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Abstract 18 
 19 

The ecological importance and diversity of pico/nano-planktonic algae remains poorly 20 

studied in marine waters, in part because many are tiny and without distinctive morphological 21 

features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are 22 

dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to 23 

be major players in open oceanic waters. The pigment composition of 13 strains representative of 24 

different sub-clades of clade VII was analyzed using a method that improves the separation of 25 

loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment 26 

composition similar to that previously reported for RCC287 corresponding to pigment group 27 

prasino-2A. However we detected in addition astaxanthin for which it is the first report in 28 

prasinophytes. Among the strains analyzed the pigment signature are qualitatively similar within 29 

sub-clades A and B.  In contrast RCC3402 from sub-clade C (Picocystis) lacks loroxanthin, 30 

astaxanthin and antheraxanthin. For sub-clades A and B, loroxanthin was lowest at highest light 31 

irradiance suggesting a light–harvesting role of this pigment in clade VII as in Tetraselmis.   32 

 33 

Keywords : phytoplankton, picoplankton, prasinophytes, pigments, HPLC 34 

 35 

 36 

 37 

 38 
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The paraphyletic group of prasinophytes is an assemblage of free-living unicellular 39 

microalgae present in both marine and freshwater habitats (Leliaert et al. 2012). Molecular 40 

phylogenetic, ultra-structural, and biochemical approaches have helped taxonomists to re-41 

organize gradually the group into new classes and clades (Guillou et al. 2004, Marin and 42 

Melkonian 2010, Subirana et al. 2013, Lemieux et al. 2014a). Currently the prasinophytes are 43 

divided into nine groups known as clades I to IX, based on phylogenetic analyses of the nuclear 44 

18S (nuclear-encoded small subunit rRNA) gene (Fawley et al. 2000, Guillou et al. 2004, Viprey 45 

et al. 2008). These clades may correspond to true classes, or be composed of a small number of 46 

species or of environmental sequences only. For example, Chlorodendrophyceae (Massjuk 2006) 47 

known previously as prasinophytes clade IV was recently raised to the class level and added to 48 

the “core of chlorophytes” (Fucikova et al. 2014). Clade V corresponds to the order 49 

Pycnococaceae with two major species, Pseudoscourfieldia marina and Pycnococcus provasolii 50 

which are probably two forms of a single life cycle (Fawley et al. 1999, Guillou et al. 2004).  51 

Clades VIII and IX are composed entirely by environmental sequences without representatives in 52 

culture (Viprey et al. 2008). Clade II, previously corresponding to the order Mamiellales, was 53 

raised recently to the class level as Mamiellophyceae (Marin and Melkonian 2010) and contains 54 

three important genera of marine pico-phytoplankton: Micromonas (Butcher 1952),  Bathycoccus 55 

(Eikrem and Throndsen 1990) and Ostreococcus (Chrétiennot-Dinet et al. 1995). 56 

In coastal waters, Mamiellophyceae appear largely dominant, especially within the pico-57 

plankton, with the genus Micromonas making the highest contribution and followed to a lesser 58 

extent by Bathycoccus (Throndsen, J. and Kristiansen 1991, Not et al. 2004, Collado-Fabri et al. 59 

2011, Balzano et al. 2012). In contrast in the open ocean, another group of prasinophytes, clade 60 

VII, with cell size in the 3 to 5 µm range, has been found to make an important contribution to 61 
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the pico-plankton community in regions such as the Equatorial Pacific and Mediterranean Sea 62 

(Moon-van der Staay et al. 2000, Viprey et al. 2008, Shi et al. 2009). The distribution of clade 63 

VII in typically oceanic mesotrophic waters makes this an interesting group. Prasinophyte clade 64 

VII contains several cultured strains, but it has not been described formerly yet. Guillou et al.  65 

(2004) divided this group into three well-supported sub-clades, A, B and C, the latter being 66 

formed by Picocystis salinarum, a small species found in saline lakes (Lewin et al. 2000, Roesler 67 

et al. 2002, Krienitz et al. 2012).   68 

Traditionally, pigment signature has been used to determine the taxonomy of algae groups 69 

present in the water column (Jeffrey et al. 1997). This approach has been largely superseded by 70 

molecular approaches (Liu et al. 2009) but pigments remain an important phenotypic 71 

characteristic that allowed to point out the importance of green algae in specific regions of Pacific 72 

