@’PLOS ’ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Scott F, Jardim E, Millar CP, Cervifio S
(2016) An Applied Framework for Incorporating
Multiple Sources of Uncertainty in Fisheries Stock
Assessments. PLoS ONE 11(5): e0154922.
doi:10.1371/journal.pone.0154922

Editor: Athanassios C. Tsikliras, Aristotle University
of Thessaloniki, GREECE

Received: December 1, 2015
Accepted: April 21,2016
Published: May 10, 2016

Copyright: © 2016 Scott et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All files and data used
for analysis are available in a Git repository
accessible at: https:/fishregjrc.ec.europa.eu/gitiab/
scottfifincorporating_uncertainty_stock_assessment_
data.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

provided by Repositorio Institucional Digital del IEO

RESEARCH ARTICLE

An Applied Framework for Incorporating
Multiple Sources of Uncertainty in Fisheries
Stock Assessments

Finlay Scott'*, Ernesto Jardim’, Colin P. Millar'-?, Santiago Cerviiio®

1 European Commission, Joint Research Centre (JRC), Institute for the Protection and Security of the Citizen
(IPSC), Maritime Affairs Unit, via Enrico Fermi 2749, 21027 Ispra (VA), Italy, 2 Marine Scotland, Freshwater
Laboratory, Faskally, Pitiochry, PH16 5LB, United Kingdom, 3 Instituto Espafiol de Oceanografia, Centro
Oceanografico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain

* finlay.scott@jrc.ec.europa.eu

Abstract

Estimating fish stock status is very challenging given the many sources and high levels of
uncertainty surrounding the biological processes (e.g. natural variability in the demographic
rates), model selection (e.g. choosing growth or stock assessment models) and parameter
estimation. Incorporating multiple sources of uncertainty in a stock assessment allows
advice to better account for the risks associated with proposed management options, pro-
moting decisions that are more robust to such uncertainty. However, a typical assessment
only reports the model fit and variance of estimated parameters, thereby underreporting the
overall uncertainty. Additionally, although multiple candidate models may be considered,
only one is selected as the ‘best’ result, effectively rejecting the plausible assumptions
behind the other models. We present an applied framework to integrate multiple sources of
uncertainty in the stock assessment process. The first step is the generation and condition-
ing of a suite of stock assessment models that contain different assumptions about the
stock and the fishery. The second step is the estimation of parameters, including fitting of
the stock assessment models. The final step integrates across all of the results to reconcile
the multi-model outcome. The framework is flexible enough to be tailored to particular
stocks and fisheries and can draw on information from multiple sources to implement a
broad variety of assumptions, making it applicable to stocks with varying levels of data avail-
ability The Iberian hake stock in International Council for the Exploration of the Sea (ICES)
Divisions VllIic and IXa is used to demonstrate the framework, starting from length-based
stock and indices data. Process and model uncertainty are considered through the growth,
natural mortality, fishing mortality, survey catchability and stock-recruitment relationship.
Estimation uncertainty is included as part of the fitting process. Simple model averaging is
used to integrate across the results and produce a single assessment that considers the
multiple sources of uncertainty.
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Introduction

Stock assessment can be defined as the application of quantitative and statistical models to esti-
mate the current and historical status and trends of a fish stock, including abundance, mortality
and productivity [1]. A more recent definition used by the World Conference on Stock Assess-
ment Methods (WCSAM), is “Stock assessment is the synthesis of information on life history,
fishery monitoring, and resource surveys for estimating stock size and harvest rate relative to
sustainable reference points. . . . Stock assessment is usually carried out by applying mathemat-
ical models that fit available information to provide simplified representations of population
and fishery dynamics.” [2].

Fisheries management is increasingly focused on the management of risk [3]. For a stock
assessment to be included as part of a risk-based approach to fisheries management it is nec-
essary for the assessment to consider multiple sources of uncertainty. Six types of uncertainty
have been identified as important sources of risk in a fisheries setting [4]. In this study we
focus on three of them: process, stochasticity in the population dynamics arising from natural
variability in demographic rates; model, arising from lack of information about the correct
conceptual model, including model structure, parameters and error structure; and estimation,
uncertainty in the estimated parameters as a result of the model fitting process. The remain-
ing three types of uncertainty: observation, arising from data collection, measurement and
sampling; implementation, how well a management policy is fulfilled and institutional, aris-
ing from interactions between different groups of people (e.g. scientists and fishermen) are
not explored in this study. This does not mean that they are unimportant in the context of
fisheries management but that they are usually used in the testing of management options,
notably in management strategy evaluation (MSE) algorithms which is outside the scope of
this paper.

Typically, stock assessment only considers estimation uncertainty, for example, through the
use of confidence intervals on the estimated values. This means that the resulting uncertainty is
underestimated leading to advice that may be insufficently robust. For example, assumptions
on natural mortality can have a strong impact on the outcome of a stock assessment, particu-
larly on the estimates of fishing mortality. There is a large degree of uncertainty on natural
mortality and how it may change with length or age, partly because it is very difficult to mea-
sure. Despite this, stock assessments seldom consider the uncertainty in natural mortality and
often a single value is used for all lengths or ages and years.

Combining multiple sources of uncertainty can be used to generate a suite of candidate
stock assessments that reflect the different underlying assumptions made about the stock.
However, often only a single ‘best’ stock assessment is then selected from the suite, e.g. [5].
This has two main issues. The first is deciding how that single assessment is selected, which can
be done through a combination of quantitative (e.g. calculating AIC or other metrics) and qual-
itative (e.g. inspecting residuals) approaches. The second is that by selecting a single assess-
ment, all of the other plausible assessments and their accompanying uncertainty are rejected,
ignoring what may be relevant representations of reality.

