels,

and for each type of element there is a dialog form for changing the

attached labels. Thus, it should be possible to create a metamodel

with which one could describe the specific DSL graphical modeling

language and the diagrams the user is creating in this DSL. In this

context, a model is a set of graph diagrams consisting of elements:

nodes and edges. An element in its turn can contain several com-

partments (textual labels). At runtime, each visual element (diagram,

node, edge, compartment) is attached to exactly one type instance

(see classes DiagramType, ElementType, CompartmentType) and to ex-

actly one style instance. Here, types can be perceived as an abstract

syntax of the model while the concrete syntax is coded via styles.

There is also a metamodel (called the tool definition metamodel) whose

instances represent concrete tools in the above-mentioned model cod-

ing. Apart from types, the tool definition metamodel contains several

extra classes describing the tool context (classes such as Palette, Main-

Menu, PopUpMenu, and ToolBar).

Now, what would it take to build a tool based on such a meta-

model? It takes four things. First, we need components (called pre-

sentation engines) that can show the contents of the metamodel to



model-based tool building framework graf 20

the users. For example, instances of the graph diagram metamodel

are displayed as graphs, instances of the dialog form metamodel are

shown as user editable forms. The presentation engines must also

catch the user actions that he performs on the representations. These

actions then need to be encoded in a metamodel instance for han-

dling by transformations. This brings us to the second thing: we need

universal transformation for handling of standard user actions, that

is, to recognize the user’s goal and transform the metamodel instance

accordingly. For example, if a user has clicked on a palette element

and then on the diagram, it means that the user wants to create an el-

ement of a given type in the diagram. The transformation should find

the associated element type, create an element instance of that type in

the diagram, and notify the presentation engine that the metamodel

instances have changed, and it should redraw the view. The universal

transformations should offer extension points, where the tool definer

can specify some custom logic for event handling. For example, if

the DSL tool is a flowchart editor, then there can be only one start

symbol in each diagram. Therefore, an extension is needed for the

handling of a start element creation event. The extension must check

if the condition (only one start element per diagram) is met and no-

tify the user if it is not satisfied. Thirdly, there must be a unified way

to add new presentation engines, for associating transformations to

presentation engine events, and for the transformations to notify the

presentation engines about the changes to the relevant metamodel

instances. Finally, we need a new transformation language in which

one could write the universal transformations that handle the com-

mon event types, and for implementing of extension transformations.

Let us look at each part in more detail.

As it turns out, most of the domain-specific modeling language

tools require only two presentation engines – graph diagram engine

and dialog form engine. The engines are developed in the standard

OOP way and read the things that should be shown from the model

repository, and for each user event they create a corresponding event

instance in the repository with links to the context, and call transfor-

mation handler to process the event.



model-based tool building framework graf 21

In our approach, the unified connection of presentation engines

with transformations is established by using the Transformation

Driven Architecture (TDA) [27]. It was developed specifically for

the needs of GRAF Tool Building framework. A detailed exposition

is available in the thesis of Sergejs Kozlovičš [54]. For us, the cru-

cial part of TDA is the Head Engine. Its role is to provide services

for transformations as well as for presentation engines. For instance,

when a user event (such as a mouse click) occurs in some inter-

face engine, the Head Engine may be asked to call the corresponding

transformation for handling of this event. Transformations may issue

commands to presentation engines. This is why the Core Metamodel

contains classes Event and Command, and the Head Engine is used

as an event/command manager. The invocation of transformation

or presentation engine is done by linking the corresponding event/

command instance to the singleton instance Execute of Head Engine

metamodel. Thus, transformations do not need to know anything

about the implementation details of the engines, and correspondingly

the engines do not need to know anything about the implementation

details of transformations. All they need is the possibility to work

with a common model repository.

Universal transformations for the common user actions (such as

create, delete, copy, cut, paste, and show properties) are the central part

of the tool building framework. They, together with the tool build-

ing metamodel, allow to build the core of a new DSL tool by just

providing type instances. The tool building metamodel and the uni-

versal transformations are explained in detail in the thesis of Artūrs

Sproǧis [67]. The crucial part needed for this thesis is the general

structure of the universal transformations and the extension points.

An example of a universal transformation (creation of a new node

from the palette) was already mentioned above. Let us now expand

it a bit. First, the graph diagram engine detects a click on a palette

element followed by a subsequent click on the diagram background.

Such sequence of actions signifies the desire to create a new element.

Thus, the engine creates an instance of NewBoxEvent class, links it

to the PaletteBox instance that the user clicked and invokes the han-



3.1 graph diagramming metamodel and engine 22

dling transformation by using the Head Engine. The transformation

receives the NewBoxEvent instance. From it, the transformation needs

to find the PaletteBox instance and from it – the ElementType instance,

that the user wants to create. When the transformation has found this

context, it proceeds, by creating a Node instance in the active diagram,

by linking it to the correct ElementType instance from the context. The

default compartments are also created by using the CompartmentType

instances linked to the ElementType instance. At the end, the transfor-

mation notifies the presentation engine of the changes it has made,

that is, the transformation creates an instance of the class UpdateD-

grCmd, links it to the instance of the changed diagram, and invokes

the command using the Head Engine. As can be seen from this exam-

ple, the universal transformations are essentially interpreters of user

actions. The program for this interpreter is the declarative DSL speci-

fication encoded in the type metamodel.

It was crucial for the implementation of such an interpreter that

the language in which it was written was appropriate for the task.

It needed to support easy navigation and filtering from an event in-

stance to the relevant context. It needed also to support the dynamic

loading of extension points (for rapid prototyping that was one of the

core requirements for the framework). As it turned out, none of the

existing transformation languages was designed with such objectives.

Most of them were designed for a batch translation of data from one

metamodel to a different metamodel, and not for incremental trans-

formations inside the same metamodel. Thus, a new transformation

language was needed. The language will be described in Chapter 4.

Now we will take a more detailed look at each of the components,

starting with the graph diagram metamodel and engine.

3.1 graph diagramming metamodel and engine

The tool definition metamodel and its interpreter – the tool building

framework is based on some basic presentation services whose in-

terface is described by metamodels. One of the essential services is

that of graph diagramming. It is defined by means of graph diagram



3.1 graph diagramming metamodel and engine 23

metamodel (GDMM), and it is implemented by a graph diagram engine

(GDE) [29]. Another service for which we also have a metamodel and

a corresponding engine is that of property editors. The property edi-

tor metamodel and engine are used in our implementation of the tool

building framework. However, they are not of primary importance in

explaining its semantics; therefore they are not considered in detail

here.

The aim of GDMM is to describe the graph diagramming function-

ality that can be offered by GDE and that is common to a broad range

of graphical diagramming tasks. Since providing appropriate abstrac-

tions in GDMM can considerably ease the tool definition process on

the basis of GDE, the emphasis in the design of GDMM has been on

properly separating concerns between “purely graphical” tasks that

are to be handled by the GDE itself and tasks involving “logic” of

tools using GDE.

The GDMM (Figure 1) is built around the classes for visual ele-

ments of the presentation, namely GraphDiagram, Element, Box, Line,

and Port together with Compartment corresponding to text fields

placed in boxes and attached to lines and ports (note that line’s start

and end can be attached to any elements, not just boxes). Instances of

these classes will be diagrams and elements created by the user. Every

element, compartment and graph diagram has its style (see classes El-

emStyle, CompartStyle and GraphDiagramStyle). For every element, the

metamodel allows to specify both its default style and local style (the

diagramming engine uses the local style if it is defined; otherwise the

default style is used). The Collection class contains a single item that is

linked to the currently active (selected) elements in the diagram. The

seed/child link between Element and GraphDiagram allows specifying

of an element to be a seed for the diagram therefore providing means

for building of diagram hierarchies.

Besides the classes of visual elements, the GDMM also contains

classes describing the tool’s environment (Palette, Toolbar and Key-

board classes with the corresponding elements). Instances of these

classes are typically created at the tool creation time and do not



3.1 graph diagramming metamodel and engine 24

been on properly separating concerns between “purely graphical” tasks that are to be 
handled by the GDE itself and tasks involving “logic” of tools using GDE.  
 

GraphDiagram
name: String

ExecTransfCmd

GraphDiagramStyle
name: String
layoutMode: TLayoutMode
layoutAlgorithm: 
TLayoutAlgorithm
bkgColor: Color

StyleDialogCmd

RefreshCmd

Line

UpdateDgrCmd

SaveDgrCmd

RefreshConfigCmd

CurrentDgr 
Pointer

Command
parameter: String

DgrLevelCmd

Collection

OpenDgr 
Event

OKStyleDialogEvent

ToolSelectEvent

CloseDgr 
Event

LClick 
Event

RClick 
Event

L2Click 
Event

MoveLine 
EndPointEvent

MoveLine 
StartPointEvent

NewPortEvent

NewBoxEvent

NewLineEvent

Keyboard Key
name:String

Toolbar

Element  
location: String
toolTip: String

Transformation 
name: String

CurrentEventPointer

Event
parameter: String

Context 
Menu

Context MenuItem
name: String
isVisible: Boolean

ContextMenuItem
 SelectEvent

Activate 
ContextMenuCmd

CloseDgrCmd

ActiveDgrCmd

PasteCmd

ActiveElemCmd

ToolbarItem
name: String
picture: String
isVisible: Boolean

KeyDown 
Event

Box

Palette
ElementStyle

name: String
lineWidth: Integer
dashLength: Integer
breakLength: Integer
lineColor: Color
bkgColor: Color

ChangeContainer 
Event

PaletteLine

Port

PortStyle 
...

PaletteElement
name: String
picture: String

PaletteBox

PalettePort

Compartment 
value: String

CompartmentStyle 
name: String
isVisible: Boolean
...

LineStyle 
lineType: 
TLineType
...

BoxStyle 
shapeCode: 
TBoxShapeCode
shapeStyle: 
TBoxShapeStyle
picture: TPictureRef
...

 0..1

 0..1

 0..1

 1

 *

 *

 1

target
 1

lStart

start

 *

 1

lEnd

end

 *

 1

 1

 1

 0..1

 0..1

 0..1

default *
 1

local
 1

 0..1

 *

 1 1

 0..1

 *

parent  0..1  1

 *

 1

 1

seed

child

 0..1

 0..1

next
 0..1 0..1 eventAction

 0..1

target
 1

 1

 *

 *

 1

 *

nStart

start
 1

nEnd

end
 1

 0..1

{ordered}
 *

{ordered} *

 0..1

 1

 0..1

 1

container

part
 0..1

 *

 *

 1

{ordered}  *

target
 0..1

 1

{ordered}
 *

 1

 1

 1

 
Figure 1. The graph diagramming meta-model (outline) 

 
The GDMM (Figure 1) is built around the classes for visual elements of the 

presentation, namely GraphDiagram, Element, Box, Line, and Port together with 
Compartment corresponding to text fields placed in boxes and attached to lines and 
ports (note that line’s start and end can be attached to any elements, not just boxes). 
Instances of these classes are diagrams and elements created by the user. Every 
element, compartment and graph diagram has its style (see classes ElementStyle, 
CompartmentStyle and GraphDiagramStyle, these classes are shown in full detail in 
[12]). Every element may have both a default and local style (GDE uses for 
presentation the local style, if it is defined; otherwise the default style is used). The 
Collection class contains a single item that is linked to currently active (selected) 
elements in the diagram. The seed/child link between Element and GraphDiagram 
allows specifying an element to be a seed for a (typically, another) diagram, therefore 
providing means for building diagram hierarchies. 

Figure 1: The graph diagramming metamodel



3.1 graph diagramming metamodel and engine 25

change after that. The context menu (ContextMenu class) can also be

specified.

GDMM supports the Event class whose singleton subclasses corre-

spond to the actions the user may perform on a concrete diagram (the

event classes are represented as rounded rectangles), and that are un-

derstood by GDE. Upon detecting a current event, GDE invokes the

event’s eventAction transformation that performs the tool’s “business

logic” in response to this event. The Command class describes the re-

quests (commands) that the tool transformations can issue for GDE.

For instance, the creation of a new box in a graph diagram starts

by the user making some clicks in the tool, triggering GDE to set

CurrentEventPointer to the instance of NewBoxEvent (the parent link

from the event is set, if the new box is to be created inside another

box). The event’s transformation then may, for instance, create a new

element of Box class (or it may do some extra/other action depend-

ing on the tool’s specific logic). After that, it creates an instance of

UpdateDgrCmd and transfers the control back to GDE that processes

the command by updating the diagram so that the newly created box

becomes visible.

The semantics of other Command subclasses is, as follows. The Ac-

tiveDgrCmd sets editor’s focus on the concrete diagram, RefreshCmd re-

freshes the specified elements in the diagram, PasteCmd computes co-

ordinates of the elements pasted into the diagram model, RefreshCon-

figCmd rebuilds toolbars and palettes, ActivateContextMenuCmd opens

the context menu (depending on the collection of elements pointed

to by the Collection element), StyleDialogCmd opens element’s style

dialogue, ExecTransfCmd is used for transformation callbacks.

Although most of the user actions trigger the setting of the cur-

rent event and invocation of some transformation, there are actions

that are performed solely by GDE (e.g. undo/redo, zoom, export to

HTML, print diagrams, etc.). The toolbar items responsible for these

actions do not have associated ToolSelectEvent-s to be triggered when

the user selects the item. The context menu item ‘Symbol style’ is

also handled directly by GDE. GDE is also responsible for handling



3.2 tool definition metamodel : the core 26

of element coordinates (the coordinates can be abstracted away while

writing the tool defining transformations).

The implementation of GDE has been a considerable programming

task of several person-years (A. Zariņš). The relatively simple dia-

gram structure has allowed to implement in GDE advanced graph

drawing capabilities [38, 32] that support an automatic initial layout

of diagrams as well as serve the interactive diagram editing process.

The definition of GDE interface in the form of GDMM allows for

reuse of its graph diagramming capabilities in various MDE-related

tasks, one of them being meta-tool creation. The architecture of GDE

is described in more detail in [29, 27].

3.2 tool definition metamodel : the core

In this section, we describe the syntax and semantics of the core tool

definition metamodel (Core TDMM) that can have (simple) DSML tools

as its instances. About 20% of the Core TDMM has been developed

by the author. The aim of Core TDMM is to provide basic means for

DST definition at the level of graphical presentation. There is a wide

range of applications where just the graphical presentation view on

the modeled system is sufficient since this is the view of the system

directly perceived by the user. The other views on the system, if nec-

essary, can be obtained by model transformations that work either

offline by performing export and import tasks, or synchronously, by

using tool behavior extension points, described in Section 3.3.

The Core TDMM (Figure 2) is built around the concepts of GraphDi-

agramType, ElementType and CompartmentType providing type (or, pat-

tern) information for graph diagrams, elements and compartments

that are specified in GDMM and that may appear in the concrete

tool’s visual editor. Therefore, Core TDMM is described as an exten-

sion of GDMM. Figure 2 describes both the classes of Core TDMM, as

well as a selection of the relevant classes from GDMM in (in Figure 2,

these classes are included in two gray rectangles).

The containment hierarchy Tool GraphDiagramType ElementType

CompartmentType (via base link) forms the backbone of TDMM. Every



3.2 tool definition metamodel : the core 27

Figure 2. The tool definition meta-model (core) 

Fr
om

 th
e 

G
ra

ph
 D

ia
gr

am
m

in
g 

M
et

am
od

el
Fr

om
 th

e 
G

ra
ph

 D
ia

gr
am

m
in

g 
M

et
am

od
el

To
ol

ba
rIt

em
na

m
e:

S
tri

ng
pi

ct
ur

e:
S

tri
ng

is
V

is
ib

le
:B

oo
le

an
is

E
na

bl
ed

:B
oo

le
an

Ta
b

na
m

e:
S

tri
ng

C
om

bo
B

ox
Ty

pe

Fi
el

dT
yp

e

La
be

lT
yp

e

C
om

bo
C

ho
ic

eI
te

m
va

lu
e:

S
tri

ng

C
he

ck
B

ox
Ite

m
va

lu
e:

B
oo

le
an

di
sp

la
yV

al
ue

:
S

tri
ng

M
ul

tiL
in

eC
om

pl
ex

Ty
pe

P
al

et
te

E
le

m
en

t
na

m
e:

S
tri

ng
pi

ct
ur

e:
S

tri
ng

Li
ne

C
he

ck
B

ox
Ty

pe

C
ol

le
ct

io
n

C
ur

re
nt

D
gr

 
P

oi
nt

er

M
ov

eL
in

e 
E

nd
P

oi
nt

E
ve

nt

M
ov

eL
in

e 
S

ta
rt

P
oi

nt
E

ve
nt

O
K

S
ty

le
D

ia
lo

gE
ve

nt

L2
C

lic
kE

ve
nt

R
C

lic
kE

ve
nt

N
ew

Li
ne

E
ve

nt

LC
lic

kE
ve

nt

S
av

eD
gr

C
m

d

C
lo

se
D

gr
C

m
d

A
ct

iv
eD

gr
C

m
d

A
ct

iv
eE

le
m

C
m

d

S
ty

le
D

ia
lo

gC
m

d

M
ul

tiL
in

eF
ie

ld
Ty

pe

C
ha

ng
eC

on
ta

in
er

 
E

ve
nt

N
ew

B
ox

E
ve

nt

N
ew

P
or

tE
ve

nt
B

ox

P
or

t

C
om

pa
rt

m
en

t
va

lu
e:

S
tri

ng
in

pu
tV

al
ue

:S
tri

ng
is

C
or

re
ct

:B
oo

le
an

P
al

et
te

 L
in

e

P
al

et
te

 
P

or
t

P
al

et
te

 B
ox

Li
ne

Ty
pe

 

E
le

m
en

tS
ty

le
...

C
o
m
p
ar
tm
en
tT
yp
e

na
m

e:
S

tri
ng

st
ar

tV
al

ue
:S

tri
ng

is
In

D
ia

lo
g:

B
oo

le
an

is
E

di
ta

bl
e:

B
oo

le
an

is
O

pt
io

na
l:B

oo
le

an
di

sp
la

yP
re

fix
:S

tri
ng

di
sp

la
yS

uf
fix

:S
tri

ng

C
om

pa
rt

m
en

tS
ty

le
...

C
ho

ic
eI

te
m

va
lu

e:
S

tri
ng

G
ra

ph
D

ia
gr

am
S

ty
le

...

G
ra

ph
D

ia
gr

am
na

m
e:

S
tri

ng

C
lo

se
D

gr
E

ve
nt

O
pe

nD
gr

E
ve

nt

C
on

te
xt

M
en

uI
te

m
 

S
el

ec
tE

ve
nt

A
ct

iv
at

eC
on

te
xt

M
en

u
 C

m
d

K
ey

D
ow

nE
ve

nt

K
ey

bo
ar

d
K

ey
na

m
e

C
on

te
xt

M
en

uI
te

m
na

m
e:

S
tri

ng
is

V
is

ib
le

:B
oo

le
an

is
E

na
bl

ed
:B

oo
le

an

P
al

et
te

D
yn

am
ic

 
C

om
pa

rt
Ty

pe
s

To
ol

na
m

e:
S

tri
ng

E
le
m
en
t

lo
ca

tio
n:

S
tri

ng
to

ol
Ti

p:
S

tri
ng

is
C

or
re

ct
:B

oo
le

an

P
or

tT
yp

e

B
ox

Ty
pe

m
ul

tip
lic

ity
C

on
st

ra
in

t:
M

ul
tip

lic
ity

E
le
m
en
tT
yp
e

na
m

e:
S

tri
ng

Li
ne

S
ub

ty
pe

st
ar

tM
ul

tip
lic

ity
C

on
st

ra
in

t:
M

ul
tip

lic
ity

en
dM

ul
tip

lic
ity

C
on

st
ra

in
t:

M
ul

tip
lic

ity

G
ra

ph
D

ia
gr

am
Ty

pe
na

m
e:

S
tri

ng

C
on

te
xt

M
en

u

C
or

eT
oo

lb
ar

Ite
m

(o
pe

n 
pr

oj
ec

t, 
cr

ea
te

 
pr

oj
ec

t, 
sa

ve
 p

ro
je

ct
, 

un
do

, r
ed

o,
 z

oo
m

, 
pr

in
t, 

ex
po

rt 
to

 H
TM

L,
 d

ia
gr

am
 o

ve
rv

ie
w

)

U
pd

at
eD

gr
C

m
d

R
ef

re
sh

C
m

d

P
as

te
C

m
d

R
ef

re
sh

C
on

fig
C

m
d

E
xe

cT
ra

ns
fC

m
d

C
or

eK
ey

(D
el

et
e,

 C
trl

+A
, 

C
trl

+C
, C

trl
+V

, C
trl

+X
, 

C
trl

+Z
, .

.. 
)

C
or

eC
on

te
xt

 
M

en
uI

te
m

(p
ro

pe
rti

es
, c

op
y,

 c
ut

,
 p

as
te

, d
el

et
e,

 re
fin

e,
 

sy
m

bo
l s

ty
le

)

C
om

pl
ex

Ty
pe

To
ol

S
el

ec
tE

ve
nt

To
ol

ba
r

 0
..1

se
ed

ch
ild

 0
..1

 0
..1

de
fa

ul
tS

ty
le

 1
 1

 1

{o
rd

er
ed

}  
*

ty
pe

 *
 1

 *

 *
ne

w
 1

 1

ne
w

 1
..*

 1

 *

2

 1
 1

lE
nd

en
d

 *

 0
..1

ta
rg

et 1

lS
ta

rt
st

ar
t

 *

 1

 *
 1

 0
..1

 0
..1

 0
..1

 1

en
d

st
ar

t{o
rd

er
ed

}
 *

 *

 1
 * 0

..1

 *
 1

 1

su
bC

om
pa

rtm
en

t
{o

rd
er

ed
}

 *ta
rg

et 1 * 1

 1 1 1 1 ta
rg

et
 1

 1
co

nt
ai

ne
r

pa
rt  0
..1 *

pa
re

nt
 0

..1

 1

lo
ca

l

 1

 0
..1

de
fa

ul
t

 *

 1

 1

fo
cu

sS
ta

rt
 0

..1

dE
lT

yp
e

de
fa

ul
tS

ty
le

 1

 0
..1

ne
w

 1

 1
..*

oC
om

pS
ty

le
op

tio
na

lS
ty

le
 1

 *

dC
om

pS
ty

le
de

fa
ul

tS
ty

le
 1

 0
..1

co
m

pa
rtS

ty
le

B
yI

te
m

 *el
em

S
ty

le
B

yI
te

m
 *

 1
 1

 1
..*

{o
rd

er
ed

} 
*

{o
rd

er
ed

}
 *

 0
..1

 *

{o
rd

er
ed

} 
*

 *

 *

 0
..1

 1

{o
rd

er
ed

} 
*

 0
..1

 1

 1

 0
..1

su
bC

om
pa

rtT
yp

e
{o

rd
er

ed
}

 *

af
te

r  
1

ba
se

{o
rd

er
ed

} 
*

 *

 *

fir
st 1

ty
pe

 *

 1

co
nt

ai
ne

rT
yp

e

pa
rtT

yp
e

 *

 *

ty
pe

 *

 1

oE
lT

yp
e

op
tio

na
lS

ty
le

 1

 *

st
ar

t 1

en
d 1se

ed
 ty

pe

ch
ild

 
ty

pe

 0
..1

 0
..1

 *

 1

 *

 1

 *
co

nt
ex

tE
m

pt
y

 0
..1

co
nt

ex
tC

ol
le

ct
io

n
 0

..1

co
nt

ex
tE

le
m

en
t

 0
..1

 0
..1

 1

{o
rd

er
ed

} *

 

Figure 2: The tool definition metamodel.