Ocean, Mediterranean Sea or Arctic Ocean  (Obayashi and Tanoue 2002, Miki et al. 2008, 73 

Gutiérrez-Rodríguez et al. 2010, Coupel et al. 2014). The use of pigments in order to discriminate 74 

different types of prasinophytes has proven to be a difficult task since a diversity of 75 

photosynthetic signatures can be found in this group. Prasinophytes can be divided into three 76 

major groups based on their carotenoid composition (Egeland et al. 1997, Garrido et al. 2009). 77 

Group 1 contains the basic set of carotenoids present in Chlorophyceae: neoxanthin, violaxanthin, 78 

lutein, zeaxanthin, antheraxanthin, astaxanthin and β-β-carotene. The two later pigments are 79 

found to accumulate in Haematococcus and Dunaliella species under stress conditions (Lemoine 80 

and Schoefs 2010). Group 2 consists of the basic set of carotenoids plus loroxanthin (2A) and 81 

siphonaxanthin (2B). Group 3 contains prasinoxanthin (3A) and uriolide/micromonal (3B) in 82 

addition to the pigments found in group 2 (Jeffrey et al. 2011) 83 
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Within clade VII, a single strain RCC287 has been analyzed for its pigment composition 84 

(Latasa et al. 2004). A large number of clade VII strains are available from the Roscoff Culture 85 

Collection (http://roscoff-culture-collection.org/) originating from a range of environment. Their 86 

genetic diversity is currently analyzed allowing further delineation of new sub-clades (Lopes et 87 

al. in preparation) within the two major sub-clades A and B described by Guillou et al (2004).  88 

Among the 44 strains of clade VII present in the RCC, 39 belong to sub – clade A. The aim of 89 

this study was to determine the phenotypic characteristics of this important group of marine green 90 

algae by analyzing the pigment composition of thirteen strains belonging to the three sub-clades 91 

(A, B, C) of prasinophytes clade VII and isolated from a range of oceanic location and depths 92 

(Table 1). We also assessed the effect of three light irradiances on pigment composition for a 93 

subset of these strains. 94 

Thirteen strains belonging to clade VII (Table 1) were grown at 22oC in K seawater 95 

medium (Keller et al. 1987) under 140 µE.m-2.s-1in continuous light. A subset of nine strains was 96 

also grown at two other light levels (14 and 65 µE.m-2.s-1). Prior to sample collection, cell 97 

concentration was determined by flow cytometry using a Becton Dickinson Accuri C6.  98 

Approximatively 50 ml of cultures were harvested in late exponential or early stationary phase 99 

and were filtered onto glass fiber GF/F (Whatman, Maidstone, UK) without vacuum and 100 

immediately frozen in liquid nitrogen and stored at -80oC. Pigments were analyzed within one 101 

month. Frozen filters were extracted with 3 mL of 90% acetone in screw cap glass tubes with 102 

polytetra-fluoroethylene (PTFE) lined caps, placed in an ice-water bath. After 15 minutes, filters 103 

were homogenized using a stainless steel spatula for filter grinding. Tubes were placed in an 104 

ultrasonic bath with water and ice for 5 minutes. The slurries were then centrifuged 5 minutes at 105 

4.500 r.p.m. and supernatants filtered through 13 mm diameter polypropylene syringe filters (MS 106 
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PTFE, 0.22 µm pore size) to remove cell and filter debris. Before injection 1ml of each sample 107 

extract was added with 0.4 ml of Milli-Q water to avoid peak distortion.  Pigments extracted from 108 

clade VII strains were analyzed using a modification of Zapata et al. (2000) method, described by 109 

Garrido et al. (2009) to improve the separation of loroxanthin and neoxanthin (Table S1).  All 110 

graphs and analyses were performed with the R software using the ggplot2 and FactoMineR 111 

libraries (R Development Core Team 2013). 112 

Intracellular chlorophyll (Chl) a content ranged from 4 to 26 fg per cell in most strains 113 

except for RCC996 (VIIA) and RCC3402 (Picocystis - clade VIIC) for which it was much higher 114 

(Table 2). This range agreed with values previously determined for marine microalgae in the 115 

same size range (Simon et al. 1994).  116 

All the prasinophytes clade VIIA and B analyzed here showed a very similar pigment 117 

composition (Table 2).  It did not seem to change drastically with between sub-clades A and B, 118 

nor with the depth of isolation (Figure 1).  This composition is very similar to that reported for 119 

