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Abstract 

Doctoral thesis is devoted to particular fundamental and applied aspects of baker’s 

yeast desiccation tolerance. Particulary – nutrient effects on Saccharomyces cerevisiae cell 

survival after desiccation and application of desiccation to increase immunostimulatory 

properties of carboxylated beer yeast beta glucans.  

Cell survival after desiccation was severly affected by media nitrogen and carbon 

source as well as yeast auxotrophic starvation. Nutrient effects on dynamic derepression of 

protein kinase A (PKA) and target of rapamycin (TOR) pathways and their subsequent effect 

on survival after desicction are discussed. Desiccation induced changes in spent brewer’s 

yeast β-D-glucan 3D structure what in turn induced stronger immunoresponse (murine 

macrophage TNF-α excretion) than commercial immunomodulator (Immunoglikan © ). 

 

Key Words: Saccharomyces cerevisiae, nutrient signalization, desiccation tolerance 

TOR and PKA pathways,  β-D-glucan. 
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Kopsavilkums 

Doktora darbs veltīts atsevišķiem  maizes rauga Saccharomyces cerevisiae sausuma 

stresa vispārējās fizioloģijas un pielietojamiem aspektiem. Konkrēti – noskaidrota barotnes 

barības vielu ietekme uz rauga sausumizturību, kā arī pētīta žāvēšanas pielietojums 

karboksilētu alus raugu beta glukānu imūnostimulējošo īpašību paaugstināšanā. 

Šūnu izdzīvotība pēc žāvēšanas bija tieši atkarīga no barotnes slāpekļa un oglekļa 

avotiem, kā arī no auksotrofiskas badošanās. Darbā diskutēts par proteīnu kināzes A 

kompleksa (PKA) un target of rapamycin (TOR) signālceļu dinamisku derepresiju 

periodiskās kultivēšanas laikā un to ietekmi uz sausumizturību. Žāvēšana izmaina raugu β-

D-glikānu 3D struktūru, kas ietekmē to imūnoloģisko aktivitāti. Žāvētu alus rauga β-D-

glikāni uzrādīja augstāku immunoloģisko aktivitāti nekā komerciāls immūnomodulators 

(Immunoglikan © ). 

 

Atslēgvārdi: Saccharomyces cerevisiae, barības vielu atkarīgā signalizācija, sausuma 

izturība, TOR un PKA signālceļi, β-D-glikāns.  
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Abbreviations 

 

ADP – adenosine diphosphate 

ADPG – adenosine diphosphoglucose  

AICAR - 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide 

AIR – p-ribosylamyloimidasol 

AMP – adenosine monophosphate 

ATP – adenosine triphosphate 

cAMP – cyclic adenosine monophosphate 

CFU – colony forming units 

CCR – carbon catabolite repression 

DHA – dihydroxyacetone 

DHAP – dihydroxyacetone phosphate 

DW – dry weight 

G6PDH – glucose 6 phosphate dehydrogenase 

GLD3P – glyceraldehyde-3 phosphate 

GLY – glycerol 

GLY3P – glycerol-3 phosphate 

GSH – glutathione reduced form 

GSSG – glutathione oxidized form 

INT – iodonitrotetrazolium chloride 

LPS – lipopolysaccharides 

MDA – malonildialdehyde 

mRNA – messenger RNA 

Mya – million years ago 

NAD – Nicotinamide adenine dinucleotide 

NADH - Nicotinamide adenine dinucleotide reduced form 

NADP - Nicotinamide adenine dinucleotide phosphate 

NADPH - Nicotinamide adenine dinucleotide phosphate reduced form 

NCR – nitrogen catabolite repression 

NMR – nuclear magnetic resonance 

OD600 – optical density measurement at 600 nm 
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PDS elements – post diauxic shift specific expression promoter sequences in S. cerevisiae, 

characteristic sequence: T(T/A)AG3AT 

PKA – protein kinase A 

PMS – phenazine methosulfate 

RNA – ribonucleic acid 

ROS – reactive oxygen species 

SAICAR - Succino-AICAR 

SD – synthetic dextrose broth 

STRE elements – stress responsive promoter sequences in S. cerevisiae, contains one or 

several CCCCT sequences 

TBA – thiobarbituric acid 

TBARS – thiobarbituric acid reactive species 

TCA – tricarboxylic acid  

TOR  - target of rapamycin 

UDP – uridil diphosphate 

ug – microgram 

uM – micromole 

UV - ultraviolet 

WT – wild type 

YPD – yeast extract peptone dextrose broth 
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 Introduction 

Baker’s yeast Saccharomyces cerevisiae natural habitat is a skin of sugar rich fruits. 

In these habitats, yeasts rely on short periods of “feast” followed by prolonged periods of 

starvation. Often starvation is followed by gradual desiccation and reversible cease of active 

metabolism. Therefore changes in the substrate availability could serve as the “early call” for 

cell signalling: “bad times are approaching”. Onset of true starvation could serve as strong 

“late signal” indicating, that resources are scarce and preparation for starvation of unknown 

length should be carried out immediately. 

S. cerevisiae is famous for its “produce-accumulate-consume” strategy; first 

fermentable carbon sources are metabolised and ethanol produced; when fermentation ends, 

ethanol becomes next substrate to be consumed. Diauxic shift is the way how cell 

reorganises it’s metabolism for other substrate consumption (Thomson et al., 2005). Onset of 

diauxic shift occurs after exhaustion of sugar and could signalize end of "feast". This is 

accompanied by increase in doubling time and stress resistance. Starvation for different 

nutrients leads to distinct physiological states but increased stress tolerance, including 

desiccation tolerance, is typical for cells after natural (phosphorous, nitrogen, sulphur) 

starvations (Boer et al., 2008). Besides, there is growing body of evidence, that similar, 

particular stress (oxidative stress) enhancing effects can be related also to starvation for 

particular auxotrophic agents (tryptophan, methionine).  

Since many of intracellular signalling pathways are similar across different eukarytic 

organisms, this concept foresees possible spots for “desiccation engineering” in yeast cells 

and beyond. Besides, elucidation of auxotrophy mechanisms in handy eukaryotic model 

would help to establish strategies for intracellular parasite and/or inherited auxotrophic like 

metabolic diseases control. 
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The aim  

The aim of the study was to characterise baker’s yeast Saccharomyces cerevisiae nutritional 

effects on desiccation tolerance.  

 

Objectives 
The objectives of the study were: 

 - to investigate if prolonged cultivation on oxidative substrates (mimicking diauxic shift and 

postdiauxie in “natural habitats”) affects yeast desiccation tolerance, 

 - to investigate status of oxidative stress markers of postdiauxic yeasts before and after 

desiccation, 

 - to test if redox cofactor engineering can improve desiccation tolerance of S. cerevisiae 

cells in postdiauxie, 

 - to characterise auxotrophic starvation effects on S. cerevisiae desiccation tolerance.  

 - to characterise desiccation effects on  brewer’s yeast beta glucans.  

 

The Hypothesis of the study 
We hypothesize, that status of intracellular nutrient signalling pathways prior to desiccation, 

would determine subsequent cell’s survivival after desiccation. 
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1. Literature review 

1.1. General information on baker’s yeast S. cerevisiae  

Alcohol fermentation is process known to humanity for thousands of years. Ethanol 

as natural preservative and gas (CO2) for bread leavening has been used long before 

knowledge about their biological agent (yeast).  About last two hundred years, people are 

aware of yeast as a specific group of organisms directly responsible for brewing process. 

Bakers yeast, S. cerevisiae has been classified as separate organism in the 19th century and 

has been actively investigated since (Chambers and Pretorius, 2010).  

S. cerevisiae is unicellular organism belonging to the kingdom of fungi, division 

Ascomycotina. Apart from typical eukaryote, it multiplies not by fission, but budding. At the 

same time, it contains all structures typical for eukaryotic cell, therefore is used as model 

organism of higher organisms (including human). S. cerevisiae is used extensively in drug 

screening (Schenone et al., 2013), as disease models (Ocampo and Barientos, 2008), 

toxicology studies (Kasamets et al., 2009, Smits et al., 2012). 

Fermentation of sugar rich substrates to ethanol is typical for S. cerevisiae. Main 

characteristics of this organism are fast glucose consumption and growth together with high 

(up to 16 -18 %) ethanol tolerance. In contrast to many microorganisms capable to alcoholic 

fermentation – S. cerevisiae not only ferment sugar rapidly, but it also consumes 

fermentation end products when sugar become depleted. This feature is called “produce-

accumulate-consume” strategy: ethanol, toxic fermentation end product, is expelled from the 

cell and accumulates in environment, thus ensuring that “nutritional resources” are free of 

other microbes; ethanol is consumed by the same yeast afterwards (Thomson et al., 2005). 

This “invention” helped ancient Saccharomycetales 200 Mya to rapidly ferment sugar rich 

fruits and ensure their ecological dominance (Rospedowska et al., 2011). 

S. cerevisiae and number of other yeast species in nature rely on small but lavish 

periods of fest followed by prolonged periods of starvation. Starvation often is accompanied 

by cell desiccation.  
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1.2. Baker’s yeast S. cerevisiae nutritional physiology 

1.2.1. Glucose repression 

S. cerevisae and other yeast species may thrive on various carbon sources, but 

glucose and fructose are the preferred ones (Dynesen et al., 1998). When one of these sugars 

is present, synthesis of the enzymes required for the utilization of alternative carbon sources 

(for example, alternative substrate uptake and metabolism) is kept to very low levels or 

completely blocked. This phenomenon is called carbon catabolite repression, or specifically 

“glucose repression” (Gancedo, 1998).  Effective carbon catabolite repression allows yeast to 

ferment glucose with high efficiency, even in the presence of oxygen. 

Protein kinase A (PKA), the Snf1p1 protein kinase, and glucose sensors Rgt2p and 

Snf3p are three partly overlapping carbon-signaling pathways, which are involved in 

ensuring glucose repression (see fig. 2.2.1). Glucose repression works through transcription 

inhibition (induction of transcription repressor Mig1p) or transcription derepression 

(deactivation of transcription repressor Rgt1p). Other sensing effectors are RNA polymerase 

II mediator by decreasing mRNA stability of unneeded gene transcripts (Schneper et al., 

2004, Gancedo et al., 1998). 

Glucose is sensed by two membrane proteins Snf3p and Rgt2p. (Özcan et al., 1998, 

Rolland et al., 2002). Both show approx. 25% sequence similarity to other members of the 

hexose transporter family. The main difference from hexose transporters is that they have a 

more than 200 amino acid residues long C terminal cytoplasmic tail. No glucose transport 

occurs through these proteins, but their deletion results in similar phenotype as if hexose 

transporters were deleted. From here, it was concluded that both of these proteins act as 

glucose sensors. Snf3p is characterized as high and Rgt2p - low affinity sensor (Özcan et al., 

1998). 

Glucose transporter (hexose transporter family genes, HXT) expression by Snf3p and 

Rgt2p is induced through derepression of Rgt1p (Carlson et al., 1998). In the case of high 

glucose concentration, signal from Rgt2p is transferred to Rgt1p (transcription repressor) via 

Grr1p, which is part of the SCFGrr1 ubiquitin-ligase complex. Skp1p is necessary for Grr1p 

                                                
1 In this work, S. cerevisiae genes and proteins are named according to the nomenclature of SGDatabase 

(http://www.yeastgenome.org/):  genes are marked by three uppercase letters followed by a number in italic (e.g. SNF1), proteins are 

marked by the relevant gene written as first letter capitalized and letter ‘p’ attached at the end (e.g. Snf1p). 
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activity. It binds to Grr1 protein F-box, thus Grr1p is able to perform ubiqutinatination of 

Rgt1p or it’s repressor, see fig. 1.2.1 (Li and Johnston, 1997). 

 

 
Fig. 1.2.1. S. cerevisiae glucose signalling pathways ensuring glucose sensing and repression. 
Solid arrows represent transformations and/or translocations, dotted lines – regulatory or catalytic 
influences. Three pathways involved are (from left to right) Protein kinase A, Snf1 protein kinase, 
glucose sensors Rgt2p and Snf3p. Adopted from Schneper et al., 2004. 
 

The common path for glucose induced transcriptional repression is mediated through 

Snf1p kinase to the transcription repressor Mig1p, which represses transcription of 

alternative substrate metabolism. Protein kinase Snf1p (Sucrose non – fermenting) is central 

element of Mig1p mediated repression. Mig1p displays at least three phosphorylation sites, 

but only two of them seem to be actually phosphorylated by Snf1p (Ostling and Ronne, 

1998). This protein in it’s phosphorylated form resides in cytosol, whereas the 

dephosphorylated form is translocated to the nucleus. In the case of high glucose 

concentration, Mig1p is dephosphorylated and in the nucleus represses alternative substrate 

metabolism gene transcription (Ostling et al., 1996). Regulation of Fbp1p (fructose-bi-

phosphatase) is example of Mig1p dependent regulation: Snf1p is repressed by high glucose 

concentrations and therefore Mig1p is dephosphorylated and resides in nucleus repressing 

transcription of FBP1, see fig. 1.2.2 (Zaragoza et al., 2001) . 
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Fig. 1.2.2. Mechanism of Mig1p repression/derepression of glyconeogenic genes depending 
on glucose concentration.  
Cat8, Sip4 are transcription activators, during glyconeogenic growth they bind to certain gene’s 
upstream activating sequences (UAS1/2). When fermentable carbon source becomes abundant, 
Cat8p and Sip4p are not active, Mig1p is not phosphorylated and can enter nucleus and repress 
glyconeogenic genes (like FBP1) by binding to upstream repressor site (URS1). Adopted from 
Ostling and Ronne, 1998. 
 

PKA pathway is the third carbon nutrient dependent intracellular signalling pathway.  

It integrates signals from plasmatic membrane glucose sensor Gpr1p (G-protein-coupled 

receptor) and glucose intracellular metabolism (glycolysis). Signals from both branches meet 

at the adenylate cyclase Cyr1p (see fig. 2.2.1.) which produces cAMP, which, in turn, 

activates protein kinase A (PKA) complex. PKA postpones signal to pathway nuclear 

effectors: transcription factors Msn2/4p and Gis1p TPK1,2,3 encode the three catalytic 

subunits of protein kinase A (see fig 2.2.1). (see review Conrad, 2014). Interestingly, PKA 

complex transmit the signal only if both branches are activated (Gpr1p sensor is saturated 

and cAMP intracellular level is increased due to active glucose catabolism). 

PKA pathway is activated only at rather high extracellular glucose concentration; Gpr1p 

sensor has low glucose affinity (kM approx. 50-75 mM). Possibly, sensor low affinity for 

glucose ensures the switch from respirative/gluconeogenic growth to fully fermentative 

growth only at glucose concentrations not smaller than 20 mM (Rolland et al., 2000). When 

activated, PKA pathway depresses stress response (Msn2/4p dependent) gene expression, 

increases ribosome gene expression and mRNA stability (Yin et al., 2003).  



! 15!

 

Signalling pathways can have specific and “shared” effectors. mRNA stability is 

shared target of PKA and Snf1-Mig1 pathways. mRNA stability relates to both – ribosome 

RNA complex stability as well as to specific gene transcript, including repressor transcript 

stabilities. For instance, SDH2 (iron-protein subunit of succinate: quinone reductase 

complex) gene transcription when growing on glucose has the  the same rate as growing on 

glycerol, however, amount of respective mRNA on glucose is 6 – 12 times less, than 

glycerol based medium. No differences in SDH1 transcription activation were observed, 

therefore an idea of rapid post-transcriptional breakdown in the case of glucose media was 

considered (Scheffler et al., 1998).  

Many factors are involved in mRNA turnover. Possible, glucose dependent mRNA 

stability “system” involves activity of glucose transporters, glucose sensors (Snf3p), RNA 

decapping enzymes (like Dcs1p), translation initiation factors (eIF) (Scheffler et al., 1998, 

Yin et al., 2003, Malys et al., 2004, Braun et al., 2014). 

1.2.2. Crabtree effect  

Crabtree effect is defined as fermentation dominance over respiration under fully 

aerobic conditions. The effect was first described to better explain reversibility of Warburg 

effect (extensive lactic fermentation in tumor cells) by Crabtree, 1929. Even though 

phenomenon was attributed to malignat mammal cells, similar, features has been described 

in many microorganisms, including baker’s yeast (Diaz-Ruiz et al., 2011). 

This effect is observed during yeast aerobic fermentation on glucose rich media and 

is consequence of glucose repression.  The main consequences of Crabtree effect during 

growth on glucose rich media are repression of TCA cycle and oxidative phosphorylation 

(only anaplerotic reactions of TCA cycle are active). Substrate level phosphorylation is the 

only way for ATP production when Crabtree effect is on. Ethanol and glycerol are produced 

to regenerate cytosolic NAD while NADH accumulates due to fast running glycolisis. 

Besides, NAD+ and NADP+ can be recovered partly by increased nitrogen uptake (Ronne, 

1995).  

Ethanol production and it’s regulation pathways are of paramount importance in 

modern biotechnology. Alterations in NAD+/NADH balance by redirecting flux from 

glycerol to acetaldehyde production have been proposed to improve yeast ethanol production 

(Nissen et al., 2001). 
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1.2.3. Overview of S. cerevisiae nitrogen metabolism 

Nitrogen is among the basic elements forming living organisms. Nitrogen pool in the 

cell is shared by amino acids, purine and pyrimidine bases. Additionally, fungi specific 

sugars contain nitrogen (glucosamine, like chitin) (Berg et al., 2010).    

Nitrogen sources in typical industrially used fermenting substrates differ:  grapes are 

particularly rich in ammonia, arginine and proline (Casalta 2013), whereas barley is rich in 

ammonia, proline, and glutamic acid (Folkes and Yemm, 1956). Yeast is capable to grow in 

medium containing various nitrogen sources (ammonia, amino acids, urea, etc.), but, one 

pathway exist to “unify” all nitrogen forms to glutamate or glutamine (see fig. 1.2.3.). 

  

 
Fig. 1.2.3.Central nitrogen pathway of baker’s yeast.  
In yeast Saccharomyces cerevisiae a set of reactions exist transforming nitrogen containing 
compounds taken up by the cell into “unified nitrogen forms”, like glutamate and glutamine. Gene 
products involved: CIT1 (citrate synthase), ACO1 (aconitase) IDH1,2 (NAD+-dependent isocitrate 
dehydrogenase), GDH1 (NADH linked glutamate dehydrogenase), GDH2 (NAD+ linked glutamate 
dehydrogenase), GLN1 (gluthamine synthetase), GLT1 (glutamata synthase). Adopted from 
Magasanik and Kaiser 2002 
 

Central reactions of yeast nitrogen metabolism are conversion of α-ketoglutarate to 

glutamate and glutamine to glutamate, catalyzed by glutamate synthase, Glt1p, and 

glutamate dehydrogenase Gdh1p respectively (see fig. 1.2.3.). In both reactions reduction 

equivalents in the form of NADH and NADPH are consumed, therefore NAD+ and NADP+ 

are recycled.   
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Nitrogen sources can be taken up by specific ammonia transporters Mep1/3p (Marini 

et al., 1997), general (Gap1p) and specific (Put4p, Can1p, etc.) amino acid transporters 

(Regenberg et al., 1999).  

1.2.3.1. S. cerevisiae nitrogen catabolite repression 

If mixture of different nitrogen sources is available, the most easy convertible 

nitrogen source is picked up first. Since different nitrogen sources are located nearby or 

away from nitrogen metabolism core reactions (see fig. 1.2.3) - they are defined as more or 

less preferred to each other. Easy metabolised (or good, preferred) nitrogen sources are 

glutamine, asparagine, but proline and urea are poor nitrogen sources (ter Schure et al., 

2000).  Nitrogen catabolite repression (NCR) is situation when pathways of non-preferred 

nitrogen source uptake are deactivated due to presence of preferred nitrogen source.  