An alternative to selecting a single stock assessment is to integrate across all of the results
and their uncertainties into a final outcome. Several methods are available to do this including
model averaging, a technique for incorporating model-selection uncertainty into inference [6].
It can be thought of as a model-weighting algorithm where the weights are based on the sup-
port for the model in the data and where each model represents a different, plausible hypothe-
ses. A variety of model averaging approaches have been proposed: frequentist and Bayesian,
simple and complex [7]. One of the key questions is how to weight the models when averaging
over them [8].
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Generating the suite of candidate assessments is made more straightforward through the
use of a flexible stock assessment framework that can include multiple sources of uncertainty.
The assessment for all (a4a) initiative presents has been developed to allow uncertainty about
biological processes such as growth and natural mortality to be taken into account and their
uncertainties propagated through to the estimates of population abundance, fishing mortality
and reference points by the stock assessment model [9]. To develop a range of assumptions on
the biological processes the a4a approach encourages the use of information from diverse
sources such as scientific papers, Ph.D. theses, Fishbase, other stocks, etc., and also the use of
generic information on life history invariants to derive generic priors, as suggested by [10]. As
well as considering uncertainty about the biology of the stock, the a4a approach also facilitates
the inclusion of uncertainty about the stock assessment model, for example through the use
of different models of selectivity, or different assumptions on survey catchability, etc. This
approach is different to other stock assessment models such as XSA [11] which are rigid in
their approach and use a fixed set of assumptions.

The assessment of the Iberian hake stock (Merluccius merluccius) in ICES Divisions VIIIc
and IXa (FAO Area 27) has been carried out by ICES since the mid 90’s [12]. As in many other
assessments, the models used to carry out the evaluation of the status of the stock have changed
during this time and have included an XSA model [11], a Bayesian catch-at-age model [13]
and, more recently, a Gadget [14] model to account for the recent changes in the perception of
hake growth [12, 15].

Accounting for the uncertainty associated with the assessment has always been a concern,
and the enforcement of a recovery plan in 2005 (Reg. EC No 2166/2005) made it more urgent
to tackle the problem. Several studies on this subject were performed to explore alternative
assumptions about the estimation of discards [13, 16], reproduction and productivity [17] and
growth [18]. The Gadget model limits the possibilities of fully exploring uncertainty and does
not allow the calculation of estimation uncertainty, partly due to the slow convergence which
makes it impractical to use simulations to derive statistical properties of the parameters, and
partly due to the characteristics of the minimiser that does not always accurately estimate the
Hessian matrix from which to derive a variance-covariance matrix for the parameters.

The objectives of this work are to use the tools developed under the a4a framework to (i)
develop a method to integrate distinct sources of uncertainty in a stock assessment and use
simple model averaging to combine the results in a coherent dataset, which can be used for
advice; and (ii) test the methodology on the Iberian hake stock. We show that it is straightfor-
ward to include uncertainty from a wide range of sources (biological parameters, biological
models, stock assessment models and model fit) in a stock assessment, thereby better account-
ing for the overall uncertainty in the results leading to the provision of more robust advice.

Materials and Methods

This study focuses on introducing several types and sources of uncertainty in the stock assess-
ment process for Iberian hake (ICES Divisions VIIIc and IXa), starting with the initial length-
based survey and fisheries data and resulting in estimates of age-based abundance and fishing
mortality. As mentioned in the introduction, we focus on including process, model and estima-
tion uncertainty. These types of uncertainty are included at different stages in the approach
and are propagated through to the final result (Table 1).

The approach has three steps (Fig 1). The first step involves generating and conditioning a
range of candidate assumptions about the stock including on the biological processes, fishing
mortality, survey catchability and stock-recruitment relationship. For Iberian hake the biologi-
cal processes of interest are growth and natural mortality which are considered to be highly
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Table 1. Sources and types of uncertainty included in this stock assessment process.

Source Type
Variance in growth parameters Process
Variance in natural mortality parameters Process
Natural mortality model choice Model
Stock assessment submodel choice Model
Resampling from stock assessment fit Estimation

The approach introduces different types and sources of uncertainty into the stock assessment process.
These uncertainties are propagated through to the final results.

doi:10.1371/journal.pone.0154922.1001

uncertain. It would also be possible to consider other biological processes such as maturity.
Combinations of the candidate assumptions can be considered as alternative, plausible states of
nature. These assumptions contain different sources and types of uncertainty. Process uncer-
tainty was introduced through the biological parameters of the growth and natural mortality
models. Biological model uncertainty was introduced through the use of two alternative natural
mortality models. Further model uncertainty was introduced through the use of a range of
stock assessment models. The second step involves the estimation of the unknown model
parameters, such as the fishing mortality and stock abundance, by fitting the stock assessment
models. Estimation uncertainty was generated from the fitting process by resampling from the
fits. The outcome of this step was a suite of stock assessment results that consider multiple
sources of uncertainty. For the final step, instead of choosing a single ‘best’ assessment the
results are integrated to reconcile the multi-model outcomes and combine the different sources
of uncertainty. Here we use a simple model averaging approach.

All analyses were carried out using R [19], FLR [20] and several R packages referenced in
the relevant sections.

Length-based data

The study used the stock data from 2014 [21]. This includes annual length-based catch, land-
ings and discards abundances from 1982 to 2012, recorded in 1 cm length classes from 1 cm to
129 cm. Mean weights at length were calculated using W = aL” where a = 6.59¢-5 and
b=3.01721[12].

Three length based indices of abundance covering the whole stock area were available: the
Spanish October groundfish survey in the North of Spain (1983-2012); the Portuguese October
groundfish in the Portuguese Atlantic coast (1989-2011) and the Gulf of Cadiz November sur-
vey in the South of Spain (1999-2012). The index data was binned into 2 cm length classes

A matury ogive based on data from annual Spanish sampling during the main spawning
season (December to May) was used [12]. In this study the ogive is assumed to be constant in
time and is taken as the mean of the last three years (2010-2012).