RCC287 by Latasa et al. (2004) corresponding to pigment group prasino-2A. We did not observe 120 

strong differences (Figure 1, Table 2) with the data of Latasa et al. (2004): in particular the ratios 121 

obtained for zeaxanthin and lutein, were very similar in both studies despite the slight difference 122 

in light levels (100 vs. 140µE.m-2.s-1 in our study): zeaxanthin, 0.042 (w/w) versus 0.043 (w/w) 123 

and lutein, 0.382 (w/w) versus 0.363 (w/w). However their study used a less resolutive method 124 

and did not report the presence of loroxanthin and astaxanthin in RCC287. For loroxanthin this is 125 

probably due to the co-elution of this pigment with neoxanthin in the analytic method employed 126 

by these authors. For astaxanthin, our strains were grown in continuous light in contrast to Latasa 127 

et al. (2004) who used L:D cycles.  This might have triggered the synthesis and accumulation of 128 
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this carotenoid, which is known to be synthesized under stressful conditions, such as high light, 129 

UV irradiation or nutrient depletion in Chlorophyceae, like Haematococcus and Dunaliella 130 

(Lemoine and Schoefs 2010) as well in some strains of Trebouxiophyceae such as Picochlorum 131 

(Lubián et al. 2000). In Haematococcus, maximal production of astaxanthin has been obtained 132 

under to continuous illumination (Domínguez-Bocanegra et al. 2004) 133 

In our study, only RCC1124 (sub-clade A) did not contain loroxanthin within strains 134 

belonging sub-clades A and B (Table 2). Picocystis (RCC3402, clade VIIC) did not contain 135 

loroxanthin, astaxanthin and antheraxanthin (Table 1).  Violaxanthin and lutein were the most 136 

abundant carotenoids for clade VIIA and VIIB. Astaxanthin came as the third more abundant 137 

within VIIA and RCC2337 (VIIB), while β-ε-carotene came third for RCC2339 (VIIB). For 138 

Picocystis (clade VIIC), lutein and β-ε-carotene were the most abundant carotenoids (Figure 1, 139 

Table 2), but the ratio of accessory pigments to Chl a was much lower than in clades VIIA and B 140 

(Figure 1).  141 

We analyzed the influence of irradiance (14, 65 and 140 µE.m-2.s-1) on pigment 142 

composition of nine strains of prasinophytes VIIA and B (Figure 2 and S1,  and Table S2).  143 

Change in light intensities induce opposite trends in the ratios of photosynthetic and 144 

photoprotective pigments relative to Chl a. Accessory chlorophylls and carotenoids involved in 145 

light capture either increase relative to Chl a at low light, while photoprotective carotenoids 146 

increase at high light (Schlüter et al. 2000, Henriksen et al. 2002). In our study, Chl b ratios 147 

increased slightly at low light, as expected, except for RCC3376 that showed a very slightly 148 

lower ratio at low light than at high light (0.78 vs. 0.81) (Figure 2 and Table S2). A similar slight 149 

decrease was also observed by Garrido et al. (2009) for the green alga Tetraselmis suecia. 150 
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Neoxanthin, β-β carotene and loroxanthin appeared to have a light harvesting role for 151 

most of the strains, except RCC287 (Figure 2 and Table S2), but change could be subtle as in the 152 

case of neoxanthin. Neoxanthin has been found to be associated with light harvesting complexes 153 

in the Mamiellophyceae Mantoniella squamata (Wilhelm and Lenarz-Weiler 1987). The most 154 

drastic changes were observed for loroxanthin (Figure 2) suggesting that this pigment has a major 155 

light harvesting role in clades VII A and B in agreement with what observed by Garrido et al. 156 

(2009) with T. suecica. One strain, RCC3376 (sub-clade A), had very low ratios of loroxanthin to 157 

Chl a which did not seem to change with light (Figure 2). 158 

The increase of astaxanthin (from 2 to 4-fold depending on the strains) with light intensity 159 

suggests that this carotenoid has a photoprotective role for in clade VIIA and B (Figure 2), as 160 

previously demonstrated in the Chlorophyceae Haematococcus pluvialis (Wang et al. 2003, Gao 161 

et al. 2012). Among all strains, RCC3374 showed the most impressive accumulation of 162 

astaxanthin which contributed up to 42% of the total carotenoid pool under high light conditions 163 