3.2 tool definition metamodel : the core 28

tool can serve several graph diagram types (one of these is defined as

the first diagram type in the tool). Every graph diagram type contains

several element types (instances of ElementType), each of them being

either a box type (e.g., an Action in the activity diagram), a line type

(e.g., a Flow), or a port type (e.g., a Pin). Every element type has an

ordered collection of CompartmentType instances attached via its base

link. These instances constitute the list of compartment types of the

diagram elements of this type.

Note that the correspondence of graph diagram to graph diagram

type, element to element type and compartment to compartment type

relations is an application of adaptive object model [75] patterns to tool

definition.

The element type specification (ElementType class and its subclasses)

allows describing inclusion possibility between boxes of different

types (partType/containerType relation), attachment of ports to boxes,

the box type multiplicity constraints (e.g. 0..1 boxes of certain type in

a diagram), and line type connectivity rules (pairs of element types

for which connection by a line of certain type is allowed as specified

by LineSubtype class instances).

The CompartmentType class is divided into subclasses according to

the multiplicity of type’s compartments in the elements, as well as

the possibilities to work with them in the property editor. Table 1

summarizes these subclasses.

The visualization style of diagrams, elements, and compartments

is determined by style instances of GDMM that are connected to

the corresponding type instances in TDMM (see Figure 1 for style

attributes). Apart from specifying the default style for diagram, el-

ement, and compartment types, TDMM allows for the so-called op-

tional styles for element and compartment types. These styles can be

triggered to become effective for a concrete element/compartment

by selection of certain choice item in (possibly another) compartment

of CheckBoxType or ComboBoxType (the links elemStyleByItem or com-

partStyleByItem from the ChoiceItem to the concrete style instance are

used). A classical application of this feature is setting or unsetting



3.2 tool definition metamodel : the core 29

Table 1: Compartment type subclasses

FieldType Single input field.

MultiLineFieldType Multi-line input field, with each line

corresponding to a compartment.

The empty field corresponds to no

compartments of this type in the

element.

LabelType Non-editable label. Used, for

instance, in property editor to show

element names.

CheckBoxType Check box. The attribute

displayValue defines what value

will be shown in diagram when the

user has selected the corresponding

value. For instance, in a class

diagram when an attribute is

derived (the corresponding check

box is selected by activating a

CheckBoxItem with the value true)

it should be displayed in the

diagram as /.

ComboBoxType Combo box. The user can choose

among certain values that are

predefined as ComboChoiceItems.

MultiLineComplexType Multi-line input field, where each

line is a compartment of

ComplexType.



3.2 tool definition metamodel : the core 30

the class’ name compartment to italics depending on the value of the

attribute isAbstract. This feature is useful much more widely.

Another form of dynamic behavior supported by Core TDMM is

adding of compartments of new types to the elements depending

on some value selected in a combo-box. This dynamic behavior is

implemented by defining instances of DynamicCompartTypes class.

In TDMM, we extend the GDMM Compartment class by inputValue

attribute, so that every compartment has both inputValue and value at-

tributes. The value attribute to be displayed in the diagram is obtained

from inputValue by prefixing it by compartment type’s displayPre-

fix and suffixing by displaySuffix (an example of this construction is

putting double angle brackets around the stereotype name).

Besides the element and compartment types, every graph diagram

type can have an associated toolbar consisting of toolbar elements. We

consider only predefined (core) toolbar elements whose implementa-

tion is provided by GDE in the Core TDMM.

The graph diagram type also has an associated palette to be shown

with concrete diagrams of this type. Each palette element is connected

to one or more (in case of ports or lines) element types. This connec-

tion determines the type of element being created when a palette

element is activated. If several line or port types are connected to one

palette element (for instance, in class diagrams it may be convenient

to use the same palette element for creation of both associations and

links), the type of element is determined by the context of the corre-

sponding NewLineEvent or NewPortEvent (if there is more than one

possible alternative, the list of options is presented to the user).

The context menus (ContextMenu instances) can be added to ele-

ment types, as well as to graph diagram types (there may be differ-

ent context menus for the same diagram depending on the existence

of selected elements in the diagram, therefore there are two associ-

ations contextCollection and contextEmpty from GraphDiagramType to

ContextMenu). In the Core TDMM we consider only items that are im-

plemented by GDE (symbol style), or that are provided by a universal

implementation on the level of tool definition framework (properties,

copy, cut, paste, delete, refine).



3.2 tool definition metamodel : the core 31

Similarly, we include a keyboard with universally implemented keys

in the Core TDMM allowing for standard editor functionality (e.g.

Ctrl+C for copy, Ctrl+V for paste, etc.), or serving as shortcuts for

GDE services (e.g. Ctrl+> for zoom in).

The implementation of the tool definition framework is achieved

by developing an interpreter that, relying on the existing implemen-

tation of GDE (Section 3.1) interprets a concrete instance of TDMM.

This instance specifies the way the corresponding tool has to react

from the end user’s point of view. As for semantics of Core TDMM

and its interpreter, we note that LClickEvent does not invoke transfor-

mations, RClickEvent prepares and opens context menu (via Activate-

ContextMenuCmd) and L2ClickEvent opens a property dialogue.

The interpreter also uses the property dialog engine (PDE) with a

metamodel based interface (the property dialog metamodel, PDMM).

This architecture allows to write the interpreter as a collection of

model transformations. These transformations are created for all

events of GDE, and they handle the “business logic” of the tool

that corresponds to the semantics of Core TDMM, outlined here. We

have used the model transformation language lQuery (Chapter 4) for

our implementation; however, other “high-level” transformation lan-

guages could have been used for this purpose as well.

An alternative approach to the definition of a concrete tool could be

to write the transformations implementing the behavior of the tool di-

rectly against the events of GDMM. Then there would remain the op-

tion to replace some of the framework-defined transformations by the

tool-specific ones (for instance, one may replace ‘properties’ transfor-

mation by ‘refine’ (navigate from the seed to the child) as a response

to L2ClickEvent for some element types). Our approach to introducing

of tool-specific behavior, however, is via the mechanism of extending

universal framework-level transformations instead of replacing them

(explained in Section 3.3). In this way the functionality present in the

framework-level interpreter is efficiently reused.

As to the expressiveness of the proposed metamodel, a very wide

range of graphical tools (int. al., an editor for EMOF [4] class dia-

grams and UML activity diagrams) can be defined as its instances.



3.3 tool definition metamodel : extensions 32

We note that many popular and powerful meta-case tools (see, for

instance, MetaEdit [20, 51]) do not offer an explicit tool definition

metamodel, but instead explain the tool behavior to the end users by

means of some configuration facilities. Some meta-case tools provide

the option to use more powerful constraints in some constraint defini-

tion language. However, if we want to offer some dynamic behavior,

we have to do a serious programming and to understand the imple-

mentation of the particular meta-tool very deeply. In our approach,

all the relevant information to the DST building and running is cap-

tured as an instance of expressive, yet sufficiently simple metamodel

(Figure 2), also providing for sufficiently easy means of tool func-

tionality extensions. These extension possibilities are described in the

next section.

3.3 tool definition metamodel : extensions

The implementation of the Core TDMM attaches a fixed univer-

sal model transformation to every event of the presentation engine

(GDE). However in advanced tool building, there may be situations

when such standard universal functionality is not sufficient and cer-

tain tool specific behavior is required. For instance, there may be a

need to synchronize the “contents” of the graphical editor with data

in some other source (e.g., a domain model), or there may be some

further restrictions or constraints that must be ensured with respect

to elements and values that are introduced during the diagram edit-

ing process.

Since the tool to be defined by the tool definition framework con-

forms to the given tool definition metamodel, it could be in principle

possible to allow the tool builder to write his model transformations

for handling certain events instead of the transformations built in the

framework. However, our approach to the tool functionality exten-

sion is more refined in that we allow the tool builder who is willing

to introduce the extended functionality still to rely on the basic work

done by the transformations implementing the framework. This is

achieved by extending the Core TDMM with classes XElemType and



3.3 tool definition metamodel : extensions 33

XCompartType that are subclasses of ElemType and CompartType respec-

tively (Figure 3). These classes contain attributes that correspond to

certain “call points” at which the framework-level event processing

transformation (which is to be adopted to respect these call points)

may transfer control to an external tool-specific transformation.

The extended tool definition metamodel also contains classes Ad-

vancedKey, AdvancedContextMenuItem and AdvancedToolBarItem that

provide the tool builder with further points where the tool-specific

transformations can be attached.

In what follows, we explain the semantics of concrete call points

(their placement in the tool interpretation process). We claim that

this explanation, together with understanding of the tool definition

metamodel is sufficient to use the call point mechanism efficiently in

advanced DST building. This is in sharp contrast with the amount of

framework specific implementation details that are required for de-

veloping advanced tools, for instance, in Eclipse GMF framework [19].

with data in some other source (e.g., a domain model), or there may be some further 
restrictions or constraints that are to be observed with respect to elements and values 
that can be introduced during the diagram editing process. 

 

Extension

Core

AdvancedKey
action: Transformation

Key ElementType CompartmentType

XCompartmentType
compartmentCreated: 
Transformation
generateDisplayValue: 
Transformation
valueCheck: Transformation
compartmentModified: 
Transformation
compartmentDeleteCheck:
Transformation
compartmentDelete:
Transformation
generateComboValues: 
Transformation

ContextMenuItem

AdvancedContextMenuItem
action: Transformation

XElementType
elementCreateCheck: Transformation
elementCreated: Transformation
elementCheck: Transformation
elementModified: Transformation
elementDeleteCheck: Transformation
elementDelete: Transformation
lineStartMoveCheck: Transformation
lineStartMoved: Transformation
lineEndMoveCheck: Transformation
lineEndMoved: Transformation
containerChangeCheck: Transformation
containerChanged: Transformation

AdvancedToolbarItem
action: Transformation

ToolbarItem

 

Figure 3. Tool definition meta-model: extensions 

Since the tool to be defined by the platform conforms to TDMM, it could be 
possible to allow the tool builder to write specific transformations for certain event 
handling that replace the platform’s built-in transformations. We choose, however, a 
more refined approach to tool functionality extension by defining certain “call points” 
in relation to element and compartment type classes at which the universal 
transformation can call a user-specified code. Formally, this is achieved by extending 
the Core TDMM with classes XElementType and XComparmenttType that are 
subclasses of ElementType and ComparmenttType respectively (Figure 3). These 
classes contain attributes that describe the said call points at which the platform-level 
event processing transformation (which is to be adopted to respect these call points) 
may give control to an external tool-specific transformation. In this way, we reuse 
efficiently the basic work done by the transformations implementing the platform. 

The extended tool definition meta-model contains also classes AdvancedKey, 
AdvancedContextMenuItem and AdvancedToolBarItem that provide the tool builder 
with further points where the tool specific transformations can be attached. 

In what follows, we outline the semantics of concrete call points (their placement 
in the tool interpretation process). We claim that a simple explanation of the call 
points, together with understanding of the tool definition meta-model is sufficient to 
efficiently use the call point mechanism in advanced DST building. This is in sharp 
contrast with the amount of platform specific implementation details that are required 
for developing advanced tools for instance, in Eclipse GMF platform [8]. 

Table 1 outlines some of the call points in XElementType class that arise in 
connection with element creation, content’s modification and deletion (each 
transformation accepts a corresponding instance E:Element as its only argument):  
 
elementCreateCheck 
: Boolean 

Called after the creation of an element (instance of Element 
class) and setting its context (line ends, containing boxes). If 

Figure 3: Tool definition metamodel: extensions.

Table 2 summarizes the call points in XElementType class that arise

in connection with element creation, contents modification and dele-

tion (if not specified otherwise, each transformation accepts the cor-

responding instance e: Element as its only argument; the call points

are designed to have transformations that either do or do not have a

(Boolean) return value).

Note. Moving of a line start or end, or changing a container do

not invoke initial deletion and further creation of elements; therefore



3.3 tool definition metamodel : extensions 34

Table 2: Call points from XElementType

elementCreateCheck: Boolean Called before the creation of an

element (instance of Element class).

If the function returns false, the

element creation process is

cancelled. Recommended for initial

correctness constraints (e.g. whether

a new element of given type is

possible in the diagram).

elementCreated Called after creation of the element,

after elementCreateCheck, before the

addition of compartments.

elementCheck: Boolean Called upon completion of value

change of element’s compartments.

The result of the function is

recorded in the element’s isCorrect

attribute. The user is notified, if the

transformation returns false.

elementModified Called upon completion of value

change of element’s compartments,

after elementCheck.

elementDeleteCheck: Boolean Called upon user’s request to delete

an element, after system’s own

checks for delete possibility are

completed. If the return value is

false, the delete action is cancelled.

elementDelete Called upon user’s request to delete

an element, after

elementDeleteCheck, before

(unconditional) delete of the

element.

lineStartMoveCheck(e, OldStart,

NewStart: Element): Boolean

Called upon user request to move

line’s start point, after system’s own

checks for action possibility are

completed. If the procedure returns

false, the action is cancelled.

lineStartMoved(e, OldStart,

NewStart: Element)

Called after the line start has been

moved.



3.3 tool definition metamodel : extensions 35

the corresponding call points for element deletion and element and

compartment creation are not activated.

Table 3 summarizes the call points in XCompartmentType class (each

transformation accepts a corresponding instance c:Compartment as its

argument).

Note. The compartmentDeleteCheck and compartmentDelete transfor-

mations are not invoked when deleting a whole element.

The introduced tool extension mechanism, although simple, is suf-

ficient for a large range of tasks arising in DST building. We mention

some of them here:

• synchronization with an abstract user-defined domain model;

• constraints of potentially arbitrary logical complexity;

• support of dynamic contents in the tool (e.g. drop-down values

in a combo-box);

• advanced dependencies in tool’s presentation behavior;

• integration with other data engines (e.g. data from relational

databases, provided the data access interface has been created).

The synchronization of model contents with a user-defined domain

model can be performed by transformations elementCreated, element-

Modified and elementDelete, as well as compartmentCreated, compartment-

Modified and compartmentDelete that provide the tool builder for the

points at which a corresponding action (e.g., creation, modification or

delete of a structure, corresponding to an element or compartment at

the presentation level) can be defined for the domain model. If neces-

sary, the lineStartMoved, lineEndMoved and containerChanged transfor-

mations can be used for this purpose as well.

The constraints can be implemented in the tool via the trans-

formations elementCreateCheck, elementCheck, elementDeleteCheck, lineS-

tartMoveCheck, lineEndMoveCheck, containerChangeCheck, compartment-

DeleteCheck and valueCheck. All of these transformations, except ele-

mentCheck and valueCheck, in the case of returning false, cancel the

action initiated by the user. The result of elementCheck and valueCheck



3.3 tool definition metamodel : extensions 36

Table 3: Call points from XCompartmentType

compartmentCreated Called after creation of

compartment and setting its context

(link to the element or containing

compartment), before setting up

compartment’s value and

processing sub-compartments.

generateDisplayValue If specified, is used instead of the

Core mechanisms for generating

compartment’s value (as seen in the

diagram) from input value (as

entered in the property editor).

Called after the input value of the

compartment is prepared (e.g. in

the property editor).

valueCheck: Boolean Called upon completion of value

change of compartment, after

generateDisplayValue. The result of

the procedure is recorded in the

compartment’s isCorrect attribute.

The user is notified, if the

transformation returns false.

compartmentModified Called upon completion of value

change of compartment, after

valueCheck.

compartmentDelete Called upon user’s request to delete

a compartment, after

compartmentDeleteCheck, before

(unconditional) delete of the

compartment.

generateComboValues Procedure for dynamic generation

of values in the compartment’s

combo box in the property editor. If

not specified, the combo box is

filled up by means specified in the

Core.



3.3 tool definition metamodel : extensions 37

transformations is placed in the element’s or compartment’s attribute

isCorrect, and the user is notified to take a correcting action if the re-

sult was false. Note that both the structure of the model created in the

editor (the presentation), and the tool-specific domain model informa-

tion can be accessed by the procedures implementing the constraints.

Since the DST conforms to the (extended) tool definition meta-

model, the transformations attached to the call points, as well as the

user-defined event-processing transformations (in case of Advanced-

Key, AdvancedContextMenuItem and AdvancedToolBarItem) can be in

principle defined in any high level model transformation language.

This means that we have reached a point where an advanced DST in-

cluding the user-defined extensions can be fully implemented within

MDE framework, without the need to resort to structures and con-

structs that are typical of traditional programming languages.

Furthermore, the definition of the call points within the tool inter-

pretation process hides the details of this process from the user (it

allows the user to seamlessly re-use the implemented process). It al-

lows focusing just on adding the tool-specific advanced functionality

and relying on that these will be called at the right time and place.

The only requirement for the tool builder (the writer of extension

transformations) is not to introduce inconsistencies in the metamodel

of Figure 2.

Now we will turn to the language in which the extension transfor-

mation can be written.



4
L Q U E RY – A T R A N S F O R M AT I O N L A N G U A G E F O R

T O O L B U I L D I N G

As concluded in the previous chapter, the development of a univer-

sal interpreter and the extension point transformations for the GRAF

Tool Building framework requires a new kind of transformation lan-

guage. This language must, among other things, allow dynamic load-

ing of extension transformations at runtime. Moreover, it must be

designed for the task of development of incremental transformations

that modify a common metamodel (in contrast to existing transfor-

mation languages, which are mainly tailored for batch model conver-

sions from one metamodel to another). Also, this language must pro-

vide options for integration with other parts of the system (databases,

compilers, simulators, etc.) in which the DSL tool is only a compo-

nent.

The analysis of the types of transformations required for the tool-

building framework revealed that the majority of them are context

based. Namely, the transformation starts with a single instance ele-

ment (event, graphical element, form field); afterward it must find the

context of the instance, and finally, it must make some adjustments

in the instance graph (create or delete an instance; add or remove

a property link; modify an instance attribute). Thus, the necessary

steps are navigation, filtration and modification of the instance graph.

When this conclusion is combined with the need to integrate with

the external infrastructure, it seems that it would be very desirable if

an existing scripting language could be used as the base for the new

language. This would make it possible to reuse the existing libraries

and the interpreter of the scripting language for the dynamic loading

of extension transformations. The crucial question is: “could an easy

to use abstraction layer for writing transformations be developed in

an existing programming language”?

38



4.1 brief overview of lua 39

The first step should be selection of a scripting language on which

the transformation layer could be based. There are many alternatives

available: Python [72], Ruby [37], JavaScript [36], and Lua [46]. The

scripting language Lua was particularly suitable for our requirements.

It is tailored for embedding and extending existing systems, and thus

provides a natural fit for writing of extension transformations. It is

also one of the smallest and theoretically purest languages [47].

To achieve the expressivity of the existing model transformation

languages in a general-purpose scripting language we use the ideas

from the functional programming, specifically from combinator pars-

ing [45]. Thus, the result is a set of functions for querying and modi-

fying of the models stored in a model repository. Functions are built

in progressive layers, where every next layer is based on the previous

one. The first layer is built directly on the repository API. From now

on, we will refer to the resulting transformation language as lQuery.

4.1 brief overview of lua

Before going into details about lQuery, we will first give a brief outline

of the Lua scripting language and the API of the model repository for

which lQuery is designed.

Lua is a dynamically typed scripting language, i.e. variables do

not have types, but each value carries its type. Comments start with

double hyphens (‘- -’) and run till the end of the line. In the follow-

ing examples, we use comments beginning with ‘- ->’ to indicate the

result of the preceding code.

Lua has only a few primitive value types: nil, strings, numbers,

booleans, and functions. Moreover, there is only one data structure: an

associative array, commonly called table. The indices and values in a

table can be any Lua values: strings, numbers, booleans, functions, or

other tables. Lua has a special syntax for creating tables: {} creates an

empty table, and {x=1, y=“a”} creates a table where the index “x” has

value 1 and the index “y” has value “a”. There are two syntaxes for

getting the value that is associated with a given key in a table: t.y and

t[“y”], the former is just a shorthand for the later:



4.1 brief overview of lua 40

t = {x=1, y="a"}

print(t.x) --> 1

print(t["y"]) --> "a"

Lua has a standard set of control structures: if for conditions and

for for iterations. All control structures have an explicit terminator:

end.

if a < 2 then

print("a less than 2")

else

print("a greater than 2")

end

t = {"a", 100, true}

for i, v in ipairs(t) do

-- i is index, v is value, .. is concatenation operator

print("the value of index " .. i .. " is " .. v)

end

Functions in Lua are first-class values meaning that functions can

be constructed at runtime, assigned to variables, passed as arguments

and returned as results from other functions. All functions in Lua are

anonymous. The statement function (x) . . . end is a function construc-

tor, just as {} is a table constructor. For example, to create a function

that adds one to its argument, we write:

add_one = function(n)

return n + 1

end

add_one(3) --> 4

In the above example, add_one is a variable to which we assign the

constructed anonymous function.

Tables can also be used as objects. To make it more convenient,

there is a special syntax for calling methods: obj:foo(args). It gets the

anonymous function stored at key “foo” in the table obj and calls it



4.2 overview of the metamodel 41

passing the table itself as the first argument. In this case, the table

plays the role of self or this that are used in other object-oriented

languages.

4.2 overview of the metamodel

lQuery, like other model transformation languages, works on a model

repository. The repository can be divided into two parts (Figure 4):

the schema part (upper part of the figure) and the data part (lower

part of the figure). The data part is the actual part with which lQuery

works, and the schema part serves as annotations that help to under-

stand what each data item means. The schema part consists of three

things: classes, attributes, and links (more commonly known as asso-

ciations but the word “link” reads more naturally in our examples).

Classes are used to group objects together, and the super/sub relation

between classes is used to state that if an object belongs to a subclass

then it also belongs to the superclass. Attributes are used as keys

for associating string values to objects. Links are used for associating

objects with other objects. The data part consists of: objects, attribute

values, and link assertions. Objects are the actual values that are stored

in the repository. Each object is an instance of some class. Attribute

values are strings that are associated with some object with a par-

ticular attribute name. Each object can possess at most one attribute

value for a particular attribute. Link assertions represent a collection

of objects that are associated with a particular object for a given link.

An example of a repository contents is provided in the next chapter.

Each schema entity has a unique string id, and there is an API

function to get an entity with a particular id. There are also functions

to get all objects that belong to a given class, check whether an object

belongs to a specific class, create an object, delete an object, get the

value of an object attribute, set the value of an object attribute, get

linked objects, add link between two objects, and delete link between

two objects.