Process uncertainty in the growth parameters

The stock assessment model used here (a4a [9]) is age-based making it necessary to convert
the length-based indices and stock data to be age-based. This was done using a simple length-
slicing method (see below) based on the von Bertalanffy growth equation [22] (the following
methods are also appropriate for alternatives such as the Gompertz model [23]). This required
the generation of values for the von Bertalanfty growth parameters L., k and 0.
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Fig 1. Schematic diagram of the approach. The approach has three steps: Generating the candidate assumptions, estimating the
parameters of the stock assessment models and averaging across the model variants. Process and model uncertainty are introduced
when generating the candidate assumptions. Estimation uncertainty is introduced during parameter estimation. The result is a single
stock assessment that integrates across the multiple sources of uncertainty. M is natural mortality, SR is the stock-recruitment
relationship, F-pattern is the fishing mortality pattern, survey Q is the survey catchability pattern.

doi:10.1371/journal.pone.0154922.g001

Process uncertainty was introduced through the inclusion of variability in the growth
parameters using a t-copula [24, 25] with triangle marginal distributions. Copulas allow for
flexibility in multivariate distribution models, allowing for more robust distributions than the
common multivariate gaussian. A triangle distribution is described by the minimum, maxi-
mum and median values of the distribution. It makes very few assumptions about the parame-
ters and simplifies the definition of bounds, thereby ensuring that the sampled values of each
parameter are within well specified limits. The parametrization of the copula requires an
unscaled variance-covariance matrix and the limits and medians of the triangle marginals.
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Table 2. Values of the marginal triangle distribution parameters for the von Bertalanffy growth parameters.

Parameter

L. (cm)

k (vear™)

t0 (year)
doi:10.1371/journal.pone.0154922.t002

Minimum Median Maximum

104.520 130 155.480
0.132 0.164 0.196
-0.184 -0.092 0

The marginal distributions of each parameter were set using minimum, maximum and
median values (Table 2). The minimum and maximum values of L., and k were set to +- 1.96
standard deviations from the median (thereby covering approximately 95% of the variation),
with a coefficient of variation of 10%. The median parameter values for L., and k were taken
from the most recent assessment (130 cm and 0.164 y’1 respectively) [21]. The maximum value
of 10 was set to 0 and the minimum value was set to the lowest value that gave a positive age at
the smallest length (1 cm) given the ranges of L., and k. The median value of t0 was set so that
the marginal distribution is a symmetrical triangle.

The unscaled variance-covariance matrix was computed using data from Fishbase [26]. The
number of records in Fishbase which had values for all three parameters that were not “ques-
tionable” (a qualitative Yes / No description in the Fishbase data to identify unreliable data)
and that were only for hake was insufficient to reliably estimate the variance-covariance matrix
(67 records). Instead the variance-covariance matrix was estimated using the records for all
demersal species that had values for all three parameters and that were not questionable (2882
records) [10]. When generating the uncertainty using copulas, the variance-covariance matrix
is effectively scaled by the variance on the individual parameters [24, 25] and does not deter-
mine the magnitude of the parameter uncertainty, only the relative uncertainty between the
parameters. 1000 parameter sets were sampled from the multivariate distribution.

The distribution was evaluated using the R packages copula [27] and triangle [28].

Model and process uncertainty in the natural mortality

In the current stock assessment for Iberian hake there is no uncertainty in the natural mortality
assumptions and a fixed value of 0.4 is used for all ages and years [21]. Many different natural
mortality models have been proposed that are based on biological and ecological theory [29-
31]. Here, model uncertainty is introduced in the natural mortality assumptions through the
use of two natural mortality models. Process uncertainty is then introduced through the
parameters for one of the models.

The first model follows the current stock assessment and uses a fixed value of 0.4 for all
lengths and years with no process uncertainty. This model is referred to as the ‘0.4” model.

The second model is a length-based model where the shape of the natural mortality by
length follows ‘Gislason’s Second Estimator’ [29, 32]:

my,, =k (Lgc/len)l'5 (1)

To set the absolute level of m;,,, the values are scaled so that the mean values over the
lengths 15 to 60 cm, the most exploited lengths, are equal to Jensen’s Second Estimator’ [29,
33]:

m,, = 1.5k (2)
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Process uncertainty is introduced through variability in the parameters L., and k by using
the same values as those generated for the growth model, giving 1000 values for each length.
This model is referred to as the ‘Gislason’ model.

Slicing length-based to age-based data

To convert the length-based stock and indices data to age-based a simple slicing method was
used where each length-based observation is allocated to a corresponding age, based on the
growth model, and aggregated accordingly (sums for abundances, abundance weighted means
for the mean weights at length, means for natural mortality and maturity). The slicing was
applied to the length-based stock data and each of the natural mortality models. Although the
slicing method is deterministic, the length-based data was sliced by each of the 1000 sets of the
growth parameters, thereby propagating the biological process uncertainty through to the age-
based data.

The result of the slicing was two age-based stocks (one with the ‘0.4’ natural mortality
model and one with the ‘Gislason’ natural mortality model, reflecting model uncertainty in the
natural mortality assumptions), each with 1000 iterations in the data (reflecting process uncer-
tainty in the growth and natural mortality assumptions). The indices of abundances were also
sliced using the same growth model parameters giving three indices of abundances, each also
with 1000 iterations.