Another criteria (besides to distance from “central nitrogen metabolism reactions”) to 

distinguish good nitrogen source from bad is the level to which systems facilitating 

alternative nitrogen source usage are de-repressed when grown on particular nitrogen source. 

As stronger the repression is, as more preferred certain nitrogen source is (ter Shure et al., 

2000, Magasanik and Kaiser, 2002). Ammonia is rather good nitrogen source; it needs just 

one reaction to reach glutamine. Depending on yeast strain, ammonia can fully or partly 

repress uptake of other nitrogen sources via nitrogen catabolite repression (Magasanik and 

Kaiser, 2002).  

Similarly to carbon catabolite repression (CCR), NCR is realized at various levels of 

metabolism: transcription, translation and posttranslation.  NCR dependent transcriptional 

control is carried out through Gln3p transcription factor. When good (preferred) nitrogen 

sources are available, Gln3p is located in cytoplasm, when they become depleted; it is 

transported to nucleus (Beck and Hall, 1999). Differential localization of Gln3p is achieved 

by phosphorylation state: phosphorylated Gln3p resides in cytoplasm, dephosphorylated - 

enters nucleus. Gln3p phosphorylation is regulated by Sit4p phosphatase. The activity of 

Sit4p in turn, is regulated by it’s association-dissociation with protein Tap42p.  At last, the 

complex Tap42p-Sit4p is regulated by TOR (Target Of Rapamaycin) complex proteins, see 

fig. 1.2.4. (Beck and Hall, 1999, Cooper, 2002). 
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Fig. 1.2.4. Model of Gln3p activation.  
In resonse to good nutrient source, TOR stabilzes cytoplasmic GLN3–URE2 complex via Tap42p 
mediated inhibition of the phosphatase Sit4p, and thereby prevents GLN3 from entering nucleus.  
Rapamycin works in similar way as nutrient deprivation – inhibiting TOR.  
Adopted from Beck and Hall, 1999. 
 

Interestingly enough, Gln3p trasnslocation to nucleus has been attributed not only as 

a response to changes in nitrogen source, but also to carbon starvation. However, this was 

resolved to be the result of shared metabolite between carbon and nitrogen metabolism -    

-ketoglutarate, which becomes depleted in the case of carbon starvation and subsequently 

lowers glutamine level and initiates Gln3p nuclear migration even in presence of ammonia. 

The effect was not present if carbon starved cells were supplemented with glutamine (Cox et 

al., 2002). 

  Gln3p targets are genes with one or several upstream GATAA sequences. Also 

Gat1p, which has high sequence homology to Gln3p is able to induce GATAA dependent 

transcription (Coffman et al., 1996). Gln3p activated genes are: amino acid permeases, 

glutamine and glutamate synthesis genes (Daugherty et al., 1993, Cooper, 2002).  

 

1.2.3.2. Target of Rapamycin (TOR) pathway 

There is nutrient signal “integration” system in S. cerevisae cells to coordinate 

nutrient supply with cell cycle and growth speed. This large kinase/phosphatase system is 

called TOR. Historically, this complex has been described as sensitive to antibiotic – 

rapamycin; it is a secondary metabolite produced by soil bacterium Streptomyces 
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hygroscopicus, isolated from soil samples of Rapa-Nui (Easter Island) in 1965 – hence the 

name rapamycin. This antibiotics and it’s derivatives has gained it’s application in oncology 

as tumor suppressor, immunosuppressant during organ transplantation and it prevents 

restenosis during angioplasty. Wide application spectrum of rapamycin is due to it’s target 

occurrence in all eukaryotic cells (reviewed by Loewith and Hall, 2011 and De Virgilio and 

Loewith, 2006).   

The core of TOR system in S. cerevisiae is formed by two redundant complexes 

TORC1 and TORC2. These complexes have different protein composition and different 

functions: TORC1 controls growth in “temporal manner” (integrates N and C source quality 

signals into growth speed and cell cycle progression), while TORC2 controls “spatial 

aspects” (for example, actin polarization) of cell growth and proliferation. Only TORC1 is 

rapamycin sensitive (Loewith et al., 2002).  

 

 
A 

 
 

 

 

B 

Fig. 1.2.5. Inputs and outputs of TORC1 (A) and TORC2 (B) complexes in S. cerevisiae. 
EGOC – EGO protein kinase complex, PM – plasma membrane, CN- calcineurin phosphatase. 
Adopted from Loewith and Hall, 2011.  
 

In S. cerevisiae TORC1 localises in close proximity to vacuole, where it receives 

signals from EGO complex (EGOC). The latter senses intracellular and vacuolar leucine and 

other amino acid levels. In the case of high content of free amino acids, phosphorylation 

signal is passed through EGO complex to TORC1 and then to kinase/ phosphatase cascades. 

At last, anabolism (ribosomal subunits, etc.) genes are activated. Ussually this would be the 

case during growth on rich media (huge aboundance of free amino acids); interestingly, this 
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signal can be simulated by adition of cyclohexamide – protein synthesis inhibitor in tRNA 

translocation step in eucariotic ribosome (reviewed by Loewith and Hall, 2011). 

TORC2 complex is plasma membrane associated and it takes part in organisation of 

actin cytoskeleton, endocytosis and sphingolipid biosynthesis. Despite high homology to 

TORC1, which is rather well characterised, TORC2 functioning is not completely 

understood. Crz1p (stress response transcription factor with consensus binding motif 5’-

GNGGC(G/T)CA-3’) is calcineurin phosphatase (Cna1p and Cna2p) substrate (see fig. 1.2.5 

B), which in turn is regulated by TORC2. In the case of environmental stress, TORC2 

derepresses calcineurin phosphatase and it dephosphorylates Crz1p transcription factor, 

which then enters nucleus and activates target genes. Crz1p dependent genes are involved in 

protein degradation, vesicle transport, cell wall synthesis and sporulation (Cyert, 2003, Mulet 

et al., 2006) 

1.2.4. S. cerevisiae diauxic growth 

Similar to classical bacterial growth experiments on mixed substrates (Monod, 1949), 

also S. cerevisiae growth possesses diauxic characteristics: fermentable, easy metabolised 

carbon sources are consumed first and then subsequent consumption of other, less favorite 

carbon sources follows.  

S. cerevisiae “produce-accumulate-consume” strategy includes strong diauxic 

component: when fermentable carbon source depletes, accumulated ethanol becomes next 

carbon source. To shift from glucose to ethanol consumption, yeast cells perform massive 

rearrangements in it’s transcriptome, translation, metabolome and culture growth dynamics.  

 

1.2.4.1. S. cerevisiae growth phases 

When inoculated in rich, glucose containing media - S. cerevisiae culture exhibits 

several distinct growth phases: lag phase – several hours of adaptation after cells are 

inoculated from saturated preculture into fresh media, exponenential phase – when yeast 

cells grow with maximum speed consuming glucose, diauxie when shift from fermentation 

to oxidative growth happens,  postdiauxie phase when re-assimilation of fermentation 

products (ethanol, succinate, glycerol, pyruvate, acetate, etc.) occurs and stationary phase 

which is defined as set in of starvation for carbon nutrient (Teste et al., 2009, Washburne et 

al.,1993), see fig. 1.2.6. for illustration.  
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Fig. 1.2.6 Illustration of S. cerevisiae growth phases.  
Abbreviations: exp – exponential, diaux – diauxic, postdiaux – postdiauxic and stat - stationary phase   
The length of each phase is media and strain dependent. 
Lag phase   

When S. cerevisiae cells are transferred from one media to other, for example, from 

starting inoculum containing ethanol to fresh media with glucose as main carbon source, 

several hours’ putative absence of growth is observed. This is called by lag phase. Indeed, no 

cell proliferation is observed during very first hours of cultivation even though nutrients are 

available at ample amount (Brejning and Jespersen, 2002). 

During this culture growth phase, cells adopt to new media. To rearrange metabolism 

from slow growing, glucose derepressed to fast growing under strong glucose repression, 

rapid nitrogen, carbon source uptake and protein synthesis starts. Glucose transporters (like 

Hxk2p) and core amino acid metabolism proteins (like glutamate dehydrogense, Gdh1p) are 

strongly induced. In transcriptional level, induction of genes facilitating glucose catabolism 

and protein synthesis are upregulated, while genes of gluconeogenic and stress response 

pathways are repressed (Brejning et al., 2003). G1 transition, bud formation and cell 

proliferation follows (Brejning and Jespersen, 2002). It has been suggested, that resuming 

activity of TOR signalling complex promotes cell transition from G1 arrest to rapid 

proliferation (Barbet et al., 1996). 

 

Exponential phase 

S. cerevisiae is Pasteur effect negative yeast: it is capable to ferment sugars in the 

presence of oxygen. When growing on glucose, fermentation is the main process to gain 

ATP and it happens in so called “exponential” growth phase. Ethanol, acetate and glycerol 

together with CO2 and biomass are the S. cerevisiae fermentation products (Walker, 1998). 



! 22!

When lag or adoption phase ends, rapid yeast cell proliferation starts. Cells fully 

exploit all the preferred nutrients and thrive by maximizing growth speed. At exponential 

phase, especially at the very beginning of it (when population haven’t reached 1/100 to 1/10 

of it’s maximum density) no limits exist for cell growth: there are enough of nutrients, small 

number of concurrents and no toxic effects of fermentation products have set in. This growth 

phase is used for determination of various strain specific physiological characters, like 

specific growth rate ( ), product yields (Yx) (Dalgaard et al., 1994). While prolifirating at 

maximum speed, PKA, TOR and glucose sensing signaling pathways are active ensuring 

optimal transcriptional mode to sustain fast growth: maximal ribosome production, induction 

and stabilization of mRNA transcripts coding for glucose catabolism, blocking stress 

responsive genes (mainly through Msn2/4p phosphorylation) and alterantive carbon source 

utilization, and reserve carbohydrate accumulation (Smets et al., 2010).  

 

Diauxic shift and diauxie 

When broth glucose reserves are going to end, a drastic shift from fermentation to 

oxidative growth happens. This growth phase is called diauxic shift followed by postdiauxie. 

Sequential shift from fermentative (glucose) to oxidative (ethanol, organic acids) 

substrate consumption is achieved by fundamental reorganization of S. cerevisiae 

metabolism. This reorganization takes place at all levels of metabolism: transcriptional, 

translational, protein, and metabolite level (De Risi et al., 1997). In principle, S. cerevisiae 

glycolisis pathway can work in both directions – as glucose catabolic and gluconeogenesis 

pathway from ethanol, see fig. 1.2.7. However, during growth only one direction is preferred 

and the choice is made by nutrient signaling pathways. When glucose is exhausted, glucose 

repression ends and different growth phase starts. Ethanol becomes major substrate; 

mitochondrial oxidative phosphorylation becomes the main pathway for ATP production, 

cell doubling time increases and specific growth rate  decreases. PKA pathway is 

inactivated, since it Cyr1p does not receive signals from both of it’s branches (high glucose 

sensor Gpr1p and hexose catabolism). As a result, transcription of ribosome coding genes 

decreases, transcription of stress response genes increases in Msn2/4p dependent manner, 

respiratory metabolism genes become derepressed (both PKA and Mig1p dependent) (Smets 

et al., 2010).  
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Fig. 1.2.7. Glycolitic flux rearrangement after diauxic shift in S. cerevisiae.  
Arrows depict carbon flow. Genes in red boxes are overexpressed, in green – expression is decreased. 
Note, that transcriptional regulation only partly explains carbon flow (for example, Adh2p is not 
upregulated while ethanol flux is increased). Adopted from De Risi et al., 1997. 
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Postdiauxie  

After diauxic shift, when glucose is depleted, yeast cells transiently arrest growth. 

Because there is still some carbon available in the medium: ethanol and acetate, cells 

reorganize their metabolism to obtain energy from these sources. It is said, that cultures enter 

the post-diauxic phase, once cell division is reinitiated. Postdiauxic phase is a period of slow 

growth and it can last for several days in a batch culture till all carbon sources are over 

(Gasch and Werner-Washburne, 2002).  

Specific, postdiauxic (PDS) genetic element T(T/A)AG3AT has been identified. 

Similar to STRE (AG4) sequences, it is recognized by specific transcription factor. Gis1p is 

downstream effector of Rim15p kinase, which in turn is repressed by PKA pathway In the 

case of decreased PKA signal (glucose depletion), Rim15p gets derepressed and activates 

Gis1p, which in turn initiates a set of postdiauxie typical gene transcription in PDS element 

dependent manner. In parallel, the same time Rim15p activates Msn2/4p which in turn 

enchances various stress responsive gene transcripts in STRE dependent manner (Pedruzzi et 

al., 2000). Genes activated in posdiauxie in Gis1p dependent manner are GDH3, GND2, 

GRE1, SSA3, TKL2 ALD2 (stress response). Genes co-activated by or/ and Gis1p and 

Msn2/4p are: PHO8, PH084, PHO89 (phosphate permeases), MET2, MET6 (methionine 

synthesis and sulphur metabolism), PLC1, SRY1, STE11, ZWF1 ALD3, ARG80, BMH2, 

GIS3, GPA2, GRE2, GUT1 (stress responsive genes) (Westholm et al., 2012). 

 

Stationary phase 

When yeasts are cultivated in batch mode for prolonged time - stationary phase sets 

in. This term in literature is used for prolonged cultivation episodes (5-7 days). “Starvation” 

is the typical term used to describe yeast cell nutritional status in stationary phase (Werner-

Washburne et al., 1993 Gasch and Werner-Washburne, 2002). In laboratory model 

fermentations – starvation for carbon source induces stationary phase phenotype. However, 

starvations for other nutrients, like nitrogen or phosphate, might be induced or set in leading 

to similar phenotypic traits (Klosinska et al., 2011, Gasch and Washburne, 2002).   

During prolonged starvation, part of yeast culture can enter into a “quiescent state”. 

Theese are comperatively young, nonbudding cells with characteristic higher density. At the 

same time, part of culture consists of large, senescent cells with many bud scars and 

increased ROS content. Only small, nonbudding cells are stress resistant (Allen et al., 2006). 

During stationary phase cells acquire specific, nutrient dependent phenotype, what helps to 

survive starvation and to resume proliferation if refeeded (see review De Virgilio, 2012). 
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During yeast cultivation gradual changes in nutrient signalisation occur (due to depletion of 

particular nutrient). Nutrient signalling pathways converge to similar effectors which are 

repressed or derepressed depending on nutrient availability, see fig. 1.2.8. for illustration.  

 

 
Fig. 1.2.8. Nutrient responsive pathways (TORC1, PKA, Pho85, and Snf1) converge on common 
transcription factors.  
Here arrows and bars denote positive and negative interactions, respectively, which can either be direct 
or indirect. Dashed arrows and bars refer to cross-talk mechanisms between nutrient sensing pathways.  
Adopted from De Virgilio, 2012. 
 

As a result, similar set of genes induced by Rim15p, Msn2p and Crz1p. However, 

due to different overlap of nutrient signalling pathways, different “transcriptional signature” 

can appear as the result of particular starvation. Cells in stationary phase have increased 

tolerance to heat, prolonged starvation, zymolase treatment, hydrogen peroxide and 

desiccation (Klosinska et al., 2011, De Virgilio 2012). 

Trehalose accumulation is typical reaction/ response observed in cells in stationary 

phase.  It is generally assumed that yeast cells establish a core quiescence program regardless 

of which nutrient is limiting.  

1.3. On biology of desiccation tolerance 

Among many abiotic stresses, air drying is one of the most common. Organism 

desiccation is the extreme decrease of organism’s water content due to air-drying. It means 

complete loss of organism’s free water, including significant portion of bound water.  

Broadly speaking, water loss through evaporation is key problem for terrestrial life (Alpert, 

2006).  Organism exploit several strategies how to cope with water loss: 
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   -  try to accumulate and save water inside the organism, or 

   -  let the water evaporate and enter the metabolically quiescent state and wait 

for “better times to come” (Wharton, 2002).  

The latter strategy is typical for group of organisms capable to survive desiccation, 

stop their metabolism and resume it when re-hydrated again thus these organisms are called 

“anhydrobiotes” (Keilin, 1959). Typical examples of anhydrobiotic organisms are single cell 

prokaryotes (for example spore forming Gram+ and heterocyst forming cyanobacteria), and 

eukaryotes (for example, yeasts), some plants and animals (reviewed by Potts et al., 2005 

and Alpert, 2006).  There are many physical and physiological restrictions why desiccation 

tolerance is typical for fungi, small worms (nematode, rotifers), plants (moss, spores, most of 

seeds of seeded plants and some adult angiosperms). Organisms capable of anhydrobiosis in 

their vegetative state generally are of small size, their cells have rigid cell walls or organism 

posess exoskeleton, they are capable to accumulate large amounts of sugar or other 

osmolytes (reviewed in Alpert, 2006, Wharton, 2002). Anhydrobiosis is widespread among 

fungi. Yeasts, including S. cerevisiae, are typical anhydrobiotes (Calahan et al., 2011).  

Habits with low water potential (hot and cold deserts, arctic territories, surfaces of 

plant leaves) posess other life threatening features. For example, increased degree of UV 

radiation. Anhydriobiotic organisms posess “stress cross tolerance”: they are capable to 

whitstand other environmental stresses while desiccated, for example, elevated temperature, 

irradiation, UV, etc.. Thus, organisms in desiccated state can whitstand many different 

otherwise detrimental environmental stresses (oxidative stress, heat, UV, etc.) (Warton, 

2002, Cornette and Kikawada, 2011).  

1.3.1. S. cerevisiae desiccation tolerance physiology 

The baker’s yeast S. cerevisiae population is capable to survive prolonged periods of 

water activity close to 0. As response to desiccation, this organism does not form specific 

water reserves, nor endospores. Despite the lack of water reserves or endospore formation, S. 

cerevisiae cells are capable to survive almost complete desiccation. In S. cerevisiae 

evaporation leads to water loss, meaning not only loss of free water, but also great part of 

molecular hydratation layers or bound water (Beker et al., 1984). Water loss changes not 

only volume (shape of the cell), but also intracellular “organization” of the cell. Desiccation 

induced alterations of S. cerevisiae cell shape, membranes and organoid organization are 

well studied. Collapse of cell due to volume loss is typical change after desiccation observed 

in S. cerevisiae, while restoring the shape and wrinkling of cell surface is typical for 
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rehydrated cells (Ventina et al., 1984). Organoid (for example nucleus) membrane 

disruptions, plasma membrane invaginations are often observed in dried S. cerevisieae cells 

(reviewed in Beker and Rapoport, 1987). 

There is a debate on particular biochemical mechanisms and factors ensuring S. 

cerevisiae desiccation tolerance. Here we will review effects of: trehalose content, oxidative 

stress response system and nutritional signalling, on S. cerevisiae deisccation tolerance.  

1.3.2. Trehalose metabolism in S. cerevisiae 

Trehalose is among the most common disaccharides in nature. It consists of two 

glucose moieties linked together by α(1,1)-glycosidic bond, see fig. 2.3.1.  

 

 
Fig. 1.3.1 Trehalose structure.  
Source: public domain. 

 

Trehalose is met in all kingdoms of life: fungi, plants, animals, protists and monera. Goddijn 

et al., 1997 reported on trehalose in plants, Elbein, 1974 - in insects and Ishihara et al., 1997 

reported on trehalose presence in mammal kidney tissues.  

Trehalose content in fungi cells can be as high as 20% of cell’s dry weight. In yeast 

S. cerevisiae main functions of trehalose are: osmoprotection, carbon reserve formation, and 

termotolerance. Schematic presentation of trehalose synthesis and breakdown in S. 

cerevisiae is shown in fig. 1.3.2. 
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Fig. 1.3.2. Trehalose synthesis and breakdown in Saccharomyces cerevisiae. 
 Proteins involved: Acid trehalase (Ath1p), neutral trehalase (Nth1/2p), trehalose-6 phosphate 
synthase (Tps1p), trehalose-6 phosphate phosphatase (Tps2p), Trehalose phosphate synthase 
subunit 3 (Tps3p), Trehalose phosphate synthase complex (Tsl1p) Phosphoglucomutase, isoforms 
1 and 2 (Pgm1/2p), Uridine – 5´ - diphospho – glucosepyrophosphorylase (Ugp1p).  
Adopted from Francois and Parrou, 2001. 
  