In theory, these functions are sufficient to write any transformation,

but in practice the resulting code would be very repetitive, i.e. some



4.3 lquery 42

DataProperty

IndividualDataPropertyValue
1

*
1

*

1

*

1

*

type
1

*

*

*

ObjectPropertyAssertion

EnumerationLiteral

ownedLiteral *

NamedElement

name : String [0..1]

DataType Class

Generalization

range
0..1 *

general  1

*
specific  1

*

attr
*

assoc
*

Primitive Enumeration

domain
domain

*

inverse
1

1

1
type

DataPropertyAssertion

InstanceOfAssertion

1

*

1

range
1

ObjectProperty

1
type

*

Figure 4: Metamodeling Language Used by lQuery

patterns would repeat, e.g. navigation through multiple link chains,

or filtering by some condition. To make transformations more read-

able, the redundant parts need to be abstracted away. lQuery func-

tions help to do it.

4.3 lquery

4.3.1 Example Model

In Figure 5 we can see a simple model and an instance diagram.

We will use it throughout the rest of the chapter for demonstrating

lQuery constructs. The model is on the left; it consists of two classes:

Person and Animal. A person has name and age attributes and associa-

tions to other persons that are his parents and children, and an associ-

ation to Animals that are his pets. On the right side, we can see some

instances of this model.

Typical queries that we would like to make on this model are: get

instances of a particular class (e.g. all persons), get instances with a

particular attribute value (e.g. persons with name “John”), or get all

pets of a person’s children. If we needed to perform these queries

using only the repository API, then the code would mostly contain



4.3 lquery 43

Fig. 2. Example model and instances

Typical queries that we would like to make on this model are: get instances of a 
particular class (e.g. all persons), get instances with a specific attribute value (e.g. 
persons with name “John”), or get all pets of a person’s children. If we needed to 
perform these queries using only the repository API, then the code would mostly 
contain iterator constructs. For example, to get persons that are 42 years old, we 
would need to write:

persons_with_age_42 = {} --empty table for storing results
for i, o in ipairs(allObjects()) do --iterate over all objects
  --check that object is a person and the value of age is 42
  if isKind(o, “Person”) and getAttrVal(o, “age”) == 42 then
     --insert person into results table
     insert(persons_with_age_42, o)
  end
end

It is far from readable, even for such a simple query, especially if we compare it 
with path expressions from XPath language [5], where it would look something like 
“.Person[@age=42]”. Our goal is to create a query language where selector 
expressions would be as compact as that. One way to do it is to create a function that 
receives an XPath-like selector string and returns the resulting object collection, but 
this approach is too limiting because there are common queries that cannot be 
adequately represented as strings, e.g. getting objects with a link to a specific 
instance because in our repositories an instance does not have an externally 
accessible id, so it cannot be encoded in a string. That is way we will take another 
approach: we will define selector functions, and function combinators, so that we 
can easily reference objects and object collections by passing them as arguments to 
those functions. For the common cases, where string expressions would suffice, we 
will define an XPath-like selector shorthand notation (string expressions) that can be 

parent 
*

child
*

pet *

owner 0..1

pet

owner 

parent 

child

parent 

child

Person

name:String
age: Integer

Animal

age:Integer

John:Person

name = "John"
age = 31

dog:Animal

age = 2

Mary:Person

name = "Mary"
age = 32

Bill:Person

name = "Bill"
age = 7

Figure 5: Example model and instances

iterator constructs. For example, to get persons that are 42 years old,

we would need to write:

persons_with_age_42 = {} --empty table for storing results

for i, o in ipairs(allObjects()) do --iterate over all objects

--check that object is a person and the value of age is 42

if isKind(o, "Person") and getAttrVal(o, "age") == 42 then

--insert person into results table

insert(persons_with_age_42, o)

end

end

Such a code is far from readable, even for such a simple query,

especially if we compare it with path expressions from XPath lan-

guage [18], where it would look something like “.Person[@age=42]”.

Our goal is to create a query language where selector expressions

would be as compact as that. One way to do it is to create a func-

tion that receives an XPath-like selector string and returns the result-

ing object collection, but this approach is too limiting because there

are common queries that cannot be adequately represented as strings

(e.g. getting objects with a link to a particular instance, because in

our repositories an instance does not have an externally accessible

id, so it cannot be encoded in a string). That is why we take another



4.3 lquery 44

approach: we define selector functions, and function combinators so

that we can easily reference objects and object collections by passing

them as arguments to those functions. For the common cases, where

string expressions would suffice, we will define an XPath-like selector

shorthand notation (string expressions) that can be easily mixed with

selector functions and combinators. The result is lQuery.

4.3.2 lQuery Core

The core of lQuery is a single function: query. It has two arguments:

an ordered collection of repository objects and a selector. The selector

specifies what will be the result of the query operation on the source

collection. There are two types of selectors: filters and navigators. Fil-

ters are used to return a subset of the initial collection based on some

condition. Navigators are used for getting a new ordered collection

of objects from the initial collection. Examples of filter selectors: filter

by class membership, and filter by attribute value. Examples of nav-

igation selectors: get the collection of objects that are reachable from

the current collection by a given ling name, and get the collection of

values of some attribute. For each of these primitive selectors, there

is a constructor function that creates it. Constructor function names

have been chosen to improve readability when used as arguments in

query calls. The list of built-in primitive selector constructors is given

in Table 4. For example, to get all persons from Figure 5 that are 42

years old we can write:

persons = query(allObjects(), kind("Person"))

query(persons, hasAttrValue("age", 42))

Such a query is much more concise than the same query written

by using the base repository API with an explicit for loop (see the

previous chapter). However, there are still some problems, e.g. we

need to introduce a temporary variable: persons and we have to call

the query function twice. It would be better if we could combine these

two query steps into one. In that way, we do not have to introduce a

temporary variable, and we can call the query function only once.



4.3 lquery 45

Table 4: Primitive Selector Constructors

Selector Constructor Description

kind(className) returns a filter selector that will

match only those elements that are

instances of a class with id

className or instances of some class

in its subclass chain

hasAttrValue(attrName,

attrValue)

returns a filter selector that will

match only those objects that have

an attribute with id attrName whose

value is equal to attrValue

linked(linkName) returns a navigator selector that will

match all those objects that are

reachable by a link with id linkName

attrValue(attrName) returns a navigator selector that will

return a collection of values that are

associated to attribute with id

attrName



4.3 lquery 46

Another problem is how to perform filters on more complex condi-

tions. Currently, there are only two primitive filters: filter by kind and

filter by attribute value. If we need to make a more complex query,

e.g. select persons that have at least one child, we have to resort to an

explicit iterator.

parents = {}

for p in query(allObjects(), kind("Person")) do

children = query(p, linked("child"))

if #children > 0 then

parents:insert(p)

end

end

In the next chapter, we look at selector combinators that address

these problems.

4.3.3 Selector Combinators

In the previous chapter, we introduced the query function and some

primitive selectors for filtering and navigation object collections, but

they were not powerful enough to cover many typical use-cases. To

solve those problems, we introduce functions (selector combinators) for

building new selectors from existing ones. They will receive selectors

as arguments and return a new selector that can be used elsewhere

as if it was a primitive. Let us look at a couple of selector combinators

in more detail (the complete list of selector combinators is shown in

Table 5).

One of the most frequently used selector combinators is chain. It

receives any number of selectors as arguments, and returns a new

selector that, when evaluated in a query function, will apply the first

selector to the initial collection, then pass the result of that evalua-

tion to the next selector and so on through all the selectors that were

passed to it. In this way, we can write long selector expressions in a

very readable way because we do not need to call query functions

separately and to pass them the arguments. For example, to get all



4.3 lquery 47

persons and then to get all animals that are pets of those persons, we

can write:

query(allObjects(), chain( kind("Person"), linked("pet") )

Another frequently needed task is filtering not just by a predefined

selector (like filter by kind, or filter by attribute value), but by the

result of another selector. For this task, there are two selector combi-

nators: has and hasNot. Selector combinator has accepts a selector as

an argument and creates a filter selector, that when applied to collec-

tion of repository objects will return a new collection with only those

objects for which the passed selector returns a non-empty collection.

The selector combinator hasNot works similarly but returns the ob-

jects for which the passed selector returns an empty collection. For

example, to select persons that have children, we can write:

query(allObjects(), chain(kind("Person"), has(linked("child")))

Another pair of selector combinators is union and intersect. Both

receive one or more selectors and return a new selector. In the case

of union, the returned selector returns a union of object collections

(multi-set) of all the results of applying each selector to the initial

collection. The intersect selector returns an intersection of object col-

lection that are returned by all of the passed selectors. For example,

let us say a person is responsible for someone if that someone is either

his child or his pet. To get all persons that are responsible for someone

we would use a filter and union:

query(allObjects(), chain(kind("Person"),

has(union(linked("child"),

linked("pet"))))

The selector combinators chain and intersect can be interchanged in

some situations, but in general they are different. When combining

selectors with chain, each selector will be performed on the result of

the previous selector, but when they are combined with intersect then

all selectors are carried out on the original collection and only then

the results are intersected. When all the selectors are filters then chain



4.3 lquery 48

and intersect can be interchanged and chain is actually a better option,

because it is more efficient, i.e. every subsequent selector will be ap-

plied to a smaller collection of objects. However, chain and intersect

will return a different result if some of the selectors are navigators, be-

cause then the intersect will perform each selector in the context of a

source collection, but the chain will navigate through a chain of links.

For example, intersect(linked(“children”), linked(“pet”)) will return ob-

jects that are children and pets (hopefully an empty collection), while

chain(linked(“children”), linked(“pets”)) will return children’s pets.

The last combinator is closure. It receives a selector and returns a

new selector that, when applied to a collection of repository objects,

will return a new collection with all the objects from the initial collec-

tion together with objects that can be found by a repeated application

of the passed selector to the resulting collection until no new objects

are found. It is impossible to go into an infinite loop here because

closure will detect cycles and will not evaluate the passed selector on

them again. A typical example for closure is getting all descendants of

a person (here we must assume that each person is a descendant of

himself, in the next section we will see how to implement a combina-

tor closure_plus that will not have this problem). The closure will first

find all the person’s children then it will find the children of these

children, and so on until no more children can be found. It can be

written as follows, assuming that p is the collection of persons for

whom we want to find descendants:

query(p, chain(kind("Person"),

closure(linked("child")))

The combinator closure can be used not only with simple selectors

like navigation, but also with more complex selectors: like a chain

of links or links followed by filters. For example, if the class Person

would have the attribute gender, then we could create a selector for

getting only male descendants by writing:

closure(chain(linked("child"),

hasAttrValue("gender", "Male")))



4.3 lquery 49

Table 5: Selector Combinators

Selector Combinators Description

chain(sel1, sel2, ..., selN) creates a selector that applies each

of the supplied selectors in order,

the first selector is applied to the

initial collection, and each

subsequent selector is applied to the

result of the previous selector

has(sel) creates a selector that filters the

initial collection based on the result

of supplied selector: if the result is a

non-empty collection or a non-false

value, then the object will be in the

result collection, otherwise it will be

dropped

hasNot(sel) creates a selector that returns the

complement collection of the result

the sel selector would have returned

union(sel1, sel2, ..., selN) creates a selector that returns the

union of all supplied selector results

intersect(sel1, sel2, ...,

selN)

creates a selector that returns the

intersection of all the selector results

closure(sel) returns a transitive closure by

repeatedly applying the selector to

the initial collection and then to

each of the results until no new

object is added



4.3 lquery 50

4.3.4 Selector Reuse and Custom Selector Combinators

When building any reasonably complex application, there usually are

some selector patterns that repeat multiple times, e.g. the compound

selector from previous chapter that gets persons that are responsible

for someone, i.e. that have a child or a pet. One way to avoid the

repetition is to create this selector once and assign it to a variable.

Later, when we need to use that selector, we can pass the variable

instead of building it from scratch, like this:

responsible_persons = chain(kind("Person"),

has(union(linked("child"),

linked("pet")))

query(allObjects(), responsible_persons)

This works, when the pattern is constant, but what if the pattern

is like a template? For example, we could want to get all objects that

are reachable via a selector chain with length at least one. We can

use functions to create these selectors. In a way, the selector combina-

tors from the previous chapter did just that. For example, to define a

new selector combinator (closure_plus) that will receive a navigation

selector and return a new selector that will match all objects that are

reachable via a navigation chain with length at least 1, we write:

function closure_plus(selector)

return chain(selector, closure(selector))

end

Now we can use this new selector combinator just as if it was a

library primitive. In real life tasks, this allows the programmer to

build a task-specific selector library on top of the primitive selectors

and selector combinators that are tailored for his problem domain.

4.3.5 Custom Primitive Selectors

Although the ability to create higher-level selector combinators is very

powerful, it is not enough because we are still bound by the primitives



4.3 lquery 51

that came with the library. There are situations when we need a gen-

uinely new kind of selector that cannot be expressed by means of the

existing primitives, e.g. get all persons from Figure 5 whose name

starts with the letter ‘B’. Of course, we could always resort to explicit

for loops, but then we could not use them in our selector chains, i.e.

we would have to split our chains in parts and return to the for loops.

The situation is even worse, if we want to use such a selection in

a combinator (e.g. closure), because there is no way to do this, and

we would be forced to re-implement closure specifically for this case.

To alleviate these problems, in lQuery there is a mechanism for con-

structing new primitive selectors. In fact, all of the primitive selectors

of lQuery have been implemented through it.

There are two primitive selector constructor functions (Table 6). The

first one operates in the context of a single repository object, like

the primitive selectors returned by linked and kind constructors. The

second one operates in the context of a repository object collection.

The closure selector is implemented through it.

New selectors with single object context can be created by using

the function soloSelector that accepts a one-argument function as an

argument (remember that functions are first-class objects in Lua, and

therefore can be passed as arguments). When the resulting selector

is used in a query invocation, it will apply the passed function to

each element from the initial collection of objects. The function must

return either a repository object, an object collection or a boolean. If

it returns an object or a collection, then all results are collected in

a list that is flattened afterward. If the function returns a boolean,

then it acts as a filter, i.e. only those objects for which the function

returned true are included in the result collection. For example, if

we were working with the repository that is shown in the Figure 5

and needed to get all persons who have underage children, then we

would have a problem, because there is no selector for checking is

an attribute value less than a given integer, and we would have to

introduce an explicit for loop. However, now we are able to construct

such a selector and use it with other combinators:

underage = soloSelector(function(p)



4.3 lquery 52

age = getAttrValue(p, "age")

if age < 18 then

return true

else

return false

end

end)

query(allObjects(), chain(kind(“Person”),

has(chain(linked(“child”), underage)))

In fact, all of the primitive selectors are implemented through soloS-

elector. For example, the primitive selector kind(className) is imple-

mented like this:

function kind(className)

return soloSelector(function(o)

return isKindOf(o, className)

end)

end

The second primitive selector constructor creates a selector from a

one-argument function that will work on all of the initial collection at

once. Thus, its only argument is the initial collection of objects. The

result of the passed function, when called with the initial collection,

is the result of the whole selector. This selector constructor is use-

ful for creation of custom selectors that must have the whole object

collection, e.g. getting the first object from a collection, getting the

number of objects in a collection, or checking whether an object col-

lection contains a specific object. For example, to get the first child of

every person we would first define a new primitive selector first (it is

universal and can be used in other situations as well) and then use it

to get the first child:

first = collSelector(function(coll)

return coll[1] -- table value by index

end)



4.3 lquery 53

query(allObjects(), chain(kind("Person"),

chain(linked("child"),

first))

Table 6: Custom Primitive Selector Constructors

Custom Selector Constructors Description

soloSelector(fn) creates a selector from a

one-argument function; when the

selector is used, the function will be

applied to each element in the

collection; if it returns an object or

an object collection, then all the

results will be collected and

flattened; if it returns a boolean

then it will act as a filter

collSelector(fn) creates a selector from a

one-argument function, in contrast

to soloSelector, the whole object

collection is passed to the function;

the result of the function is the

result of the selector

4.3.6 Shorthand Notation

The primitive selectors and selector combinators allow us to write

complex query expressions in a modular and readable way, but in

cases where the selector is constant and simple, the combinator ap-

proach yields expressions that are a bit longer than the analogous ex-

pressions in OCL [5] or XPath. To reach the maximum compactness

and readability, we introduce a shorthand string notation for most

common primitive selectors and combinators. The string form can be

used anywhere in place of the selector: when the query function gets

a string in place of a selector, it will compile it to the corresponding

primitive selector constructor or selector combinator calls. This allows



4.3 lquery 54

us to mix the shorthand string notation together with ordinary selec-

tors to achieve the maximum of compactness and expressiveness.

The shorthand notation is adapted from the XPath navigation lan-

guage. Function compile(shorthand_string) compiles a shorthand string

into the corresponding selectors. It works as follows: a string that

starts with a dot followed by an alphanumeric string, e.g. “.Class-

Name”, is compiled to the selector constructor kind(“ClassName”);

a string that starts with a slash, e.g. “/linkName”, is compiled to

linked(“linkName”), and a string that starts with brackets followed by

‘@’ and a name, e.g. “[@attrName = value]”, is compiled to hasAttr-

Value(“attrName”, “value”). The shorthand notation for selector combi-

nators is as follows: “:has(sel)” and is compiled to selector combinator

has(compile(“sel”)). The complete list of shorthand notation is given in

Table 7 and the selector expression grammar is shown in Figure 6.

Table 7: Selector Shorthand Notation

Shorthand Notation Equivalent Form

".ClassName" kind("ClassName")

"/linkName" linked("linkName")

"[@attrName = value]" hasAttrValue("attrName",

"value")

":has(sel)" has(compile("sel"))

"sel1 sel2 ... selN" chain(compile("sel1"),

compile("sel2"), ...,

compile("selN"))

"sel1, sel2, ..., selN" union(compile("sel1"),

compile("sel2"), ...,

compile("selN"))

Let us consider, how some of the examples from the previous chap-

ters can be rewritten by using the shorthand notation. The first exam-

ple was: get all persons that are 42 years old. Using the shorthand

notation we can write:

query(allObjects(), ".Person[@age=42]")



4.3 lquery 55

Besides the primitive selectors there are also selector combinators, such as a 
selector chain and a condition on selector result. The selector chain is a concatenation 
of primitive selectors. It will apply the first selector to the initial collection, then pass 
the result of that evaluation to the next selector and so on through all the selectors. 
For example, a selector expression “Professor /teaches” matches all courses that are 
taught by professors. 

There are also aggregation operators for summing data-property values, getting the 
count of objects in collection, etc.

             <lQuery_expr> ::= <object_selector_expr>
    <object_selector_expr> ::= <class_name>
                             | <object_selector_expr> "/" <role_name>
                             | <object_selector_expr> "." <class_name>
                             | <object_selector_expr> "["
" " " " " " <object_selector_expr>
! ! ! ! ! ! <obj_op>
" " " " " " <object_selector_expr>
" " " " " " "]"

                             | <object_selector_expr> "["
" " " " " " <data_sub_selector_expr>
" " " " " " <data_op>
" " " " " " <constant>
" " " " " " "]"

                             | <object_selector_expr> "not(" 
" " " " " " <object_sub_selector_expr>
" " " " " " ")"

<object_sub_selector_expr> ::= "/" <role_name>
                             | "." <class_name>
                             | <object_sub_selector_expr> 
" " " " "  <object_selector_expr>
  <data_sub_selector_expr> ::= <object_sub_selector_expr> ":count()"
                             | <object_sub_selector_expr> ":sum()"
                  <obj_op> ::= "==" | "!="
" " "   <data_op> ::= "==" | "!=" | "<" | ">" | "=<" | ">="

Fig. 3. The lQuery selector expression grammar in a BNF notation

3.1 Integration with Ontology

Now that we have defined a language, in which it is possible to define classes that 
OWL cannot describe, we need some way for the ontology designers to use it. One of 
the best ways to intuitively capture the reality is through a visual representation. For 
OWL such a notation that is inspired by UML class diagrams is OWLGrEd graphical 
ontology notation [4]. In the OWLGrEd ontology notation classes are represented by 
boxes, and there is a field (starts with “=”) under the class name where a class 
description can be added in the OWL Manchester syntax [7]. We extend this notation 
with a possibility to write there lQuery expressions. To distinguish them from the 

Figure 6: The lQuery selector expression grammar in a BNF notation

The shorthand notation can also be used in selector combinators.

For example, to get the descendants of the person collection p, we

can write:

query(p, closure("/child"))

In this way, we can use the shorthand where possible, but fall back

to selector combinators or custom selectors when the shorthand is not

expressive enough.

4.3.7 Manipulation with Whole Sets of Objects

The selection of repository objects is only one part of the model in-

terpretation task. The other one is operating with the selected objects.

Usually, the operating and the selection is intertwined, i.e. we select

some objects, operate with them and then use the resulting collection

to find the next collection, and operate with it, etc. Because the repos-

itory API supports functions only for manipulating one object at a

time, we would have to use explicit iterators for manipulation, and it

would break up the selection-manipulation-selection chain into multiple



4.3 lquery 56

statements. To avoid this problem, we define a number of methods

for repository object collections that will allow us to manipulate sets

of objects at once and intermix selection and manipulation steps. The

list of methods is given in Table 8. We use the Lua object notation,

where ‘:’ is used for method invocation. Now let us consider each

method in more detail.

There are three manipulation methods: setFeatures, deleteLinks, and

delete. The setFeatures method receives a Lua table as an argument.

Each key in the table is a property (attribute or link) name, and the

corresponding value is either a string for an attribute value or an

object or an object collection for a link value. The method adds the

given features to each object in the source collection. In case of an

attribute value, the current value is replaced with the given value. In

case of a link, a new link assertion is created for the given object, or

for each object in the object collection. For example, to set the attribute

“age” of all persons from Figure 5 to 18 and add a link “pets” to some

object p, we would write:

p = createObject("Animal") -- create a new animal

query(allObjects(), ".Person")

:setFeatures({

age = 18,

pets = p

})

The deleteLinks method receives a Lua table as an argument, where

each key is a link name, and the corresponding value is either a single

repository object or a repository object collection. The method deletes

link assertions that correspond to the given key from each object in

source collection to the corresponding key value. If there are no link

assertions, then nothing is done. The result of this method call is the

same collection on which it was called so that further selection or

modification operations can be done. For example, to delete the link

“child” from all persons in Figure 5 to the person whose name is

“Bill”, we would write:

persons_with_name_bill = query(allObjects(),



4.3 lquery 57

".Person[@name = Bill]")

query(allObjects(), ".Person")

:deleteLinks({

child = persons_with_name_bill

})

The delete method removes all objects that are in the source collec-

tion from the repository and returns an empty collection.