Model and estimation uncertainty in the stock assessment

The a4a statistical catch-at-age stock assessment model was used to assess both of the age-
based stocks [9]. The a4a model requires setting up three submodels for the fishing mortality
(the fimodel), the index catchability (the gmodel, one for each index) and recruitment (the rmo-
del). To introduce model uncertainty in the assessment, combinations of different submodels
were used. Three fimodels, three gmodels and two rmodels were used, giving a total of 18 stock
assessment models (Table 3).

The submodels were chosen to represent a reasonable spread across ‘model space’ for the
stock and fishing fleets, with different patterns and assumptions underneath each option. The
fmodel was either a linear model with factors on age and year, a smooth tensor spline over ages
and years or a logistic curve over ages with a year smoother. The gmodel was either a combina-
tion of an age and year smoother or a logistic curve over ages with a year smoother. The same
gmodel was applied to all three indices. The rmodel was either a smoother over years or a
Ricker model [34]. Out of these submodels only the logistic curve (finodel and gmodel) and
Ricker (rmodel) impose a particular shape on the estimated data.

Each of the 18 stock assessment model combinations was used to assess each of the 1000
iterations (which represent process uncertainty) of the two stocks (which have either the ‘Gisla-
son’ or ‘0.4’ natural mortality model). After fitting each iteration, estimation uncertainty was
included by resampling the estimated model parameters from the reported variance in each fit.

No assumption was made about which of the submodel combinations is the most appropri-
ate for the assessment given the data and no attempt was made to adjust the submodel parame-
ter settings to achieve the ‘best’ fit for each iteration.

The output of the stock assessment stage was 36 model variants containing different stock
assessment results, each with 1000 iterations. Each model variant represented an estimated
stock with a different combination of the model uncertainties plus process and estimation
uncertainty.
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Table 3. The stock assessment model options for the 18 different stock assessment models.

SA model fmodel gmodel rmodel 0.4 Gislason
1 age and year factors age smoother year smoother 711 825

2 spline on age and year age smoother year smoother 1000 990

3 logistic with year smoother age smoother year smoother 995 982 R
4 age and year factors age and year smoothers year smoother 789 748

5 spline on age and year age and year smoothers year smoother 998 995

6 logistic with year smoother age and year smoothers year smoother 961 R 984 R
7 age and year factors logistic with year smoother year smoother 769 747

8 spline on age and year logistic with year smoother year smoother 996 R 997

9 logistic with year smoother logistic with year smoother year smoother 926 990 R
10 age and year factors age smoother Ricker 867 629 R
11 spline on age and year age smoother Ricker 838 R 980
12 logistic with year smoother age smoother Ricker 1000 999
13 age and year factors age and year smoothers Ricker 841 R 582 R
14 spline on age and year age and year smoothers Ricker 875 R 977
15 logistic with year smoother age and year smoothers Ricker 998 1000
16 age and year factors logistic with year smoother Ricker 789 612
17 spline on age and year logistic with year smoother Ricker 972 983
18 logistic with year smoother logistic with year smoother Ricker 998 1000

The stock assessment model is made up of three submodels to model the fishing mortality (fmodel), survey catchability (gmodel) and recruitment
(rmodel). The number of iterations that fitted successfully (out of 1000) for each natural mortality model choice are shown in the ‘0.4’ and ‘Gislason’
columns respectively. The presence of ‘R’ in the column indicates that the estimated stock was ultimately rejected for having bimodality in the estimated
harvest rates in the final year, indicating instability in the model fit. For each stock assessment model the same gmodel was applied to each of the three
indices of abundance. The degrees of freedom on the smoothers and the tensor splines was adjusted for the number ages in the data. The Ricker rmode/
had a CV of 10% on the parameters.

doi:10.1371/journal.pone.0154922.1003

Integrating across multi-model results with model averaging

In a traditional stock assessment process, only one of the estimated model variants would be
selected as the single ‘best’ model (and would often only consider estimation uncertainty, not
the combination of estimation and process uncertainty that exists here). Here, the results of the
stock assessments are combined using a simple model averaging method based on the general-
ised cross-validation (GCV) score [35]. The GCV score is a measure of the predictive power of
the model and can be used as a data-driven indicator of the quality of the fit [36]. The GCV
score is estimated by an analytical expression, which makes it particularly suited for statistical
catch-at-age models, as it doesn’t require a computer intensive leave-one-out procedure. The
approach used in this study computed the GCV of the catch-at-age matrix only. Each model
variant was assigned a weight based on the median GCV across its iterations. The lower the
median GCV, the better the predictive power, on average, of the model variant. The inverse

of the median GCV was used to weight each model variant so that variants with more predic-
tive power had more weight assigned to them. The iterations within each model variant were
assumed to be equally likely and were selected from at random.

The result of the model averaging was a single stock assessment with multiple iterations that
incorporates process uncertainty in the growth and natural mortality parameters, natural mor-
tality and stock assessment model uncertainty and stock assessment estimation uncertainty.
This is in comparison to the original Gadget model used to assess the hake stock that did not
include any sources of uncertainty.
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Results
Process uncertainty in the growth parameters

The multivariate distribution of the von Bertalanffy growth parameters computed from Fish-
base can be seen in Fig 2. L., and k are negatively correlated, k and t0 are positively correlated
and L., and 0 have only a weak negative correlation. These samples are used in the length-slic-
ing and in the ‘Gislason’ natural mortality model. The resulting uncertainty in individual size
increases with age and the median value follows the growth curve of the most recent ICES
assessment (Fig 3).
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Fig 2. Including process uncertainty through the von Bertalanffy growth parameters. Top row: Pair wise scatter plots of 1000
samples of the von Bertalanffy growth parameters L., k and t0 that are used in the length-slicing and in the ‘Gislason’ natural mortality
model. Bottom row: histograms showing the triangle marginals of the growth parameters. The spread of values in the plots reflects the
process uncertainty in the parameter values.