(Figure 2). In comparison, H. pluvialis can accumulate 86 - 90% of astaxanthin in the total 164 

carotenoid pool after sixteen days cultures of under stress conditions (Sarada et al. 2002). 165 

However RCC3374 cell size (3 µm) is about 7 times smaller than H. pluvialis resting cells 166 

(25 µm, Gu et al. 2013) and maximum cell density is 3.106 cell mL-1.  A rough computation show 167 

that our RCC3374 culture was able to produce only 0.006 mg/L of astaxanthin against 8.3–10.69 168 

mg/l found in old cultures of H. pluvialis (Sarada et al. 2002).  If one could increase the cell 169 

concentration about 1000-fold with a different medium and manipulate astaxanthin cell content 170 

through stress, then clade VII could be an interesting contender for astaxanthin production. 171 
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Lutein also showed a photoprotective behavior. Its contribution to total carotenoids 172 

increased sharply from low to medium light and the stabilized at the highest light (Figure 2,  173 

Table S2). Such increase under high light conditions has been previously reported by Böhme et 174 

al. (2002) in the Mamiellophyceae M. squamata. These authors suggested that lutein played an 175 

important role as intermediate of biosynthesis for light harvesting pigments after light shifts from 176 

HL to LL. This role was coherent with its loose binding to the LHC apoprotein, also observed for 177 

the violaxanthin cycle (VAZ) carotenoids. However, lutein and loroxanthin are xanthophylls 178 

derived from β-ε carotene, and both have also been suggested also to take part in photoprotective 179 

mechanisms (non-photochemical quenching, NPQ) to prevent photo-oxidative damage in high 180 

light conditions in the green alga Chlamydomonas reinhardtii (Niyogi et al. 1997).  181 

As for lutein, the content of the photoprotective xanthophyll cycle involving violaxanthin, 182 

antheraxanthin and zeaxanthin (VAZ cycle) relative to Chl a increased in general sharply from 183 

low to medium light and the stabilized at high light (Figure 2 and S1, Table S2). Their specific 184 

behavior however differed among strains.  For example, zeaxanthin did not change much in 185 

RCC287 and RCC857 while it increased several-fold in other strains (e.g. RCC719, Figure 2). 186 

In order to assess the visualize any hidden relationship between strain origin and pigment 187 

composition, we performed a Principal Component Analysis (PCA) based on pigments to Chl a 188 

ratios (Figure 3). The first two components explained more than 50% (dimension 1 and 2, 33.1 % 189 

and 20.4 %, respectively) of the variance. Pigments contributing positively to dimension 1 190 

corresponded to photoprotective pigments (lutein, β-ε carotene, zeaxanthin, violaxanthin, 191 

antheraxanthin and astaxanthin) while pigments involved in photosynthetic capture, such as 192 

loroxanthin and β-β–carotene, contributed negatively to this axis. Pigments with moderate 193 
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response to light, such as Chl b  and neoxanthin, contributed to dimension 2.  Strains under 194 

medium and high light were separated from those at low light along dimension 1 which reflects 195 

that for several pigments the largest changes occurred between low and medium light and then 196 

stabilized at high light.  This analysis confirmed that pigment composition and change did not 197 

seem to be linked to strain sub-clade (A vs. B) or depth of isolation (surface vs. DCM).  198 

Recent phylogenetic results pointed clade VII A/B as a sister group of  the core of 199 

Chlorophyta (Guillou et al. 2004, Leliaert et al. 2012, Lemieux et al. 2014a, 2014b). The 200 

presence of astaxanthin as in core Chlorophyta while it is absent with other prasinophytes may 201 

reflects another common feature between clade VII and core Chlorophyta.  Moreover while 202 

Guillou et al (2004) included Picocystis into clade VII based on the phylogenetic analysis of 18S 203 

rRNA gene, the recent analysis of chloroplast genomes (Lemieux et al. 2014a) has shown widely 204 

divergent traits between Picocystis on one side and sub-clades VIIA and B, on the other side.  205 

The divergent carotenoid composition of Picocystis (absence of loroxanthin, astaxanthin, and 206 

antheraxanthin) reinforce these phylogenetic analyses.  207 

Some of the important findings of this study include the discovery of loroxanthin and 208 

astaxanthin in prasinophytes clades VIIA and B, which had not been reported before, as well the 209 

possible role of the former pigment as a light harvesting accessory pigment.  This should prompt 210 

the need to reexamine the pigment composition of other members of this diverse and ancient 211 

group constituted by prasinophytes using improved analytical protocols.  212 
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Table 1