There is also a higher-order method each(fn, args), i.e. a method

that receives a function as an argument. It can be used to call some

function on each object from the source collection for its side-effects,

like making some changes in the repository. The result of the method

each is the same collection on which it was called. This allows us

to make multiple calls of this kind one after another. The supplied

function fn will be called on each object in the source collection: its

first argument will be the current object, and the rest arguments will

be args, which were passed to the each method. For example, if we

have defined a function for incrementing the attribute “age” by a

given number, then we can make every person two years older as

follows:

function increment_age (person, n)

current_age = getAttrValue(person, "age")

setAttrValue(person, "age", current_age + n)

end

query(allObjects(), ".Person"):each(increment_age, 2)

To allow mixing manipulation and selection steps, there is a

method find(selector) that returns the result of the function query on

the given collection and selector, i.e. p:find(sel) is equivalent to query(p,

sel). This method also creates a selection stack, so that each collection

that is a result of the find method remembers from which collection it

was derived. This information is used by the method back, to return

the collection from which the current collection was derived. These

two methods together with the manipulation methods provide a very

readable way to traverse tree-like object structures. To see these meth-

ods in action, let us consider a somewhat contrived example: we want



4.4 related work 58

to find all persons in Figure 5, then increment the age of their children

by one year and the age of their children’s pets by two years, then we

want to go back to the children and find a child with the name “Bill”,

rename him to “Bob”, and delete his pets. To perform these actions,

in the given order, we can write:

allObjects()

:find(".Person")

:find("/child")

:each(increment_age, 1)

:find("/pet")

:each(increment_age, 2)

:back()

:find("[@name = Bill]")

:setFeatures({name = "Bob"})

:find("/pet")

:delete()

Note that allObjects() returns an object collection, so we can use

the find method on it. We use indentation to make the traversal more

readable, i.e. after each find we increase the indentation to signify that

we have a new object collection, and after each back call we decrease

the indentation to signal that we have returned to the previous collec-

tion. Also, note that the result of methods each and setFeatures is the

same collection they were called on (this style of methods is inspired

by the so-called fluent interface approach to API design).

Although all of the previous examples used the shorthand selector

notation in the find method, it is by no means the standard situation.

In real life tasks, we would use custom selector combinators or pre-

defined patterns because in any complex task we would have built a

domain specific selector language on top of the primitives.

4.4 related work

Transformation languages are optimized for matching of patterns in

the source model and creating of the corresponding patterns in the



4.4 related work 59

Table 8: Object Collection Methods

Object Collection Method Description

coll:find(selector) returns a new object collection that

is the result of applying query

selector to coll

coll:back() returns the collection from which

the coll was derived

coll:setFeatures(featureTable) featureTable is a table where each key

corresponds to a feature name and

each value corresponds to the new

value of the feature; this method

sets these values for each object in

coll and returns the same collection

coll

coll:deleteLinks(featureTable) featureTable is a table where each key

corresponds to a link name and

value corresponds to the objects to

whom the link must be deleted; the

method deletes those links and

returns the same collection coll

coll:delete() deletes all objects that are in coll

from repository, and returns an

empty collection

coll:each(fn, args) for each object in coll a function fn is

called; first argument is the current

object and the rest arguments are

args; returns the same collection coll



4.4 related work 60

target model. Because navigation is not the most significant problem

in such tasks, transformation languages support either only one-step

navigations through link names [50], or navigation expressions that

have been inspired by OCL [5], like in the languages ATL [48] and

QVT [3]. However, none of these languages treats navigation expres-

sions as first-class values, and thus it is impossible to build or change

navigation expressions at runtime or pass them as arguments to other

functions. This makes them less usable in situations where the task

at hand requires a construct that the language designers did not an-

ticipate. For example, if lQuery did not have the closure combinator as

a built-in primitive, it would be possible to add it as a user-defined

function, and use it just as if it were a language primitive. This ability

allows a programmer also to define a new higher-level selector lan-

guage that will be tailored for his domain and thus abstract away the

specific details of the metamodel structure. This approach has two

advantages: firstly, the code becomes more readable because the se-

lectors are tailored for the problem, and secondly, if the structure of

the metamodel changes, we only need to update our domain-specific

selectors but all the logic may remain the same because it is built on

top of custom selectors.

EMF Model Query [2] is a model query library that is a part of

the Eclipse Modeling Framework [1]. It treats selectors as objects and

can build them at runtime. However, the resulting queries are in the

style of SQL, i.e. select-from-where, where from and where clauses accept

structures that are similar to lQuery selectors. However, we think that

XPath-like navigation paths, where navigation and filtering can be

intermixed, are more readable.

There are two main limitations to the lQuery approach in compar-

ison to other transformation languages. First, the limited support of

graph pattern matching, which is highly supported in the mainstream

transformation languages MOF QVT [3], Tefkat [57], Viatra [34],

GReAT [21], ATL [48], AGG [69], Fujaba [60], UMLX [74], MOLA

[50]. The current implementation is not very convenient for specify-

ing graph patterns, i.g. the user needs to introduce explicit variables.

Additionally, the user needs to write the graph matching in steps.



4.5 conclusions 61

However, according to the specific needs of the GRAF Tool Building

framework, the necessary context object is always provided; thus this

limitation is not a serious obstacle.

The second limitation is the performance penalty because of the

interpreted nature of the language. However, it turns out that this is

also not a serious limitation, because our goal was to design a lan-

guage specifically for use cases in graphical tool building, thus our

primary performance objective was that the transformation execution

time should not be noticeable for the user, when the transformations

were handling real-time user actions. This performance goal has been

achieved, as was demonstrated by the number of tools developed us-

ing lQuery, where the transformations are executing without a notice-

able delay for the user.

4.5 conclusions

The main result of this chapter is a model transformation language

(lQuery) that is specifically designed for writing incremental model

update transformations. Additionally, the implementation of lQuery

is a demonstration how a transformation language for model inter-

pretation can be bootstrapped in any high-level general purpose pro-

gramming language that supports lambda expressions. The practical

usage of lQuery has demonstrated that it is easier to use than the

transformation language family L0 [26] that was used in IMCS UL

for tool building prior to the development of lQuery.



Part III

T O WA R D S O N T O L O G Y B A S E D T O O L

B U I L D I N G



5
W H Y O N T O L O G Y B A S E D T O O L B U I L D I N G – A

M O T I VAT I N G E X A M P L E

In the previous part of the thesis, an MDE-based graphical tool build-

ing framework was described that allows to define large parts of the

DSL specification in a declarative form. However, there are some

widely used components that a tool developer still needs to pro-

gram manually. Specifically, components that involve complex valid-

ity checking, contextual style calculations, and unobtrusive user no-

tification that some parts of the diagram are unfinished. In this part

of the thesis, we will explore how these components can be defined

using ontologies (in particular, the ontology language OWL [7]). We

will also analyze the additional services and extensions that are nec-

essary for the ontologies that will be used as a base metamodeling

layer in future versions of the tool building framework.

We will start by looking at an example. Let us suppose that we

want to define a simple flowchart editor. The flowchart notation con-

sists of the following types: flowchart diagram type, flow edge type,

and four node symbol types — start, end, action, and decision. Even

such a simple language as this one must include a number of validity

constraints. For example, each flowchart diagram must contain exactly

one start symbol, and exactly one end symbol. The start symbol must

have exactly one outgoing flow line, and cannot have any incoming

flow lines.

It turns out that such validity constraints can be naturally described

by using an ontology language. Figure 7 shows how the flowchart di-

agram constraints are expressed in a natural language and by using

an OWL class expression. Note that the conditions correspond to the

completed state of the diagram. However, most of the conditions are

violated at one point or another during the diagram construction pro-

cess. For example (Figure 8), suppose, we have just started an editing

63



why ontology based tool building – a motivating example 64

session and have created an empty flowchart diagram. Right away, the

conditions requiring that each diagram must contain exactly one start

symbol, and exactly one end symbol are violated. It would be cumber-

some for the user if the tool always will notify him of such violations.

However, there are some violations that the user should not be al-

lowed to make. For example, if the user tries to draw an outgoing

flow from a end symbol, he should not be allowed to do that. More-

over, he should be notified about it with an explanation of the validity

constraint that is violated.

Every start element does not have an incoming flow

Action

Decision

end

start

action

decision

flow

flowchart Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every start element has at least one outgoing flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Name Style Conditions Conditions written in OWL

FlowChart SubClassOf: hasElement exactly 1 Start 
FlowChart SubClassOf: hasElement exactly 1 End 

Start SubClassOf: hasOutgoing min 1 Flow 
Start SubClassOf: not hasIncoming Flow 

Decision SubClassOf: hasIncoming exactly 1 Flow 
Decision SubClassOf: hasOutgoing min 2 Flow 

Action SubClassOf: hasIncoming exactly 1 Flow 
Action SubClassOf: hasOutgoing exactly 1 Flow 

End SubClassOf: hasIncomming min 1 Flow 

Flow SubClassOf: hasBeginning (Start or Action or Decision) 
Flow SubClassOf: hasEnd (Action or Decision or End) 

End SubClassOf: not hasOutgoing Flow 

Node DisjointUnionOf: Start, End, Action, Decision
Element DisjointUnionOf: Node, Edge

Figure 7: Flowchart validity constraints written in a natural language and in

OWL

It turns out that there is a simple logic determining when to show

a violation and when to omit it. A violation can be omitted when it

is a consequence of something missing in the diagram, because then

the user is most likely in the process of creating the diagram, and

will add the missing element eventually. However, if the violation is a

consequence of something extra, then it is clearly a mistake, and the

system should notify the user about it.

Fortunately, exactly such a behavior is put in the ontology language

OWL. OWL is based on the so-called “open world assumption”. It as-

sumes that the system has only partial information about the world,

and therefore it does not make the conclusion that everything that is

not explicitly known is false. As was shown in the previous para-

graph, that is exactly the desired behavior in the process of DSL



why ontology based tool building – a motivating example 65

diagram creation. The tool knows a part of the diagram; the com-

plete diagram exists in the user’s mind. Therefore, ontologies are a

good candidate for the base metamodeling layer of DSL tool building

frameworks.

Moreover, OWL can also be used to explicitly assert that everything

that is not known should be assumed to be false. There exists an

algorithm that performs this “closure” operation and provides the

minimal set of axioms that produce a violation [64]. In this way,

the user can check whether the diagram is valid, by declaring to the

tool that the diagram is complete (nothing more will be added to

the diagram). As an additional service in such cases, the constraints

that are not valid, can be reported to the user in natural language

sentences [49].

Although the explicit “closure” service is very useful and informa-

tive for the user, it still requires an explicit step from the user. He

must inform the tool, that he wants to perform validation. It would

be desirable to show to the user what diagram elements are incom-

plete and need further additions. For example, in the flowchart dia-

grams start symbols without outgoing flows could be displayed with

a yellow background, thus drawing the users attention to the fact that

something is missing. Such a service cannot be implemented univer-

sally because each DSL may require a different way to draw users

attention that does not clash with the base notation of the DSL. How-

ever, there must be a mechanism how the developer of the tool could

specify this kind of behavior.

It would be nice if ontologies could also be used for the specifi-

cation of the customs styling proposed in the previous paragraph.

It could be done by using subclasses with equality expressions, that

match the desired elements. Then OWL could be used for styling of

the elements by adding style property value constraints. For exam-

ple, in the flowchart diagram metamodel, we can create a subclass of

start elements, which would contain only those start elements that

do not have outgoing flows. Then we can add a constraint, that these

elements must have a yellow background color.



why ontology based tool building – a motivating example 66

Every start element has at least one outgoing flow
Every start element does not have an incoming flow

New FlowChart Diagram
created

A Start element added An End element added

An Action element added

Action 1

Action

Decision

Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every start element does not have an incoming flow
Every start element has at least one outgoing flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Every start element has at least one outgoing flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Every start element does not have an incoming flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Every start element does not have an incoming flow

Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every start element has at least one outgoing flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Flow lines added

Action 1

Every start element does not have an incoming flow

Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every start element has at least one outgoing flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Error produced by creating an
illegal outgoing Flow from end element

Action 1

Every start element does not have an incoming flow

Every flowchart has exactly one start element
Every flowchart has exactly one end element

Every start element has at least one outgoing flow

Every action element has exactly one incoming flow

Every end element has at least one incoming flow
Every end element does not have an outgoing flow

Every action element has exactly one outgoing flow

Every decision element has exactly one incoming flow
Every decision element has at least two outgoing flows

Every flow element has a beginning
Every flow element has an end

Action

Decision

Figure 8: Validity constraint examples during the editing process



why ontology based tool building – a motivating example 67

However, because of the open world assumption and the mono-

tonic reasoning requirements of ontologies, there are some classes

of elements that cannot be described by using OWL expressions.

Namely, the elements that are missing something cannot be defined

using OWL. For example, there is no way to specify the start elements,

which currently do not have outgoing flows. If we would explicitly

close the world, by asserting that everything that is not known is ex-

plicitly asserted as non-existing, but then we would usually run into

contradictions with other assertions. For example, in the flowchart di-

agrams, we assert that each start element must have at least one out-

going flow. Thus, we cannot create a subclass of start elements that

have no outgoing flows because it would contradict the superclass as-

sertion. Consequently, OWL reasoners cannot be used for this task,

and we need some other way to specify such classes.

In the following chapters, we will look at how to solve this and

other problems to make ontologies a viable option for use a base

modeling layer for a graphical tool building framework. First we will

solve the problem of combining ontologies with the existing model-

based technologies, such as transformation languages, and how to

represent them graphically. Then we will explore how to extend on-

tologies for non-monotonic reasoning tasks. Finally, we will provide a

proposal how an ontology-based graphical tool building framework

would look.



6
U M L - I N S P I R E D M E TA M O D E L A N D N O TAT I O N F O R

T H E O W L O N T O L O G Y L A N G U A G E

Initially, OWL was defined as an extension of RDF graphs. There-

fore, the canonical form for representing of OWL ontologies is a

set of subject-predicate-object triples. This format is uniform, and this

makes representations simple to be parsed and stored by comput-

ers, but it is unusable for humans because humans tend to think in

terms of higher-level abstractions like classes, instances and relations.

However, the actual ontology visualization tools such as IsaViz [61],

GrOWL [55], visualize ontologies by showing every RDF triple as

two nodes with an edge between them. Thus, the information gets

cluttered and spread over a large area, making the structure hard to

perceive.

For a graphical form to be useful, it has to group the related con-

cepts together, this approach is used in UML class diagrams. Many

concepts of OWL are similar to those of UML class diagrams. There

have been attempts to define a UML profile for OWL [31] that would

make it possible to use the existing UML tools to create and visu-

alize ontologies. However, OWL has more features than UML class

diagrams, e.g. class expressions, and anonymous classes, which are com-

monly used, but have unintuitive graphical representations in the

UML profile for OWL. Therefore, even though UML profile is better

than RDF graphs, it is still hardly comprehensible. Another option is

to use Protégé OWL editor [11] that enables to load and save ontolo-

gies, edit classes, properties and define class hierarchies. Protégé also

provides a detailed view of each concept in the ontology. However, its

main shortcoming is the lack of a view that shows the overall struc-

ture of the ontology. In the following, we will propose a way allowing

to solve this problem.

68



6.1 owl as a description layer above class diagrams 69

The next section explains the proposed domain-specific notation for

OWL ontologies. After that, we demonstrate a metamodel for OWL

that is a layer above the UML class diagram metamodel, which will

allow us to merge OWL with the transformation language lQuery.

Finally, we will describe a graphical editor for the proposed UML-

inspired notation.

6.1 owl as a description layer above class diagrams

Despite the semantic differences between the UML and OWL mod-

eling approaches, UML class diagrams can be used to represent the

core features of OWL ontologies – the OWL classes (represented as

UML classes), OWL object properties (typically represented as associ-

ations in the UML diagram) and OWL datatype properties (typically

represented as attributes in the UML class diagrams). Therefore, we

will organize our explanation in two steps. The first step is the core

part of our notation that is a proper subset of UML class diagram

notation [16, 17] (this section); and the second step will cover the ex-

tension part that contains OWL [7] specific features (Section 6.2). The

explanation is based on the formal metamodel shown in Figure 10. In

the context of the current chapter, we will call it the UMLOWLCore

metamodel. We use an equivalent encoding (Figure 4) of the core fea-

tures of the UML class diagram metamodel presented in Chapter 4

for the lQuery language. This decision was made to enable the in-

teroperation of OWL with lQuery that will be presented in Chapter

7.

The UMLOWLCore (the bright yellow boxes in Figure 10) includes

only those UML class diagram features, which have direct one-to-one

equivalents in OWL. For example, n-ary associations are not included

in UMLOWLCore because their reduction to OWL requires the intro-

duction of multiple intermediate classes and properties [6, Chapter

16]. Figure 9 shows an example of “mini-university” ontology in our

proposed UML notation, as well as its textual form of OWL Func-

tional Syntax [9] notation. This example uses only UMLOWLCore.



6.1 owl as a description layer above class diagrams 70

Here we define the details of mappings between the core OWL

structures and UML class diagrams. UML classes denote OWL

classes while UML properties denote OWL object properties and

OWL datatype properties. Typically, the UML properties that are

represented as associations denote OWL object properties and the

UML properties that are depicted in attribute notation denote OWL

datatype properties. However, other combinations of UML properties

used for denoting OWL properties are also allowed.

The UML Generalization is used to denote the subclassOf relation

in OWL. We note that it is possible to use complete and disjoint tags

with UML generalizations, and these have a well defined semantics

in OWL. For a UML generalization set comprising subClassOf(B,A),

subClassOf(C,A) and subClassOf(D,A) relations, a disjoint tag would

add the OWL axiom disjointClasses(B,C,D) and a complete tag would

add the OWL axiom subClassOf(A,unionOf(B,C,D)).

We allow the use of aggregation in the OWL ontology diagram

representation (e.g. containsLecture and lectureIsPartOf properties in

Figure 9). Currently the aggregation symbol is treated as a regular

OWL property and is supported in the diagram editor for the sake of

structuring and readability of the graphical model only; however, in

the future it would be preferable to assign to the aggregation symbol

the formal OWL semantics.

OWL individuals are included in the specification of UML class

diagrams; their concrete property values are denoted by UML slots

and their corresponding value specifications.

Some changes to the semantics of the UML notation are unavoid-

able because OWL relies on the open-world assumption whereas UML

relies on the closed-world assumption. To satisfy the needs of OWL by

using the UML notation, we have changed the default values of some

UML constructions. First, in UML, the default cardinality for class

attributes is 1 and the default cardinality for association domain and

range is “*”. We have changed them to “*” in both cases. Secondly,

the scope of a class attribute in UML is the corresponding class but

in our notation the scope is changed to the entire ontology. Thus, if

the same attribute names occurs in multiple classes, then it is inter-



6.1 owl as a description layer above class diagrams 71

 
Namespace(=<http://lumii.lv/ontologies/MiniUniversity_UML.owl#>) 
Namespace(rdfs=<http://www.w3.org/2000/01/rdf-schema#>) 
Namespace(owl2xml=<http://www.w3.org/2006/12/owl2-xml#>) 
Namespace(MiniUniversity_UML= 
<http://lumii.lv/ontologies/MiniUniversity_UML.owl#>) 
Namespace(owl=<http://www.w3.org/2002/07/owl#>) 
Namespace(xsd=<http://www.w3.org/2001/XMLSchema#>) 
Namespace(rdf=<http://www.w3.org/1999/02/22-rdf-syntax-
ns#>) 
Ontology(<http://lumii.lv/ontologies/MiniUniversity_UML.owl> 
Declaration(Class(Optional_course)) 
SubClassOf(Optional_course Course) 
DisjointClasses(Optional_course Mandatory_course) 
Declaration(Class(Person)) 
Declaration(Class(Course)) 
Declaration(Class(Mandatory_course)) 
SubClassOf(Mandatory_course Course) 
Declaration(Class(Professor)) 
DisjointClasses(Assistant Associate_Professor Professor) 
Declaration(Class(Student)) 
SubClassOf(Student Person) 
Declaration(Class(Assistant)) 
Declaration(Class(Associate_Professor)) 
Declaration(Class(Lecture)) 
Declaration(Class(Level)) 
Declaration(Class(Teacher)) 
EquivalentClasses(Teacher  
ObjectUnionOf(Assistant Associate_Professor Professor)) 
SubClassOf(Teacher Person) 
Declaration(ObjectProperty(relates)) 
ObjectPropertyDomain(relates Person) 
ObjectPropertyRange(relates Course) 
Declaration(ObjectProperty(lectureIsPartOf)) 
ObjectPropertyDomain(lectureIsPartOfLecture) 
ObjectPropertyRange(lectureIsPartOf Course) 
Declaration(ObjectProperty(containsLecture)) 
InverseObjectProperties(containsLecture lectureIsPartOf) 
Declaration(ObjectProperty(teaches)) 
SubObjectPropertyOf(teaches relates) 
InverseObjectProperties(teaches isTaughtBy) 
ObjectPropertyDomain(teaches Teacher) 
ObjectPropertyRange(teaches Course) 

D e c l a r a t i o n ( O b j e c t P r o p e r t y ( l e v e l ) ) 
FunctionalObjectProperty(level) 
ObjectPropertyDomain(level Course) 
ObjectPropertyRange(level Level) 
Declaration(ObjectProperty(takes)) 
SubObjectPropertyOf(takes relates) 
ObjectPropertyDomain(takes Student) 
ObjectPropertyRange(takes Course) 
ObjectPropertyDomain(isTaughtBy Course) 
ObjectPropertyRange(isTaughtBy Teacher) 
Declaration(DataProperty(personID)) 
DataPropertyDomain(personID Person) 
DataPropertyRange(personID xsd:string) 
Declaration(DataProperty(course_name)) 
DataPropertyDomain(course_name Course) 
DataPropertyRange(course_name xsd:string) 
Declaration(DataProperty(levelCode)) 
DataPropertyDomain(levelCode Level) 
DataPropertyRange(levelCode xsd:integer) 
Declaration(DataProperty(levelName)) 
DataPropertyDomain(levelName Level) 
DataPropertyRange(levelName xsd:string) 
Declaration(DataProperty(sex)) 
DataPropertyDomain(sex Person) 
DataPropertyRange(sex  
DataOneOf("male" "female")) 
Declaration(DataProperty(person_name)) 
DataPropertyDomain(person_name Person) 
DataPropertyRange(person_name xsd:string) 
ClassAssertion(Three Level) 
DataPropertyAssertion(levelCode Three "3") 
DataPropertyAssertion(levelName Three "Three") 
ClassAssertion(One Level) 
DataPropertyAssertion(levelName One "One") 
DataPropertyAssertion(levelCode One "1") 
ClassAssertion(Two Level) 
DataPropertyAssertion(levelName Two "Two") 
DataPropertyAssertion(levelCode Two "2") 
ClassAssertion(Four Level) 
DataPropertyAssertion(levelName Four "Four") 
DataPropertyAssertion(levelCode Four "4")) 

 
Fig. 3 A mini-university ontology (UML notation and OWL Functional Syntax) 

Figure 9: “mini-university” ontology (UML notation and OWL Functional

Syntax)



6.2 extension of the core metamodel 72

preted as the same OWL property; its domain is the intersection of

the corresponding classes, and its range is the intersection of its data

types.