doi:10.1371/journal.pone.0154922.9002
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Fig 3. Variance in the von Bertalanffy growth curve resulting from the process uncertainty in the growth parameters L, k
and t0. Median (solid black line) and 5% and 95% quantiles (dashed black lines). The deterministic growth curve using values for
the growth parameters from the last ICES assessment (L, = 130, k= 0.164 and t0 = 0) is the blue, dashed line that runs through
the median of the box plot.

doi:10.1371/journal.pone.0154922.9003

Example results of converting the length-based stock data to age-based data using the slicing
method can be seen in Fig 4. The ‘Gislason’ model has higher values of natural mortality in the
first age class than the ‘0.4’ model and also has uncertainty around the values (the ‘0.4” model
has no process uncertainty and therefore no variance). It can be argued that this is more biolog-
ically plausible than using the same values for all ages and the high variance reflects the high
level of uncertainty in estimates of natural mortality in the early ages. The variance in the catch
numbers in the younger ages is also very high reflecting high uncertainty in these ages. The var-
iance in the mean weights at age increases as individuals get older, following the same pattern
as the growth curve in Fig 3.

The uncertainty in the growth parameters meant that the age structures of the stock itera-
tions could be different, i.e. some combinations of growth parameters resulted in much longer
lived individuals than others. Therefore, each stock iteration had its own plusgroup (the last age
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@’PLOS ‘ ONE

Incorporating Multiple Sources of Uncertainty in Fisheries Stock Assessments

Te}
|
\
- \
= o | W
3 = 7\
S \
€ \
©
=2
© 0 _
Z o
ANNN
N
o
o
o
o
o—
Yol
Y
’a —
o
o
S o
© 3 4
o o
2 =
IS
3 —
c
e
"90
©
O 8 T
Yo}
o—
< |
o |
2 o _|
< =
=
> 0 —
‘©
=
c  ©
IS
o
= <
N—
O_
| | | | | | |
0 2 4 6 8 10 12
Age (yr)

Fig 4. Example age-based stock data after the length-based data has been sliced using the uncertain
von Bertalanffy growth parameters. Natural mortality, catch numbers and mean weights by age after
slicing the length-based data. Median (solid line) and 5% and 95% quantiles (dashed line) are shown. The
values are for the year 2012. Only ages up to 12 are shown for brevity. The two different natural mortality
models are shown in the top panel. The ‘Gislason’ model is black and the ‘0.4’ model is blue. The variance in
the ‘Gislason’ model represents the process uncertainty. The ‘0.4’ model has no process uncertainty and
therefore no variance.

doi:10.1371/journal.pone.0154922.9004
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that groups older ages) which was set at the age which contained 95% of the total catch biomass,
averaged over the time series. The plusgroups ranged from 6 to 20 with a median value of 9.

Stock assessment and natural mortality model uncertainty

Due to the level of process uncertainty, not all of the iterations of each estimated model variant
fitted successfully. Iterations that did not fit successfully were removed. There was no other fil-
tering to remove iterations that contained estimates that could be thought of as implausible (for
example, there were several iterations with a mean fishing mortality greater than 8). However,
some of the model variants had estimated values with multimodal distributions, particularly in
the estimated harvest rates (catch biomass / stock biomass). This suggested that the fits of those
model variants were unstable due to a combination of the different natural mortality models,
stock assessment submodels and the process uncertainty. Hartigan’s dip test for bimodality was
performed on the estimated harvest rates in the final year using the diptest package for R [37] to
identify the unstable fits. It was found that 10 out of the 36 model variants had bimodal results.
Due to the problems with fitting, these model variants were not considered to represent plausi-
ble scenarios and were rejected from the remainder of the analysis (Table 3). There did not
appear to be any particular pattern to the rejected model variants, with all stock assessment sub-
models and both natural mortality models being components of the rejected variants.

The result was 26 fitted model variants, each of which can be thought of as a plausible com-
bination of the different assessment and natural mortality models. Each variant had a mini-
mum of 612 iterations, reflecting the process uncertainty in the growth and natural mortality
parameters and the estimation uncertainty in the stock assessment fit.

Model uncertainty is not often considered in stock assessments other than attempting to
find the single ‘best’ model within a suite of candidate models and discarding the other plausi-
ble models. Different stock assessment and natural mortality model combinations will obvi-
ously result in different stock assessment results. The impact of the model uncertainty can be
illustrated by fitting each model combination with only a single iteration of the biological
parameters (Fig 5). This ignores process and estimation uncertainty. There are clear differences
in the patterns and trends in the results, particularly in the most recent years. For example, the
mean fishing mortality in the final year ranges from 0.04 to 1.95. Models with the ‘Gislason’
natural mortality model all tend to have higher mean fishing mortality and recruitment but
lower SSB than the models with ‘0.4’ natural mortality model, driven by the high natural mor-
tality in the younger ages and low natural mortality in the older age.

The impact of the different natural mortality, fishing mortality, survey catchability and
stock-recruitment model components on important fisheries variables (spawning stock bio-
mass (SSB), recruitment and mean fishing mortality) was investigated using classification
regression trees [38] to recursively partition the variables across the distinct model compo-
nents. The analysis identifies the model components which have the biggest effect on the vari-
able estimates (Fig 6). The analysis was carried out with the R package rpart [39].

With regards to SSB, the fishing mortality model was the most important, followed by the
natural mortality model. For mean fishing mortality and recruitment the natural mortality
model was the major factor, followed by the survey catchability model. The impact of the dif-
ferent model component on the estimates of these metrics demonstrate how important it is to
account for uncertainty in model structure, particularly natural mortality.