RCC Sub-clade Strain name Other names Ocean origin Region origin
Depth 

Isolation (m)
15 A CCMP 1205 NA NA

287 A NOUM15 NOUM97015 Pacific Ocean Equatorial Pacific 120
719 A IndianOcean_45-8 Indian Ocean 76
856 A Biosope_42 A2 CCMP3325 Pacific Ocean Marquesas islands 10
857 A Biosope_40 A2 Pacific Ocean Marquesas islands 10
996 A Biosope_46 B4S Pacific Ocean South East Pacific 100
998 A Biosope_46 C3S NIES2676, CCMP3334 Pacific Ocean South East Pacific 100

1124 A PAP_AD PAP_Ludwig_AI Atlantic Ocean North Atlantic, PAP site 10
3374 A CCMP 2152 A7831 Pacific Ocean Hawaii NA
3376 A CCMP 2113 A9533 Pacific Ocean 85
2337 B JST MH335 MH335, NIES2756 Pacific Ocean Iki Island 0
2339 B JST MH340 MH340, NIES2758, CCMP3360 Pacific Ocean Iki Island 0
3402 C CCMP 1897 SFBB Pacific Ocean San Francisco Bay 0

Remark  : Ordered by clade and then RCC number
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Table 2

Strain sub - clade Light fg Chl a Chl b Chlide a Chlide b
Sum of 

carotenoids
µE.m-2.s-1 /cell /Chl a /Chl a /Chl a /Chl a /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a % /Chl a %

RCC15  A 140 20.3 0.90 0.066 0.018 1.32 0.058 4.4 0.003 0.2 0.327 24.8 0.165 12.5 0.043 3.3 0.103 7.8 0.376 28.4 0.154 11.7 0.093 7.0
RCC287  A 140 5.0 0.99 0.106 0 1.53 0.024 1.6 0.167 10.9 0.572 37.3 0.210 13.7 0.024 1.6 0.043 2.8 0.363 23.7 0.051 3.3 0.079 5.2
RCC719  A 140 14.9 0.68 0.000 0 1.93 0.035 1.8 0.086 4.4 0.617 32.0 0.264 13.7 0.000 0.0 0.478 24.8 0.193 10.0 0.107 5.5 0.149 7.7
RCC856  A 140 23.4 0.86 0.000 0 2.08 0.113 5.4 0.079 3.8 0.291 14.0 0.570 27.4 0.042 2.0 0.310 14.9 0.461 22.2 0.075 3.6 0.136 6.5
RCC857  A 140 4.1 1.00 0.000 0 1.40 0.026 1.9 0.122 8.7 0.534 38.2 0.187 13.4 0.024 1.7 0.094 6.7 0.291 20.8 0.056 4.0 0.064 4.5
RCC996  A 140 51.6 0.93 0.074 0 1.26 0.043 3.4 0.095 7.5 0.119 9.5 0.191 15.2 0.039 3.1 0.245 19.5 0.364 28.9 0.091 7.2 0.074 5.9
RCC998  A 140 26.1 0.78 0.000 0 1.90 0.014 0.8 0.117 6.1 0.877 46.1 0.157 8.2 0.058 3.0 0.168 8.8 0.285 15.0 0.095 5.0 0.131 6.9
RCC1124  A 140 8.6 0.96 0.099 0 1.47 0.000 0.0 0.116 7.9 0.525 35.7 0.148 10.1 0.020 1.4 0.086 5.8 0.399 27.1 0.095 6.5 0.082 5.6
RCC3374  A 140 4.1 0.73 0.229 0 1.84 0.012 0.7 0.082 4.5 0.272 14.8 0.778 42.3 0.041 2.3 0.118 6.4 0.332 18.1 0.059 3.2 0.146 7.9
RCC3376  A 140 4.1 0.81 0.105 0 1.53 0.008 0.5 0.112 7.3 0.572 37.5 0.324 21.3 0.054 3.6 0.129 8.5 0.048 3.1 0.085 5.6 0.194 12.7
RCC2337 B 140 4.4 0.88 0.394 0.236 2.19 0.031 1.4 0.137 6.3 0.504 23.1 0.302 13.8 0.051 2.3 0.154 7.0 0.706 32.3 0.061 2.8 0.240 11.0
RCC2339 B 140 14.6 0.62 0.000 0 1.52 0.026 1.7 0.078 5.1 0.613 40.4 0.045 3.0 0.024 1.6 0.074 4.8 0.302 19.9 0.028 1.8 0.330 21.7
RCC3402 C 140 131.1 0.26 0.016 0 0.54 0.000 0.0 0.048 8.9 0.014 2.7 0.000 0.0 0.000 0.0 0.071 13.1 0.200 37.0 0.016 3.0 0.191 35.4
RCC287 a  A 100 Nd 1.31 Nd NI 0.76 Nd Nd 0.074 9.7 0.131 17.3 Nd Nd 0.051 6.7 0.042 5.5 0.382 50.3 0.026 3.4 0.053 7.0