Trehalose is synthesized from glucose – 6–phosphate and UDP - glucose molecules 

(Panek, 1962). This is done by trehalose synthase complex consisting of four subunits, 

Tps1p, Tps2p, Tps3p and Tsl1p (see fig. 1.3.2.). Tps1p catalyses synthesis reaction of 

trehalose-6P from glucose-6P and UDP – glucose. Tps2p dephosphorylates trehalose-6P thus 

forming trehalose. Tps3p and Tsl1p are believed to be stabilizing units of the trehalose 

synthase complex. (Reinders et al., 1997; Bell et al., 1998).  

TPS1, TPS2, TPS3 and TSL1 all have several (6, 5, 2 and 4 respectively) upstream 

STRE sequence elements. Evidence for Msn2/4p dependent induction of those genes has 

been demonstrated in protein and mRNA level. In both cases their expression correlated with 

Msn2/4 induction pattern (Boy-Marcotte et al., 1998, Winderickx et al., 1996). 

ADPG (adenosine diphosphoglucose) dependent pathway has been suggested as alternative 

pathway of trehalose synthesis observed in presence of maltose in tps1 mutants (Ferreira et 

al., 1997).  However trehalose accumulation in tps1 mutants revealed to be trehalose 

transport occurring when cells are grown in rich broth (Plourde-Owobi et al., 1999). 

Yeasts have three enzymes responsible for trehalose breakdown: acid trehalase (Ath1p) and 

neutral trehalases (Nth1/2p), as illustrated in fig. 1.3.2.  

Acid trehalase has maximal activity at a pH 4.5 and it is located in vacuoles. 

(Destruelle et al., 1995). Main function of Ath1p is extracellular trehalose breakdown, ath1 
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strain is unable to grow on trehalose as sole carbon source (Nwaka et al., 1996). ath1 

deletion does not affect intracellular trehalose concentration (Nwaka et al., 1995a).  

Neutral trehalase 1 (Nth1p) is the enzyme that degrades intracellular trehalose 

(Nwaka et al., 1995b). NTH1 has three upstream STRE sequences therefore it is a target of 

the stress response transcription factors Msn2p and Msn4p (Martinez-Pastor et al., 1996, 

Zahringer et al., 2000).  Active form of Nth1p enzyme is phosphorylated, (App and Holzer, 

1989), PKA phosphorylates Nth1p and thus activates trehalose breakdown as a response to 

nutrient availability, besides, Nth1p associated proteins Bmh1p and Bmh2p are necessary to 

gain maximum trehalase activity. Phosphatase, mRNA decapping enzyme, Dcs1p 

(YLR270W) dephosphorylates Nth1p and thus deactivates it – as a result, trehalose 

accumulates (Schepers et al., 2012, Malys et al., 2004).  

The neutral trehalase 2 (Nth2p) does not show any significant trehalase activity, 

however its amino acid sequence is 77 % similar to Nth1p (Wolfe and Lohan 1994).  The 

main role of Nth2p is still unclear; it has been suggested to play a role in stress response 

(Nwaka et. al 1995).  

Various models have been proposed for trehalose accumulation in the cells, which 

include trehalose synthesis and breakdown.  Since trehalose is universal stress metabolite, 

various external signals can induce its breakdown through stress - nutrient response 

pathways: cAMP dependent PKA pathway, (Thevelein and Winde 1999), cAMP 

independent PKA activation (Crauwels et al., 1997), TOR dependent transcription regulation 

by Msn2/4p (Martinez – Pastor et al., 1996, Boy – Marcotte et al., 1998, Zahringer et al., 

2000). 

1.3.3. Trehalose supports desiccation stress tolerance in S. cerevisiae cells 

Trehalose is abundant in all branches of life: bacteria, fungi, plants and animals. It 

has been extracted in comparatively large amounts from organisms or their parts capable of 

anhydrobiosis (spores, conidia, cysts, larvae, pupae, lichens), reviewed in Elbein, 1974. 

Presence of large amount of dissacharides (trehalose or sucrose) in anhydrobiotic rotifers, 

nematodes, arthropods, plants in dry state have led to assumption on dissahcarides as direct 

cause of organism desiccation tolerance (Wiemken, 1990, Elbein, 1974, Eleutherio et al., 

2014).  

Extensive research has been done to elucidate trehalose role in desiccation tolerance. 

First, the enhancement of desiccation tolerance by trehalose is believed to be related with its 
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ability to form hydrogen bounds with lipid hydrophilic parts thus lowering their phase 

transition temperature, see fig. 1.3.3. for details (Crowe et al., 1984). 

 

A B 

Fig. 1.3.3. A. Trehalose – lipid liquid crystalline to gel formation model in the dry state.  
Adopted from Crowe et al., 1997. 
B. Differential scanning calorimetric traces of dry, hydrated dipalmotoylphosphatidylcholine 
(DPPC) and in the presence of trehalose. Adopted from Crowe, 1984. 
 

Phospholipid- trehalose interaction via hydrogen bonding has been confirmed by 

NMR (Carolyn et al., 1986) and molecular modeling studies (Golovina et al., 2010) and in 

vivo yeast experiments (Leslie, 1994). The hydratation water replacement hypothesis 

(demonstrated in fig. 1.3.3.A) is dominant model how trehalose acts in preserving molecular 

structure of membranes intact in the absence of water (reviewed by Crowe et al., 1997). To 

guarantee full membrane protection in dehydrated state, trehalose has to be present at both 

sides of membrane (Eleutherio et al., 1993). Additionally, trehalose has exhibited protein 

antiaggregation effect (Singer and Lindquist, 1998). Besides, some authors have attributed 

antioxidative activity to trehalose and this has been demonstrated in vitro and in vivo 

(Herdeiro et al., 2006, Oku et al., 2003). In practice, trehalose accumulation has coincided 

with many instances of yeast desiccation and subsequent enhancement of survival (Gadd et 

al., 1987, reviewed also in Crowe et al., 1997). However, there are many anhydrobiotes, 

including trehalose synthesis deficient strains of S. cerevisiae, capable of comparatively high 

desiccation tolerance in absence of trehalose (Ratnakumar and Tunnacliffe, 2006). Recently, 

trehalose is perceived as heat shock and nutrition dependent metabolite rather than 

desiccation specific protectant (Eleutherio et al., 2014). Trehalose seems to enhance 

desiccation tolerance of the yeast, however, it is not necessary prerequisite of yeast survival 
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in desiccated state (Rapoport et al., 1988, Krallish et al., 1997, Ratnakumar and Tunnacliffe 

2006, Rozenfelde and Rapoport, 2014). 

2.3.4. Oxidative stress during S. cerevisiae desiccated state  

Reactive oxygen species (ROS) are produced in every cell in the presence of oxygen. 

It is estimated, that 1-5 % of oxygen in mitochondria is reduced incompletely and can appear 

in the cell in one or other form of ROS.  Hydrogen peroxide (H2O2), the hydroxyl radical 

(OH•), and the superoxide anion (O2•-) are active oxygen forms capable to damage yeast cell. 

ROS attack and change almost all groups of biological macromolecules: lipids, proteins and 

nucleic acids. ROS leads to lipid peroxidation, protein carbonylatian, degradation and 

nucleic acid strand brakes (Kohen and Nyska, 2002). Since ROS can seriously harm cells 

activity (proteins), integrity (plasma membranes) and inheritance (nucleic acids), there is 

antioxidant system in place.  Yeast cell contains enzymatic and non-enzymatic antioxidation 

systems capable to neutralize ROS.  

Enzymatic antioxidant system consists of peroxidases, catalases and superoxide 

dismutases. Interestingly enough, many elements of antioxidant enzyme systems are 

conserved among prokaryotes and eukaryotes, including yeasts and human. 

Glutathione and thioredoxin peroxidases reduce alkyl hydroperoxides: 

ROOR' + electron donor (2 e-) + 2H+ → ROH + R'OH   (Culotta, 2001, Hirt et al., 2002). 

Metal (Mn and Cu-Zn) containing superoxide dismutases (MnSOD and CuZnSOD) 

scavenge O2
-. SOD2 encodes yeast mitochondrial matrix superoxide dismutase containing 

manganese. SOD1 encodes yeast cytosolic superoxide dismutase containing Cu-Zn (O’Brien, 

2004). Heme- and manganese-containing catalases scavenge H2O2 via following reaction: 

2 H2O2 → 2 H2O + O2. 

S. cerevisiae contain two catalases: peroxisomal Cta1p and cytosolic, Ctt1p. Places of 

ROS generation and “enzymatic actors” of their neutralization are depicted in fig. 1.3.4. 
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Fig. 1.3.4. ROS production and neutralisation in S. cerevisiae. 
ROS forms predominantely in respiratory chain. The main antioxidant enzymes involved are: bc1, 
cytochrome bc1 complex; cyt c, cytochrome c; cox, cytochrome c oxidase; Ctt1, cytosolic catalase 
T; Gpd1/2, cytosolic NADH-linked glycerol-3-phosphate dehydrogenase; Gpx, glutathione 
peroxidase; Gut2, membrane-bound glycerol-3-phosphate:ubiquinone oxidoreductase; Nde1/2, 
external NADH dehydrogenase; Ndi1,internal NADH dehydrogenase; Prx, peroxiredoxin; Q, 
ubiquinone; Sdh, FADH2-linked succinate dehydrogenase complex; and Sod1/2, superoxide 
dismutase. Adopted from Herrero et al., 2008. 
 

Antioxidant molecules – reduced glutathione (tripeptide -glutamylcysteinylglycine) 

and thioredoxins (small, sulphydril rich, 12 kD proteins) work as cytoplasmic ROS 

scavengers in S. cerevisiae cells. Each of these peptides contains thiol moiety, capable to 

reduce ROS. Peptide, in turn, gets oxidised. Specific, NADPH dependent glutathione and 

glutaredoxin peroxidases regenerate oxidized glutathione or thioredoxin. Although, not 

typically considered an antioxidant, this pyridine dinucleotide can have a major impact on 

oxidative stress resistance, as it provides the reducing equivalents needed to regenerate GSH 

and reduced thioredoxin (Herrero et al., 2008).  

Glutathione metabolism including synthesis, nonenzymatic ROS scavenging and 

GLR1 glutathione reductase dependent regeneration of the reduced glutathione supply is 

depicted in fig. 1.3.5. 
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Fig. 1.3.5. Simplified illustration on glutathione metabolism in S. cerevisiae. 
GSH1- gamma glutamylcysteine synthetase, GLR1- glutathione reductase, ZWF1 – glucose-6 
phosphate dehydrogenase, GND1 6-phosphogluconate dehydrogenase, CYS4 cystathionine beta-
synthase, CYS3 cystathionine gamma-lyase, GSH – glutathione reduced form, GSSG – glutathione 
oxidized form. ROS – reactive oxidized species.  Adopted from Ask et al., 2013.  
 

Oxidative stress can be defined as overflow of ROS production what exceeds 

antioxidative capacity of the cell. Oxidative stress happens due to weakening of cell’s 

antioxidative system or notable increase of ROS production (Culotta, 2001).  

When cells are desiccated under fully aerobic conditions, their antioxidative capacity 

is attenuated, meanwhile ROS production increases (endogenous and air born ROS during 

storage). Since no solute is available, no enzyme dependent ROS scavenging can occur in 

dry state (reviewed in Franca et al., 2007). 

Alterations of desiccation tolerance if cell’s antioxidative system is challenged have 

been observed. Superoxide dismutases Sod1/2p are necessary to sustain cell viability in S. 

cerevisiae cells after freezeing-thawing cycle (Park et al., 1998). GSH1/2 deletions have also 

been identified to lower desiccation tolerance, albeit this effect can be alleviated by external 

glutathione or its chemical analog supplement (Espindola et al., 2003). Yeast cell’s 

antioxidant system is perceived as target to improve its desiccation tolerance.  

1.3.5. Specific proteins as chaperons during S. cerevisiae desiccated state (Hsp and LEA) 

Term “LEA like proteins” comes after discovery of specific group of proteins in 

angiosperm plant seeds becoming abundant during seed ripening. At that point, these 

proteins were termed Late Embryogenesis Abundant (LEA) proteins. Two important features 

are characteristic to these proteins: they accumulate at very late stage of seed development 

and they contain domains particularly rich in hydrophilic amino acids (Dure et al., 1989).  
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Later, it turned out, that expression of these proteins is not restricted only to seeds, 

but can occur also in other plant tissues during water stress.  Also similar proteins (at least 

with respect to their amino acid sequence) are found in other organisms (bacteria, fungi, 

animals). Therefore, to broaden the term “LEA” which initially was applied to seeds of 

higher plants, a term “LEA-like proteins” was invented. Typical features of LEA-like 

proteins are: high hydrophilic nature (20 times more bound water than for other proteins of 

the same size), lack of strict secondary or tertiary structure (“natively unfolded”) in water 

solutions (Tunnacliffe, Wise, 2007).  

In S. cerevisiae, Hsp12p is characterized to belong to LEA like proteins. It is 

expressed in stationary phase or during growth on ethanol. It does not have strict 3D 

structure when purified alone in water solution, albeit it changes rapidly to alpha helical 

structures when incubated together with membranes. These structural features are linked 

with its functions: strengthen membrane integrity during heat, desiccation or ethanol stress 

(Sales, 2000, Welker et al., 2010), as well as it is required in dietary induced life span 

extension (Herbert, 2012). Hsp12p prevents protein aggregation during desiccation; this 

effect is enchanced by trehalose (Goyal, 2005). Absence of Hsp12 can be functionally 

complemented by trehalose (Shamrock and Lindsey, 2008).  

Attempts to apply LEA-like proteins to improve otherwise desiccation non-stable 

animal cell tolerance were made: p26 gene transfection from anhydrobiote brine shrimp, 

Artemia franciscana, significantly improved human embryonic kidney (293H) cell line 

survival during air-drying (Ma et al., 2005). 

1.3.6. Genome wide investigations of S. cereivisiae desiccation tolerance 

Recent advancments in eukaryotic (including S. cerevisiae) and prokaryotic genetics 

have created great tools for physiology research in genomic or transcriptomic scale. These 

tools include: rapid genome sequencing, automated annotation, genome wide transcription 

analyses and genome wide knock-out strain collections (Boyle and Gill, 2012).  

To decipher important genetic factors affecting desiccation tolerance, two approaches 

are used: to look for specific, desiccation dependent transcription response, other – to search 

for genes specifically affecting desiccation tolerance.  

With regards to desiccation induced transcriptome response – several attempts have 

been made to identify desiccation associated gene transcription. Depending to experimental 

setup – desiccation induced transcriptome patterns are different. Nakamura et al., 2008, 

identified groups of genes upregulated of commercially pressed yeast during gradual 
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desiccation: protein folding (chaperones were upregulated within first hours of desiccation, 

then downregulated) and fatty acid metabolism genes (activated throughout desiccation). 

Singh et al., 2005, investigated global gene transcription pattern during S. cerevisiae S288c 

strain suspension gradual desiccation and found it similar to stationary growth phase cells. 

Other groups have identified, that genes of nitrogen derepression, amino acid synthesis and 

transport are induced during yeast cell desiccation (Ratnakumar et al., 2010). Stress related 

transcription factors Msn2/4 appeared to be involved, but not necessary for desiccation 

tolerance. On the other hand, deletions of elements of PKA and TOR kinase signaling 

pathways (rim15, bcy1) revealed to dramatically lower desiccation survival (Ratnakumar et 

al., 2010). 

S. cerevisiae strain S288c non-essential gene deletion library (Brachmann et al., 

1998) have helped to find out important genetic elements of desiccation tolerance. 

Rodriguez-Porrata with colleagues tried to identify critical gene necesarry to rescue 

“desiccation vulnerable phenotype”. They identified, that overexpression of SIP18 (apoptosis 

repressor), increases desiccation tolerance of parent strain two folds (Rodriguez-Porrata, 

2011).   

Calahan et al., 2011 published wide survey where each S. cerevisiae nonessential 

gene deletion strain’s desiccation tolerance was assessed. Team set a treshold for their 

ambitious aim – a strain was assessed as desiccation intolerant, if it’s survival droped by 

more than 10 times in comparison to parent strain. By this method authors focused just on 

small portion of gene deletions having most prominent effects on desiccation tolerance. 

Group of genes related to mitochondria metabolism revealed to be significant for cell 

desiccation tolerance. Strangely, no hog1, msn2/4, trehalose synthesis deletions tps1,2,3, no 

hsp12 and sip18 decreased survival of yeast 10 or more times after desiccation. Instead, 

mitochondrial metabolism revealed to be critical for desiccation tolerance. Petite mutants 

revealed to be extremely desiccation vulnerable, similarly to wild type when cultivated with 

respiratory inhibitor myxothiasol. Mitochondrial dependent desicction intolerance could be 

complemented by several random mutations in: mediator repressor and thioredoxin 

metabolism (Calahan et al., 2011). 

1.3.7. Nutrient signaling effects on S. cereivisiae desiccation tolerance 

Many publications on yeast desiccation tolerance have noted, that stationary phase 

cells are far more desiccation tolerant, than exponentially growing cells. Besides, sudden 

media shift from N-rich to N-poor media is used for dry baker’s yeast production already for 
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some time (reviewed in Beker and Rapoport, 1987). These observations has been linked to 

decreased growth speed, accumulation of “specific tolerance factors“ or specific nutrient 

starvation impact on survval after desiccation. When resolving these aspects one by one – it 

turned out, that S. cerevisiae does not produce “specific desiccation tolerance factors”, 

neither growth speed is critical for desiccation tolerance. Starvation for particular nutrient 

turned out to be the case. This observation linked desiccation tolerance to TOR signaling and 

cell’s nutritional status (Welsh et al., 2013). 

Recent research on yeast desiccation tolerance mechanisms has revealed nitrogen 

signaling pathway TOR as important player to ensure desiccation tolerance. Additionally 

experiments on specific nutrient signaling pathways (TOR and PKA) revealed negative 

effector Sch9 protein kinase element to ensure desiccation tolerance. When deleting Sch9 – 

Msn2/4 gets derepressed and “full scale stress resistance is induced”, see fig. 1.3.6. for 

illustration (Welch et al., 2013). 

 
Fig 1.3.6. Common effectors of PKA and Sch9p having effect on   desiccation tolerance. 
PKA or TOR (through Sch9) negatively affects  STRE  responsive transcription factors Msn2/4 and 
protein kinase Rim15. Finally, in the case of halt of PKA or TOR activity – ribosome synthesis 
decreses (Ribi), STRE responsive gene transcription (STRE) and postdiauxic shift element (PDS) 
genes get activated. Adopted from Welch et al., 2013. 

1.3.8. Desiccation – applied aspects in food technology and medicine  

Historically desiccation is one of the simplest, yet most effective methods for food 

preservation. It has been and still is widely exploited for fruit, meat and seed/grain 

preservation. Interestingly, approximately 50 % of food in NASA SpaceShuttle program is 

transported in dried form. Predried food preparations are suspected to form large part of food 

supply also for future space (like Mars) missions (reviewed in Perchonok et al., 2012). 

Raw food might contain more than 90% of water thus making it vulnerable to 

temperature, oxidation and bacterial spoilage. Due to low water potential, dry food has 

several advantages: it is stable over long period of time and temperature, it does not spoil (rot 
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or ferment), it is comparatively easy to transport (since large portion of water is evaporated, 

products are light and takes less space). Thus dried food products are popular up till now. 

Bed drying, spray drying, air drying, vacuum and freeze-drying are the most often used food 

drying technologies (see review in Sachin and Jangam, 2011). 