Model averaging

The process described here generated a suite of 26 fitted model variants. The final stage was to
integrate the results from all of the variants using model averaging and produce a single set of
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Fig 5. The impact of model uncertainty on the summary stock assessment results. Summary stock assessment results
(recruitment, spawning stock biomass (SSB), mean fishing mortality (Fbar) and catch) from fitting a single iteration of the biological
parameters with the 26 combinations of stock assessment and natural mortality models. This is equivalent to performing stock
assessments without process or estimation uncertainty and only including model uncertainty. There are clear differences between
the patterns and trends of the fits from each model, particularly in the most recent years. Note that the recruitment and SSB are
shown on a log scale to allow the differences between the model results to be more visible. The recruitment, SSB and Fbar results
can be broadly separated into two groups, driven by the natural mortality model. The ‘Gislason’ natural mortality model (blue lines)
estimates higher recruitment and Fbar and lower SSB than the ‘0.4’ model (black lines). The results from the most recent ICES stock
assessment are shown as the thick, dashed, red line.

doi:10.1371/journal.pone.0154922.g005

results. The weightings for the simple model averaging method were based on the median
GCV scores across the iterations of each fitted model variant. The minimum number of itera-
tions in a single model variant was 612 (Table 3). To avoid overweighting any of the iterations
in the model variants, the number of iterations used to build the model averaged results cannot
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Fig 6. Regression trees showing which stock assessment and natural mortality model components had the
biggest impact on the estimated stock assessment summary results. The summary stock assessment results are
spawning stock biomass (SSB), mean fishing mortality (Fbar) and recruitment. The notation for F, Q and R refers to the
submodel number in Table 3. For example, Q = gmd1 means the second gmodel/ (the logistic model). M refers to the
natural mortality model, either ‘0.4’ or ‘Gislason’. The numbers are the mean residuals from each model component on the
logarithm of each summary measure.

doi:10.1371/journal.pone.0154922.g006

be more than this minimum number. Therefore, 600 iterations were selected from across the
26 model variants based on their weight to construct a new ‘averaged’ set of results. Each itera-
tion within a model variant was considered to be equally likely. Even though only 600 iterations
were selected, the available iterations from each model variant ranged from 612 to 1000

(Table 3).

If we were interested in selecting only a single model, one method of selecting the ‘best’ esti-
mated model is to select the one with the lowest median GCV score. That was stock assessment
model 16 with the Gislason natural mortality model (Table 3). Comparing the ‘best’ GCV
model and the model averaged results shows that both track the most recent ICES assessment,
although recent SSB and recruitment estimates are higher (Fig 7). As expected, the variance in
the single ‘best’ model is smaller than in the model averaged results, in particular on the uncer-
tainty of the estimated fishing mortality. This is because the averaged results includes a greater
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Fig 7. Comparing the model averaged results to the model variant with the lowest median GCV (the ‘best’ assessment).
Summary metrics (recruitment, spawning stock biomass (SSB), mean fishing mortality (Fbar) and catch) from the model averaged
results (red, sold line), the model with the lowest median GCV which can be used as an indicator of which model is ‘best’ (blue, thin
dashed line) and the ICES assessment (thick dashed line). For the model averaged results and the GCV model, the lines show the
medians and the ribbons show the 10 and 90% quantiles.

doi:10.1371/journal.pone.0154922.g007

range of model uncertainty. For example, the best GCV model only includes the Gislason natu-
ral mortality model, whereas the model averaged results integrate across both natural mortality
models. It was shown above that the choice of natural mortality model has a large impact on
the estimated fishing mortality.

The effect of the model averaging process on the resulting variability in the results can be
seen by looking at the estimated mean fishing mortality in the final year of the assessment
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Fig 8. Distribution of the mean fishing mortality in the final year of the assessment for all model variants and model
averaged results. The model labelling on the y-axis refers to the combination of the stock assessment submodels and the natural
mortality model (see Table 3). GCV is the model averaged result using median GCV weighting. The points show the median value,
the lines extend to the 5% and 95% quantile.

doi:10.1371/journal.pone.0154922.9008

for each of the individual fitted model variants and the model averaged results (Fig 8).

The values for the model averaged results are taken from the full suite of 26 fitted model
variants and therefore cover the full range of those values. As some of those fitted model vari-
ants contain fits that would be thought of as implausible, the model averaged results also con-
tains some implausible results. For example, the maximum value of mean fishing mortality
for the model averaged restuls is 8.46. However, the median value is 1.2 which is quite rea-
sonable and the 90% quantile range is from 0.32 to 2.36. The averaged results contain all of
the assumptions that were generated during the first step of the process. The results are
therefore more robust than if only a single stock assessment result was selected from the
model variants.
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Discussion

Estimating the status of a fish stock is challenging given the multiple sources and high levels of
uncertainty that are present. Ensuring that the stock assessment process encompasses these
uncertainties is important, given the key role the results often play in the advisory process. The
‘true’ states of the fishery, including the states of the biological and harvesting processes, are
seldom known and so it is important that any provided advice is sufficiently robust to this
uncertainty.

This paper presents an applied framework for considering and integrating multiple sources
of uncertainty into the stock assessment process in three steps. The first step, conditioning,
involves the generation of a suite of stocks that can be considered as representing plausible
states of nature and carrying different assumptions. The second step, estimation, fits the differ-
ent models to the data and adds estimation uncertainty to the results. Finally, the third step
integrates the estimated stock assessments and their accompanying uncertainty into a single
set of results. These results are a stochastic representation of the fleet and stock dynamics, that
integrates across a wide range of assumptions and conditions.