nd: Not determined
aValues reported by  Latasa et al.  2004

Carotenoids 

Loroxanthin Neoxanthin Violaxanthin Astaxanthin Antheraxanthin Zeaxanthin Lutein a ββ - carotene βε - carotene
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Table S1

Pigment Abbreviation Rt (min) Vis maxima (nm) Rt (min) Vis maxima (nm)
Chlorophyllide b Chlide b 6.21 466, 647
Chlorophyllide a Chlide a 11.43 431, 665

Loroxanthin Lor 20.18 443, 468 4.81 448, 475
Neoxanthin Neo 20.18 443, 468 5.07 438, 467
Violaxanthin Viola 21.92 443, 472 5.39 442, 470
Astaxanthin Asta 22.94 481 5.63 478

Antheraxanthin Anth 25.76 447, 476
Zeaxanthin Zea 27.85 454, 481

Lutein Lut 28.03 447, 476
Chlorophyll b Chl b 32.04 463, 649
Chlorophyll a Chl a 33.6 432, 664
βε -carotene βε - car 35.82 449, 476
ββ-carotene ββ - car 36.23 454, 479

Zapata et al. (2000) Garrido et al. (2009)
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Table S2

Strain sub - clade Light
µE/m2/s

 FCM
Mean FL3-A

/cell fg Chl a  / cell Chl b Chlide a Chlide b Lor Lor % Neo Neo% Viola Viol% Asta Asta% Anth Anth% Zea Zea% Lut Lut% ββ - car ββ - car% βε - car βε - car%
140 97 734              4.99 0.986 0.106 0.000 0.024 1.6 0.167 10.9 0.572 37.3 0.210 13.7 0.024 1.6 0.043 2.8 0.363 23.7 0.051 3.3 0.079 5.2
65 134 088            36.28 1.148 0.077 0.000 0.044 2.9 0.138 9.1 0.512 33.9 0.243 16.1 0.024 1.6 0.059 3.9 0.389 25.8 0.062 4.1 0.039 2.6
14 187 046            20.13 1.041 0.000 0.000 0.071 7.4 0.100 10.5 0.282 29.5 0.085 8.9 0.019 2.0 0.032 3.3 0.230 24.1 0.089 9.3 0.047 4.9

140 90 702              14.89 0.683 0.000 0.000 0.035 1.8 0.086 4.4 0.617 32.0 0.264 13.7 0.000 0.0 0.478 24.8 0.193 10.0 0.107 5.5 0.149 7.7
65 101 762            22.74 0.832 0.000 0.000 0.066 3.9 0.118 6.9 0.722 42.7 0.137 8.1 0.044 2.6 0.194 11.5 0.204 12.1 0.140 8.3 0.069 4.1
14 214 898            26.24 0.766 0.000 0.000 0.096 7.6 0.084 6.6 0.663 52.1 0.069 5.4 0.020 1.6 0.091 7.1 0.061 4.8 0.139 10.9 0.049 3.9

140 145 875            23.37 0.860 0.000 0.000 0.113 5.4 0.079 3.8 0.291 14.0 0.570 27.4 0.042 2.0 0.310 14.9 0.461 22.2 0.075 3.6 0.136 6.5
65 83 423              58.62 0.882 0.000 0.000 0.018 0.9 0.111 5.6 0.461 23.2 0.459 23.1 0.049 2.5 0.248 12.5 0.438 22.1 0.086 4.3 0.117 5.9
14 231 009            56.88 0.942 0.000 0.000 0.096 8.2 0.102 8.8 0.310 26.6 0.138 11.8 0.023 1.9 0.093 8.0 0.222 19.0 0.133 11.4 0.049 4.2