Besides traditional raw food drying, production of microbial starting cultures is 

industry where desiccation is being extensively applied. Baking and brewing industries are 

two examples exploiting dry microbial (yeast) starting cultures: active dry yeast, wine and 

brewer’s yeast respectively (Beker and Rapoport 1987, Bauer and Pretorius 2000).  

Besides dry yeast, probiotics industry is growing segment of modern food market. 

Microbial starters are essential elements of probiotic food production. Nowdays freeze-

drying is standard method for production of industrial starting cultures and medical probiotic 

drug production (Santivarangkna et al., 2011).  

Probably due to successive history in area of food processing, applications of 

desiccation is of growing interest also in medicine and pharmacy. Researchers are optimistic 

in their prognosis on desiccated protein, cell and tissue usage in daily medicine practice; 

however, safe and widely accepted desiccation protocols are just emerging. There are some 

examples of effective knowledge transfer from fundamental microbial desiccation 

physiology research to medicine applications. Patent on blood platelet preservation is one of 

them. Trehalose addition is found to be effective method to preserve freeze-dried blood 

platelets and not loosing their blood clotting activity (Wolkers et al., 2001a and 2001b). 

Other attempts for trehalose applications as cryopreservation or of other human cell types 

have been published: embryonic stem cells (He, 2011), mesenhymal stem cells (Jamil et al., 

2005). In general, “anhydrobiotic engineering” of human cells have proven to be of limited 

success, yet potential field of application of principles discovered in model organisms.  

Vaccine preparation and storage is another area for desiccated material usage. “Cold 

chain” is term describing transportation of termo-sensitive material from producer to 

consumer. Transportation of pharmaceutical materials are often subject of “cold chain”. 

Biopharmaceutical drugs (proteins, vaccines) are typical examples which are transported by 

applying cold chan. However, there are many occasions where “cold chain” can broke (hot 

climate, lack of nearby electricity, long transportation episodes in hot climate areas). 

Desiccated vaccines are perceived as alternative form of traditional pharmaceutical, which 

can not only withstand high temperatures, but also change immunization practices: away 

from spike and towards to inhale (Lin et al., 2011, Savage, 2014).  
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As demonstrated by literature data - there are many findings and interpretations on 

mechanisms of S. cerevisiae desiccation tolerance. This work was done to clarify if S. 

cerevisiae culture nutritional status before desiccation determines desiccation outcome. 

Since S. cerevisiae lacks specific “desiccation sensors”, it should relay on other intracellular 

or extracellular signals to “prepare” itself for harsh environmental conditions, like 

desiccation. We choose to characterise S. cerevisiae desiccation tolerance during postdiauxic 

growth thus mimicking “natural habitats” after sugar depletion. We explored desiccation 

tolerance of yeasts in early and late stage postdiauxie.  

Also we aimed to engineer desiccation tolerance via improving glutathione 

metabolism. We also investigated how desiccation affects brewer’s yeast β-D-glucans in 

terms of their immunological activity.  
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2. Materials and methods 

2.1. Yeast strains  

All strains used in current work are listed in table 3.1. 

Table 2.1. Yeast strains used in this work 

Name in 
this study 

Name in 
literature 

genotype source 

SC14  Saccharomyces 
cerevisiae 14 

Putative diploid, nonsporulating Institute of 
Microbiology and 
biotechnology, 
University of Latvia 

BY4741 BY4741 MATa; his3Δ1; leu2Δ0; met15Δ0; 
ura3Δ0 

EUROSCARF 

tps1 Y00775 BY4741 tps1::kanMX4 EUROSCARF 
CEN.PK 
prototroph 

CEN.PK2 
prototroph 

CEN.PK2-1C MATa Dr. Peter  Richard, 
VTT Biotechnology, 
Espoo 

CEN.PK 
ADE8 

CEN.PK2 
 

CEN.PK2-1C MATa; ura3-52; trp1-
289; leu2-3,112; his3Δ 1; MAL2-8C; 
SUC2 

 

CEN.PK 
ade8 

 CEN.PK2 ade8Δ0 This study* 

R0  CEN.PK fcy1Δ0 ade8Δ0 This study* 
R1  CEN.PK fcy1::DAK1 This study* 
R2  CEN.PK2 lys2::GLD2 This study* 
R3  CEN.PK2 lys2::GLD2 fcy1::DAK1 This study* 
R4   CEN.PK2 ade8::GLD2 fcy1::DAK1 This study* 
R5  CEN.PK2 ade8::GLD2 This study* 
W303 
ade2 

W303A MATa; ura3-1; trp1Δ 2; leu2-3,112; 
his3-11,15; ade2-1; can1-100 

Dr. Peter  Richard, 
VTT Biotechnology, 
Espoo 

W303 
prototroph  

W303A 2832-
1B 

W303A MATa prototroph Dr. Fred R. Cross 
(The Rockefeller 
University, New York) 

W303 
ADE2 

AKY 489 W303A ade2-1::ADE2 Dr. Arnold Kristjuhan, 
(Institute of Molecular 
and Cell biology, Tartu) 
 

Brewer’s 
yeast  

 Bottom fermenting brewer’s yeast, 
Stain a.s, Bratislava brewery 

Dr. Smogrovicova 
(Slovak University of 
Technology, Bratislava) 

* gene disruptions and integration was done by homologous recombination using a URA 

cassette and screening for ura-  mutants on 5-FOA plates as described in Sadowski et al., 

2007. 
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2.2. Cultivation media and cultivation 

YPD, or yeast extract peptone dextrose (per litre 10 g of Yeast extract (Biolife), 20 g 

of peptone (Biolife), 20 g of dextrose (Sigma-Aldrich))  

SD or synthetic dextrose media (per litre 1.7 g of Yeast Nitrogen Base w/o amino 

acids and ammonium sulphate (Becton, Dickinson and Company), 5 g, of (NH4)2SO4 , 20 g 

L-1 of dextrose) supplemented with  leucine (260 mg/L),  of tryptophan (80 mg/L), of uracil 

(100 mg/ l), histidine (100 mg/l) and adenine (100 mg /l), (Sigma-Aldrich) (concentrations 

chosen after Pronk, 2002).  

  For auxotrophic starvation experiments SD media with either adenine, leucine, 

tryptophan or histidine omitted was used.  

Yeasts were cultivated in shake flasks or test tubes at 180 rpm in 30°C with broth 

volume not exceeding 1/5 of the flask or 1/10 of test tube volume.  

2.3. Yeast desiccation tolerance (viability) tests 

Yeast biomass was harvested by centrifugation, uniformly pressed through 1 mm 

sieve and left to desiccate in +30°C, for approx. 18 h till the moisture content reached 8-

12%.  

Alternative desiccation microassay was developed similar to Calahan et al., 2011: 1 

ml of OD600=1 yeast biomass was harvested by centrifugation, washed, pelleted and left to 

desiccate in +30°C in desiccator for 6-10 h. Moisture content reached approx 10 %. 

Yeast viability after dehydration was determined either by the primuline staining or serial 

dilution spot test.  

 

Primuline staining 

Yeast cell suspension after rehydration was stained with primuline (1:30 000) and 

evaluated microscopically. Cell viability was expressed as proportion in percents of live 

versus total cell count (Rapoport and Meisel, 1985). 

 

Spot test 

Alternative assessment of desiccation tolerance was done by estimating colony 

forming units (CFU) per ml, before and after dehydration. 1 ml of culture at OD600 = 1 was 

washed with distilled water twice, diluted serially, and spotted on YPD plate. Desccated 

pellet was rehydrated with distilled water for 10 min in room temperature. The suspension of 

rehydrated cells was serially diluted and spotted on YPD plates. The viability was calculated 
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by dividing the number of CFU per ml before and after desiccation, as described in Calahan 

et al., 2011. 

2.4. Cell extract preparation 

For metabolite measurements  

For tiobarbituric acid, glutathione and trehalose measurements, cells were 

resuspended in 600 ml of the 20 mM Tris HCl buffer, containing 10% trichloroacetic acid 

and 1.5 g of glass beads (400 - 600 um diameter). The yeast samples were disrupted by three 

cycles of 1 min disintegration in Retsch MM 301 device. Samples were left on ice for 1 min 

in between disintegration cycles. Cell lysates were centrifuged for 10 minutes 20 000 rpm on 

table top centrifuge Eppendorf  5417R.  

 

For enzymatic reactions  

For enzymatic reactions (spectrophotometric or zymograms), cells were resuspended 

in sodium phosphate buffer (0.05 M, pH 7) supplemented with protease inhibitor cocktail 

(EDTA free, Roche), containing 1.5 g of glass beads (400 - 600 um diameter). The yeast 

samples were disrupted by vortex for 20 min at +4°C.  

Cell lysates were centrifuged for 25 minutes 20 000 rpm on table top centrifuge 

Eppendorf  5417R, at 0°C.  

2.5. Reduced glutathione (GSH) quantification  

o-phtalaldehyde (OPA) fluorescence method was used for GSH quantification as 

described by Senft et al., 2000.  

To determine GSH unspecific (-CN, -SO3 groups also can form complexes with 

OPA). Complex formation with OPA – a set of reactions with N-ethylenmaleide (NEM) 

capable of blocking GSH-OPA complex formation, were included into assay. 

Pipetting scheme is given in table 3.2. To prepare reaction mix, pipetting was done 

according to table 3.2 from left to right (first sample was introduced into test tube, then 

TCA-RQB etc.). 
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Table 2.2. Pipetting scheme for GSH quantification 

Cuvette Sample  TCA-RQB* NEM 

150 nm 

1M KP  0,1M KP OPA 

0.7 mg/ml 

A 0-10 ul Up till 200 ul 7 ul 325 ul 1.35 ml 200 ul 

B 0-10 ul Up till 200 ul  - 325 ul 1.35 ml 200 ul 

* Redox quenching buffer with TCA (RQB-TCA, 20 mM, HCl, 10 mM ascorbic acid, 5% TCA). 

 

All ingredients are mixed and incubated in dark at room temperature for 30 min. 

OPA-GSH complexes were measured by excitation at 365 and emission at 430 nm by Yvon-

Horriba FluoroMax3 device. Results of A sample (GSH unspecific OPA complexes) were 

subtracted from B sample. Results are expressed as uM/ g DW. 

2.6. Lipid peroxidation assay 

For lipid peroxidation, thiobarbituric acid reactive species (TBARS) 

spectrofluorometric detection similar to Yagi et al., 1998 was used. The cell extracts were 

mixed with 0.1 ml of 0.1 M EDTA and 0.6 ml 1 % (w/v) thiobarbituric acid in 0.05M NaOH.  

The reaction mixture was incubated in a boiling water bath for 15 min, after cooling, the 

excitation was set to 520 and emission to 553 nm. Fluorescence was measured by Yvon-

Horriba FluoroMax3 device. Malonildialdehyde dimer (Sigma Aldrich) was used as 

standard.  

2.7. Trehalose and cell polysaccharide quantification 

Cell polysaccharide (including trehalose) content was determined by anthrone assay 

(Trevelyan and Harrison, 1956). TCA cell extract (diluted with water when necessary) was 

mixed with anthrone (2 g/ l in 75% H2SO4) in a 1:6 ratio. The mixture was heated at 100 °C 

for 10 min, and absorbance at 625 nm was measured.  

Fractional cell polysaccharide purification for quantitative assays was done as 

described earlier (Stewart, 1975). Each fraction’s glucose content was determined by 

anthrone assay as described above.  

2.8. Yeast transformation 

Yeast transformation was done by lithium acetate - PEG method as described by 

Gietz and Woods, 2002.  
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2.9. Zymogram staining 

Native PAGE (10 % acrylamide) in glycine buffer (pH 6.8, 0.1 M) was run. The gel 

was dyed in a zymogram staining solution containing 200 mM Tris-HCl, pH 9.0,  0.1 M 

substrate, 0.25 mM iodnitrotetrasolim (INT) chloride (Sigma Aldrich), 0.06 mM phenazine 

methosulfate (PMS), and 1.5 mM oxidised cofactors (NAD or NADP).  50 ug of protein 

were applied for each lane. 

2.10. HPLC analyses 

Glucose, ethanol, acetate, pyruvate, succinate and glycerol content were measured 

simultaneously by Agilent 1100 HPLC system. Shodex Asahipak SH1011 column was used 

to fraction all measured metabolites (glucose, glycerol, ethanol, pyruvate acetate and 

succinate). Glucose, glycerol, acetate and ethanol were analysed by refraction index detector 

(RI detector RID G1362A), but pyruvate and succinate were detected by diode matric 

detector set to 210 nm.  The flow of the mobile phase (0.01 N H2SO4) was 0.6 ml min-1, the 

sample injection volume was 5 µL. 

2.11. Purification of yeast β-glucans and qualitative analyses 

Water-insoluble (1-3)-β-d-glucan was extracted from spent brewer's yeast cells by 

autolysis- alkaline extraction. Yeast biomass was suspended in distilled water and subjected 

to autolysis at 50° C during 24 h. Sediment was washed twice with water; resuspended in 3 

% NaOH 1:5 (w/vol, initial biomass g: vol NaOH ml ratio) and incubated for 4 h at 55°C. 

Then additional volume of distilled water was added and suspension was incubated at room 

temperature overnight. Sediment was washed twice with distilled water, resuspended in 1:5 

(initial biomass : vol NaOH ml ratio) in 3 % NaOH and heated during 2 h at 100°C, 

additional volume of distilled water was added and mixture was incubated at room 

temperature overnight. Sediment was washed several times; extraction with 1N HCl at room 

temperature for 2 h was performed 3 times. Residual sediment (pure β-glucans) was washed 

until neutral pH reaction was reached. Purified β-glucans were freeze-dried and stored in 

room temperature.  

2.12. NMR spectroscopy  

The 13C-NMR spectra were recorded at 298 K in D2O solutions by Bruker AM-300 

instrument, as described previously by Kogan and Aldolfi, 1988. 
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2.13. Congo red assay 

Measurements of the absorption maximum shift by complex formation between 

purified β-glucans and Congo red were performed as following: Congo red dye was used at a 

final concentration of 60 uM, NaOH concentration was varied from 0.025 M to 0.5 M.  

Absorption spectra between 460 and 530 nm in 1 nm increments were recorded on Tecan 

Infinite 200 M Pro microplate reader. 

2.14. β-glucan O-carboxymethylation  

Derivatization of the (1-3)-β-d-glucan was performed using the procedure described 

previously (Williams et al., 1991). Briefly, 3 g of the glucan was suspended in a 40 ml of 3 

% NaOH in isopropanol. The suspension was vigorously stirred at 4°C for 1 h. 4.7 g Na-

monochloroacetic acid was added immediately and the mixture was stirred at 70°C for 2 h. 

The excess of NaOH was neutralized, remaining cream-like substance was dialysed against 

water to remove salts. The dialised carboximethylated β-glucan suspensions were 

lyophilized. The substitution degree of resulting β-glucan preparations were 0.8 as confirmed 

by potentiometric titration with 0.05 M KOH. 

2.15. Preparation of murine macrophages and TNF- α induction assay 

ICR mice aged 8 to 12 weeks were obtained from the animal farm of the Institute of 

Experimental Pharmacology, Slovak Academy of Sciences (Dobrá Voda, Slovakia). 

All animal experiments were conducted according to the ethical guidelines issued by the 

Institute of Virology, Slovak Academy of Sciences. 

Peritoneal ICR mice macrophages were elicited by intraperitoneal injection of 

thioglycolate broth (Difco). After 5 days, the mice were sacrificed and peritoneal 

macrophages were collected by peritoneal lavage using Hanks balanced salt solution.  

 

TNF-α induction assay 

Cells were washed by centrifugation and 1 × 106 cells were resuspended in 0.5 ml 

RPMI-1640 with L-glutamine (PAA Laboratories GmbH, Austria), supplemented with 10 % 

heat-inactivated fetal bovine serum (Gibco) and placed to each well of 24 wells culture 

microplates (Sarstedt) for 2 h at 37°C in a humidified atmosphere of 5% CO2. Non-adherent 

cells were washed away. 0.5 ml of complete RPMI-1640 medium, containing appropriate 



! 45!

stimulant (pleuran or spent brewers yeast carboxymethylated beta glucans), was added to 

each well. After cultivation, the supernatants were collected and stored at –40°C. 

The level of TNF-α was determined in cell culture supernatants collected after 3 an 6 

h of cultivation by ELISA kit (TNF-α Instant ELISA, Bender MedSystems) according to the 

manufacturer’s instructions. Mouse TNF- α was used as a standard. 

2.16. Statistical treatment of data 

All the represented values are means from biological triplicates. Error bars and 

variation depict standard errors. Two tailed, two-sample unequal variance Student’s t-test 

was used to compare means of physiological parameters. P-values less than 0.05 were 

considered statistically significant.  

Calculations of means, standard error and t-test were performed with MS Excel 2008 

for Mac. vers. 12.2.9 . 
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3. Results  

3.1. SC14, BY4741 and tps1 strain growth dynamics and extracellular metabolite 
analyses 

To characterise yeast desiccation tolerance depending on nutritional status – we 

choose SC14, BY4741 and tps1 strains. SC14 is prototroph, diploid strain, specifically 

selectioned for dry baker’s yeast production (Beker and Rapoport, 1987). BY4741 and its 

trehalose synthesis mutant tps1 are auxotrophic (his, met, ura, leu), haploid strains of S288c 

origin (Brachmann et al., 1998). To characterise these strain desiccation tolerance during 

postdiauxie – exact timing of diauxic shift and postdiauxie growth phase needed to be 

determined.  We recorded strain growth dynamics and analysed extracellular metabolites at 

corresponding time points.  

SC14, BY4741 and tps1 (BY4741 derived trehalose synthase mutant, incapable to 

accumulate trehalose) strains were grown in YPD (yeast extract, peptone, glucose 2%) 

media; fig. 4.1.1 depict strain biomass growth dynamics over 54 h. Yeast growth was 

monitored spectrophotometrically as absorbance at 600 nm (Smits et al., 2012). Yeast 

biomass concentration as gram of dry weight per liter was calculated using experimentally 

determined transformation coefficients, which are specific for each strain g/L/ OD600: 

0.2798 (CEN.PK2), 0.2282 (BY4741), 0.346 (SC14). Theese transformation coefficients 

were determined gravimetrically from growing yeast cultures.  

 

 
Fig 3.1.1. Growth dynamics of SC14, BY4741 and tps1 strains.  
Biomass is expressed as grams of dry weight per litre (g DW / l). Growth curves are constructed as 
average of biological triplicates. Error bars represent standard error. In most cases error bars are 
smaller than graph markers. 
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In parallel to determination of yeast biomass dynamics over time, samples for 

extracellular metabolite analyses were collected. Acetate, succinate, pyruvate, glucose, 

glycerol and ethanol levels are plotted for each strain, refer to fig. 3.1.2 A-F.  

  

  

  

Fig 3.1.2. Extracellular metabolite dynamics during SC14 (A, B), BY4741 (C, D) and tps1 (E, F) 
cultivation. Metabolite concetration were determined by HPLC analyses.  
All metabolites are depicted as mili C-mols. Legend is similar for A, C and E graphs and F, D, B. 
Each data point is average of biological triplicates. Standard deviations did not exceeded 10 %. They 
are not included in figures for the sake of clarity. Detailed metabolite data are available at Annex I. 
 

First rapid yeast biomass growth happens on expense of fermentable carbon source 

(glucose). This is exponential phase and it lasts till 10 h for SC14 and approx. 12 h for 

BY4741 and tps1 (fig. 3.1.1). Then growth on fermentation products continues (ethanol 

acetate, glycerol), this is diauxic growth and it continues till the very end of experiment (54 
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h). Both biomass dynamics and extracellular metabolite results testifies this as diauxic rather 

than stationary phase. When glucose is depleted, ethanol and other extracellular metabolites 

are sequently consumed. No carbon substrate got depleted over 54 h of cultivation for none 

of strains (fig. 3.1.2 A-E); in the same time biomass growth does not ceases till the very end 

of cultivation. Stationary phase for these strains does not set in when cultivated in YPD 

media for 54 or more hours, instead, postdiauxic phase lasts from 10 or 12 till 54 h of 

cultivation or more.  