6.2 extension of the core metamodel

The UMLOWLCore metamodel is sufficient only for denoting a part

of OWL constructs. Figure 10 shows UMLOWLCoreExtended meta-

model that is an extension of UML metamodel, and that is used as a

basis for our OWL notation. The UMLOWLCoreExtended metamodel

extends the UMLOWLCore metamodel with constructs that enable a

convenient combination of graphical and textual rendering facilities

for almost all OWL 2.0 constructs.

Figure 11 shows an illustration of the use of our UML-based OWL

notation on the “mini-university” ontology example.

In what follows, we describe the details of our proposed OWL no-

tation for rendering and editing of OWL ontologies. Note that, as it

is common in UML class diagrams, in some cases we allow alterna-

tive graphical and/or textual notations for the same OWL construct.

Alternative notations enable the user to tune the look of the diagram

to his taste, as well as to choose the rendering option that is most

suitable to the size and structure of the particular ontology.

6.2.1 Equivalent and Disjoint Classes and Properties

The simplest extensions to the UML metamodel are equivalent classes

and disjoint classes which are introduced in the extended UML by

equal and disjoint relations from UML Class to UML Class and OWL

ClassExpression class. The equivalent and disjoint properties are intro-

duced by equal and disjoint relations between the Properties superclass

of classes DataProperty and ObjectProperty.

The OWL class equivalence is modeled by the equal relation be-

tween Class, and it can be visually represented in the diagram in two

ways – either as a connector with «equivalent» stereotype linking two



6.2 extension of the core metamodel 73

DataProperty

IndividualDataPropertyValue
1

*
1

*

1

*

1

*

type
1

*

*

*

ObjectPropertyAssertion

EnumerationLiteral

ownedLiteral *

NamedElement

name : String [0..1]

DataType Class

Generalization

range
0..1 *

general  1

*
specific  1

*

attr
*

assoc
*

Primitive Enumeration

domain
domain

*

inverse
1

1

1
type

DataPropertyAssertion

InstanceOfAssertion

1

*

1

range
1

ObjectProperty

1
type

*

disjoint *
*

*equal *

GeneralizationSet

isCovering : Bool
isDisjoint : Bool

* generalizationSet
generalization *

ClassExpression

AndOrExpr

NotExpr

AndExpr

OrExpr

1 arg1 1 arg2 1 arg1

* disjointequal *

EnumExpr

PropertyExpr

SomeExpr

AllExpr

1 range

onProperty
1Property

PropertyChainExpr

subPropertyChain
*

*

1

property
* {ordered}

SelfExpr

Cardinality

value : int

MinCard

MaxCard

ExactCard

RangedExpr

HasValue

same
*

*

different
*

*

Value

*

1

* *

*

*

ClassReference

className:String

*

* 
super
Class

*
equal * * disjoint

*

NegativeDataProperty
Assertion

*

1

*

1

*

1
type

NegativeObjectProperty
Assertion

*

1
type

*

1

*

1

isInfered : boolisInfered : bool

isInfered : bool

isSymetric : Bool
isAsymetric : Bool
isReflexive : Bool
isIreflexive : Bool
isTransitive : Bool
/isFuncional : Bool
/isInverseFunctional : Bool

/isFunctional : Bool

isInfered : bool

1
type

Figure 10: UMLOWLCoreExtended metamodel; classes in bright yellow are

UMLOWLCore metamodel (equivalent to metamodel shown in

Figure 4)



6.2 extension of the core metamodel 74

classes, or as a note symbol with «equivalent» stereotype connected

to the equivalent classes. The OWL class disjointness is modeled by

the disjoint relation, and it can be visually represented in the diagram

either as a connector with «disjoint» stereotype linking two classes,

or as a note symbol with «disjoint» stereotype connected to the dis-

joint classes (see Figure 11 where the disjointness of Person, Level and

Course classes is asserted). There are also other options for denoting

the class equivalence and disjointness using the notion of class expres-

sion that will be explained later.

In what follows, we describe the details of our proposed UML notation for 
rendering and editing of OWL ontologies. We note that, as it is common already for 
UML class diagrams, also here in a number of cases we allow alternative graphical 
and/or textual notations for the same OWL construct. This allows the user to tune the 
look of a diagram to his/her taste, as well as to use the rendering option that is most 
suitable to the size and the structure of the particular ontology. 

3.1. Equivalent and disjoint classes and properties 

The simplest extensions to the UML metamodel are equivalent and disjoint classes 
and properties which are introduced in the extended UML by eqClass and disjClass 
relations from UML Class to UML Class and eqProperty and disjProperty relations 
from UML Property to UML Property. 

The OWL class equivalence is modeled by the eqClass relation, and it can be 
visually represented in the diagram in two ways – either as a connector with 
<<equivalent>> stereotype linking two classes, or as a note symbol with 
<<equivalent>> stereotype connected to all equivalent classes. The OWL class 
disjointness is modeled by the disjClass relation, and it can be visually represented in 
the diagram either as a connector with <<disjoint>> stereotype linking two classes, or 
as a note symbol with <<disjoint>> stereotype connected to all disjoint classes (see 
Figure 5 where the disjointness of Person, Level and Course classes is asserted). We 
note that the class disjointness can be asserted also by means of attaching a disjoint 
tag to the GeneralizationSet already present in the original UMLOWLCore 
metamodel. There are other options available for denoting the class equivalence and 
disjointness using class expression notion that is explained later. 

 

 
Fig. 5 A mini-university ontology (UMLOWLCoreExtended notation) 

 
The OWL property equivalence is modeled by the eqProperty relation, and it is 

represented by an equivalent property compartment in the property visualization; to 

Figure 11: “mini-university” ontology (UMLOWLCoreExtended notation)

The OWL property equivalence is modeled by the equal relation be-

tween Property class, and it is represented by an equivalent property

compartment in the property visualization. For example, to assert

that the property p1 is equivalent to the property p2, we add a {=

p2} compartment to the p1 visualization (we may add a {= p1} com-

partment to the p2 visualization, as well). A similar notation, using a

<> symbol instead of = represents OWL property disjointness being

modeled by disjoint relation between Property class. For instance, in

Figure 11 the properties teaches and takes linking the classes Teacher

and Course are disjoint.



6.2 extension of the core metamodel 75

6.2.2 Class Expressions

The primary source of OWL’s expressive power is its ability to form

class expressions by means of boolean expressions (and, or, not) out

of the declared classes (referenced by the class name) and property-

based constraints. We have extended the basic UML metamodel

with the class ClassExpression and introduced the ClassReference class

whose instances allow considering UML classes as class expressions.

In the OWLGrEd notation, class expressions are usually shown by

using the OWL Manchester syntax [10], while the traditional UML

class representation is used for named classes. We include in the meta-

model direct means of stating that a class is a subclass of, equivalent

to, or disjoint with a class expression (the superClass, equal and disjoint

relations from Class to ClassExpression), and we provide designated

textual compartments in the class symbols where to show the class

expressions that are related to the class via these relations. For in-

stance, in Figure 11 the class Mandatory_course is a subclass of the

expression isTaughtBy only Professor by using the compartment pre-

fixed with ‘<’ symbol . In this case there is a ClassReference instance

pointing to the class Professor, and it is range to an AllExpr object that

has isTaughtBy as its onProperty value. The compartments for equal (an

equivalent class expression) and disjoint (a disjoint class expression)

are prefixed with ‘=’ and ‘<>’ respectively.

There is also an alternative form of denoting the fact that a class

c is a subclass of a class expression ‘some values from’ or ‘all values

from’, namely, a red line leading from c to the class that corresponds

to the classReference that is range of the expression; the constraint line

is labeled by the name of the expression’s onProperty property and

the word ‘only’ or ‘some’ (‘only’ corresponds to an ‘all values from’ and

‘some’ to ‘some values from’ constraint). In Figure 11 the red line from

Mandatory_course to Professor shows an alternative form of denoting

the subClassOf(Mandatory_course, isTaughtBy only Professor) constraint.

The OWL cardinality constraints subClassOf(c, p card n cc) (c is a

class, cc is a class expression, card 2 {min, max, exactly}, n is a nonneg-

ative integer, and p is a property) can be denoted either by using the



6.2 extension of the core metamodel 76

Manchester syntax (i.e. by adding a < p card n cc compartment to the

class c); or by the UML style cardinality notation either on the line

corresponding to the property p, if the domain of p is c and the range

of p is the class that is referenced by cc, or on a red constraint line

that originates from c and goes to cc.

6.2.3 Anonymous Classes

There may be a need to assert superclass, equivalent class or disjoint class

relations not only between two named classes, or between a class

and a class expression, but also between two class expressions. It may

also be necessary to set class expression as the domain or range of a

property. In the proposed metamodel, these situations are modeled

by introducing anonymous (non-named) classes that are defined to

be equivalent (via the equal relation) to the respective class expressions.

In the graphical notation, such anonymous classes are depicted like

classes, with the only difference that these classes have no name (the

name compartment is empty).

Note that a similar notation for anonymous classes is present in

UML/OWL profile [6, 52], however, in our approach anonymous

classes are introduced only when they are a domain or range of

some property. When they are a superclass, disjoint class, or equiv-

alent class of a named class, they can be shown in a textual form in

a compartment of the named class. This allows us to achieve more

compact and readable diagrams in most cases.

6.2.4 Enumerated Classes

In our extended UML metamodel, the enumeration expression is rep-

resented with the EnumExpr class. The enumeration expressions cor-

respond to OWL ObjectOneOf construction. In the graphical notation,

OWL Manchester notation can be used to represent the enumeration

expressions (e.g., a class can have a compartment ={A,B,C}, where A,

B and C are instance names).



6.2 extension of the core metamodel 77

Our enumerated class construct is similar to the one in [52], and it

provides an alternative notation for the OWL Manchester notation of

the enumeration expressions. The enumerated class in our extended

UML metamodel is a (named) class c that is equivalent (via equal

link) to some enumeration expression e (for instance, e may be the

expression {A,B,C}). Notationally we add a stereotype «Enumerated-

Class» together with a tagged value isComplete to c. In this case, the

enumeration expression e does not need to appear explicitly in the

OWL ontology presentation. However, the class c is assumed to be

equivalent to the enumeration of all its instances being present in the

diagram (and that are denoted either by instanceOf links to c, or by

explicit specification of c as instance’s type in the compartment of the

instance’s rectangle). The enumeration expression e, in this case, is

implicitly represented in the diagram, and it will be restored explic-

itly when exporting the diagram to the OWL notation. For example,

in Figure 11 the class Level is defined to be an enumeration class and

it is defined to be equivalent to the enumeration expression {One, Two,

Three, Four}.

6.2.5 Further Metamodel Extensions

The UMLOWLCoreExtended metamodel provides means for intro-

ducing symmetric, asymmetric, reflexive, irreflexive and transitive char-

acterizations for object properties in OWLGrEd notation. Graphically,

these characteristics are represented in the textual compartments next

to the line representing the property. In the metamodel, these charac-

teristics are available as attributes of classes DataProperty and Object-

Property.

We also note the possibilities to add the same and different speci-

fications to OWL individuals in the UMLOWLCore metamodel. At

the graphical notation level these options are available both in binary

specification form by offering lines with stereotypes «sameAs» and

«different», and in n-ary specification form by offering note boxes with

the same stereotypes and connecting them to the corresponding in-

stances.



6.3 the editor for the proposed notation – owlgred 78

As for instance level negative property assertions, we introduce

classes NegativeDataProeprtyAssertion and NegativeObjectPropertyAsser-

tion into the UMLOWLCoreExtended metamodel. In graphical nota-

tion, these specifications are similar to the ordinary (“positive”) data

property assertions, with = replaced by <> (e.g. x <> 5 instead of x

= 5).

To model the data in OWL ontologies, we extend the spectrum

of available primitive data types, as well as we classify the literal

specifications by their corresponding primitive data types.

We provide in the UMLOWLCoreExtended metamodel also the

means for introducing annotations and attaching those to classes,

properties and class instance specifications. The classes annotations

can be depicted visually either in specifically designated textual com-

partments or by respective stereotyped note symbols that are con-

nected to the class symbols that are being annotated.

The UMLOWLCoreExtended metamodel also covers advanced

OWL 2 features such as keyProperty, PropertyChainExpr, and SelfExpr.

6.3 the editor for the proposed notation – owlgred

To make the notation usable in practice, we have built a graphical

OWL editor (OWLGrEd) which contains many additional services to

ease ontology development and exploration, e.g. different layout al-

gorithms for automatic ontology visualization, search facilities, zoom-

ing, graphical refactoring and interoperability with Protégé. The edi-

tor is built by using the GRAF Tool Building framework described in

Chapter 3. Figure 12 shows the “African Wildlife” ontology [22, pp

133–136] as visualized in OWLGrEd.

Graphical refactoring is one of the most important services that

allows modifying the graphical notation without changing seman-

tics as long as the same concept can be expressed through different

constructs. This feature enables the user to choose the most compact

graphical format depending on the context and taste. One example

that illustrates the need for graphical refactoring is related to mutu-

ally disjoint subclasses: if a class has subclasses that are mutually dis-



6.3 the editor for the proposed notation – owlgred 79

joint, then it is preferable to group the subclass relations visually with

a “fork” symbol that possesses the disjoint label. This is a much more

compact representation than the alternative notation where each sub-

class line is by itself, and there are explicit disjoint labeled edges be-

tween all subclasses. By using the visual refactoring, the graphical

reorganization can be done with one click.

Automatic layout and search facilities are crucial when ontologies

become large (more than 100s of classes), and their management be-

comes more difficult. A good automatic layout is significant for un-

derstanding large ontologies. Also, searching for the specific element

in large ontologies may become irritating without an appropriate ser-

vice. Therefore several alternative automatic layout modes and search-

ing mechanism allowing finding the necessary element by the value

of one of its text fields (e.g. searching a class by its name) is supported

in our editor.

with Protégé. The editor is built using TDA [14, 15] technology. Figure 6 shows an 
African Wildlife ontology [16] in our editor. 

Graphical refactoring is one of the most important services that allows modifying 
graphical notation without changing semantics as long as the same concept can be 
expressed through different constructs. This feature allows the user to choose the most 
compact graphical format depending on the context and taste. One of the typical 
situations illustrating the need for graphical refactoring is generalization and fork: if 
there is a single super class with multiple incoming generalization lines, a fork can be 
added to reduce multiple lines into a single line, and vice versa. 

Automatic layout and search facilities are crucial when ontologies become large 
and their management becomes more difficult. A good automatic layout is significant 
for understanding large ontologies, whereas searching for the specific element in large 
ontologies may become irritating without an appropriate service. Therefore several 
alternative automatic layout modes and searching mechanism allowing finding the 
necessary element by the value for one of its text fields, e.g. searching class by its 
name is supported in our editor. 

 

 

Fig. 6 An African Wildlife ontology in OWLGrEd editor 
 
A more advanced service is full interoperability with Protégé 4 [9], an editor 

widely used by ontology developers. The interoperability is implemented via custom 
Protégé plug-in that allows to send and receive via TCP/IP socket an active ontology 
between our editor and Protégé. In both directions ontologies are sent in interchange 
format, but generally any OWL serialization is acceptable. Interoperability allows 
ontology developers to use Protégé without changing their habits and only afterwards 

Figure 12: An African Wildlife ontology in OWLGrEd editor

A more advanced service is full interoperability with Protégé [11],

a tool that is widely used by ontology developers. The interoperability

is implemented via a custom Protégé plug-in that allows to send and

receive (via TCP/IP socket) an active ontology between our editor

and Protégé. The interoperability service allows ontology developers

to use Protégé without changing their habits and only afterwards to



6.4 related work 80

visualize ontologies in OWLGrEd by using various automatic layout

algorithms (the user can specify the way ontologies will be visualized

by selecting notation options in Preferences). In the graphical editor,

ontology developers can create new ontologies from scratch or edit

graphically (in a WYSIWYG1 way) the ontologies imported from Pro-

tégé. All graphically developed ontologies can be exported to Protégé

from where they can be stored to various formats or processed with

OWL reasoners.

The graphical ontology editor OWLGrEd has been made available

to the public online at http://owlgred.lumii.lv and currently is be-

ing widely used worldwide. Currently (from Nov 1st, 2013 till May

31st, 2015), it has been downloaded 2156 times from outside Latvia.

The uptake demonstrates the usability of the proposed notation. Fig-

ure 13 shows the cities (outside Latvia) from where OWLGrEd has

been downloaded. Each circle represents a city, and the size of the

circle represent the download count from that city. The largest circle

corresponds to 28 downloads, the smallest to 1 download. The statis-

tics have been collected from the OWLGrEd web page by using the

Google Analytics service.

6.4 related work

The proposed OWL visual notation is based on the UML [16] class di-

agram notation. In our opinion, the most important feature for achiev-

ing a readable graphical OWL notation is the maximum of compact-

ness. The proposed notation achieve it by exploiting the native power

of UML and by using its notation as far as possible. The UML class

diagram notation is extended with the Manchester-like syntax [10]

for the missing OWL features, thus making the notation compact and

comprehensible. Furthermore, many software engineers are already

familiar with the UML notation and use it to model data; we expect

1 Acronym from what you see is what you get – denoting the representation of text on

a screen in a form exactly corresponding to its appearance on a printout. Src.: New

Oxford American English Dictionary.



6.5 conclusions 81

111 282828

Figure 13: OWLGrEd downloads by cities outside Latvia from Nov 1st, 2013

till May 31st, 2015

that this familiarity would enable them to adopt easily the new for-

malism we propose.

The application of UML class diagram notation to OWL is not an

entirely new idea; it has been implemented in the TopBraid Composer

[15]. However, that implementation is based on a simplified UML

class diagram model, it lacks graphical editing facilities, and the avail-

able graphical services are limited. Some other solutions have been

proposed for the graphical UML-style representation of OWL ontolo-

gies; the most notable is ODM (see [6, Chapter 14]) that defines a

UML profile for OWL. The main advantage of ODM approach is the

possibility to use existing UML tools for ontology modeling. Mean-

while, the price for this compatibility is a more verbose notation that

does not facilitate comprehensibility.

6.5 conclusions

In this chapter, we created an OWL metamodel that is a constraint

layer above UML class diagram metamodel. This will enable trans-

formation languages to work simultaneously with OWL constraints.

We also developed a graphical notation for OWL ontologies that is an



6.5 conclusions 82

extension of UML class diagram notation. The notation allows peo-

ple to use the additional expressive power provided by OWL with-

out learning an entirely new notation. Also, the notation and its edi-

tor OWLGrEd appears to be useful by itself, as demonstrated by the

worldwide usage.



7
E X T E N D I N G O W L O N T O L O G I E S W I T H

Q U E RY- B A S E D C O N S T R U C T O R C L A S S E S

In this chapter, we discuss how to merge the world of transformation

languages with the world of Semantic Web ontologies and reasoners

to create a more powerful knowledge representation formalism. As

was explained in the previous section, OWL ontologies were designed

to capture the domain expert’s knowledge in a direct and intuitive

way. OWL was intended for the applications in Semantic Web where

the information is distributed, and it is a norm that only a small part

of the whole knowledge is available at a time. This is because the

OWL formalism is based on the so-called “open-world assumption”,

meaning that, if something is not known to be true, then this does

not imply that it is false. For example, assume we only know that

Bob is a person. From this, we cannot derive that Bob is a student

nor that he is not one. Usually, our knowledge is incomplete, and

this can be correctly represented in OWL. However, because of the

expressiveness of ontology languages and the available support tools

(e.g. Semantic Web reasoners), more and more people outside of the

semantic web community wish to use OWL for their applications.

The open world assumption, although suitable in many contexts,

poses some problems for the use of ontologies in other domains.

The main reason – there are intuitive concepts that cannot be de-

scribed with OWL ontologies. One such intuitive concept is classes

that deal with some form of the “closed-world reasoning”, e.g. ob-

jects for whom it may be not known whether they possess a value

of some property or not. Due to the open-world assumption, OWL

can only define either classes of objects for whom it can be proven

that they must possess some property value, or classes of objects for

whom it can be proven that they cannot have a property value. It is

also impossible to define classes that involve conditions on aggrega-

83



7.1 motivating example – a university ontology 84

tions, e.g. objects for whom the sum of some attribute values must be

equal to some fixed value.

The prevailing attitude in the semantic web community is that such

cases should be handled outside of the ontology either by adding the

additional information in a preprocessing step or by deducing it later,

in the application. Such attitude is right for the logical purity of the

language, but it is problematic for a practical adaptation because the

end-users want to treat the knowledge base as a black box [59]. They

want to specify everything in the ontology and let the knowledge

base decide, what to calculate by using a reasoner and what to derive

by using other means.

In this chapter, we will present an extension of OWL for the spec-

ification of classes that cannot be described by using only OWL con-

structs. The extension is based on the lQuery language that was pre-

sented in the 4th chapter. We also show how it can be integrated with

a reasoner in practical applications. We will start with an example on-

tology, which will illustrate some shortcomings of the OWL language.

After this, we will extend the example to show how the proposed ex-

tension improves the situation.

7.1 motivating example – a university ontology

The example is an excerpt from an ontology of a university informa-

tion system. The ontology is intended for data storage, data valida-

tion, and query answering. It is shown in Figure 14 (the OWLGrEd

notation from the previous chapter is used). The primitive classes are

Teacher, Professor, Student, AcademicProgram, Course, and Grade. These

classes are sufficient for the purpose of data storage. However, the

end-users may want to make queries not only about all students, but

also about students that possess some specific features, e.g. students

that take some course or students that have graduated. Usually, a

feature set describes some intuitive concept that can be named, e.g.

students that take some course correspond to a concept ActiveStudent.

Many intuitive concepts can be defined in OWL as derived classes by

using class expressions. For example, the class ActiveStudent (from



7.1 motivating example – a university ontology 85

Figure 14) can be defined by an OWL expression “takes some Course”.

Derived classes can be used later not only for answering queries, but

also for defining of further intuitive concepts.

have some specific features, e.g. students that take some course or students that have 
graduated. Usually a feature set describes some intuitive concept with a name, e.g. 
students that take some course correspond to a concept ActiveStudent. Many intuitive 
concepts can be defined in OWL as derived classes using class expressions, e.g. the 
class ActiveStudent (from Figure 1) can be defined with an OWL expression “takes 
some Course”. A derived class can later be used not only for answering queries, but 
also for defining other intuitive concepts.

Fig. 1. Simplified University Ontology.

However, some class descriptions are impossible to specify in OWL. Nevertheless 
they are intuitive and useful for knowledge base users. For example, suppose that we 
want to define a class whose instances will be students that have not yet registered for 
courses (assume that we want to send them a reminder that they will be expelled if 
they do not register). It would seem that it is sufficient to define two classes, namely, 
ActiveStudents – those who take some course, and InactiveStudents – those who 
currently do not take any courses. Let us look at a fragment of the university ontology 
shown in Figure 2 where those two classes are defined. We must be careful with what 
exactly is meant by these definitions from the perspective of the open world 
assumption. Let us look at the individuals from the class Student in Figure 2. The 
individual s2 has a link takes to the course instance c1, therefore it can be inferred 

Figure 14: Simplified University Ontology.