The impact on advice will affect several processes like the estimation of biological reference
points, forecasting, scenarios evaluation and/or risk analysis. A quantitative evaluation of all
these processes was outside the scope of the paper. Nevertheless, we argue that by considering
the several plausible states of nature instead of a single one, and integrating across several
sources of uncertainty, our results span a large area of the model and parameters spaces, which
makes any advice more robust to future natural conditions. When generating future scenarios
the need to extrapolate outside current knowledge is reduced. Note that one could always
expand the levels of uncertainty to amounts that would render the results useless for advice.
However, the methodology presented here shows that it’s possible to include a large number of
uncertainty factors while still keeping the results useful for advice.

One of the key strengths of the framework presented here is that each component of the
conditioning step can be considered independently, with the uncertainty propagating between
them. This means that the framework can be easily adapted to a particular fishery, making it
applicable to stocks with varying levels of data availability. For example, biological uncertainty
is included at an early stage in the framework by using a stochastic growth model to convert
the length-based data to age-based. Here the growth parameters used the von Bertalanffy
model with stochastic parameters taken from a multivariate distribution based on values from
Fishbase combined with a t-copula and marginal triangle distributions. However, it would also
have been possible to use an alternative growth model (e.g. Gompertz [23]), use a model that
captures the sexual dimorphism of the hake stock, use alternative sources of data for the
parameter values and use an alternative multivariate distribution (i.e using an alternative cop-
ula). Additionally, uncertainty could be included in processes that were deterministically mod-
elled in this paper. For example, uncertainty could be included on the maturity ogive using a
similar process as illustrated here. Non-stationary processes, for example temporal changes to
the length-weight relationship, could also be included.

The use of a multivariate distribution to generate the parameters ensures that the relation-
ships between the parameters are coherent resulting in plausible parameter sets. This is in con-
trast to other methods where life history parameter values are generated independently of each
other, losing the relationship between them and resulting in a large number of rejected parame-
ter sets e.g. [40].

The method for generating the growth parameters for the hake assessment presented here
assumed stationarity in their distribution. However, there is evidence of non-stationarity in
biological processes e.g. [41, 42]. It would be straightforward to include non-stationarity
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scenarios through trends in the marginal distributions of the growth parameters and the vari-
ance-covariance matrix. These scenarios could be used as additional plausible hypotheses
when building the suite of stock assessment models.

Integrating across multi-model results has several advantages for the stock assessment pro-
cess [7]. For example, the choice of natural mortality model was shown to have a strong impact
on the estimates of recruitment and fishing mortality. This suggests that it is preferable to inte-
grate across multiple natural mortality models instead of selecting a single model. By integrat-
ing across the results, there is no need to pick a single model from the suite of models. Instead
more time can be spent on defining the initial suite, ensuring that the models are plausible and
cover a wide range of ‘model space’ (to prevent models having similar characteristics, which
when averaged across can give too much weight to the same type of model). This moves the
focus of the assessment process away from model checking and model selection. Instead,
designing the appropriate, plausible models becomes the most important task. Although only
one model may be the most likely, the others still represent plausible ‘states of nature’ and con-
tribute to the estimation of uncertainty about it. When only one model is selected, the assump-
tions behind the other models are rejected despite those assumptions also being plausible.
Integrating over the results avoids the pitfalls of using a single model such as underreporting of
variability, too narrow confidence intervals, overly optimistic tests of significance and poten-
tially biased results [43]. This is demonstrated in the results, where selecting a single model
based on the GCV resulted in lower variance in the summary stock assessment statistics than
the model averaged stock.

This paper used model averaging to integrate over the results. It was not intended to offer a
tull description of how model averaging should be carried out and only a simple method is
used. A key concern in model averaging is how to weight the models [8]. The most simple
weighting method is to assign equal weights to each model. This assumes that all models are
effectively equal in terms of plausibility. This is less selective about which models are drawn
from than using a method based on model fit and should be used when there is no other crite-
ria for selecting models, i.e. in the absence of further information all models are equally likely.
Here, the weighting was based on the median GCV of each model which was taken to be a mea-
sure of how well that particular model fitted the data. Alternative methods based on measures
of fit include using the Akaike Information Criterion (AIC) or the Bayesian Information Crite-
rion (BIC) [44]. Use of the AIC was explored here but it was found that nearly all of the weight
was put on only a single model variant and it was not pursued further. It is also possible to use
qualitative weighting. For example, the International Whaling Commission combines the
results from testing management procedures with model variants using qualitative weighting
in a framework similar to the one presented here [45].

Structural uncertainty in the stock assessment models can also be a concern and can prove
to be of greater magnitude than estimation uncertainty within a given model [46]. The simple
model averaging approach used here is only applicable because the models have the same data
and error assumptions meaning that objective (data-based) weighting is available. When mod-
els include different likelihood functions (e.g. if the suite of stock assessment models included
VPA based models as well as SCA models) then the simple model averaging approach used
here is not appropriate, restricting the structural uncertainty that can be considered. In this
case more complicated model averaging methods can be used that include incorporating expert
option, using machine learning and ensemble approaches, e.g. [46, 47].

The general approach presented here is flexible enough to be tailored to individual cases.
However this flexibility means that it is possible to generate a suite of models that are not inter-
nally consistent or plausible. Integrated assessment models, which also attempt to include mul-
tiple sources of uncertainty, e.g. by estimating growth parameters within the stock assessment
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model fit, generate more consistent models. Nevertheless, the trade-off is an increase in the
complexity of the model and the inclusion of correlation in the parameters space, with the
inherent difficulties estimating the parameters.

Performing a stock assessment is a demanding task and using this framework may seem like
placing additional burdens on stock assessors. However, we argue that this is not necessarily
the case. A key part of the standard stock assessment approach is the need to perform extensive
diagnostic model checks to select the single ‘best” model. Using the framework presented here,
more time can instead be spent on defining the initial suite of plausible models for each stock,
allowing experts to focus more on the science. The software tools to implement this approach
already exist and by taking advantage of modern computing facilities, fitting 1000s of iterations
for many model variants is certainly possible within an operational time frame. What is needed
is a change of perspective, away from selecting and defending a single ‘best’ model and towards
stock assessments integrating multidisciplinary ideas to produce robust advice.