3.2. Desiccation tolerance depending on cultivation time  

Traditionally, S. cerevisiae desiccation tolerance has been explored in “stationary 

phase cells” (Borovikova et al., 2014, Espindola et al., 2003, Guzhova et al,, 2008). We 

aimed to test S. cerevisiae desiccation tolerance during postdiauxie. We determined, that for 

SC14, BY4741 and tps1 strains postdiauxic growth lasts from 12 till at least 48 h.  This was 

testified by biomass dynamics and extracellular metabolite analyses: oxidative growth on 

ethanol lasted all over from 10 or 12 h till the 54 or more hours of cultivation (see fig. 3.1.2). 

We choose 24 and 48 h cultivation time points as representatives for “early” and “late” 

postdiauxic growth phases respectively.  

We analyzed cells survival rate, trehalose, reduced glutathione and 

malonildialdehyde content. First set of experiments was done with S. cerevisiae strain SC14, 

traditional model for desiccation stress physiology investigations in LU MBI (Zikmanis et 

al., 1982, Khroustalyova et al., 2001, Trofimova et al., 2010). 

We checked if there are any differences in SC14 strain desiccation tolerance in cells 

harvested at 24 h and 48 h of cultivation. Yeast biomass was air-dried for 16-18 h to reach 

residual moisture content of 8 – 12 %.  

Desiccation tolerance was estimated by primuline fluorescence test (Rapoport and 

Meisel, 1985). Results are depicted in fig. 3.2.1.   
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Fig. 3.2.1. SC14 strain desiccation tolerance when harvested in early (early) and late (late) 
postdiauxie phase. 
Mean values are calculated from biological triplicates, error bars depict standard deviations.  
Star represent statistically significant difference between survival of different growth phases (t test, 

p<0.05) 
 

Desiccation tolerance (survival %) of SC14 strain when harvested in early or late 

postdiauxie phases were 18.5 ± 2 % and 55 ± 8 % respectively. 

Trehalose has been often described as typical metabolite ensuring S. cerevisiae stress 

(including desiccation) tolerance (Gadd et al., 1987, Francois and Parrou 2001, Herdeiro et 

al., 2006). Besides, there are data on trehalose increase during desiccation process (Krallish 

et al., 1997). So, we decided not only measure trehalose content in early and late postdiauxic 

yeast cells, but also before (fresh) and after (dry) desiccation. Results are depicted in figure 

4.2.2.  

 
Fig. 3.2.2. SC14 strain trehalose content [mg/ g DW] before (fresh) and after (dry) desiccation 
when harvested in early postdiauxie (early) and late postdiauxie (late) phases.  
Mean values are calculated from biological triplicates, error bars represent standard deviations. 
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Early postdiauxie cells had trehalose content of 28 +/- 5 mg/ g DW before and 30 +/- 

4 mg/g DW  after desicication; whereas late postdiauxie phase cells contained 70 +/- 1 mg/g 

DW before and 72 +/- 1 mg/g DW after desiccation. These results revealed no significant 

differences between trehalose content before and after desiccation (t test, p>0.05), but 

showed statistically significant difference between trehalose content in early and late diauxic 

phase. 

Primuline method used to estimate desiccation tolerance in a way demonstrates cell 

membrane integrity (fluorophore enters cells with compromised cytoplasmatic membranes). 

Cell membrane lipid peroxidation is one of cellular damages taking place during desiccation 

(Espindola et al., 2003, Franca et al., 2005). Malonyldialdehyde accumulation is s 

biochemical marker of lipid peroxidation. Malonyldialdehyde colour reaction with 

thiobarbituric (TBA) acid is common method how to evaluate these damages. We choose 

TBARS assay to evaluate desiccation effect on lipid peroxidation. Results are presented in 

figure 3.2.3.  

 

 
Fig. 3.2.3. TBARS content [uM/ g DW] of SC14 strain before and after desiccation when 
harvested in early and late postdiauxie phases. 
Mean values are calculated from biological triplicates, error bars represent standard deviations. 
 

Higher lipid peroxidation levels correlate with lower survival rates (compare 3.2.1. 

with fig. 3.2.3.). Besides, increase in average TBARS levels after desiccation is observed in 

both cases – cells from early and late postdiauxie; however, no significantly different with 

respect to desiccation (t test, p>0.05).  
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Glutathione is simple, non-enzymatic system for ROS scavenging. Concentration of 

glutathione reduced form characterizes cells ability to scavenge ROS. Glutathione dependent 

ROS scavenging system is reported to be actively involved in lowering cytoplasmic ROS 

during desiccation and subsequently – enchancing cell’s survival (Espindola et al., 2003). 

We tested content of glutathione reduced form (GSH) before and after desiccation of 

early and late postdiauxic phase cells (see fig. 3.2.4.). 

 

 
Fig. 3.2.4. GSH content [uM/ g DW] of SC14 strain before and after desiccation when 
harvested in early and late postdiauxie. 
Mean values are calculated from biological triplicates, error bars represent standard deviations. 
Star represents statistically significant difference between GSH content of postdiauxic cells before 
and after desiccation. (t test, p<0.05). 
 

Interestingly enough, fresh cells from early postdiauxie phase contain more GSH 

than fresh late postdiauxie phase cells (22+/- 0.2 and 14 +/-1 uM/ g DW respectively). Cells 

from early postdiauxic growth phase lose GSH after desiccation most probably in reaction to 

accumulated ROS. After desiccation, early postdiauxie phase cells contained 7+/- 0.35 and 

late - 13+/- 2 uM/ g DW of GSH. Thus early postdiauxie phase cells loose significant 

amount of GSH while no statistically significant changes in GSH content in late postdiauxie 

phase cells before and after desiccation are observed.  

Here, it seems, that increased trehalose content might be sufficient to ensure high 

desiccation tolerance. SC14 cultivation for prolonged period after glucose exhaustion ensures 
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cells to accumulate large amount of trehalose, what subsequently leads to elevated 

desiccation tolerance. Additionally, membrane peroxidation of early postdiauxic cells is high 

(what correlates to low survival); GSH level is high in fresh early postdiauxic cells and low 

in dry cells – displaying putative ROS scavenging activity. 

To further elucidate role of trehalose during desiccation tolerance in cells of early and 

late postdiauxic phase cells, we did set of experiments on haploid reference strain BY4741 

and respective tps1 deletion strain (incapable to accumulate trehalose).  

Similar cultivation time points (early postdiauxic, 24 h and late postdiauxic, 48 h) 

were chosen similarly to experiments with SC14. Similarly to SC14, desiccation tolerance, 

trehalose content, GSH and TBARS content were measured.  

Similarly to SC14 strain, survival after desiccation of BY4741 in early and late 

postdiauxic growth phases differed significantly, albeit to different degree (p<0.025 for tps1 

strain and p<0.0015 for BY4741), see fig. 3.2.5.  

 

 

Trehalose content of BY4741 and respective tps1 mutants before and after desiccation 

were estimated.  No significant, desiccation dependent, differences in trehalose content (mg/ 

g DW) were observed (see fig. 3.2.6). 

 

 
Fig. 3.2.5. BY4741 (WT) and respective tps1 strain survival after desiccation when 
harvested in early and late postdiauxie phase.  
Mean values are calculated from biological triplicates, error bars represent standard deviations.  
Stars represent statistically significant differences between survival of different growth phases (t 
test, p<0.05). 
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Fig. 3.2.6. BY4741 and tps1 deletion strain trehalose content [mg/ g DW] before and after 

desiccation when harvested in early and late postdiauxie phases. 

Mean values are calculated from biological triplicates, error bars represent standard deviations. 
 

Since analytical method (anthrone assay) used to measure trehalose content is sensitive to 

glucose moiety rather than disaccharide trehalose itself, nonspecific analytical signal might 

come from cytoplasmic, water-soluble sugar phosphates (Mokrasch, 1954). This might 

explain some trehalose presence seen in fig. 3.2.6. even in trehalose synthesis deficient 

mutant  

Similar to previous results from strain SC14, we did not observe statistically 

significant changes in trehalose content before and after desiccation. Thus we concluded, 

that desiccation per se has no effect on trehalose content in S. cerevisiae cells under our 

experimental conditions. Therefore, we decided to measure trehalose concentration just 

before desiccation in all following experiments. 
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Fig. 3.2.7. TBARS content [uM/ g DW] of BY4741 (WT) and corresponding tps1 deletion 
strain before and after desiccation when harvested in postdiauxie and stationary (stat) phases.  
Mean values are calculated from biological triplicates, error bars represent standard deviations. 
 

Results of TBARS analyses of BY4741 and it’s tps1 deletion strain before and after 

desiccation in culture early and late postdiauxic growth phases are similar to those obtained 

from SC14 strain, see fig. 3.2.7.  Interestingly, highest desiccation tolerance corresponds to 

lowest concentration of TBARS (in the case of SC14 and BY4741 stationary phase cells).  

Although mean values of TBARS before and after desiccation are different, they are not 

statistically significant (t test, p>0.05). 

At last we checked changes in reduced glutathione concentrations before and after 

desiccation of BY4741 and respective tps1 deletion strain when sampled in early and late 

postdiauxic phase (fig. 3.2.8.). 
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Fig. 3.2.8. BY4741 (WT) and corresponding tps1 deletion strain reduced glutathione 
(GSH) content [uM/ g DW] before (fresh) and after (dry) desiccation when harvested in 
early and late postdiauxie phases. 
Mean values are calculated from biological triplicates, error bars represent standard deviations 
Stars represent statistically significant differences between GSH content in fresh and dried yeast 
(t test, a<0.05). 
 

It is hard to interprete oxidative marker results (like cell GSH and TBARS content) for cell 

population after desiccation, since part of the cells have damaged, leaking membranes and 

oxidation processes proceed differently as in the case of cells with fully integral plasma 

membrane. To fully elucidate oxidative stress development during desiccation stress – cell 

population enrichment into highly tolerant and intolerant fractions should be done and their 

“oxidative fate” be estimated separately.  

3.3. S. cerevisiae redox cofactor engineering to enhance glutathione turnover and 
desiccation tolerance 

3.3.1. Glycerol cycle construction in S. cerevisiae  

As demonstrated in previous results, GSH is depleted after desiccation or during 

desiccated state (fig. 3.2.4. and 3.2.8.). One possible mechanisms of desiccation in-tolerance 

can be related to ineffective oxidative stress response – cell’s inability to neutralise 

accumulated ROS after desiccation (Franca et al., 2007). Our intention was to try to increase 

GSH content of the cells, thus increasing oxidation stress tolerance while in desiccated state. 
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Reduced – oxidized glutathione pair forms the main non-enzymatic oxidative stress defense 

system in S. cerevisiae. Here, the reduced glutathione (GSH) is the active component, 

capable to sequester reactive oxygen species (Penninckx, 2002). 

There are two strategies how to increase GSH concentration in S. cerevisiae cell:  

- increase in de novo synthesis, 

- increase the rate of GSH recycling (NADPH dependent GSSG reduction). 

De novo synthesis is tightly regulated by GSH negative feedback, thus making it 

nonattractive spot for engineering (illustrated in fig. 1.3.5.). So, we chose to increase 

cytoplasmic NADPH supply, thus enchancing GSH turnover. 

Several enzymes produce NADPH in S. cerevisiae cytoplasm: 

 glucose-6-phosphate dehydrogenase (Zwf1p), aldehyde dehydrogenase (Ald6p), isocytrate 

dehydrogenase (Idp2p) (Minard and McAlister-Henn, 2005). Additionally there is a putative 

enzyme glycerol dehydrogenase (EC 1.1.1.72), catalyses NADP dependent reaction from 

glycerol to glyceraldehyde, putatively encoded by YPR1 and GCY1 in S. cerevisiae.  

We decided to construct “NADP dependent glycerol cycle” – similar to 

transhydrogenase cycle active in moulds see fig. 3.3.1. Glycerol cycle presence in native S. 

cerevisiae has not been proven despite numerous efforts (Costenoble et al, 2000, Norbeck 

and Blomberger 1997).  

 
Fig. 3.3.1. Redox cofactor engineering in S. cerevisiae via introducing glycerol cycle.   
Dark arrows depict engineered reactions (GLD2 NADP dependent glycerol dehydrogenase from H. 
jecorina and overexpression of S. cerevisiae DHA kinase DAK1) . 
 GPD1- glycerol-3phosphate dehydrogenase 
GPP1 – glycerol-3phosphate phosphatase 
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In order to find out candidates for glycerol cycle engineering, we did a ClustalW 

alignment of known NADP dependent fungi and mould glycerol oxidoreductases, see fig. 

3.3.2.  

 

Theese proteins group into two domains – what are described by two enzymatically 

different activities: EC.1.1.1.72 (NADP+ dependent glycerol dehydrogenase) and 

EC.1.1.1.156 (NADP dependent glycerol 2-dehydrogenase). H. jecorina GLD2, the A. 

nidulans GLDB and the T. atroviride GLD1 form one NADP dependent glycerol 

dehydrogenase cluster (Liepins et al., 2006). S. cerevisiae YPR1 and GCY1 were also 

included into analyses, however they grouped together with H. jecorina GLD1 and 

Penicillium citrinum oxidoreductases. Literature data shows, that theese enzymes also posess 

NADP dependent glyceorl oxidative activity. However, this activity was about 4000 times 

lower than in the reducing direction with dl-glyceraldehyde and NADPH (Ford and Elis, 

2002).  

We chose to link glycerol with dihydroxyacetone (DHA) via introducing H. jecorina 

NADP dependent glycerol dehydrogenase gene (GLD2) (Brusbardis and Liepins, 2010, 

Liepins et al., 2006). Additionally we overexpressed S. cerevisiae endogeneous DHA kinase 

DAK1 (Molin et al., 2003) thus completing the cycle. Both GLD2 and DAK1 were integrated 

into CEN.PK2 strain genome in various positions: DAK1 in fcy1, GLD2 in ade8 or lys1. 

 
Fig. 3.3.2. Clustalw analyses of fungal NADP dependent glycerol dehydrogenases protein 
sequences.  
EC. 1.1.1.156 – a glycerol: NADP 2-oxidoreductase (facilitates the reaction of glycerol and 
NADP to form DHA and NADPH). 
 EC. 1.1.1.72 – NADP+ oxidoreductase dependent (facilitates the reaction of glycerol and 
NADP to form d-glyceraldehyde and NADPH). Enzymes are grouped based on their gene 
sequences. Names depict organim and respective gene. 
Hj- Hypocrea jecorina, Pc – Penicillium citrinum, Sc – Saccharomyces cerevisiae, An – 
Aspergillus nidulans, Ta – Trichoderma atroviridiae 
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Integration was done by two-step gene disintegration system as described by Sadowski et al., 

2007.  

Successful transformants were checked for DAK1 and GLD2 expression by qPCR 

(see fig. 3.3.3. A). All transcripts were normalized to housekeeping gene IPP2 (inorganic 

polyphosphatase) transcription level. 

 

Strain R4 (CEN.PK2 GLD2::ade8 DAK1::fcy1) revealed the highest GLD2 and 

DAK1 expression. This was partly confirmed by GLD2 zymograms – R4 had the second 

highest GLD2 activity after strain expressing GLD2 in plasmid (see fig. 3.3.3., B lane 6).  

To estimate if all elements of glycerol cycle are present, we did additional 

zymograms, specific for glucose-6P dehydrogenase (to estimate status of cells main NADPH 

production site), glycerol dehydrogenase (Gld2p) and glycerol-3phosphate dehydrogenase 

(Gpd1p). Yeast were grown in full SD media on two substrates – glucose and glycerol to see 

if parts of cycle are glucose repressed. Results are depicted in fig. 3.3.4.  

 

 

 

 
A 

 
B  

Fig. 3.3.3. A GLD2 and DAK1 specific qPCR normalized to IPP2 transcripts.  
B  Glycerol dehydrogenase specific zymogram of Gld2p activity in CEN. 
PK2 background (WT) strains.  
Arrow points to specific NADP dependent glycerol dehydrogenase fraction. Staining was done 
with INT and PMS mix in the presence of 0.1 M glycerol and 0.2 mM NADP. 
All strains tested here are of CEN.PK2 background: 
WT CEN.PK2 trp2 ura3 his2 leu2,  
 R1 WT fcy1:: DAK1,  
 R2 WT lys2:: GLD2  
R3 WT lys2:: GLD2,  fcy1:: DAK1,  
R4 WT ade8:: GLD2,  fcy1:: DAK1 
R5 WT ade8:: GLD2 
PL – WT + GLD2 expression plasmid 
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All zymograms were stained by iodonitrotetrasolium chloride (INT) in the presence 

of electron acceptor/donor phenazine methosulphate (PMS). 0.1 M of glucose-6 phosphate 

and 0.2 mM of NADP were used for Zwf1p zymograms; 0.1 M of glycerol and 0.2 mM of 

NADP were used for Gld2p zymogram, 0.1 M of glycerol-3 phosphate and 0.2 mM of NAD 

were as used as Gpd1p zymogram substrates. As seen from staining of different protein 

samples – Gpd1p activity is absent when cells are grown on glucose, therefore eventual 

glycerol cycle might work as “real” cycle only when cells are grown on non-repressive 

carbon sources, otherwise cycle might work as “half cycle” (Gld2p and Dak1p) converting 

glycerol to DHA and DHAP. Interestingly, Zwf1p activity is higher in derepressed (glycerol 

grown) cells.  

3.3.2. Effects of glycerol cycle on yeast physiology 

To check if GLD2 insertion and/or DAK1 overexpression has effect on engineered 

strain growth kinetics, we tested these strain growth on glucose in SD media, see fig. 3.3.5. 

Not GLD2, nor DAK1 overexpression had any affect on yeast growth on glucose. All of 

engineered strains grew similarly to CEN.PK2 series parent strains H1346.  

 
Fig. 3.3.4. Expression of glycerol (Gld2), glycerol-3phosphate (Gpd1) and glucose-
6phosphate (Zwf1) dehydrogenases as analysed by zymograms in CEN.  
PK2 strain and derivative strains when grown on glucose and glycerol. 50 ug of protein was 
applied to each lane.  
1 CEN.PK2 parent strain (WT),  
2 R3 WT fcy1::DAK1, 
3 R5 WT ade8::GLD2, 
4 R4 WT fcy1::DAK1 ade8::GLD2, 
5 WT plasmid 3324 expressing GLD2 
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Fig. 3.3.5. CEN.PK2 series strain growth in synthetic dextrose (SD) medium.  
Strain genetics are as follows: 
H1346 CEN.PK2 MATa leu2-3/112 ura3-52 trp1-289 his3-1 MAL2-8c SUC2 
R0 H1346 ade8Δ0, fcy1Δ0 
R1 H1346 fcy1::DAK1 
R2 H1346 lys2::GLD2 
R3        H1346 lys2::GLD2, fcy1::DAK1 
R4 H1346  ade8::GLD2, fcy1::DAK1 
R5 H1346 ade8::GLD2 
 

Samples to estimate glutathione content were harvested after 29 h of growth in YPD 

media supplemented with additional adenine in surplus (50 mg/l). Total glutathione content 

was expressed in reduced glutathione (GSH) equivalents: GSH concentration + 2x GSSG 

concentration. Glutathione content of developed strains did not differ from parent strain (see 

fig. 3.3.6. A). In the same time 2GSH/GSSG proportion differed (fig. 3.3.6. B). Strains R2 

and R3 revealed significant increase in 2GSH/GSSG ratio - from 4.5 in parent strain to 15 

and 10 in engineered R2 and R3 respectively.  