140 104 853            4.10 1.000 0.000 0.000 0.026 1.9 0.122 8.7 0.534 38.2 0.187 13.4 0.024 1.7 0.094 6.7 0.291 20.8 0.056 4.0 0.064 4.5
65 150 099            11.46 1.128 0.000 0.000 0.072 5.7 0.131 10.4 0.400 31.9 0.141 11.3 0.025 2.0 0.072 5.7 0.314 25.1 0.065 5.2 0.034 2.7
14 179 776            11.90 1.120 0.000 0.000 0.145 13.6 0.130 12.2 0.287 27.0 0.070 6.6 0.029 2.7 0.082 7.7 0.191 18.0 0.092 8.7 0.036 3.4

140 253 221            51.57 0.931 0.074 0.000 0.043 3.4 0.095 7.5 0.119 9.5 0.191 15.2 0.039 3.1 0.245 19.5 0.364 28.9 0.091 7.2 0.074 5.9
65 321 893            120.69 1.028 0.000 0.000 0.116 9.8 0.106 9.0 0.056 4.7 0.163 13.8 0.026 2.2 0.224 19.0 0.315 26.7 0.117 9.9 0.057 4.8
14 418 516            61.80 0.968 0.000 0.000 0.195 17.8 0.120 11.0 0.399 36.5 0.049 4.4 0.016 1.5 0.058 5.3 0.077 7.1 0.179 16.4 0.000 0.0

140 53 612              4.14 0.726 0.229 0.000 0.012 0.7 0.082 4.5 0.272 14.8 0.778 42.3 0.041 2.3 0.118 6.4 0.332 18.1 0.059 3.2 0.146 7.9
65 105 492            9.87 0.890 0.110 0.000 0.063 4.8 0.094 7.1 0.192 14.5 0.405 30.5 0.038 2.9 0.085 6.4 0.337 25.4 0.058 4.3 0.055 4.1
14 136 153            11.33 0.777 0.000 0.000 0.113 12.1 0.098 10.5 0.176 18.8 0.187 20.1 0.020 2.1 0.035 3.8 0.159 17.0 0.082 8.8 0.063 6.8

140 50 333              4.08 0.813 0.105 0.000 0.008 0.4 0.112 5.7 0.572 29.1 0.324 16.5 0.054 2.7 0.129 6.6 0.486 24.7 0.085 4.3 0.194 9.9
65 74 109              2.70 0.830 0.142 0.000 0.006 0.3 0.126 6.7 0.447 23.9 0.261 14.0 0.073 3.9 0.177 9.5 0.505 27.1 0.093 5.0 0.181 9.7
14 101 238            10.08 0.783 0.053 0.000 0.005 0.5 0.095 9.5 0.108 10.8 0.091 9.1 0.029 2.9 0.130 13.0 0.365 36.6 0.055 5.5 0.122 12.2

140 84 624              4.37 0.882 0.394 0.236 0.031 1.4 0.137 6.3 0.504 23.1 0.302 13.8 0.051 2.3 0.154 7.0 0.706 32.3 0.061 2.8 0.240 11.0
65 76 671              64.32 1.043 0.250 0.172 0.064 4.2 0.129 8.4 0.233 15.3 0.245 16.1 0.020 1.3 0.072 4.7 0.560 36.7 0.067 4.4 0.136 8.9
14 213 378            18.09 1.040 0.158 0.118 0.109 9.1 0.137 11.4 0.255 21.3 0.058 4.8 0.028 2.4 0.067 5.6 0.332 27.7 0.118 9.8 0.095 7.9

140 123 995            14.58 0.624 0.000 0.000 0.026 1.7 0.078 5.1 0.613 40.4 0.045 3.0 0.024 1.6 0.074 4.8 0.302 19.9 0.028 1.8 0.330 21.7
65 178 752            37.66 0.726 0.040 0.000 0.051 3.6 0.100 7.1 0.524 37.4 0.000 0.0 0.032 2.3 0.102 7.3 0.287 20.5 0.004 0.3 0.303 21.6
14 223 724            75.86 0.736 0.000 0.000 0.051 5.8 0.076 8.6 0.264 29.8 0.031 3.5 0.025 2.9 0.051 5.8 0.193 21.8 0.033 3.7 0.160 18.1

Carotenoids 

RCC719 A

RCC287 A

RCC857 A

RCC856 A

RCC2337 B

RCC2339 B

RCC996 A

RCC3374 A

RCC3376 A
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Figure S1. 

Page 27 of 27 Journal of Phycology