However, some intuitive and useful concepts cannot be specified

by using OWL. For example, consider instances of students who have

not yet registered for courses (imagine that we want to send them a

reminder that they will be exmatriculated if they do not register). It

may seem that it would be sufficient to define two classes, namely,

ActiveStudents – those who take some course, and InactiveStudents –

those who currently do not take any courses. Let us look at a frag-

ment of the university ontology shown in Figure 15 where these two

classes are defined. We must be careful: what exactly is meant by

these definitions from the perspective of the open world assumption?

Let us look at the individuals from the class Student in Figure 15.

The individual s2 has a link takes to the course instance c1, there-

fore it can be inferred that it is also an instance of the derived class

ActiveStudent. However, what about the individual s1? There are no

outgoing links from it. From the perspective of the open-world as-



7.1 motivating example – a university ontology 86

sumption, this means that we do not know about any outgoing links,

but there actually may be some. Hence, we cannot infer neither that

the individual s1 is an ActiveStudent nor that he is an InactiveStudent.

Consequently, it is better to read expressions like “takes some Course”

and “not takes some Course” as “all individuals for whom it can be

proved that they take some course” and “all individuals for whom it

can be proved that they cannot take a course”. When read in such a

way and by assuming that we have only partial information in our

knowledge base, it becomes quite intuitive why the individual s1 can

be classified neither as ActiveStudent nor as InactiveStudent.

that it is also an instance of the defined class ActiveStudent. What about the individual 
s1? There are no outgoing links from it. From the perspective of the open world 
assumption it means that we do not know about any outgoing links, it may be that 
there actually are some. Hence, we cannot infer either that the individual s1 is an 
ActiveStudent or that he is an InactiveStudent. Consequently it is better to read 
expressions like “takes some Course” and “not takes some Course” as “all individuals 
for whom it can be proved that they take some Course” and “all individuals for whom 
it can be proved that they cannot take a course”. When read in such a way and 
assuming we have partial information in our knowledge base, it becomes quite 
intuitive why the individual s1 can be classified as neither ActiveStudent nor as 
InactiveStudent.

Fig. 2. Fragment of the University Ontology with instances. The individual  s2 can be classified 
as an ActiveStudent because it has a link takes to the course c1. But  the individual s1  cannot be 
classified as either an ActiveStudent or as an InactiveStudent because there is no enough 
information about whether the individual s1  takes some course or not. This demonstrates the 
consequences of the open world assumption.

Actually there is no OWL expression that can describe only those individuals for 
whom it is not known whether they have a link or not [6], therefore knowledge 
engineers can only introduce a primitive class and provide an annotation in a natural 
language to explain what is meant by this class (see the class StudentWithoutCourses 
in Figure 1). Our goal is to present a language to describe these classes. In the rest of 
the paper we will call such type of classes IntrospectiveClasses.

3. Proposed Extension Language – lQuery

As we saw in the previous chapter, OWL can only refer to individuals about whom 
we can prove that they have some feature or to individuals about whom it can be 
proved that they cannot have some feature. But there is no way to refer to individuals 
about whom there is no information whether they have some feature or not. In this 

Figure 15: Fragment of the University Ontology with instances.

In Figure 15 the individual s2 can be classified as an ActiveStudent

because it has a link takes to the course c1. However, the individual s1

cannot be classified as either an ActiveStudent or as an InactiveStudent.

Because there is no enough information whether the individual s1

takes some course or not.

Actually, no OWL expression can describe only those individuals

for whom it is not known whether they have a link or not [41]. There-

fore, the only option is to add a primitive class with a natural lan-

guage annotation explaining what is meant by this class. The class

StudentWithoutCourses in Figure 14 demonstrates this approach.

Our goal is to present a language allowing to describe classes

like the StudentWithoutCourse. We will call such classes Introspective-

Classes.



7.2 lquery selectors in ontologies 87

7.2 lquery selectors in ontologies

As we saw in the previous section, OWL can only refer to individuals

about whom it can be proved either that they possess some feature or

that they cannot possess this feature at all. However, there is no way

to refer to individuals about whom there is no information whether

they possess some feature or not. Now we will see that lQuery ex-

pressions can be used for referring to such individuals.

lQuery expressions are always evaluated in the context of some

object collection (e.g. individuals of the class Thing), and each ob-

ject that matches the selector is returned in the resulting collection.

Thus, each selector expression defines a new class of objects. The two

main types of selector expressions are filters and navigators. Filters

are used to obtain a subset of the initial collection based on some con-

dition. Navigators are used to obtaining a new collection of objects

from the starting collection. Examples of filter selectors: filtering by a

class membership (i.e. there is an explicit instanceOf assertion in the

ontology), or filtering by data-property value. Examples of navigation

selectors: the collection of objects that are reachable from the current

collection by a given object-property, or the collection of values of some

data-property.

7.2.1 Integration with Ontology

To use lQuery expressions in ontology engineering, we need some

way for the ontology designers to specify them in the graphical nota-

tion. We will extend the OWLGrEd notation from the previous chap-

ter with the syntax for lQuery expressions. In the OWLGrEd nota-

tion, classes are represented by boxes, and there is a field (starting

with “=”) under the class name for equivalent class expressions in

the OWL Manchester Syntax. lQuery expressions will be used simi-

larly. Therefore, we will use a similar notation. To distinguish lQuery

expressions from OWL expressions, we will enclose lQuery expres-

sions in «» marks (see Figure 17).



7.2 lquery selectors in ontologies 88

The lQuery language also needs to be integrated with the OWL

metamodel from the previous chapter. The metamodel is extended

with a class lQueryExpression, that represents an lQuery selector ex-

pression. There is a link lQueryEquals from the intuitive class Class

to the class lQueryExpression. This link means that the intuitive class

contains all the instances that are returned by the connected lQuery

selector, when it is executed on the entire repository. The extended

metamodel is shown in Figure 16.

DataProperty

IndividualDataPropertyValue
1

*
1

*

1

*

1

*

type
1

*

*

*

ObjectPropertyAssertion

EnumerationLiteral

ownedLiteral *

NamedElement

name : String [0..1]

DataType Class

Generalization

range
0..1 *

general  1

*
specific  1

*

attr
*

assoc
*

Primitive Enumeration

domain
domain

*

inverse
1

1

1
type

DataPropertyAssertion

InstanceOfAssertion

1

*

1

range
1

ObjectProperty

1
type

*

disjoint *
*

*equal *

GeneralizationSet

isCovering : Bool
isDisjoint : Bool

* generalizationSet
generalization *

ClassExpression

AndOrExpr

NotExpr

AndExpr

OrExpr

1 arg1 1 arg2 1 arg1

* disjointequal *

EnumExpr

PropertyExpr

SomeExpr

AllExpr

1 range

onProperty
1Property

PropertyChainExpr

subPropertyChain
*

*

1

property
* {ordered}

SelfExpr

Cardinality

value : int

MinCard

MaxCard

ExactCard

RangedExpr

HasValue

same
*

*

different
*

*

Value

*

1

* *

*

*

ClassReference

className:String

*

* 
super
Class

*
equal * * disjoint

*

NegativeDataProperty
Assertion

*

1

*

1

*

1
type

NegativeObjectProperty
Assertion

*

1
type

*

1

*

1

isInfered : boolisInfered : bool

isInfered : bool

isSymetric : Bool
isAsymetric : Bool
isReflexive : Bool
isIreflexive : Bool
isTransitive : Bool
/isFuncional : Bool
/isInverseFunctional : Bool

/isFunctional : Bool

isInfered : bool

1
type

lQuery
Expression

Path

Filter

Union

2..★

AttrFilter

Selector
Filter

★ {ordered}

★

0..1

1

Navigation
Step

1..★ 
{ordered}

0..1

AttrHasValue

AttrValueFilter

relation : {=, !=, ...}
value : String

EmptySelector
Result

NotEmptySelect
orResult

1

First

Last

ClassFilter

className:
String

AttrPath

attrName:String

*

0..1 lQueryEquals

Figure 16: OWL metamodel extension with lQuery constructor classes

The lQuery expressions are serialized in ontology files by using

OWL annotation properties [8, Annotation Property]. Annotation

properties allow to attach arbitrary information to any OWL entity

or assertion. The lQuery expressions are always added to a named



7.2 lquery selectors in ontologies 89

class. We introduce an OWL annotation property lQueryEquals whose

domain is an OWL Class, and the range is lQueryExpression. When

the ontology is exported from the OWLGrEd ontology notation to an

OWL file, the lQuery expressions will be exported as annotations. Fig-

ure 18 shows the example from Figure 17 serialized in the Manchester

Syntax.expressions written in the Manchester syntax, the lQuery expressions are enclosed in 
the symbols «» (see Figure 4).

Fig. 4. Demonstration of the OWLGrEd syntax extension for the lQuery expressions

The lQuery expressions are serialized in ontology files using OWL annotation 
properties [8]. Annotation properties allow to attach arbitrary information to any 
OWL entity or assertion. The lQuery expressions are always added to a named class.  
We introduce an annotation property lQueryEquals whose domain is an OWL Class, 
and range is lQueryExpression. When the ontology is exported from the OWLGrEd 
ontology notation to an OWL file, the lQuery expressions will be exported as such 
annotations. Figure 5 shows the example from Figure 4 serialized in the Manchester 
syntax.
Datatype: lQueryExpression
AnnotationProperty: lQueryEquals

----------
Class: PassedStudent

Annotations:
lQueryEquals "Student:has(/grade/course@creditPoints:sum() >= 20)"^^lQueryExpression
rdfs:comment "Students that have earned at least 20 credit points"

Fig. 5. lQuery expressions as annotation properties in Manchester syntax

3.2 Some Examples from the University Ontology

Now that we have seen a survey of the lQuery expressions and how they are shown 
graphically, we will look at some examples from the University Ontology that we 
were not able to define using OWL class expressions. First let us return to the 
example of students without known courses from the previous section. Figure 6 
shows the same ontology fragment but with an additional class StudentWith-
NoKnownCourses that defines the instances we could not get with OWL (this class 
belongs to the category of IntrospectiveClasses). Before we analyze the lQuery 
expression that describes that class, let us recall that the OWL definition of class 
InactiveStudents – “not (takes some Course)” – does not describe the instances we 
want because it will contain only instances for which it can be proved that they cannot 
have a link takes, but in this situation there is no information from which to prove that 
the individual s1 could have a link or not. Therefore it is not classified as either 
InactiveStudent or ActiveStudent. In contrast, the lQuery selectors work only with the 
information that is directly known and assumes that everything that is not known is 
false.

Figure 17: Demonstration of the OWLGrEd syntax extension for the lQuery

expressions

expressions written in the Manchester syntax, the lQuery expressions are enclosed in 
the symbols «» (see Figure 4).

Fig. 4. Demonstration of the OWLGrEd syntax extension for the lQuery expressions

The lQuery expressions are serialized in ontology files using OWL annotation 
properties [8]. Annotation properties allow to attach arbitrary information to any 
OWL entity or assertion. The lQuery expressions are always added to a named class.  
We introduce an annotation property lQueryEquals whose domain is an OWL Class, 
and range is lQueryExpression. When the ontology is exported from the OWLGrEd 
ontology notation to an OWL file, the lQuery expressions will be exported as such 
annotations. Figure 5 shows the example from Figure 4 serialized in the Manchester 
syntax.
Datatype: lQueryExpression
AnnotationProperty: lQueryEquals

----------
Class: PassedStudent

Annotations:
lQueryEquals "Student:has(/grade/course@creditPoints:sum() >= 20)"^^lQueryExpression
rdfs:comment "Students that have earned at least 20 credit points"

Fig. 5. lQuery expressions as annotation properties in Manchester syntax

3.2 Some Examples from the University Ontology

Now that we have seen a survey of the lQuery expressions and how they are shown 
graphically, we will look at some examples from the University Ontology that we 
were not able to define using OWL class expressions. First let us return to the 
example of students without known courses from the previous section. Figure 6 
shows the same ontology fragment but with an additional class StudentWith-
NoKnownCourses that defines the instances we could not get with OWL (this class 
belongs to the category of IntrospectiveClasses). Before we analyze the lQuery 
expression that describes that class, let us recall that the OWL definition of class 
InactiveStudents – “not (takes some Course)” – does not describe the instances we 
want because it will contain only instances for which it can be proved that they cannot 
have a link takes, but in this situation there is no information from which to prove that 
the individual s1 could have a link or not. Therefore it is not classified as either 
InactiveStudent or ActiveStudent. In contrast, the lQuery selectors work only with the 
information that is directly known and assumes that everything that is not known is 
false.

Figure 18: lQuery expressions as annotation properties in Manchester syn-

tax

7.2.2 Some Examples from the University Ontology

Now we will consider some examples from the University Ontology

that we were not able to specify by using OWL class expressions.

First, let us return to the example of students without known courses

from the previous section. Figure 19 shows the same ontology frag-

ment but with an additional class StudentWith-NoKnownCourses. The

class defines the instances that we could not obtain with OWL (the

class belongs to the category of IntrospectiveClasses). Let us recall that

the OWL definition of the class InactiveStudents – “not (takes some

Course)” – does not describe the instances we want, because the class

will contain only instances for which it can be proved that they cannot

possess a link takes. However, now we are in a situation where there

is no information from which we could prove that the individual s1

could possess a link or not. Therefore, it is not classified as either In-

activeStudent or ActiveStudent. In contrast, the lQuery selectors work



7.2 lquery selectors in ontologies 90

only with the information that is present in the local knowledge base

and assume that everything that is not known is false.

Let us consider how this example works step by step. The class

StudentWith-NoKnownCourses is defined by the lQuery expression

“Student:not(/takes)”. The expression is a selector chain that consists

of two primitive selectors – selector by class name (“Student”), and

a negative filter selector. The first primitive selector returns a collec-

tion of instances that have been classified as a Student. In Figure 19

that collection contains the individuals s1 and s2. The next selector

(“:not(/takes)”) is evaluated in the context of this collection. The selec-

tor leaves only those instances from the context collection for which

the sub-selector (“/takes”) returns an empty collection. In our example,

it leaves only the instance s1. Finally, the query result is materialized

as an instanceOf assertion from each instance in the result collection

to the class StudentWithNoKnownCourses (shown as a red dotted line

in Figure 19).

Let us see how this example works step by step. The class StudentWith-
NoKnownCourses is defined by the lQuery expression “Student :not(/takes)”. This 
selector is a selector chain that consists of two primitive selectors – selector by class 
name and a negative filter selector.  The first part of the selector is a selector by class 
name “Student”. It returns a collection of instances that have been classified as a 
Student. In Figure 6 that collection would contain the individuals s1 and s2. The next 
selector in the chain is then evaluated in the context of the returned collection. In this 
case it is a negative filter selector “:not(/takes)”. It leaves only those instances from 
the context collection for which the sub-selector (“/takes”) returns an empty 
collection. In our example that would be only the instance s1. Finally, the query result 
is materialized as an instanceOf assertion from each instance in the result collection to 
the class StudentWithNoKnownCourses (shown as a red dotted line in Figure 5).

Fig. 6. Demonstration of the lQuery semantics in contrast to OWL semantics

Another feature that is missing from OWL is aggregation operations. Consequently 
many intuitive classes cannot be defined in OWL. For example, in the university 
ontology such a class would be HardWorkingStudents – “students that have taken at 
least 20 credit points”. In lQuery this statement would be written as “Student [/
takes@creditPoints :sum() >= 20]”. Let us look at how this expression is evaluated on 
an example in Figure 7. The selector consists of two parts – selector by class name 
and a filter by condition whose sub-selector is a selector chain. The result of the 
“Student” selector is a collection with instances s1 and s2. Now let us look at the filter 
selector “[/takes@creditPoints :sum()  >= 20]”. It will return those objects from the 
context collection for whom the condition evaluates to true. In this case the condition 
is on the sum of data property values, i.e. the sum must be greater or equal to 20. The 
path “/takes@creditPoints” means that for each student we find all the courses that he 
takes and get values of the corresponding data-property creditPoints. The result is a 
collection of integers that is passed to the operation “:sum()”. The result is compared 
to the value 20 and, if it is greater or equal, then the student is added to the result 
collection. In the current example the collection will contain only the individual s2.

Figure 19: Demonstration of the lQuery semantics in contrast to OWL se-

mantics

Another feature, missing in OWL, is aggregation operations. Con-

sequently, many intuitive classes cannot be defined by using OWL.

For example, in the university ontology such a class is “students that

have taken at least 20 credit points” (HardWorkingStudents ). In lQuery

this statement can be written as “Student [/takes@creditPoints :sum() >=

20]”. Let us consider how this expression is evaluated on an example

from Figure 20. The lQuery selector consists of two parts – the selec-

tor by class name and the filter by condition whose sub-selector is a



7.2 lquery selectors in ontologies 91

selector chain. The result of the “Student” selector is a collection with

instances s1 and s2. The next selector (“[/takes@creditPoints :sum() >=

20]”) will return those objects from the context collection for whom

the condition evaluates to true. In this case the condition is set to the

sum of data property values, i.e. the sum must be greater or equal

to 20. The path “/takes@creditPoints” means that for each student we

will find all the courses that the student takes and obtain values of the

corresponding data-property creditPoints. The result is a collection of

integers that is passed to the operator “:sum()”. The result is com-

pared with the value 20 and, if it is greater or equal, then the student

is added to the result collection. In the current example, the collection

will contain only the individual s2.

Fig. 7. Demonstration of the lQuery aggregation expressions.

We could also define a more complex class, like “students that have taken at least 
20 credit points and have no grade less then 4”. It can be written in lQuery as follows 
– “Student [/takes@creditPoints :sum() >= 20] :not([/grade@value < 4])”.

3.3 Advanced Example from University Ontology

Let us now consider a more advanced example from the University Ontology. We 
started the previous subsection with the problem of how to define a class with only 
those students about whom there was no information whether they take some course 
or not. We discovered that it was impossible to define such a class in OWL (Figure 2). 
Then we demonstrated how we can use lQuery to define this class (Figure 5). The 
main reason we succeeded was because lQuery uses the closed world semantics. 
From that example it may seem that we would always want to use only the closed 
world semantics. However, it turns out that the situation is much more subtle.

Let us suppose that we want to define a class of students to whom we want to send 
reminders to register to some course or they will be expelled. In this example the 
ontology (shown in Figure 8) will have two additional classes, namely, 
GraduatedStudent (those that have graduation date) and StudentCouncilMember 
(those that have some role in student council). For both of these classes there is a 
corresponding OWL definition of what it means for an individual to belong to that 
class. In addition, it is known that a GraduateStudent cannot take any courses because 
it is a subclass of Inactive-Student and StudentCouncilMember must take at least one 
course because it is a subclass of ActiveStudent.

Figure 20: Demonstration of the lQuery aggregation expressions.

We could also define a more complex class, like “students that have

taken at least 20 credit points and have no grade less than 4”. It can be

written by using an lQuery as follows – “Student [/takes@creditPoints

:sum() >= 20] :not([/grade@value < 4])”.

7.2.3 Advanced Example from the University Ontology

Now, let us consider a more advanced example from the University

Ontology. We started the previous subsection with the problem of

defining a class with only those students about whom there is no in-



7.2 lquery selectors in ontologies 92

formation whether they take some course or not. We discovered that

it was impossible to define such a class in OWL (Figure 15). Then we

demonstrated how we can use lQuery to define this class (Figure 18).

The main reason we succeeded was the use of the closed-world se-

mantics in lQuery. From that example, it may seem that we would

always want to use the closed-world semantics. However, in some

cases the situation may be more complicated.

Let us suppose that we want to define the class of students to

whom we want to send reminders to register for some course. In

this example, the ontology (shown in Figure 21) will have two addi-

tional classes, namely, GraduatedStudent (those that have graduation

date) and StudentCouncilMember (those that have some position in a

student council). For both of these classes, there is a corresponding

OWL definition of what it means for an individual to belong to that

class. In addition, it is known that a GraduateStudent cannot take any

courses because it is a subclass of Inactive-Student and StudentCoun-

cilMember must take at least one course because it is a subclass of

ActiveStudent.

Fig. 8. Extended example from Figure 2.

Let us look at what it means in terms of instances (remember that we are working 
under open world assumption). Now we have two additional students – s0 and s3 – 
for each of them we know an additional feature. For the student s0 we know his 
graduation date and for the student s3 we know his role in student council. Thanks to 
this additional information and the class definitions it can be inferred that s0 is an 
InactiveStudent and that s3 is an ActiveStudent (even though we do not know 
precisely which course he takes, we know that he is taking some course because 
otherwise he could not be a StudentCouncilMember). Therefore, if we return to our 
original example “students whom we need to send reminder to register to some 
course”, we can see that the closed world assumption is not by itself sufficient to get 
what we need because then we would get all those individuals without a takes link, 
i.e. s0, s1 and s3. But we actually want only the individual s1 because there is no need 
to send reminders to students who have graduated (s0) or to students about whom we 
indirectly know that they are taking some course (s3).

As can be seen from the previous paragraph, the closed world assumption is not 
enough, and we need to be able to refer to the results of reasoning process to define 
the class that we want. Therefore we need to write the lQuery expression as follows  – 
take all students then exclude all those students about whom it is known that they are  
an InactiveStudent or an ActiveStudent, e.g. 
“Student:not(InactiveStudent):not(ActiveStudent)”. If the ontology contains all the 
instanceOf assertions that are shown in Figure 8, then that expression will return a 
collection with only one student – s1 – which is exactly what we wanted.

However, it could be the case that the instanceOf assertions that allowed lQuery to 
get the correct result where not directly present in the ontology. Typically they are 

Figure 21: Extended example from Figure 15.

Let us consider what this means in terms of instances (remember

that we are thinking in terms of the open-world assumption). Now,

we have two additional students – s0 and s3 and for each of them



7.3 integration with a reasoner 93

we know an extra feature. For the student s0 we know his gradua-

tion date and for the student s3 we know his position in a student

council. Thanks to the additional information and the corresponding

class definitions it can be inferred that s0 is an InactiveStudent and

s3 is an ActiveStudent (even though we do not know which course

he takes, we know that he is taking some course because otherwise

he could not be a StudentCouncilMember). If we return to the original

example – “students whom we need to send reminder to register to

some course” – we can see that the closed-world assumption is not

by itself sufficient to obtain what we need because then we would ob-

tain all the individuals without a takes link, i.e. s0, s1 and s3. But we

actually want only the individual s1 because there is no need to send

reminders to students who have graduated (s0) or to students about

whom we know indirectly that they are taking some course (s3).

As we see, the closed-world assumption is not sufficient, and to

define the class that we want, we need the possibilities to refer to

the results of the reasoning process. Therefore, we need to write

the lQuery expression as follows: take all students, then exclude stu-

dents about whom it is known that they are an InactiveStudent or

an ActiveStudent. (This can be done using lQuery expression “Stu-

dent:not(InactiveStudent):not(ActiveStudent)”). In the example of Fig-

ure 21 this expression will return a collection with only one student –

s1 – which is exactly what we wanted.