The increased proportion of GSH versus GSSG is indicator of more reduced media 

inside the cell, what could increase oxidative tolerance and possibly desiccation tolerance.  
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A 
 

B 
Fig. 3.3.6. CEN.PK2 series strain glutathione content (A) in reduced glutathione (GSH) 
equivalents (uM/ g DW) and GSH/GSSG ratio (B).  
Strain genetics are as follows: 
H1346 CEN.PK2 MATa leu2-3/112 ura3-52 trp1-289 his3-1 MAL2-8c SUC2 
R0 H1346 ade8Δ0, fcy1Δ0 
R1 H1346 fcy1::DAK1 
R2 H1346 lys2::GLD2 
R3       H1346 lys2::GLD2, fcy1::DAK1 
R4 H1346  ade8::GLD2, fcy1::DAK1 
R5 H1346 ade8::GLD2 
 

Desiccation stress tolerance of newly developed strains was assessed. Results are 

depicted in fig. 3.3.7. In fact, no correlation to desiccation tolerance with increased 

2GSH/GSSG ratio was observed. Strangly only R4, where GLD2 was integrated in ade8 

gene, showed the strongest increase in desiccation tolerance albeit it did not had significant 

improvement in GSH/GSSG ratio (fig. 3.3.6. B). 
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Fig. 3.3.7. H1346 (WT) and derived recombinant strain (R1-4) desiccation tolerance when 
grown in YPD media and harvested in early or late postdiauxic growth phase.  
Additionally two strains (WT and WT with GLD2 expression plasmid 3374) were grown in SD 
medium till early (24 h) and late postdiauxie (48 h) phase.  
Viability after desiccation was assayed with primuline method.  
 

From here (fig. 3.3.6. B) we concluded, that cofactor engineering has potential to improve 

intracellular glutathione species levels, however, it does not improve yeast desiccation 

tolerance (fig. 3.3.7.).   

3.4. Nutritional effects on yeast desiccation stress tolerance 

3.4.1. Adenine auxotrophy effect on yeast desiccation stress tolerance 

When studying glycerol cycle effects in CEN.PK2 derived strains, we observed 

bizarre side effect: only strain with ade8 disruption displayed high desiccation tolerance in 

early and late postdiauxie phase when cultivated in YPD medium. Additionally, WT and WT 

containing GLD2 expression plasmid displayed enhanced desiccation tolerance when 

harvested in late postdiauxie phase. See fig. 3.3.6.  

Since ade8 disruption leads to stop of de novo adenine synthesis (Rebora et al., 

2001), then engineered strains could behave differently when media adenine is exhausted. To 

check if this is the case, we tested if desiccation tolerance of ade8 disrupted strains is 

adenine dependent.  

We cultivated CEN.PK2 ade8::0 and ade8::GLD2 fcy1::DAK1 co-expressing strain 

in YPD medium and monitored increase in OD600. When exponential increase of OD600 

ended (glucose depleted), we added adenine (40 mg/l final concentration) and/ or glucose 
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(2% final concentration), and sterile water was used as negative control. After 2 h of 

incubation, cultivation was interrupted, and cells were harvested and dried. Based on 

previous results, trehalose content of the cell was determined once - before desiccation.  

Survival around 30 – 35 % was observed only for strains with ade8 deletion (either deletion 

or integration vector with GLD2) in combination with media w/o additional adenine supply, 

fig. 3.4.1 A. In parallel, trehalose concentration for the same strain- media combination 

increased remarkably (around 140 mg/ g DW), fig. 3.4.1 B 

 

Yeast extract is the only component of YPD media containing adenine. Depending on 

vendor, adenine content can be highly variable there – it can vary from 0.34 up till 1.91 mg / 

g yeast extract) (Van Dusen et al., 1997).  We checked adenine content of yeast extract used 

in our experiments by hypoxanthine oxidase – horseradish peroxidase coupled reaction and it 

was 1.3 mg / g yeast extract or 13 mg / l of broth.  

Increased stress tolerance induced by auxotrophy per se is novelty for the desiccation 

tolerance studies in baker’s yeast model, therefore we decided to explore it in detail.  

Previous results point to the fact that prolonged postdiauxic cultivation always leads to 

increased desiccation resistance. These results point to additional nutrition dependent effects 

which might play a role in auxotrophic strains in poorly defined medias. Additionally, 

adenine depletion in media per se might induce stress response reactions also in adenine 

prototrophs, therefore different genetic screens should be used to reveal genetic aspects of 

A  B 

Fig. 3.4.1. CEN.PK and derived recombinant R5.0 (CEN.PK ade8) and R4 (CEN.PK ade8::Gld2 fcy::Dak1) 
strain desiccation tolerance (A) and trehalose content (B).  
Cultures were grown in YPD media till the end of exponential growth phase when broth were supplemented 
with water, glucose and adenine in the combinations depicted above. Cultures were cultivated for another 2 h 
and then harvested and dried for 16 h.  Survival after desiccation was estimated by primuline fluorescence 
method. Trehalose content was estimated by anthrone assay.  
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auxotrophy induced desiccation tolerance. We decided to explore adenine dependent 

desiccation tolerance and trehalose accumulation throughout exponential, diauxie and 

postdiauxie growth phases by W303 prototroph, W303 ade2 and W303 ADE2 strains (see for 

genotype details in material section, table 2.1.).  

W303 ade2 strain has nonfunctional ade2 and in the case of adenine deficiency it 

accumulates red pigment – oxidized AIR (ribosylamyloimidasol). When available in 

medium, adenine is actively transported in the cell and stored there. If media adenine is 

depleted, intracellular resources are used and at last – adenine de novo synthesis sets in. In 

the case of W303 ade2 strain, when de novo synthesis starts, oxidised intermediate AIR (red 

pigment) accumulates (VanDusen et al., 1997). In this way, accumulation of red pigment is 

reliable marker of adenine starvation in yeast cell.  

To determine cultures survival of low desiccation tolerance (1 % or less) primuline 

method gives erroneous results, since impact of each putatively alive cell is large (if 1000 

cells per sample are counted).  Classical method for viability estimation is serial dilution 

followed by plating and CFU count. We compared primuline and plating results of 

desiccated CEN.PK yeasts in parallel, results are depicted in fig. 3.4.2. 

 

 
Fig. 3.4.2. Primuline fluorescence and plating method (CFU) comparison. 
CEN.PK2 WT and developed R1-4 cultures were grown till early and late postdiauxie, desiccated and 
their survival were determined in parallel by plating and primuline method.  
1000 cells were counted for each microsope slide, plate counts were done between 20 – 200 colonies/ 
plate.  
Logarithmical scale was chosen to display all results.   
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As demonstrated in fig. 3.4.2, there is poor consensus between primuline and plating method 

if culture viability is 1% or less. Also systematic overestimation of viability by primuline 

method persists, slope coefficient 1.78.  

Calahan et al., 2011 and Welsh et al., 2013 have reported on serial dilution spot test 

as semi- quantitative tool to estimate desiccation tolerance in large viability interval (0.0001 

– 100 %). From our previous results on adenine dependent desiccation tolerance (fig. 3.4.1), 

we learned that 10 fold or more difference in desiccation tolerance among strains are 

suspected (similar metrics to Calahan et al., 2011), thus we chose to apply the same viability 

estimation method.  

To estimate dynamics of desiccation tolerance over culture growth in YPD medium, 

we did shake flask cultivations of W303 prototroph, W303 ade2 and W303 ADE2 strains and 

sampled it starting from OD600=1. 1 ml of culture at OD600=1 was washed with distilled 

water, spotted on YPD media for initial cell count, centrifuged, supernatant was removed 

and left to desiccate at desiccator for 10 h. After desiccation cells were rehydrated with 

water, serially diluted and spotted on YPD solid agar media. Survival rates were calculated 

as proportion of CFU before and after desiccation. Experiment was done in triplicates, spot 

test was done in technical duplicate. Yeast growth and desiccation tolerance dynamics are 

depicted in figure 3.4.3.  

 
Fig. 3.4.3. Desiccation tolerance during W303 prototroph, W303 ADE2 and W303 ade2 
cultivation in YPD media.  
Cells were desiccated in +30°C for 10 h. Desiccation tolerance was quantified by serial dilution 
spot test (Calahan et al., 2011). 
Lines denote strain growth curves in logarithmic scale and bars survival rates. Error bars depict 
standard deviation from biological triplicates. Viability in first two time points (8 and 12 h) is 
nearly zero for all strains. Vertical interrupted line depicts time of adenine depletion.  
Asterisks depict difference between W303 ade2 and both W303 prototroph and W303 ADE2 
strains desiccation tolerance as significant (p<0.05). Adopted from Kokina et al.,  2014. 
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Desiccation tolerance of W303 ade2 strain peaked immediately after adenine 

depletion.  Additionally, adenine depletion happened at the same time as glucose depletion 

and subsequent slowing of cell growth speed took place (fig. 3.4.4.). However, desiccation 

tolerance of other strains (adenine prototrophs) lagged - portion of those strain population 

became desiccation tolerant just after 20 and more hours of cultivation. Based on these 

results, we concluded, that increase in desiccation tolerance for W303 ade2 strain is caused 

by adenine depletion purely. 

In parallel we monitored trehalose content of the W303 series strain cells. Results are 

depicted in fig. 3.4.4.  

 
Fig. 3.4.4. Trehalose accumulation during W303 prototroph, W303 ADE2 and W303 ade2 
cultivation in YPD media.  
Trehalose was measured by anthrone method. Lines denote strain growth curves in logarithmic 
scale and bars trehalose content. Error bars depict standard deviation from biological triplicates. 
Vertical interrupted line depict time of adenine depletion.  
Asterisks depict difference between W303 ade2 and both W303 prototroph and W303 ADE2 strain 
trehalose content as statistically significant (p<0.05).   
Figure adopted from Kokina et al., 2014. 
 

We observed, that slowing of growth speed correlates with adenine depletion in rich media. 

Thus, ade strain growth dynamics can give a hint (even without optical clues, like red 

pigmentation) when adenine is depleted.  

When keeping this in mind, we monitored culture growth of adenine mutants (ade8) 

of other strain background – CEN.PK2. We observed similar ade- dependent increase in 

desiccation, results are demonstrated in fig. 3.4.5.   
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Fig. 3.4.5. Desiccation tolerance of CEN.PK prototroph, CEN.PK ADE8 and CEN.PK 
ade8 when cultivated in YPD media.  
Cells were desiccated in +30°C for 10 h. Desiccation tolerance was quantified as in Calahan 
et al., 2011. 
Lines denote strain growth curves in logarithmic scale and bars survival rates. Error bars 
depict standard deviation from biological triplicates. Viability in first two time points (8 and 
12 h) is nearly zero for all strains. Vertical interrupted line depicts time of adenine depletion.  
Asterisks depict difference between CEN.PK ade8 and both CEN.PK prototroph and CEN.PK 
ADE8 strains desiccation tolerance as statistically significant (p<0.05).  Adopted from Kokina 
et al., 2014. 
Similar to W303 series strain cultivation, we did analyses of trehalose dynamics during 

CEN.PK strain series cultivation in rich media. Results are depicted in fig. 3.4.6. 

 
Fig. 3.4.6. Trehalose accumulation during CEN.PK prototroph, CEN.PK ADE8 and 
CEN.PK ade8 cultivation in YPD media. Trehalose was measured by anthrone method.  
Lines denote strain growth curves in logarithmic scale and bars trehalose content. Error bars 
depict standard deviation from biological triplicates. Vertical interrupted line depicts time of 
adenine depletion. Asterisks depict difference between CEN.PK ade8 and both CEN.PK 
prototroph and CEN.PK ADE8 strains strains trehalose content as statistically significant 
(p<0.05). Adopted from Kokina et al., 2014. 
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In the case of CEN.PK series, trehalose accumulation before desiccation does not improve 

survival rates in prototroph and ADE8 strains.  

Carbon source (fermentative or oxidative) changes dynamically when yeast cells are 

grown in rich, glucose medium (like YPD). First of all, glucose is exhausted and then 

fermentation end products are oxidized. Depending on media adenine content, adenine 

starvation might set in different situations: when there is still some glucose left (glucose 

repression is on) and when there are only oxidative substrates around. Calahan et al., 2011 

have reported on set of genes essential for desiccation tolerance in BY4741 strain 

background. Many of them belong to genes critical for mitochondrial metabolism. We 

decided to model both of those situations and test in which case mitochondrial metabolism is 

critical to support desiccation tolerance by adding electron transport chain inhibitor 

antimycin A. 

We grew W303 ade2 yeast in SD media with 2 % of glucose or ethanol as carbon 

source till exponential phase (OD600 =1-2), then shifted media to fresh one with 

combination of carbon source and/or adenine with and without antimycin A. Cultivation in 

the broth was done for 4 h. OD600 was measured; 1 ml of cells at OD600 was harvested, 

washed with distilled water. Part of cells were serially diluted and spotted on solid YPD 

media other - centrifuged, supernatant discarded and biomass left to desiccate at desiccator 

for 6 h +30°C. Cells were resuspended in appropriate volume of water (to bring suspension 

to OD600=1), serially diluted and spotted on solid YPD media. Survival was calculated as 

proportion between plate test CFU before and after desiccation. All data were normalized to 

survival of adenine and carbon source deficient (ade-C-) cultivation. Results are depicted in 

figure 3.4.7 for glucose grown cells and figure 3.4.8 for ethanol grown cells.  

Desiccation tolerance of adenine starved cells incubated without C source exhibited 

5% and 2 % survival, if precultivated with glucose and ethanol respectively. 
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Fig. 3.4.7. Antimycin A effect on desiccation tolerance of W303 ade2 cells in the presence 
and absence of adenine.  
2% of glucose was used as carbon source. Antimycin A concentration was 20 ug/ml. 
Bars depict average, but error bars depict standard deviations from biological triplicates. 
Asterixs note statistical differences (non parametrical t test, p<0.05), between ade-C- and any 
other glucose/adenine combination. 
 

 

 
Fig. 3.4.8. AntimycinA effect on desiccation tolerance of W303 ade2 cells in the presence 
and absence of adenine if ethanol is used as carbon source.  
AntimycinA concentration was 20 ug/ml. Bars depict average, but error bars depict standard 
deviations from biological triplicates. Asterix note statistically significant differences (non 
parametrical t test, p<0.05), between ade-C- and any other ethanol/adenine combination. 
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Antimycin A effectively decreases survival rates independent of adenine starvation. Adenine 

starvation dependent desiccation tolerance effect is most profound in glucose grown cells. In 

ethanol grown cells desiccation tolerance is determined by presence of oxidative carbon 

source primarily.  

3.4.2. Other auxotrophy effects on yeast desiccation stress tolerance 

Many laboratory yeast strains (W303, S288C, CEN.PK and FY series) contain 

common set of auxotrophic markers.  Adenine is among typical ones (ade2 is marker for 

W303 strain). Additionally histidine, leucine, uracil, and tryptophan (his, leu, ura, and trp) 

are the most common auxotrophic markers of S. cerevisiae strains used in physiology studies 

(Pronk, 2002; Da Silva and Srikrishnan, 2012). As demonstrated in previous chapter, 

starvation for adenine leads to elevated, desiccation tolerance.  

Similarly to adenine starvation experiments, we tested if other auxotrophies has any 

effect on desiccation tolerance in W303 ade2 and CEN.PK ade8 strains. Yeasts were 

cultivated in SD media supplemented with all necessary amino acids till the exponenential 

phase (OD600 = 1-2). Then cells were harvested, washed with distilled water, resuspended 

in fresh SD media with particular auxotrophic amino acid omitted. After 4 h of incubation, 

desiccation and CFU spot test were done similarly as in the case of adenine auxotrophy. 

Results are depicted in fig. 3.4.9.  

 
Fig. 3.4.9. Desiccation tolerance of W303 ade2 and CEN.PK ade8 cells after incubation of 
cells in SD, glucose 2 % media without particular auxotrophic agent.  
Survival is normalized to adenine auxotrophy (relative survival in adenine starvation was set 
to 100 %).  Bars depict average, but error bars depict standard deviations from biological 
triplicates.  
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Desiccation tolerance was depicted as relative to desiccation tolerance of adenine starvation 

(100 %). In absolute numbers survival after adenine starvation of W303 ade2 strain and 

CEN.PK ade8 were 2 % and 1.2 % respectively. Results demonstrate, that adenine starvation 

indeed is special, type starvation effectively inducing cell’s quiescence.  

Welsch et al., 2013 identified importance of nutrient signalling pathways to ensure 

desiccation tolerance. We decided to test if rapamycin treatment would have additive effect 

on auxotrophy starvation pretreated cells. So, we tested rapamycin effects on CEN.PK2 ade8 

strain if rapidly growing (SD full media) or starved for adenine. Results are depicted in fig. 

3.4.10. Rapamycin effectively blocks TOR pathway in growing cell culture and thus 

increases desiccation tolerance. It does not have similar effect on cultures starved for 

adenine. 

3.4.3. Nutrient preference effects on S. cerevisiae desiccation tolerance 

During yeast growth, yeasts actively take up preferred nutrients first and then shift to 

“less preferred ones”. If several substrates are present, preference towards one or other 

sarbon or nitrogen source is made by nutrition signalling pathways PKA and TOR. To check 

if quality of carbon and nitrogen sources have effect on desiccation tolerance – we cultivated 

CEN.PK prototroph in SD media containing 2 % glucose, harvested cells, washed and 

inoculated in new medias with different carbon (glucose or galactose) and nitrogen 

(ammonia or urea). We cultivated cells in new media for 6 h and then desiccated cells. 

Survival was estimated by CFU spot test. Results are represented in fig. 3.4.11. as fold 

change normalized to cultivation w/o carbon or nitrogen sources.  

 

 
Fig. 3.4.10. TOR inhibitor rapamycin effect on desiccation tolerance in CEN.PK2 ade8 strain 
when grown in full media (SD+) or starved for adenine (Ade-) + denotes cultivation with 
rapamycin. 
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Fig. 3.4.11. Good (ammonia and glucose) and poor (urea and galactose) nitrogen and carbon 
source effect on CEN.PK2 prototroph desiccation tolerance.  
Results are depicted as fold change if normalised to yeast survival after desiccation when cultivated 
in broth w/o C or N source. Data are average of three independent cultivations, error bars depict 
standartdeviations. Asterix denote statistically significant differences (t test, p<0.05), between 
glucose-ammonia and any other N and C source combination. 
 

Alterations in carbon and nitrogen sources affects desiccation tolerance. Results 

demonstrate, that shift from glucose to galactose gives the most impact desiccation tolerance 

(more than 25 fold change when compared to rapid growing yeasts cultivated in media with 

glucose and ammonia). Nitrogen source shift from ammonia to urea gives less increase in 

desiccation tolerance: 7 or 15 fold change in glucose or galactose media. Most probably, 

different carbon and nitrogen sources alter signallisation through through PKA and TOR 

pathways. Our results imply, that PKA pathway could be master regulator of desiccation 

tolerance. 

3.5. Desiccation effect on beer yeast cell wall β-D-glucans 

Desiccation is one of last step of product (microbial biomass, protein, vitamins, etc.) 

downstream processing. Among crystallization and lyophilisation, desiccation and spray 

drying shapes product in the state, which is stable and easily transportable. 
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  Based on literature data, we tried to find out if desiccation per se can have additional 

application by enhancing activity of biological macromolecules. As an example of such 

application – we explored desiccation effects on spent brewer’s yeast β-D-glucan 

immunoactivity. 

 

Spent brewer’s yeast carbohydrates  

Starting our study we decided to explore the residual moisture dynamics of spent brewer’s 

yeast biomas during drying process.  Bottom fermenting spent yeasts from Bratislava 

brewery S.t.e.i.n. a/s was used. Data from two separate experiments with spent brewer’s 

yeast samples are pooled together to construct drying dynamics over time (see fig. 3.5.1.). 

 

 
Fig. 3.5.1. Spent brewer’s yeast drying dynamics over time.  
5th level polinome function approximation is added for representation and not for analysis purposes. 
 

Although variation between moisture content of ‘spent yeast cream’ exists (fresh spent yeast 

samples contained 65 % - 75 % of moisture), after 13 h of drying, all samples reached 

moisture around 8 %. Moisture content did not change when drying was prolonged up till 23 

h (see fig. 3.5.1.).  Therefore we assumed, that already 15 h is enough to obtain dry 

preparation with stable moisture content of the spent brewer’s yeast. Meanwhile survival rate 

of spent brewer’s yeast dropped from 90 % in fresh to less than 5 % (as estimated with 

primuline assay) after desiccation.  

To further characterize spent brewer’s yeast qualities during drying, we estimated the 

carbohydrate profile dynamics during desiccation process (fig. 3.5.2.).  
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Fig. 3.5.2. Spent brewer’s yeast carbohydrate profile dynamics over time.  
Linear approximations are added to each carbohydrate to orientate data and not for analysis 
purposes. 
 

Neither significant loss of β-D-glucans nor other carbohydrate species took place during 

desiccation.  Concentration of different carbohydrate species in glucose equivalents in 

milligrams per gram of  dry weight (mg/ g DW) in spent brewer’s yeast biomass were 61.4 

+/- 4 for β-D-glucan, 60.7 +/- 3.96 for glycogen, 35.0 +/- 2.5 for mannan and 12.8 +/- 1.75 

for trehalose. All carbohydrate quantifications were done with sulphuric acid - anthrone 

method.  

Results obtained were similar to previously published data on carbohydrate content 

of laboratory (Aguilar-Uscanga and Francois, 2003) and industrial yeast strains (Ouain et al., 

1981).  

To characterize purified fresh and dried spent brewer’s yeast β-D-glucans we chose 

C13 NMR analyses (fig. 3.5.3.). 
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Fig. 3.5.3. Purified (1→3)- β-D-glucan 13C  NMR spectra from fresh (A) and dried (B)  spent 

brewer's yeast. 
 

C13NMR spectrum reveals that drying does not affect the carbon backbone of spent brewer’s 

yeast β-D-glucans. Both spectra testify for highly purified 1-3 linked β-D-glucans, similar to 

that described in Sugawara et al., 2004. In addition to (1→3) linked β-D-glucan, a small 

fraction of (1→6) branching in the extracted glucan is present (as characterized by a small 

peak at 70.3 ppm, see fig. 4.4.3) (Du et al., 2012). Even though cell walls of S. cerevisiae 

might contain up to 8 % of chitin and 60 % of mannan (% of dry cell wall mass) (Aguilar-

Uscanga and Francois, 2003), only β-D-glucan specific spectrum was obtained with no 

glucosamine or mannose-related signals.  

 

β-D-glucans superspiralization (Congo red assay) 

Superspiralization is one of the qualitative characteristics of (1→3)- β-D-glucans. 

Triple helix, single helix and random coils are alternative 3D structures of (1→3)- β-D-

glucans (Du et al., 2012, Giese et al., 2008). Triple helix forms complexes with Congo red 

dye and characteristic red shift of maximum absorbance peak occurs. When superspiralized 

glucans are exposed to increased concentration of alkaline (like NaOH or LiOH), triple helix 

are disrupted, (1→3)- β-D-glucans remain in single helix or random coil forms and red shift 

of absorbance maximum disappears (Ogawa et al., 1972).  

Purified fresh and dried brewer’s yeast (1→3)- β-D-glucans demonstrated different 

degrees of red shift when they were incubated in solutions with increasing alkaline 

concentration and Congo red dye (fig. 3.5.4.).  
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Fig. 3.5.4. Congo red assay of purified 1,3 b-glucans from fresh and dried spent brewer’s 

yeast.  
 

Red shift of maximum absorbance of Congo red and glucan complex is lost rapidly (at lower 

NaOH concentrations) in the case of β-glucans purified from dried, when compared to β-

glucans from fresh, biomass (fig. 3.5.4.). Thus we conclude, that dried spent yeast biomass 

β-D-glucan preparations contain less triple helixes.  

 

β-glucans immunoactivity (TNF-α induction assay) 

Murine peritoneal macrophage cell culture tumour necrosis factor alpha (TNF-α) release 

assay is a convenient tool to estimate microbial polysaccharide immunogenic activity in vitro 

(Majtan et al., 2005, Howard et al., 2008).  

 

  Pleuran from 

Pleurotus ostreatus 

CM- glucan from 

fresh  

brewer’s yeast 

CM- glucan from dry 

brewer’s yeast 

 

  3 h 6 h 3 h 6 h 3 h 6 h  

Released TNF- 

α 

(pg/ ml) 

12.5 69  14 67  14 7  6 111  17 23  9 144  19   0-100 

25 87  15 91  16 6  5 174  20 49  12 152   19   100- 160 

Doses 

ug / ml 

50 90  16 78  15 1  1 52  13 73  14 193  21   160-220 

 

Table 3.5.1. Stimulation of peritoneal ICR murine macrophage cell culture TNF-α release (pg/ml) by pleuran, 
CM-fresh and dried brewer’s yeast β-D-glucan. 

Colours are added to highlight differences in TNF-α release. Average TNF-α concentrations +/- standard 
error from technical triplicates are presented. 
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We chose pleuran, β-D-glucan purified from oyster mushroom Pleurotus ostreatus 

(immunoactive ingredient of Imunoglukan®) as a positive control to compare fresh and 

dried brewer’s yeast carboxylmethylated (CM) β-D-glucans. Both fresh and dried spent 

brewer’s yeast CM β-D-glucans revealed TNF-α induction comparable to pleuran (see Table 

3.5.1). In addition, spent brewer’s yeast CM β-D-glucans revealed higher TNF-α inducing 

activity than pleuran starting from 6 h. Immunostimulating activity of CM β-D-glucans 

purified from dry spent brewer’s yeast exceeded that of CM β-D-glucan from fresh spent 

brewer’s yeast (compare shaded highlights in Table 3.5.1.). 
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4. Discussion 

4.1. Desiccation tolerance depends on culture growth phase but primarly - on 
nutritional status. 

In this work we aimed to prove the effect of nutritional status on yeast desiccation 

tolerance. Yeast cultivation in glucose containing media gives an opportunity to sample cells 

of various nutritional states: during exponential phase – fermentative growth when ample 

amount of glucose is available, diauxie and postdiauxie – oxidative growth on ethanol and 

other fermentation products and finally stationary phase – when carbon starvation has set in 

and no culture growth happens (Werner-Washburne et al., 1993).  

In our experimental setup we chose two postdiauxic phase time points (early and late 

- 24 and 48 h of cultivation) what lead to different values of desiccation and oxidative stress 

markers. Despite the fact, that both of these points belong to postdaiuxie, distinct desiccation 

phenotypes was observed. 

  Many publications dedicated to S. cerevisiae desiccation tolerance report results on 

“stationary phase cells” and ”exponential phase cells” without exactly describing cell growth 

rate or nutritional status at sampling time (Espindola et al., 2003, Trofimova et al., 2011 ). 

Here our growth dynamics analyses imply, that for typical desiccation model yeast strains 

(like SC14 and BY4741), more than 50 h is needed to achieve true stationary phase (even at 

50 h ample amount of substrate is present). This fact is neglected in many publications where 

48 h of cultivation mode is used for “stationary phase” growth. To correctly interpret 

desiccation tolerance results and to compare them with typical features of “exponential”, 

“diauxic” or “stationary” phase cells – information on culture growth parameters (growth 

curve, extracellular metabolites) at specific sampling time should be provided.  

Results from SC14 revealed that there is statistically sound difference between 

desiccation tolerance of early and late postdiauxic phase cells (fig. 3.2.1.).  In the same time, 

we observed high TBARS levels in SC14 culture of low desiccation tolerance (early 

postdiauxie phase cells) when compared to desiccation tolerant culture (late postdiauxie 

phase cells). This pattern repeated also BY4741 strain background (BY4741 and 

corresponding tps1 deletant). Herdeiro et al., 2006, and Espindola et al., 2003 published 

similar effect in BY4741 strain where TBARS is inversely related to desiccation tolerance. 

The core principle of TBARS assay is TBA reaction with malonyldialdehyde (MDA) 

forming red or purple complexes, which are possible to quantify by spectrophotometry or 

spectrofluorometry.  
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MDA is formed due to peroxidation of unsaturated fatty acids. Lipid peroxidation per 

se is “chain reaction” starting from few “reaction centers” in the phospholipid membrane. 

MDA is product of polyunsaturated fatty acid (having two or more double bonds) 

peroxidation (Yin et al., 2011). MDA is water-soluble and potentially can react with nucleic 

acids and proteins in any location within the cell. Therefore lipid peroxidation leads to wide 

cell damages and even cause diseases: lipid peroxidation is central element in 

neurodegenerative diseases progression, like Parkinson and Alzheimer’s disease (Ayala et 

al., 2014). 

TBARS assay is routinely used to estimate lipid peroxidation. This reaction is used to 

estimate S. cerevisiae lipid peroxidation after H2O2 and heat stress (Steels et al, 1994), heavy 

metal stress (Howlett and Avery, 1997) and desiccation (Franca et al., 2005). On contrast to 

other yeasts, S. cerevisiae membranes does not contain polyunsaturated fatty acids (Ejsinga 

et al., 2009).  Therefore TBA most probably reacts to different peroxidation products from 

different sources, like alyl aldehydes from peroxidation of oleic and palmitic acids. Other 

substances have different reactivity towards TBA than MDA (Kosugi and Kikugawa, 1989). 

These two facts (lack of polyunsaturated fatty acids and different reactive activity of 

different peroxidation products to TBA) make TBARS assay in S. cerevisiae semi-

quantitative with respect to MDA and context dependent.  

Proportion of different unsaturated fatty acids in S. cerevisiae cell membrane changes 

with regards to substrate and growth mode. For example, in the presence of ethanol, C18:1 

species (oleic acid) dominate while C16:0 and C16:1 species (palmityl and palmitoleic) are 

more common when fermentative substrate is available. Additionally, lipid saturation 

increases in stationary phase when carbon source becomes scarce (Henderson et al., 2013).  

Different fatty acids are prone to peroxidation and subsequent autooxidation (“chain 

reaction”) to different degree, polyunsaturated ones are the most vulnerable, followed by 

sterols and oleic acid. Comparatively high energy should be provided for palmityl acid 

autooxidation, thus making this reaction in yeast cell unlikely (Pratt et al., 2011, Yin et al., 

2011).  

Zikmanis et al., 1982 reported on yeast lipid composition and it’s relation to 

desiccation tolerance. Experiments were done on strain SC14 when harvested at different 

time points (exponential growth, early, late postdiauxie, stationary phase) and different 

carbon sources. Unsaturation degree of membrane fatty acids of SC14 was inversely 

correlated to desiccation stress tolerance: as more unsaturated the membranes were, as more 

desiccation intolerant culture became (Zikmanis et al., 1982).  
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Our TBARS results on early and late postdiauxic SC14 and BY4741 cells corroborate 

idea on presence of peroxidation vulnerable membranes while oxidative carbon sources 

(ethanol, glycerol, organic acids) are available in large amounts (early postdiauxie) and 

peroxidation  robust membranes when oxidative carbon sources become scarce (late 

postdiauxic phase). Media metabolite dynamics during SC14, BY4741 and tps1 cultivations 

are depicted in results fig. 3.1.2 A-F. Additionally, TBA reactive species has tendency to 

increase over cultivation time (when comparing TBARS in BY4741 tps1 mutants in early and 

late diauxie), however, their survival, when estimated by primuline, increases. Peroxidised 

membranes are more leaky than intact (Asayama et al., 1992, Shamrock and Lindsey, 2008). 

If increase of the TBA reactive species would came just from peroxidised (leaky) 

membranes, then decrease of primuline based survival rates would be expected; however, we 

saw statistically significant primuline based increase in desiccation tolerance thus underlying 

existence of lipid unrelated sources of TBARs in S. cerevisiae cells (fig. 3.2.5 and 3.2.7). 

While TBARS levels were comparatively high in WT yeasts (SC14 and BY4741) in 

early postdiauxic phase when compared to late postdiauxie phase cells. TBARS level in tps1 

cells did not differ between early and late postdiauxic time points, even though survival rate 

increased significantly. Herdeiro and colleagues showed proofs on trehalose working as 

antioxidant and preventing cell membrane peroxidation (Herdeiro et al., 2006). Here we see, 

that this might be the case for WT cells in late postdiauxic phase, where high trehalose 

content is accompanied by low TBARS and high survival rate. Nevertheless, comparatively 

high survival rate is retained in tps1 mutant strain without significant amount of trehalose. 

This would indicate, that trehalose might work as antioxidant in vivo (if produced), however 

this activity is not discriminating for yeast to remain desiccation tolerant (viability is 

significantly higher for tps1 in late postdiauxic cells with no trehalose and higher TBARS 

levels).  

4.2. Trehalose is not sufficient for desiccation tolerance 

Trehalose is one of two major storage carbohydrates of yeast cells (Parrou and 

Francois, 2001). Thus far trehalose accumulation has been described as necessary 

prerogative for yeast desiccation tolerance (Crowe et al., 1997). Also additional, desiccation 

tolerance promoting - antioxidative activity of trehalose has been demonstrated (Herdeiro et 

al., 2006, Shamrock and Lindsey, 2008).  
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In the case of BY4741 tps1 mutant we saw increase in desiccation tolerance in the 

absence of trehalose, meanwhile little increase in GSH level in tps1 strain cells from late 

postdiauxie was observed.  

Trehalose synthesis starts from glucose-6phosphate by joining it to UDP-glucose thus 

forming trehalose-6 phosphate. This reaction is catalysed by trehalose synthase, Tps1p 

(Francois and Parrou, 2001).   

There are several reactions competing for glucose-6 phosphate: trehalose synthase 

(Tps1p), glucose-6 phosphate dehydrogenase (Zwf1p), glucose-6 phosphate isomerase 

(Pgi1p).  

Increase in glucose -6 phosphate concentration in S. cerevisaie cells has been 

reported in tps1 mutants (Ernandes et al., 1998). Increase in glucose-6 phosphate 

concentration has been reported also for other fungi tps1 mutants, like plant parasite 

Magnaporhe grisea (Wilson et al., 2007).  Besides, Diaz-Ruiz et al., 2008 have 

demonstrated, that increased concentration of hexose monophosphates (including glucose 6 

phosphate) has enhancing effect on mitochondrial oxygen consumption.  

Glycolisis in Fungi  (including S. cerevisiae) function not only for energy purposes, 

but also provide metabolism with reduced cofactors (NADPH) for antioxidative reactions. 

Oxidative stress induced carbon flux rerouting towards pentose – phosphate pathway (PPP) 

in the level of triose phosphate isomerase and glyceraldehyde phosphate dehydrogenase has 

been reported. By this mechanism increased flux through glucose-6 phosphate 

dehydrogenase reaction is suspected, what in turn provides metabolism with more NADPH 

(Ralser et al., 2007). We hypothesize, that effects alike has happened in tps1 strain, where in 

the case of surplus glucose-6 phosphate increase in activity of Zwf1p is observed, see fig. 

4.2.1. 
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Fig. 4.2.1. BY 4741 (WT) and tps1 mutant vmax for glucose 6 phosphate dehydrogenase reaction.  
Proteins were purified from yeast cultures at (early postdiauxie 24 h of cultivation). 
Enzyme activities are represented by mean values of biological triplicates. Error bars show standard 
deviations. Star denotes statistically significant difference (t test, p<0.05) 
 

Espindola and colleagues have obtained the same results for G6PDH activity in BY4741 and 

gsh1 strain. Their results of increased activity of glucose 6-phosphate dehydrogenase in 

glutathione deficient strain are in line with carbon rerouting idea in the case of increased 

oxidative stress (Ralser et al., 2007, Espindola et al., 2003). In our case, increased G6PDH 

activity would explain increased concentration of GSH in tps1 strain when compared to 

BY4741, especially in early postdiauxic phase (fig. 3.2.8.).  Similarly, trehalose independent, 

but growth phase dependent (late postdiauxie phase cells are more desiccation tolerant than 

early) desiccation tolerance pattern was demonstrated also for tps1 mutants in other strain 

backgrounds (CEN.PK and W303) (Tunnaclife and Ratnakumar, 2006).  

I conclude, that tps1 mutation has other side effects, which might work to support 

desiccation tolerance (like increased G6PDH and subsequent antioxidative activity). 

Trehalose levels in yeast cells are determined as an outcome of dynamic equilibrium 

of trehalose synthesis and hydrolysis (Hohman and Mager, 2003). Various models have been 

proposed for coordinated trehalose synthesis, breakdown and accumulation. External signals 

can induce its breakdown through main nutritional signaling and stress response pathways: 

cAMP dependent PKA pathway, (Thevelein et al., 1999) and TPS1 transcription regulation 

by Msn2/4p (Martinez-Pastor et al., 1996, Boy-Marcotte et al., 1998, Zahringer et al., 2000). 

The activity of trehalase and trehalose synthase is regulated by the PKA pathway, which is 

up-regulated in the presence of glucose (Winderickx et al., 1996). An increase in trehalose 

levels in adenine-starved cells would indicate down-regulation of PKA (due to possible 

AMP depletion) and consistent down-regulation of trehalase activity and up-regulation of 
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trehalose synthase. Results of other starvations show, that both sides of the trehalose 

metabolism - synthesis and hydrolysis are stimulated in yeast cells, when starved for carbon, 

nitrogen, or phosphorous (Klosinska et al., 2011). We have measured trehalase activity in 

CEN.PK ade8 strain and it shows the same tendency – trehalose accumulation is 

accompanied by elevated trehalase activity (results not shown) during adenine starvation. 

Nevertheless, desiccation tolerance and sharp increase in trehalose content coincides in ade8 

or ade2 mutants (fig. 3.4.1. and 3.4.3. to 3.4.6.). Additionally, in CEN.PK prototroph, 

increase in trehalose content happens at the very end of exponential growth phase, however, 

its desiccation tolerance is negible (fig. 3.4.5. and 3.4.6.). Obviously desiccation tolerance is 

primarily determined by other factors, not trehalose content alone.  

4.3. S. cerevisiae redox engineering for enhanced glutathione turnover. 

Many environmental stresses set in during industrial dry yeast preparation process. 

Salt, osmotic and oxidative stresses are identified to be involved when preparing dry wine 

yeasts (Garre et al., 2010).  A set of oxidative markers (TBARS, drop of GSH, and increase 

in ROS) is identified as being common to all desiccated organisms (Franca et al., 2007).  

Also our results from BY4741, tps1 and SC14 cultivations revealed changes in oxidative 

markers over cultivation time and depending on desiccation. Our results on trehalose 

fortified notion, that it is not obligatory necessary for desiccation tolerance, so we attempted 

to do “oxidative stress engineering”. Glycerol metabolism seemed to be attractive point for 

NADPH engineering, since many fungi posess “glycerol cycle”. Existance of “glycerol 

cycle” in S. cerevisiae has not been proven. 

Sequence analyses together with literature data on respective enzymatic activities 

revealed, that also GLD1 from T. atroviridiae could serve as a tool for glycerol cycle 

construction in S. cerevisiae. We propose, that high degree of homology among each of 

NADP dependent fungal glycerol dehydrogenases might be used to predict the eventual 

enzyme kinetic properties before in vitro characterization (Liepins et al., 2006). 

NADP dependent glycerol dehydrogenase activities have been attributed also to a set 

of S. cerevisiae gene products (ARA1, GCY1, GRE3 and YPR1) (Norbeck and Blomberg 

1997, Celton et al., 2012). However, we failed to observe any specific glycerol 

dehydrogenase activity comparable with introduced Gld2p activity (see zymogram, fig. 