However, in some cases, the instanceOf assertions that allowed

lQuery to obtain the correct result, are not present in the ontology di-

rectly. Typically they are calculated by the reasoner. It is not required

that the inferred instanceOf assertions must be explicitly present in

the ontology all the time. Therefore it raises a question, how should

the reasoner and the lQuery interoperate? We will answer this ques-

tion in the next section.

7.3 integration with a reasoner

There are two kinds of derived classes in our extended ontology lan-

guage, namely, classes defined by OWL class expressions and classes



7.3 integration with a reasoner 94

defined by lQuery selector expressions. Now we will define the In-

tegrationAlgorithm that will allow to use both types of expressions to

classify instances.

The IntegrationAlgorithm will work as follows. It will start by clas-

sifying the ontology by using an OWL reasoner. Because, as we saw,

for lQuery expressions to work correctly they need all the inferred in-

stanceOf assertions to be explicitly asserted in the ontology. After the

reasoner has classified the ontology, i.e. added the inferred instanceOf

assertions, the IntegrationAlgorithm will perform the lQuery classifica-

tion step. This step first finds all the classes that are defined by the

lQuery selector expression. Then, for each class, it evaluates the selec-

tor expression and obtains a collection containing the corresponding

individuals. If the collection found is a strict superset of the currently

asserted class individuals, then it adds instanceOf assertions for each

newly found individual to the ontology. However, if the class contains

an explicitly asserted individual that is not in the collection, then it

report a contradiction.

After the lQuery step has finished, new instanceOf assertions will

be in the ontology that could be used by the reasoner to derive some

additional information. Therefore we would want to run the reasoner

one more time. After this, of course, lQuery could again find some

additional information, and so on. Let us show that this algorithm

always terminates with either a contradiction or an ontology where

no new information can be deduced.

First, note that running the reasoner can yield 3 types of results:

the reasoner finds a contradiction, the reasoner finds new instanceOf

assertions or the reasoner finds nothing new, i.e. every hidden as-

sertion has been materialized, and there is no contradiction. Because

the OWL reasoner specification is such that no new instances can be

created, and no existing instances can be deleted. The lQuery step

can have the same three types of results. So both, the lQuery, and

the reasoner, can only add new instanceOf assertions to the ontology.

Therefore running them one after another in a loop will end in either

a contradiction or with an ontology state where running one or the

other will result in the same ontology state.



7.4 related work 95

By using this algorithm, we can reuse classes derived in lQuery in

OWL expressions and vice versa.

7.4 related work

The related work can be divided into two categories: a) papers propos-

ing query and rule languages for semantic web technologies, and b)

papers proposing OWL extensions with some closed world capabil-

ities. Let us first look at the query languages that could be used in

place of lQuery.

The most widely used query language for RDF data stores is

SPARQL [13]. Its main purpose is retrieval and manipulation of RDF

triples [12]. Because RDF is one of the standard serialization for-

mats for OWL, and almost all semantic web data is stored in RDF

databases, SPARQL can also be used for writing queries to OWL data.

The main problem with this approach is that we need to encode the

RDF serialization of OWL expressions in the query, thus making them

“verbose, difficult to write, and difficult to understand” [66]. Conse-

quently, SPARQL is unsuitable for usage instead of lQuery because

our goal was to build an intuitive language in which the queries could

be expressed by using the ontology terms, and not their underlying

serialization in some other language.

Another language that can be used alongside OWL for defining

new classes is SWRL [14]. SWRL extends OWL with a new type of

assertion – a rule that consists of an antecedent part and a consequent

part. Both parts consist of a conjunction of atoms. Informally, the

SWRL rule can be read as: if all atoms in the antecedent part are true,

then the consequent part must also be true. SWRL has the full expres-

sive power of OWL-DL, combined with (binary) function-free Horn

logic, consequently, it is undecidable [44], and full implementation

of it is impossible. Additionally, because SWRL uses the same open-

world assumption on which OWL is based, it has the same problems

for our purpose, i.e. it cannot describe classes of objects for which

something is not known.



7.5 conclusions 96

A similar language from a different domain, which, in fact, largely

inspired the design of the lQuery, is the OCL [5] – a constraint lan-

guage for UML. The main difference is that the semantics of OCL is

tailored for constraint checking and not for classification. Therefore, it

always works in the context of a single instance and not in the context

of all individuals.

There have been attempts to extend OWL with operators to de-

scribe objects with unknown features (epistemic operators) [41].

These elements have largely been based on work on non-monotonic

reasoning. Currently, only a partial success has been achieved in this

direction. The main advantage of introducing epistemic operators di-

rectly into OWL (and writing a reasoner that understands them) is

the possibility of proving that the ontology is consistent. In our pro-

posed system the reasoner and the extension are only partially inte-

grated – but an inconsistency can happen only on the instance level;

i.e. a contradiction can be found only when a contradictory instance

is added to the repository. The reasoner that understands OWL and

epistemic operators could find a contradiction earlier, already from

class definitions.

7.5 conclusions

In this chapter, we discussed the benefits and limitations of OWL

for the task of knowledge capture and retrieval. The main emphasis

was put on exploring how suitable OWL is for the definition of de-

rived classes that are intuitive for the end-users. The main advantage

of OWL is the availability of reasoners that can classify individuals

given only partial information about them contained in class defini-

tions. However, the reasoner can classify individuals only when it

can prove either that an object possesses some feature or that it can-

not possess this feature. Consequently, it is impossible to define the

class of precisely those individuals about whom some information

is missing, e.g. students about whom we do not know what courses

they have taken. Such IntrospectiveClasses are very natural and useful

in practical applications.



7.5 conclusions 97

We proposed an OWL extension that retains all the benefits of the

pure OWL but solves the problem of introspective class definitions

and retrieval of their instances. The extension consists of two parts,

namely, a selector language lQuery and an algorithm for integrating it

with the existing reasoners. The proposed extension allows to classify

instances by using either OWL semantics or lQuery semantics. One

drawback of this solution is that it is no longer possible for reasoners

to prove that the extended ontology is consistent by looking only at

the class level.

The primary advantage of the proposed extension is the ability to

define more derived classes at the ontology level and use them for

the classification of individuals. These additional classes make it easy

for end-users to write ad-hoc queries because they can select from a

larger set of predefined intuitive classes instead of specifying them in

a low-level query language. It is possible because the proposed algo-

rithm can materialize both OWL inferences and lQuery inferences by

storing them in a data store. Thus higher-level query languages, such

as ViziQuer [24, 25], Facet Graphs [43], etc., can take the advantage

of the additional expressivity following from our extension without

changing anything in their implementation.



8
O N T O L O G Y- B A S E D T O O L B U I L D I N G

F R A M E W O R K : A R C H I T E C T U R E P R O P O S A L

In the previous two chapters, we presented solutions to two of

the main problems for moving toward ontology-based tool building

framework. Now we will present a way how to use them to upgrade

the architecture of the MDA based tool building framework from

Chapter 3 to achieve the benefits of the ontology-based system out-

lined in Chapter 5.

The motivation for moving towards an ontology-based tool build-

ing framework, as explained in Chapter 5, was to reduce the need

for programming of tool-specific transformations. The reduction can

be achieved by moving the tool-specific behavior description from

transformations to declarative model annotations. The declarative an-

notations contain lQuery based selectors that can define classes. The

defined classes then can be used by OWL reasoners to achieve the

desired tool behavior (constraint checking, element styling). For this

purpose in Chapter 6, we have designed a UML-based OWL meta-

model and in Chapter 7 we have designed the OWL orthogonal exten-

sion metamodel and algorithm for the integration of reasoners with

lQuery.

Let us start by recapping the components of the MDA based tool

building framework as presented in Chapter 3. The framework con-

sisted of 4 parts: Model Repository for storage of model instances;

View Engines for user interaction; Transformation for interaction

logic; and TDA Core through which these components communi-

cate. The TDA Core handles communication as Commands and Events

which were stored in the model repository. The access to the model

repository was organized via a universal interface defined by TDA,

called RAAPI [54]. The transformations were divided into two sets:

a) the Universal Transformations handling common tasks, like ele-

98



ontology-based tool building framework : architecture proposal 99

ment creation/deletion and copy/paste; and b) tool specific transfor-

mation handling custom behaviors, like constraint checking, dynamic

style selection, and interaction with outside systems. The overall ar-

chitecture of the MDA based tool building framework is shown in

Figure 22.

Model Repository

  TDA Core

Engine 1

Engine 2

Model Transformations

RAAPI

Figure 22: Overall architecture of the MDA based tool building framework

from Chapter 3.

Our goal is to reuse as much of the original MDA-based architec-

ture as possible, to avoid rewriting of the existing View Engines and

the Universal Transformations. All components of the tool building

framework communicate with one another through the TDA Core us-

ing Commands and Events stored in the model repository, hence, we

can replace the model repository with a new one that supports the

extended OWL and lQuery semantics. As long as the new repository

is supporting the same outside interface (API) as the existing one,

the TDA Core will work with it, and we do not need to change the

current View Engines and Universal Transformations.

The question then becomes how to implement the new repository?

We can reuse the existing model repository (used in the MDA-based

tool building platform) as a core for the new repository. The current

repository is preloaded with the OWL Orthogonal extension meta-

model discussed in Chapter 7. Then we need to rewrite the API func-

tions to work according to the new semantics of extended OWL and

lQuery semantics. The read part of the API functions can work in the



ontology-based tool building framework : architecture proposal 100

same way as described in Chapter 4, where lQuery was presented.

This is possible because the core of the OWL Orthogonal extension

metamodel (Figure 16) is the same as lQuery repository metamodel

(Figure 4). The implementation of the write part of the API is more

complicated because the changes can invalidate some of the inferred

relations and also result in new inferred relations as was explained in

Chapter 7. Thus, in each write operation we need to cancel the previ-

ously inferred results, apply the write operation according to lQuery

semantics from Chapter 4 and execute the integration algorithm of

Section 7.3. After that, when the next read operation is performed, it

will have all the inferred information already explicitly present in the

repository, as regular objects, attributes, and links. The new overall

architecture is shown in Figure 23.

New Model Repository

  TDA Core

Engine 1

Engine 2

Model Transformations

RAAPI

Old Model Repository

OWL with lQuery Extension MM

OWL 
reasoner

lQuery 
runtime

Figure 23: New overall architecture of OWL-based tool building framework.

With the new architecture, the domain-specific tool designer can

create subclasses in the tool definition metamodel (presented in Chap-

ter 3) by using the full expressive power of OWL and lQuery selectors.

These subclasses can be defined by using the OWLGrEd graphical no-



8.1 a runtime example in the proposed architecture 101

tation and the editor presented in Chapter 6. This is done with stan-

dard configuration mechanism that uses the Type instances (see Sec-

tion 3.2). Meanwhile the existing View Engines and Universal Trans-

formations can work without changes.

To better understand how the proposed new architecture will work

in practice, let us consider a small fragment of an activity diagram

editor.

8.1 a runtime example in the proposed architecture

In Chapter 5 we used the activity diagram editor as a motivating ex-

ample for an ontology-based tool building framework. Now we will

use a small fragment of this program to illustrate how it functions in

the proposed ontology-based architecture. The editor will consist of

an activity diagram and a start element. We will define the following

behaviour: 1) the activity diagram must contain no more than one start

element; 2) if the diagram does not contain a start element, it should

have a red background color; 3) if the diagram contains exactly one

start element, it should have a white background color.

First let us look how the tool definition metamodel of Chapter 3 is

represented in the new architecture. Remember that in the new archi-

tecture we have a new repository, which contains inside the old one,

and in which the OWL Orthogonal Extension Metamodel (OOEM)

of Chapter 7 is loaded. Consequently, the tool definition metamodel

is an instance of OOEM. However, from the outside it continues to

look as before because everything is working through the same API

(called RAAPI). Figure 24 illustrates the situation.

Next let us look at how the activity diagram fragment is added, first

at the logical level in OWLGrEd notation, and then in the internal

representation. The acitivity diagram specific classes are defined as

subclasses of the tool definition metamodel of Chapter 3. First, a sub-

class (ActivityDiagram) of the Diagram class; and a subclass (Start) of

the Element class is created. Two additional subclasses of the Activity-

Diagram class also are needed – one for each style situation. The first

subclass is EmptyActivityDiagram, it contains two expressions: a) an



8.1 a runtime example in the proposed architecture 102

New Model Repository

Tool Definition Metamodel – Logical View

Diagram

Element

Class ObjectProperty

Diagram:Class Element:Class

element:ObjectProperty

Tool Definition Metamodel – Internal Representation
�

element

logical
view

rep in
internal

view

OWL 
reasoner

lQuery 
runtime

RAAPI

Figure 24: Fragment of the Tool Definition metamodel in the New Reposi-

tory – Logical View and Internal Representation

lQuery expression that defines the class so that it contains only those

activity diagrams that have no start elements; and b) an OWL expres-

sion that specifies the red background color for instances of this class.

The second subclass is NonEmptyActivityDgr. It defines the activity di-

agrams with at least one start element by using similar expressions.

Also, a validity constraint is created that says that all activity diagrams

must have at most one start element, this is done by adding an OWL

subclassOf assertion to the ActivityDiagram class with OWL class ex-

pression element max 1 Start. The updated model is shown in Figure 25.

The upper part of the image shows the logical view using OWLGrEd

notation and the lower part shows the internal representation as an

instance of the OWL Orthogonal metamodel.

Now let us look what happens at a runtime when the user creates

a diagram. First, just like in the MDA-based tool building framework

of Chapter 3, the Graph Diagram Engine creates an event, correspond-

ing to the new diagram creation request. The Universal Transforma-

tion interprets the event. As part of the interpretation, the transfor-

mation uses the create_instance function from the model repository

API with a class name parameter ActivityDigram. In the previous



8.1 a runtime example in the proposed architecture 103

ActivityDiagram:Class

GraphDiagram:Class

name: “GraphDiagram”

Element:Class

name: “Element”

element:ObjectProperty

name: “element”
domain

assoc range

:Generalization

general

special
Start:Class

:Generalization

general

special

EmptyActivityDgr:Class

:Generalization

general

special

NonEmptyActivityDgr:
Class

:Generalization

general

special

:Path

:Navigation
Step

:EmptySelector
Result

:Path

:Navigation
Step

:ClassFilter

className = 
“Start”

background:DataProperty

name: “background”

attr

:HasValue

red:
DataPropertyValue

value = “red”

super
Class

lQueryEquals

:HasValue

white:
DataPropertyValue

value = “white”

super
Class

:ClassReference

className = Start
super
Class

range

In
te

rn
al

 R
ep

re
se

nt
at

io
n 

(In
st

an
ce

 D
ia

gr
am

)
Element

Start

element 

EmptyActivityDgr

«:not(/element.Start)» 
< background value “red”

NonEmptyActivityDgr

«:has(/element.Start)»

< background value “white”

Lo
gi

ca
l V

ie
w

 (O
W

LG
rE

d 
No

ta
tio

n)

ActivityDiagram

< element max 1 Start

:Cardinality

value = 1

:Path

:Navigation
Step

:NotEmptySelec
torResult

:Path

:Navigation
Step

:ClassFilter

className = 
“Start”

lQueryEquals

GraphDiagram
background:String

Figure 25: Fragment of the tool definition metamodel with activity diagram

specific subclasses (Logical View and Internal Representation)



8.1 a runtime example in the proposed architecture 104

architecture, the instance would simply be created, but in the new

one, there are additional steps. Specifically, first the repository deletes

all previous inference results. This time, there are no previous infer-

ences to undo because we assume that we are starting from scratch.

Then, the new ActivityDigram instance is created, and the inference en-

gines are invoked. First, the lQuery selector engine goes through the

classes defined by lQuery selectors, in this case, they are EmptyActiv-

ityDgr and NonEmptyActivityDgr. The newly created ActivityDigram

instance matches the selector from the EmptyActivityDgr class («:not(/

element.Start)»). Thus, an instanceOf link is added (and marked as

inferred) from the newly created ActivityDigram instance to the class

EmptyActivityDiagram. Then the inference algorithm continues and in-

vokes the OWL reasoner inference engine. It applies the rule accord-

ing to which all EmptyActivityDiagram instances must have attribute

“background” value “red”. Thus, an attribute assertion “background

= red” is added to the repository, and marked as inferred. When noth-

ing more can be inferred, the inference algorithm finishes, and the

Universal Transformation continue its work. Finally, the Graph Dia-

gram Engine is notified that all changes have been done and displays

the newly created diagram to the user. The repository state (logical

and internal encoding) after the addition of the diagram is shown in

Figure 26.

Notice that in the Logical view (the upper part of the image) the

newly created instance is both an ActivityDiagram and an EmptyAc-

itvityDgr and its background attribute value is “red”. However, in the

Internal view (the lower part of the image) we can see that some of the

assertions are inferred, and some of them are not inferred (axioms).

That distinction allows us to apply and retract inference results while

the rest of the framework can operate as if everything is explicitly

asserted.

Now let us see what happens one step further when the user wants

to add a start element to the diagram. The Universal Transformation

receives the corresponding event (add a box with type Start to the

active diagram). The Universal Transformation must issue two repos-

itory API calls to accomplish this. First, it must create a Start class



8.1 a runtime example in the proposed architecture 105

background = “red”

:DataPropertyAssertion
isInfered = true

:InstanceOfAssertion

isInfered = true

dgr1:Individual

:InstanceOfAssertion

isInfered = false

dgr1:ActivityDiagram

ActivityDiagram:Class

GraphDiagram:Class

name: “GraphDiagram”

Element:Class

name: “Element”

element:ObjectProperty

name: “element”
domain

assoc range

:Generalization

general

special
Start:Class

:Generalization

general

special

EmptyActivityDgr:Class

:Generalization

general

special

NonEmptyActivityDgr:
Class

:Generalization

general

special

:Path

:Navigation
Step

:EmptySelector
Result

:Path

:Navigation
Step

:ClassFilter

className = 
“Start”

background:DataProperty

name: “background”

attr

:HasValue

red:
DataPropertyValue

value = “red”

super
Class

lQueryEquals

:HasValue

white:
DataPropertyValue

value = “white”

super
Class

:ClassReference

className = Start
super
Class

range

In
te

rn
al

 R
ep

re
se

nt
at

io
n 

(In
st

an
ce

 D
ia

gr
am

)

Element

Start

element 

EmptyActivityDgr

«:not(/element.Start)» 
< background value “red”

NonEmptyActivityDgr

«:has(/element.Start)»

< background value “white”

Lo
gi

ca
l V

ie
w

 (O
W

LG
rE

d 
No

ta
tio

n)
ActivityDiagram

< element max 1 Start

:Cardinality

value = 1

:Path

:Navigation
Step

:NotEmptySelec
torResult

:Path

:Navigation
Step

:ClassFilter

className = 
“Start”

lQueryEquals

GraphDiagram
background:String

Figure 26: The state of the tool definition metamodel with one empty activ-

ity diagram (Logical View and Internal Representation)



8.1 a runtime example in the proposed architecture 106

instance, secondly it must create a link element between the Activity-

Diagram instance from the previous paragraph and the newly created

Start instance. As previously said, each API call to the new repository

first retracts all inferences, then makes the change and finally reruns

and materializes new inferences in the repository. So, before adding

a new Start element, the algorithm retracts the inferred EmptyActivi-

tyDgr instanceOf relation and the red background color data property

assertion from the instance of ActivityDiagram. Then the Start class

instance is created, and the inference is rerun. In this case, because

the start element is not yet connected to anything, the results are the

same, i.e. the activity diagram is still empty, and, therefore, its back-

ground color is still red. Now comes the second step, the addition of

the element link from the ActivityDiagram instance to the just created

Start instance. Again the new repository first retracts all inferences,

then adds the element object property assertion and finally reruns the

inference algorithm. This time, the results are different – the activity

diagram is no longer classified as an EmptyActivityDgr, but instead

it is now a NonEmptyActivityDigram (because it matches the lQuery

selector “«:has(/element.Start)»”). Consequently, the diagram instance

has a new inferred background color value – “white”. Afterwards the

Graph Diagram Engine is notified of the changes and shows the new

repository state (shown in Figure 27) to the user. The user sees that

the start element has been added, and also that the diagram back-

ground is now white, meaning that all constraints are satisfied.

Finally, let us go one step further and see what happens when the

user tries to commit an error by adding a second start element to the

diagram. In that case, the inference engine encounters a contradiction

because the AcitivityDiagram class includes an OWL constraint that it

can contain at most one Start element. Thus, the repository becomes

inconsistent, and no further inferences can be made. To avoid the

contradiction, the repository state is set back to the snapshot before

the user event. Moreover, the user is provided with the minimum

set of axioms that produced the contradiction (supplied by the OWL

reasoner). Hence, the user can conclude what was the problem and

act correspondingly.



8.1 a runtime example in the proposed architecture 107

start1:Individual

InstanceOfAssertion

isInfered = false

:ObjectPropertyAssertion

isInfered = false

start1:Startelement 

background = “white”

:DataPropertyAssertion
isInfered = true

:InstanceOfAssertion

isInfered = true

dgr1:Individual

:InstanceOfAssertion

isInfered = false

dgr1:ActivityDiagram

ActivityDiagram:Class

GraphDiagram:Class

name: “GraphDiagram”

Element:Class

name: “Element”

element:ObjectProperty

name: “element”
domain

assoc range

:Generalization

general

special
Start:Class

:Generalization

general

special

EmptyActivityDgr:Class

:Generalization

general

special

NonEmptyActivityDgr:
Class

:Generalization

general

special

:Path

:Navigation
Step

:EmptySelector
Result

:Path

:Navigation
Step

:ClassFilter

className = 
“Start”

background:DataProperty

name: “background”

attr

:HasValue

red:
DataPropertyValue

value = “red”

super
Class

lQueryEquals

:HasValue

white:
DataPropertyValue

value = “white”

super
Class

:ClassReference

className = Start
super
Class

range

In
te

rn
al

 R
ep

re
se

nt
at

io
n 

(In
st

an
ce

 D
ia

gr
am

)

Element

Start

element 

EmptyActivityDgr

«:not(/element.Start)» 
< background value “red”

NonEmptyActivityDgr

«:has(/element.Start)»

< background value “white”

Lo
gi

ca
l V

ie
w

 (O
W

LG
rE

d 
No

ta
tio

n)
ActivityDiagram

< element max 1 Start

:Cardinality

value = 1

:Path

:Navigation
Step

:NotEmptySelec
torResult

:Path

:Navigation
Step

:ClassFilter

className = 
“Start”

lQueryEquals

GraphDiagram
background:String

Figure 27: The state of the tool definition metamodel with one empty activ-

ity diagram (Logical View and Internal Representation)



8.2 conclusions 108

8.2 conclusions

This concludes our proposal of how an ontology-based tool build-

ing framework could work. Using such a framework domain-specific

tools can be built just by declaratively describing their behavior by

using an extended OWL and lQuery modeling language. This will

make building of domain-specific tools faster and changing them –

much easier. At the same time this approach can be susceptible to

side effects that are hard to understand, therefore it requires from the

tool definer a deep understanding of the nuances of open-world and

closed-world reasoning.