4.3.3. B). Some S. cerevisae cell extract NADP dependent glycerol dehydrogenase activity is 

present, however, specificity for glycerol and NADP is still under question. S. cerevisiae 

enzymes cluster together with NADP dependent glycerol dehydrogenases forming DL-
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glyceraldehyde and NADPH (fig. 4.3.2.). In vitro studies of YPR1 revealed high specificity 

towards conversion of NADPH and dl-glyceraldehyde to glycerol.  Reaction with DHA to 

glycerol was 100 fold lower and reaction from glycerol and NADP was even 4000 fold 

smaller (Ford and Ellis, 2002).  

Glutathione has been identified as potential metabolic engineering hot spot to 

increase lignocellulolytic substrate conversion (Ask et al., 2013). Also yeast glutathione 

metabolism has been identified as engineering spot for oxidatively more stable wine 

production (Mezzetti et al., 2014).  Our redox cofactor engineering was succsesfull – GSH: 

GSSG ratio was increased in yeast strains with introduced glycerol cycle. Unexpectedly, this 

effect did not affect strains desiccation tolerance. Therefore – we conclude, that 

improvement of yeast oxidative stress tolerance via enchancing GSH: GSSG ratio, does not 

help to improve cell’c desiccation tolerance. However, glutathione engineering might have 

other applications for nonconventional substrate fermentation or wine production. 

4.4. Cell nutritional effects on desiccation tolerance 

For free living yeasts in their natural habitats (sugar rich fruits and saps) times of 

famine are interrupted with short intervals of feast: long lasting starving is interrupted by 

relatively short intervals of nutritional abundance. Usually “natural” starving occurs because 

of carbon, nitrogen, phosphorous or sulphur shortages.  In “natural habitats”, 

microorganisms spend their life in scarcity, where one or several simultaneous nutritional 

shortages are present. Term “quiescent state” is used to describe yeast cuture during 

starvation (De Virgilio, 2012).  

Similar to “natural conditions”, laboratory cultivations can lead to starving. When 

batch cultivation starts, surplus amount of nutrients is present, which gradually gets depleted. 

Cell proliferation ceases when one of the nutrients become limiting and starvation sets in. If 

“basic” nutrients are depleted (C, N, S or P sources), cell cycle gets effectively stopped, 

culture enters stationary growth phase and obtains phenotype of multiple stress resistance 

(Werner-Washburne et al., 1993, De Virgilio, 2012, Boer et al., 2008, Klosinska et al., 

2011).  

Laboratory yeast strains are often auxotrophs, carrying one or several auxotrophic 

markers. Lack of auxotrophic agent leads to stop of cell proliferation.  When working with 

auxotrophic strains, additional care should be taken in order to provide sufficient amount of 

auxotrophic agents to sustain cell growth (Pronk, 2002). 
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  Depending on broth composition – a distinction can be made between synthetic and 

full (rich) media. The former usually are composed of defined set of chemicals essential for 

microbial growth whereas latter contains bacterial, plant, animal cell hydrolisates or extracts. 

While synthetic broth provide enough of necessary factors for microbial growth, rich medias 

exact composition might have large variations depending on component’s vendor and lot. 

Typical adenine supplement to complement adenine auxotrophy for S. cerevisiae in 

synthethic media is between 20 and 40 mg/L (Kokina et al., 2014). Rich, yeast extract based 

medias have variable adenine content, depending on yeast extracts vendor and lots they 

might contain sub-optimum (from 3 – 50 mg/L) amount of adenine (Van Dusen et al., 1997). 

Due to variances in adenine content of “rich” medium, sooner or later adenine depletion sets 

in and adenine starvation phenotype can override other cell effects of interest. The same 

applies for other auxotrophic markers – also their specific phenotype might set in when 

medium adenine content depletes. 

On contrary to other authors, which have described auxotrophic starvations (uracil 

and leucine) as burden for cell’s viability. (Boer et al., 2008), our results imply, that adenine 

starvation is different in many aspects. When compared to other auxotrophic starvations, 

adenine auxotropy leads to elevated starvation stability, effective halt of cell cycle and   

increased desiccation (fig. 3.4.1. and fig. 3.4.3. – 3.4.6.) tolerance (Kokina et al., 2014). 

Besides, different auxotrophies lead to different level of stress tolerance.  

Interestingly, chronological life span (or half life) of leucine auxotrophs during 

leucine starvation is prolonged if active mitochondrial metabolism is present (cultivation on 

glycerol and ethanol) (Boer et al., 2008).  Calahan et al., 2011 has demonstrated, that 

functional mitochondria are important to sustain desiccation tolerance of the yeast.  This was 

tested by two methods – genetical petit mutants and respiratory chain blocking by 

cytochrome complex inhibitor myxotiazol. We have seen similar effects on adenine starved 

when adding antimycin A (complex III blocker).  

It turned out, that adenine auxotrophy induced desiccation tolerance is pronounced 

just in the case of cultivation with glucose as carbon source (fig. 3.4.2., 3.4.7. and 3.4.8.). 

Besides, desiccation tolerance appeared to be strongly respiration dependent, as 

demonstrated by antimycin A addition and independent of substrate (fermentative or 

oxidative).  

Although we used CEN.PK and W303 strain backgrounds to test effect of starvation 

for different auxotrophic agents on desiccation tolerance, there might be additional 

auxotrophic starvation in place. Methionine, leucine, histidine and uracil are auxotrophic 
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markers for BY4741 strain. There are literature data on elevated methionine consumption by 

BY4741 strain already after 24 h (Mülleder et al., 2012), therefore methionine starvation 

might set in already in early postdiauxic phase when sampling of BY4741 and tps1 were 

done.  Methionine starvation has been characterized by: increased longevity, decreased ROS 

generation (Sanz et al., 2006). Methionine auxotrophs posess increased viability during 

prolonged starvation (10 days or more); similar physiological and transcriptional response as 

in phosphate and sulphate starvation (Unger and Hartwell, 1976, Petti et al., 2011). In this 

way, increase of BY4741 and it’s tps1 mutant desiccation tolerance over time can be 

interpreted as gradual set in of single or even multiple auxotrophic starvations.  

After 24 h of BY4741 cultivation in YPD media, we checked auxotrophic agent 

content of spent media qualitatively. We sterile- filtrated spent media and supplemented it 

with one of auxotrophic markers: histidine, leucine, methionine, uracil and glucose. The 

results are depicted in fig. 4.4.1. 

 

 
Fig. 4.4.1. BY4741 growth on spent media supplemented with auxotrophic agents.  

Each cultivation plot is average of 5 paralel cultivations. Standart deviation is max 10 % of measured 
values. 
 

For our YPD media (contaning yeast extract and bacteriological peptone from 

Biolife, Italy), uracil and histidine are auxotrophic agents depleted after 24 h of BY4741 

growth. Similar situation might happen with other strains in rich media, therefore one cannot 

relay only on yeast extract and peptone composition, especially in prolonged batch 

cultivations.  
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Welsch et al., 2013 identified desiccation stress uniquely related to yeast nutrient 

signalling. PKA and TOR inhibition or effector deletion leads to increased desiccation 

tolerance. On another hand, TOR (mammalian rapamycin sensitive TOR complex) has been 

related to sensing of intracellular amino acids and purines (Dennis et al., 2001). 

Rim15p which is identified as common activator for postdiauxic (PDS) and stress 

responsive (STRE) genes is repressed both from PKA and TOR pathways. In this way 

repression of any of those pathways (due to change in carbon or nitrogen substrates or in the 

presence of specific inhibitors) would lead to activation of one or both groups of genes.  

When we tested effect of rapamycin on desiccation tolerance of adenine or uracil 

starved cells, it revealed, that adenine starved cells are insensitive to rapamycin. We propose, 

that this effect coud be related to decrease PKA signalling due to decreased cAMP supply.  

When doing substrate shifts – presence of any of poor nitrogen or poor carbon 

sources enchanced desiccation tolerance, most probably through decreased PKA and TOR 

signalling. Our results demonstrate that nutrient signalling related effects (rapid media shift, 

adenine starvation) on desiccation tolerance ar far more profound than prolonged cultivation 

effects (late versus early postdiauxie).  

In large scale genetic screens more than 10 fold difference in desiccation tolerance is 

evaluated as significant signal, while less than 2 times difference is perceived as poor and 

nonimportant (Calahan et al., 2011, Welch et al., 2013). Auxotrophy and nutrient quality 

effects gives 20 and more fold increase in yeast desiccation tolerance.  

We conclude, that auxotrophic starvation and carbon/ nitrogen source quality 

remarkably contribute to yeast population’s desiccation tolerance and thus should not be 

overlooked. 

 4.5. Immunostimulating activity of dried spent yeast beta glucans 

Spent brewer’s yeasts are characterized as old, large cells, usually flocculant. In the 

case of bottom fermenting brewer’s yeasts, especially during maturation in tanks, we deal 

with senescent, anaerobic yeasts. One of the mechanisms responsible for flocculation 

induction is nitrogen starvation sensed and mediated through TOR pathway (Ogata, 2012). 

In this way flocculent lager yeasts are another example of yeasts under specific nutrient 

starvation.  

Similarly to bacterial cell wall polysaccharides or lipopolysaccharides (LPS), yeast β-

D-glucans possesses immunostimulatory and anti-tumour properties (Vannucci et al., 2013). 
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Differences in TNF-α induction between pleuran and CM β-D-glucans might be 

related to different affinity to macrophage receptors: large, insoluble β-D-glucans (like 

pleuran) attach to a group of Toll-like receptors and Dectin-1 inducing rapid (within 

minutes) TNF-α secretion. Meanwhile macrophages ingest these β-D-glucans. Relatively 

small, soluble β-D-glucans (like CM β-D-glucans) attach to few Dectin-1 receptors and 

induce TNF-α secretion; these molecules probably are not imported into macrophages 

(Goodridge et al., 2011, Batbayar et al., 2012). Thus, we conclude, that spent brewer’s yeast 

CM β-D-glucans might reside outside macrophages for longer time and eventhough it’s 

TNF-α induction is comparatively weak at low concentrations, it saturates receptors and 

works effectively in higher concentrations outcompeteing pleuran. Zymosan derived soluble 

β-D-glucans could be used in applications, where slow and prolonged immunostimulation is 

required. 
Treatments such as freeze-drying, air air-drying, and alkali treatment affect S. 

cerevisiae β-D-glucan immunogenic activity (Hromadkova et al., 2003). Immunogenic 

activity of β-D-glucans is related to their 3D supercoil structure (Kogan, 2000). It is noted, 

that side-chain modifications (carboxylation or phosphorylations) do not affect β-D-glucan 

superspiralization (Williams et al., 1991).  

Small alterations in the degree of β-D-glucan superspiralization can lead to vast 

differences in their biological activity, as demonstrated by fluorescence resonance energy 

transfer (FRET) analyses with laminarin (Young et al., 2000). Our results from the Congo 

red assay demonstrate that β-D-glucans from dried brewer’s yeast are less superspiralized 

than fresh brewer’s yeast β-D-glucans, nevertheless their immunostimulating activity when 

tested in murine macrophage TNF-α induction model is the same or even higher (see 

highlights in Table 3.5.1.). This observation is in line with previous results published by 

Young et al., 2003 on relaxed triple helix as being an immunologically more active form of 

β-D-glucan than it’s strictly superspiralized form. 

The microstructure of S. cerevisiae cell surface changes during slow, gradual 

desiccation (Beker and Rapoport 1987). Also changes in the cell wall-related gene 

transcription pattern during the slow desiccation of yeast are observed (Singh et al., 2005). 

Our results demonstrate that desiccation does not affect carbohydrate content of brewer’s 

yeast and improves immunogenic properties of cell wall β-D-glucans, when compared to 

fresh biomass β-D-glucans or pleuran (already commercialized β-D-glucan purified from 

oyster mushroom, Pleurotus ostreatus, Jesenak et al., 2013). Since spent brewer’s yeast is 
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characterized as being a by-product of low added value (if recycled in biogas tanks or 

livestock feed), our results suggest to use this yeast as a potential and cheap source of 

pharmaceutical-grade products (immunoactive substance CM β-D-glucan).  

In human cells, microbial cell wall polysaccharides (including β-D-glucan) induce 

immunoresponse by attaching to toll-like receptor 4 (TLR4). These receptors respond to a 

variety of endo- and exo-ligand molecules (glucans, LPS, etc.). TNF-α secretion is an effect 

of TLR4 activation (Oblak and Jerala, 2011). Historically TNF-α was characterized as a 

unique factor responsible for tumour necrosis induction. However, it turned out to be one of 

several cytokines with various functions both in promoting and attenuating tumourogenesis 

(Waters et al., 2013). Interestingly, TNF-α dependent tumour necrosis is possible in a 

sarcoma model, but tumour-promoting effects are observed in other cancer in vitro/in vivo 

systems (Balkwill, 2009). Our results demonstrate that desiccation pretreatment is a way to 

increase CM β-D-glucan mediated TNF-α induction. However, additional research should be 

done to specify the application range (tissues, cancer types) sensitive to spent brewer’s yeast 

β-D-glucans mediated TNF-α secretion. If successful, this would promote a specific usage of 

spent brewer’s yeast CM β-D-glucans as a feasible by-product of the beer industry.  

4.6. Conclusions and future prospects 

As previously demonstrated, yeast desiccation tolerance relates to nutrient status:  

• prolonged cultivation in postdiauxie increases desiccation tolerance 

approximately 2 times,  

• shift of carbon and or nitrogen sources can affect desiccation tolerance up to 

25 times, 

• adenine starvation increase desiccation tolerance by more than 100 times.  

Starvation leads to TOR and/or PKA pathway derepression, these effects can be 

simulated by PKA and TOR “common target” sch9 deletion (Welsh et al., 2013). Our 

observations corroborate these results by proving, that nutrition source dependent desiccation 

tolerance is wide spread: we have seen starvation and carbon source related effects in diploid 

and haploids, prototrophs and auxotrophs of different strain backgrounds (SC14, W303, 

CEN.PK and BY4741). We have proved, that independent of strain background adenine 

auxotrophy cause sharp increase in desiccation tolerance. Our core findings are summarised 

in simple model describing gradual decrease of PKA and TOR pathway activity during 

prolonged cultivation of S. cerevisiae (fig. 4.5.1.). Maximum desiccation tolerance is 
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achieved when preferred carbon and nitrogen sources are depleted (thus PKA and TOR 

pathways derepresses stress response genes and “quiescence phenotype” prevails).  

 

 

Fig. 4.5.1. Suggested relation of interplay among protein kinase A (PKA), target of 
rapamycin (TOR) pathway’s activities throughout S. cerevisiae cultivation and 
desiccation tolerance.  
Arrows on the top depict activity of TOR and PKA pathways during batch cultivations. Dark 
colour indicates strong activity (in the case of good nitrogen and carbon source), while pale 
colour indicates derepression of particular nutrient signalling pathway.  
Bars represent desiccation tolerance (%); here exact time, survival, biomass growth values are 
of illustrative value only.  

 

Nowadays, growing baker’s yeast of industrial scale, shift from N rich to N poor 

media is used to effectively stop yeast cell cycle, increase it’s trehalose content and stress 

(including desiccation) tolerance. We propose, that similar strategies can be applied to reach 

the same goal by inducing starvation for other nutrients. Auxotrophy could be one of the 

engineering targets. Besides, parts of nutritional signalling pathways have proven to be 

sensitive spots to control desiccation tolerance (Welch et al., 2013, Calahan et al., 2011).  

There are, however, open question regarding mechanisms how signal of lack of 

particular nutrient (adenine) is translated into stress resistant quiescent phenotype ready for 

many abiotic challenges. Indeed, in opposite to basic nutrients, there is not a specific 

“adenine sensor” inside the yeast cell. We propose two mechanisms which might play a role 

here – decrease of PKA signalling due to drop of cAMP concentration in cytoplasm; or if 

disrupted, adenine synthesis pathway accumulates metabolic intermediates, which might 

work as inhibitors for some kinases in PKA pathway. Interestingly, AICAR, an adenine and 
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histidine de novo synthesis pathway intermediate is used in animal cAMP signalling cascade 

studies as cAMP analogue (Kwon et al., 2010).  

Another challenge would be to find out if there is specific expression profile related 

to adenine starvation. If yes – gene expression pattern would give a hint on master regulators 

responsible for set in of adenine dependent stress resistant phenotype.   

Recent results on transcriptional responses of various starvations (carbon, 

phosphorous, nitrogen) show, that they overlap poorly. Moreover, transcriptional response 

relation to starved cell’s phenotype is vague because additional effects from nutrient 

availability set in (Klosinska et al., 2011). Based on previous reports on starvation 

physiology, we conclude, that, transcriptomics alone would not be sufficient to understand 

observed phenotypic effects.  

The aim of this study was to identify nutritional (including adenine) related effects on 

desiccation resistance. The quest for specific transcriptional and metabolomic signature 

specific for adenine starved cells would be logical continuum of this study. Combining 

several –omics (transcriptomcs, metabolomics, etc.) approaches would have explanatory 

power to clarify interesting physiological effects of adenine starvation.  

Additionally, our data warn, that rich media is not “safe solution” for auxotrophic cell 

cultivation unless precise content of each media component is known. Especially for 

prolonged cultivations - auxotrophic starvation can set in and mask other physiological 

effects.  
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5. Conclusions 

1. Prolonged cultivation in postdiauxic phase enhances S. cerevisiae desiccation tolerance; 

it’s indepenent to strain genetical background or trehalose synthesis.  

 

2. Growth conditions strongly affect oxidative stress markers (GSH and TBARS) levels 

before desiccation.  

 

3. “Glycerol cycle” can be used as a tool for glutathione engineering; however, it does not 

affect desiccation tolerance. 

 

4. Adenine starvation increases desiccation tolerance via TOR/ PKA derepression.  

 

5. Brewer’s yeast beta glucans derieved from dehydrated cells posess higher immunoactivity 

as commercialised β-D-glucan (pleurean, Immunoglukan©). 
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6. Thesis for defense 

 

Cell nutritional status restricts metabolical options for yeast desiccation stress tolerance. 

 

A dynamic change in substrate concentrations and character during cultivation governs S. 

cerevisiae desiccation tolerance.  

 

Starvation for particular nutrient as well as nutrient signalling pathways can be targets to 

engineer cells desiccation tolerance. 

  

Desiccation improves β-D-glucan immunoactivity by decreasing superspiralization. 
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Annex I 

 

 time [h] 

Glucose 

(consumed) pyruvate succinate glycerol acetate ethanol biomass 

BY4741 10 173,00 1,36 5,86 10,84 14,66 110,00 25,74 

 11 273,33 1,17 5,45 14,10 16,17 173,77 41,18 

 25 675,33 0,42 5,15 20,28 16,73 332,75 153,85 

 33 675,33 0,36 5,82 13,04 11,40 270,72 189,00 

 47 675,33 0,38 5,91 8,58 0,00 196,23 225,56 

 55 675,33 0,38 6,58 7,79 0,00 176,09 237,71 

         

tps1 10 113,78 0,61 6,02 5,42 14,73 74,49 19,75 

 11 192,44 0,41 5,67 6,18 15,37 108,41 32,22 

 25 675,33 0,30 5,62 14,04 14,62 335,51 171,43 

 33 675,33 0,98 6,08 11,66 4,61 280,72 198,94 

 47 675,33 2,52 7,56 23,93 0,00 179,71 231,48 

 55 675,33 1,59 8,05 26,13 0,00 159,71 234,64 

         

SC14 8 285,89 1,06 5,19 6,54 15,32 164,20 50,87 

 9 526,00 0,89 4,98 9,52 15,84 305,51 116,87 

 25 675,33 0,26 6,25 7,93 0,00 305,36 248,61 

 33 675,33 0,27 6,25 7,25 0,00 242,61 293,30 

 47 675,33 0,00 5,99 6,18 0,00 102,46 363,62 

 55 675,33 0,26 5,20 5,65 0,00 61,74 406,55 

 
 

Metabolite analyses of SC14, BY4741 and tps1 mutant batch cultivations in YPD medium. 

Results are expressed as mili c-moles, numbers are average of biological triplicates. 

 

 

  

 

 

 