C O N C L U S I O N S

In this Thesis, we have considered two approaches to defining DSML

Tools. The first approach is an extension of the model-based method,

the second is a new ontology-based method for tool definition. The

research was done in the context of the tool building platform GRAF.

The author of the Thesis has participated in the development and

continues to participate in its further evolution, moving it towards a

fully ontology-based platform.

The four main results of the thesis are:

• the model transformation language lQuery;

• a new metamodel and graphical notation for the ontology lan-

guage OWL;

• an editor for the graphical notation; and

• an orthogonal extension of the ontology language OWL with

expressions from transformation languages.

The transformation language lQuery is a new type of transfor-

mation languages, which is specifically designed for transformation

tasks that are common in graphical tool building contexts. The lan-

guage has been used for the development of the tool-building frame-

work itself, as well as for the development of several DSML Tools by

using the framework.

The ontology-based approach for tool building presented the ways

how the ontologies and reasoning software can be used to easy the

task of tool building. The author presented the principles for a tool-

building framework based on OWL ontologies and reasoning soft-

ware.

For the development of an ontology-based tool-building frame-

work, the author developed a metamodel and graphical notation for

OWL. The metamodel and notation were designed as a layer above

109



conclusions 110

UML class diagrams. The design allows the future versions of the

tool-building platform to use ontologies as its core metamodeling lan-

guage. Also, the developed ontology notation is already widely used

worldwide.

The OWL orthogonal extension with transformation language ex-

pressions presents a way how non-monotonic class expressions can

be added to OWL. This development enables a wider class of prob-

lems that occur in tool building tasks to be described in a declarative

way, thus easing the development of new DSML Tools.



B I B L I O G R A P H Y

[1] EMF: Eclipse Modeling Framework, . URL http://www.eclipse.

org/emf/. (Cited on pages 18 and 60.)

[2] EMF Model Query Developer Guide, . URL http://help.

eclipse.org/helios/index.jsp?nav=/22. (Cited on page 60.)

[3] Meta Object Facility (MOF) 2.0 Query/View/Transformation,

V1.1, . URL http://www.omg.org/spec/QVT/1.1. (Cited on

page 60.)

[4] Meta Object Facility (Mof™) Core 2.0, . URL http://www.omg.

org/spec/MOF/2.0/. (Cited on pages 15 and 31.)

[5] OMG Object Constraint Language, Version 2.3.1. URL http://

www.omg.org/spec/OCL/2.3.1. (Cited on pages 53, 60, and 96.)

[6] Ontology Definition Metamodel. URL http://www.omg.org/

spec/ODM/1.0. (Cited on pages 69, 76, and 81.)

[7] OWL 2 Web Ontology Language, . URL http://www.w3.org/TR/

owl2-overview/. (Cited on pages 16, 63, and 69.)

[8] OWL 2 Web Ontology Language Structural Specification, . URL

http://www.w3.org/TR/owl2-syntax/#Annotation_Properties.

(Cited on page 88.)

[9] OWL Functional Syntax, . URL http://www.w3.org/TR/

owl2-syntax/. (Cited on page 69.)

[10] OWL 2 Manchester Syntax, . URL http://www.w3.org/TR/

owl2-manchester-syntax/. (Cited on pages 75 and 80.)

[11] Protégé 4. URL http://protege.stanford.edu/. (Cited on

pages 68 and 79.)

[12] RDF Primer. URL http://www.w3.org/TR/rdf-primer/. (Cited

on pages 16 and 95.)

111

http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://help.eclipse.org/helios/index.jsp?nav=/22
http://help.eclipse.org/helios/index.jsp?nav=/22
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/OCL/2.3.1
http://www.omg.org/spec/OCL/2.3.1
http://www.omg.org/spec/ODM/1.0
http://www.omg.org/spec/ODM/1.0
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-syntax/#Annotation_Properties
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://protege.stanford.edu/
http://www.w3.org/TR/rdf-primer/


bibliography 112

[13] SPARQL Query Language for RDF. URL http://www.w3.org/

TR/rdf-sparql-query/. (Cited on page 95.)

[14] SWRL: A Semantic Web Rule Language Combining OWL and

RuleML. URL http://www.w3.org/Submission/SWRL/. (Cited on

page 95.)

[15] TopBraid Composer. URL http://www.topquadrant.com/

products/TB_Composer.html. (Cited on page 81.)

[16] Unified Modeling Language: Infrastructure, version 2.1, .

URL http://www.omg.org/docs/ptc/06-04-03.pdf. (Cited on

pages 69 and 80.)

[17] Unified Modeling Language: Superstructure, version 2.1, .

URL http://www.omg.org/docs/ptc/06-04-02.pdf. (Cited on

page 69.)

[18] XML Path Language (XPath) Version 1.0. URL http://www.w3.

org/TR/xpath/. (Cited on page 43.)

[19] Graphical Modeling Framework (GMF, Eclipse Modeling sub-

project), 2009. URL http://www.eclipse.org/gmf/. (Cited on

page 33.)

[20] MetaEdit+ Workbench User’s Guide, Version 4.5, 2009. URL

http://www.metacase.com/support/45/manuals/mwb/Mw.html.

(Cited on pages 18 and 32.)

[21] A. Agrawal, G. Karsai, and F. Shi. Graph transformations

on domain-specific models. Journal on Software and Systems

Modeling, 37:1–43, 2003. URL http://w3.isis.vanderbilt.edu/

publications/archive/agrawal_a_11_0_2003_graph_tran.pdf.

(Cited on page 60.)

[22] G. Antoniou and F. Van Harmelen. A semantic web primer. the

MIT Press, 2004. (Cited on pages 16 and 78.)

[23] F. Baader, I. Horrocks, and U. Sattler. Description logics as on-

tology languages for the semantic web. Mechanizing Mathemat-

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL/
http://www.topquadrant.com/products/TB_Composer.html
http://www.topquadrant.com/products/TB_Composer.html
http://www.omg.org/docs/ptc/06-04-03.pdf
http://www.omg.org/docs/ptc/06-04-02.pdf
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.eclipse.org/gmf/
http://www.metacase.com/support/45/manuals/mwb/Mw.html
http://w3.isis.vanderbilt.edu/publications/archive/agrawal_a_11_0_2003_graph_tran.pdf
http://w3.isis.vanderbilt.edu/publications/archive/agrawal_a_11_0_2003_graph_tran.pdf


bibliography 113

ical Reasoning, 2005. URL http://link.springer.com/chapter/

10.1007/978-3-540-32254-2_14. (Cited on page 16.)

[24] G. Barzdins, R. Rikacovs, and M. Zviedris. Graphical Query

Language as SPARQL Frontend. In Local Proceedings of 13th

East-European Conference (ADBIS 2009), pages 93–107. (Cited on

page 97.)

[25] G. Barzdins, E. Liepins, M. Veilande, and M. Zviedris. Ontology

Enabled Graphical Database Query Tool for End-Users. Databases

and Information Systems V, pages 105–116, 2009. (Cited on page 97.)

[26] J. Bārzdiņš, A. Kalnins, E. Rencis, and S. Rikacovs. Model trans-

formation languages and their implementation by bootstrapping

method. Pillars of computer science, pages 130–145, 2008. (Cited on

pages 15 and 61.)

[27] J. Bārzdiņš, E. Rencis, and S. Kozlovičs. The Transformation-

Driven Architecture. In Proc. of 8th OOPSLA Workshop on Domain-

Specific Modeling. Nashville, USA, pages 60–63, 2008. (Cited on

pages 21 and 26.)

[28] J. Bārzdiņš, K. Čerāns, A. Kalniņš, M. Grasmanis, S. Kozlovičš,

L. Lace, R. Liepiņš, E. Rencis, A. Sproģis, and A. Zariņš. Do-

main specific languages for business process management: a case

study. In The 9th OOPSLA Workshop on Domain-Specific Modelling,

Orlando, USA, October, pages 25–26, 2009. (Cited on page 6.)

[29] J. Bārzdiņš, K. Čerāns, S. Kozlovičs, E. Rencis, and A. Zariņš.

A Graph Diagram Engine for the Transformation-Driven Archi-

tecture. Proc. of 4th MDDAUI. Florida, USA, pages 29–32, 2009.

(Cited on pages 23 and 26.)

[30] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.

Scientific american, 284(5):28–37, 2001. (Cited on page 16.)

[31] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler. Visual model-

ing of OWL DL ontologies using UML. In The Semantic Web–ISWC

2004, pages 198–213. Springer, 2004. (Cited on page 68.)

http://link.springer.com/chapter/10.1007/978-3-540-32254-2_14
http://link.springer.com/chapter/10.1007/978-3-540-32254-2_14


bibliography 114

[32] P. c K ikusts and P. Ru v c evskis. Layout algorithms of graph-like

diagrams for GRADE windows graphic editors. In Graph Drawing,

pages 361–364. Springer, 1996. (Cited on page 26.)

[33] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific Devel-

opment with Visual Studio DSL Tools. Pearson Education, May 2007.

ISBN 9780132701556. (Cited on pages 14 and 18.)

[34] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and

D. Varró. VIATRA-visual automated transformations for formal

verification and validation of UML models. In Automated Software

Engineering, 2002. Proceedings. ASE 2002. 17th IEEE International

Conference on, pages 267–270. IEEE, 2002. (Cited on page 60.)

[35] C. J. Date and H. Darwen. A Guide to the SQL Standard.

Addison-Wesley Reading, 1987. URL http://www.bortzmeyer.

org/sql-standard.pdf. (Cited on page 14.)

[36] D. Flanagan. JavaScript. O’Reilly, 1998. (Cited on page 39.)

[37] D. Flanagan and Y. Matsumoto. The ruby programming language.

O’Reilly Media, Inc., 2008. URL http://swblog.net/attachment/

dn371.pdf. (Cited on page 39.)

[38] K. Freivalds and P. Kikusts. Optimum layout adjustment sup-

porting ordering constraints in graph-like diagram drawing. In

PROCEEDINGS-LATVIAN ACADEMY OF SCIENCES SECTION

B, pages 43–51, 2001. (Cited on page 26.)

[39] J. Friedl. Mastering regular expressions. O’Reilly Media, Inc., 2006.

(Cited on page 14.)

[40] M. Gong, L. Scott, Y. Xiao, and R. Offen. A rapid devel-

opment model for meta-CASE tool design. Conceptual Model-

ing — ER ’97, 1331(Chapter 37):464–477, 1997. doi: 10.1007/

3-540-63699-4{\_}37. URL http://www.springerlink.com/index/

10.1007/3-540-63699-4_37. (Cited on page 3.)

[41] S. Grimm and B. Motik. Closed world reasoning in the seman-

tic web through epistemic operators. by Bernardo Cuenca Grau,

http://www.bortzmeyer.org/sql-standard.pdf
http://www.bortzmeyer.org/sql-standard.pdf
http://swblog.net/attachment/dn371.pdf
http://swblog.net/attachment/dn371.pdf
http://www.springerlink.com/index/10.1007/3-540-63699-4_37
http://www.springerlink.com/index/10.1007/3-540-63699-4_37


bibliography 115

Ian Horrocks, Bijan Parsia, and Peter Patel-Schneider. Nov..(Cit. on p.),

2005. (Cited on pages 86 and 96.)

[42] R. C. Gronback. Eclipse Modeling Project. A Domain-Specific

Language (DSL) Toolkit. Pearson Education, Mar. 2009. ISBN

9780321635198. (Cited on page 14.)

[43] P. Heim, T. Ertl, and J. Ziegler. Facet graphs: Complex semantic

querying made easy. The Semantic Web: Research and Applications,

pages 288–302, 2010. (Cited on page 97.)

[44] P. Hitzler and B. Parsia. Ontologies and rules. Handbook on On-

tologies, pages 111–132, 2009. (Cited on page 95.)

[45] G. Hutton. Higher-order functions for parsing. Journal of Func-

tional Programming, 2(3):323–343, 1992. (Cited on page 39.)

[46] R. Ierusalimschy, L. H. De Figueiredo, and W. C. Filho. Lua-an

extensible extension language. Softw., Pract. Exper., 26(6):635–652,

1996. URL http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.72.3859&rep=rep1&type=pdf. (Cited on page 39.)

[47] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes. Passing a

language through the eye of a needle. Communications of the ACM,

54(7):38–43, 2011. (Cited on page 39.)

[48] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL:

a QVT-like transformation language. In Companion to the 21st

ACM SIGPLAN symposium on Object-oriented programming systems,

languages, and applications, pages 719–720. ACM, 2006. (Cited on

pages 15 and 60.)

[49] K. Kaljurand and N. E. Fuchs. Verbalizing OWL in Attempto

Controlled English. In OWLED, pages 5–20, 2007. (Cited on

page 65.)

[50] A. Kalnins, J. Bārzdiņš, and E. Celms. Model transformation lan-

guage MOLA. In Model Driven Architecture, pages 62–76. Springer,

2005. (Cited on pages 15 and 60.)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.3859&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.3859&rep=rep1&type=pdf


bibliography 116

[51] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling

Full Code Generation. Wiley-IEEE Computer Society Pr, 2008. ISBN

0470036664. URL http://www.worldcat.org/isbn/0470036664.

(Cited on page 32.)

[52] E. Kendall, R. Bell, R. Burkhart, M. Dutra, and E. Wallace. To-

wards a Graphical Notation for OWL 2. In OWLED 2009, OWL: Ex-

periences and Directions. Sixth International Workshop, Chantilly, Vir-

ginia, USA 23-24 October 2009, pages 1–8, 2009. (Cited on pages 76

and 77.)

[53] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA Explained.

The Model Driven Architecture : Practice and Promise. Addison-

Wesley Professional, 2003. ISBN 9780321194428. (Cited on

pages 14 and 15.)

[54] S. Kozlovičš. The Transformation-Driven Architecture and its Graph-

ical Presentation Engines. University of Latvia, 2013. (Cited on

pages 21 and 98.)

[55] S. Krivov, R. Williams, and F. Villa. Growl: A tool for visualiza-

tion and editing of owl ontologies. Web Semantics: Science, Services

and Agents on the World Wide Web, 5(2):54–57, 2007. (Cited on

page 68.)

[56] J. Lara and H. Vangheluwe. AToM 3: A Tool for Multi-formalism

and Meta-modelling. Fundamental approaches to software engineer-

ing, pages 174–188, 2002. (Cited on page 15.)

[57] M. Lawley and J. Steel. Practical Declarative Model Trans-

formation with Tefkat. Satellite Events at the MoDELS 2005

Conference, 3844(Chapter 15):139–150, 2006. doi: 10.1007/

11663430{\_}15. URL http://www.springerlink.com/index/10.

1007/11663430_15. (Cited on page 60.)

[58] M. Mernik, J. Heering, and A. M. Sloane. When and how to de-

velop domain-specific languages. Computing Surveys (CSUR), 37

(4):316–344, Dec. 2005. doi: 10.1145/1118890.1118892. URL http:

http://www.worldcat.org/isbn/0470036664
http://www.springerlink.com/index/10.1007/11663430_15
http://www.springerlink.com/index/10.1007/11663430_15
http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://portal.acm.org/citation.cfm?doid=1118890.1118892


bibliography 117

//portal.acm.org/citation.cfm?doid=1118890.1118892. (Cited

on pages 3 and 14.)

[59] G. Ng. Open vs Closed world, Rules vs Queries: Use cases from

Industry. OWL: Experiences and Directions (OWLED 2005), Calway,

Ireland (November 2005), 2005. (Cited on page 84.)

[60] U. Nickel, J. Niere, and A. Zundorf. The FUJABA environ-

ment. In Software Engineering, 2000. Proceedings of the 2000 Inter-

national Conference on, pages 742–745. ACM, 2000. ISBN 1-58113-

206-9. doi: 10.1109/ICSE.2000.870485. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=870485. (Cited

on pages 15 and 60.)

[61] E. Pietriga. Isaviz: a visual environment for browsing and author-

ing rdf models. In Eleventh International World Wide Web Conference

Developers Day, 2002. (Cited on page 68.)

[62] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven En-

gineering. Computer, 39(2):25–31, Feb. 2006. doi: 10.1109/MC.

2006.58. URL http://www.computer.org/csdl/mags/co/2006/02/

r2025.html. (Cited on pages 3 and 16.)

[63] R. Shearer, B. Motik, and I. Horrocks. HermiT: A Highly-Efficient

OWL Reasoner. In Proc. of the 5th Int. Workshop on OWL: Expe-

riences and Directions, pages 91–105, Karlsruhe, Germany, 2008.

(Cited on page 16.)

[64] E. Sirin and J. Tao. Towards Integrity Constraints in OWL. In

OWLED, pages 36–51, 2009. (Cited on page 65.)

[65] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet:

A practical owl-dl reasoner. Web Semantics: science, services and

agents on the World Wide Web, 5(2):51–53, 2007. (Cited on page 16.)

[66] E. Sirin, B. Bulka, and M. Smith. Terp: Syntax for OWL-friendly

SPARQL queries. Proc. of OWLED, 2010. (Cited on page 95.)

[67] A. Sproģis. Domēnspecifisku Rı̄ku Konfigurācijas Valoda un Tās Re-

alizācija. PhD thesis, University of Latvia, 2013. (Cited on pages 6

and 21.)

http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=870485
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=870485
http://www.computer.org/csdl/mags/co/2006/02/r2025.html
http://www.computer.org/csdl/mags/co/2006/02/r2025.html


bibliography 118

[68] A. Sproģis, R. Liepiņš, J. Bārzdiņš, K. Čerāns, S. Kozlovičs,

L. Lace, E. Rencis, and A. Zariņš. GRAF: a Graphical Tool Build-

ing Framework. In ECMFA 2010 Tools and Consultancy track, pages

18–21, 2010. (Cited on page 3.)

[69] G. Taentzer. AGG: A tool environment for algebraic graph trans-

formation. Applications of Graph Transformations with Industrial Rel-

evance, pages 333–341, 2000. (Cited on page 60.)

[70] J. P. Tolvanen and M. Rossi. MetaEdit+: defining and using

domain-specific modeling languages and code generators. In

Companion of the 18th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, pages

92–93. ACM, 2003. URL http://dl.acm.org/citation.cfm?id=

949365. (Cited on page 14.)

[71] D. Tsarkov and I. Horrocks. FaCT++ description logic rea-

soner: System description. In Automated reasoning, pages 292–

297. Springer, 2006. URL http://owl.man.ac.uk/factplusplus/.

(Cited on page 16.)

[72] G. VanRossum and F. L. Drake. The Python Language Reference.

Python Software Foundation, 2010. URL http://cra.incraft.

ru/py-intro/docs/docs-pdf/reference.pdf. (Cited on page 39.)

[73] S. A. White. Introduction to BPMN. IBM Cooperation, 2(0):0, 2004.

(Cited on page 14.)

[74] E. D. Willink. UMLX: A graphical transformation language

for MDA. In Workshop on Model Driven Architecture: Foundations

and Applications, pages 13–24, 2003. URL http://eclipse.org/

gmt/umlx/doc/UmlxFormalization/UmlxGraphicalLanguage.pdf.

(Cited on page 60.)

[75] J. W. Yoder, F. Balaguer, and R. Johnson. Architecture and de-

sign of adaptive object-models. ACM Sigplan Notices, 36(12):50–60,

2001. (Cited on page 28.)

http://dl.acm.org/citation.cfm?id=949365
http://dl.acm.org/citation.cfm?id=949365
http://owl.man.ac.uk/factplusplus/
http://cra.incraft.ru/py-intro/docs/docs-pdf/reference.pdf
http://cra.incraft.ru/py-intro/docs/docs-pdf/reference.pdf
http://eclipse.org/gmt/umlx/doc/UmlxFormalization/UmlxGraphicalLanguage.pdf
http://eclipse.org/gmt/umlx/doc/UmlxFormalization/UmlxGraphicalLanguage.pdf


colophon

This document was typeset using the typographical look-and-feel

classicthesis developed by André Miede. The style was inspired

by Robert Bringhurst’s seminal book on typography “The Elements of

Typographic Style”.

Final Version as of July 3, 2015 (version 1.0).


	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction and Theoretical Background
	1 Introduction
	1.1 Objectives and Tasks of the Research
	1.2 The Clause and Research Directions
	1.3 Research Methods Used
	1.4 Main Results of the Thesis
	1.5 Scientific and Practical Significance of the Results
	1.6 Validation of the Results
	1.6.1 Publications on the Topic of the Thesis
	1.6.2 Presentations at Scientific Conferences
	1.6.3 Scientific Projects in Which the Results Where Used
	1.6.4 Applying the Results in Practice

	1.7 Size and Structure of the Thesis

	2 Theoretical Background
	2.1 Domain Specific Languages
	2.2 Model Driven Engineering
	2.3 Ontologies and Reasoners


	MDE Based Tool Building
	3 Model-based Tool Building Framework GRAF
	3.1 Graph Diagramming Metamodel and Engine
	3.2 Tool Definition Metamodel: the Core
	3.3 Tool Definition Metamodel: Extensions

	4 lQuery – a Transformation Language for Tool Building
	4.1 Brief Overview of Lua
	4.2 Overview of the Metamodel
	4.3 lQuery
	4.3.1 Example Model
	4.3.2 lQuery Core
	4.3.3 Selector Combinators
	4.3.4 Selector Reuse and Custom Selector Combinators
	4.3.5 Custom Primitive Selectors
	4.3.6 Shorthand Notation
	4.3.7 Manipulation with Whole Sets of Objects

	4.4 Related Work
	4.5 Conclusions


	Towards Ontology Based Tool Building
	5 Why Ontology Based Tool Building – a Motivating Example
	6 UML-inspired metamodel and notation for the OWL ontology language
	6.1 OWL as a Description Layer Above Class Diagrams
	6.2 Extension of the Core Metamodel
	6.2.1 Equivalent and Disjoint Classes and Properties
	6.2.2 Class Expressions
	6.2.3 Anonymous Classes
	6.2.4 Enumerated Classes
	6.2.5 Further Metamodel Extensions

	6.3 The Editor for the Proposed Notation – OWLGrEd
	6.4 Related Work
	6.5 Conclusions

	7 Extending OWL Ontologies with Query-based Constructor Classes
	7.1 Motivating Example – a University Ontology
	7.2 lQuery selectors in Ontologies
	7.2.1 Integration with Ontology
	7.2.2 Some Examples from the University Ontology
	7.2.3 Advanced Example from the University Ontology

	7.3 Integration with a Reasoner
	7.4 Related Work
	7.5 Conclusions

	8 Ontology-Based Tool Building Framework: Architecture Proposal
	8.1 A Runtime Example in the Proposed Architecture
	8.2 Conclusions


	Conclusions
	Bibliography