Stock assessments are often performed as part of a regular management process and in this
paper we are concerned with generating a full assessment of the stock status, including esti-
mates of abundance and fishing mortality at age. In terms of effective management, it has been
demonstrated that relatively simple assessment models combined with appropriate harvest
control rules can perform at least as well as conventional stock assessments [48]. This questions
the need to estimate 100s parameters in a full stock assessment when only knowing how to to
respond to a signal in a stock indicator may be sufficient. It has also been argued that stock
assessment methods are too complicated and weaknesses in the underlying data and assump-
tions are neglected [49].

We argue that there will still always be a need to perform more detailed assessments of stock
status. For example, to perform projections, fit a stock-recruitment relationship or to use the
assessment to condition an operating model as part of an MSE, more than a simple assessment
is required. [50] suggested that the ‘future trend will be to base management decisions on sim-
ple rules that are more often data-based rather than model-based while the complex models
will serve primarily to evaluate the robustness of these decision rules’. The methods presented
here fall into the ‘complex models’ category.

Capturing the full uncertainty of a natural system is considered to be almost impossible and
not worthwhile when the costs and benefits are taken into account. One solution is to divide
the process into small pieces and deal with each one of them as required. However, each sub-
process may be described in different ways, leading to uncertainty about which scenario, if any,
is ‘correct’. Generating many plausible scenarios can also easily generate a large amount of
results, creating problems downstream when attempting to keep an eye on the important mes-
sages without being overwhelmed. The method presented in the paper tries to navigate between
these two problems and present operational solutions for integrating important sources of
uncertainty into our perception of fish stock exploitation.

Acknowledgments

The authors would like to thank Nakome Bentley for the demersal data set, and Ian Fraser
Kilmister for additional advice.

Author Contributions

Conceived and designed the experiments: FS E] CPM. Performed the experiments: FS EJ. Ana-
lyzed the data: FS E] CPM SC. Wrote the paper: FS E] CPM SC. Contributed analysis: SC.

PLOS ONE | DOI:10.1371/journal.pone.0154922 May 10, 2016 19/21



@’PLOS ‘ ONE

Incorporating Multiple Sources of Uncertainty in Fisheries Stock Assessments

References

10.

11.

12
13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment. Boston, MA: Springer US.

Cadrin SX, Dickey-Collas M (2015) Stock assessment methods for sustainable fisheries. ICES Journal
of Marine Science 72: 1-6. doi: 10.1093/icesjms/fsu228

Sethi SA (2010) Risk management for fisheries. Fish and Fisheries 11: 341-365. doi: 10.1111/j.1467-
2979.2010.00363.x

Francis R, Shotton R (1997) “Risk” in fisheries management: a review. Canadian Journal of Fisheries
and Aquatic Sciences 54: 1699-1715. doi: 10.1139/f97-100

Weinberg JR (2014) Guidance to stock assessment workshop working groups (SAW WG) on prepara-
tion / format of SAW Reports for Peer Review. URL http:/nefsc.noaa.gov/saw/pdfs/Guidance%20for%
20Preparing%20SAW%20docs_10-16-14.pdf.

Buckland ST, Burnham KP, Augustin NH (1997) Model Selection: An Integral Part of Inference. Bio-
metrics 53: 603-618. doi: 10.2307/2533961

Millar CP, Jardim E, Scott F, Osio GC, Mosqueira |, Alzorriz N (2015) Model averaging to streamline the
stock assessment process. ICES Journal of Marine Science 72: 93-98. doi: 10.1093/icesjms/fsu043

Butterworth DS, Punt AE, Smith ADM (1996) On plausible hypotheses and their weighting, with implica-
tions for selection between variants of the revised management procedure. Reports of the International
Whaling Commission 46: 637—-642.

Jardim E, Millar CP, Mosqueira I, Scott F, Osio GC, Ferretti M, et al. (2015) What if stock assessment is
as simple as a linear model? The a4a initiative. ICES Journal of Marine Science 72: 232—-236. doi: 10.
1093/icesjms/fsu050

Bentley N (2015) Data and time poverty in fisheries estimation: potential approaches and solutions.
ICES Journal of Marine Science 72: 186—193. doi: 10.1093/icesjms/fsu023

Shepherd J (1999) Extended Survivors Analysis: An improved method for the analysis of catch-at-age
data and abundance indices. ICES Journal of Marine Science 56: 584—-591.

Anon (2010) Report of the Benchmark Workshop on Roundfish. ICES CM 2010/ACOM:36, ICES.

Fernandez C, Cervifio S, Pérez N, Jardim E (2010) Stock assessment and projections incorporating
discard estimates in some years: an application to the hake stock in ICES divisions Vllic and IXa. ICES
Journal of Marine Science 67: 1185-1197. doi: 10.1093/icesjms/fsq029

Begley J, Howell D (2004) An overview of gadget, the globally applicable area-disaggregated general
ecosystem toolbox. Presentation to the Annual Science Conference CM 2004/FF, ICES.

de Pontual H, Groison AL, Pineiro C, Bertignac M (2006) Evidence of underestimation of European
hake growth in the Bay of Biscay, and its relationship with bias in the agreed method of age estimation.
ICES Journal of Marine Science 63: 1674—1681. doi: 10.1016/j.icesjms.2006.07.007

Jardim E, Fernandes AC (2013) Estimators of discards using fishing effort as auxiliary information with
an application to Iberian hake (Merluccius merluccius) exploited by the portuguese trawl fleets. Fisher-
ies Research 140: 105—113. doi: 10.1016/j.fishres.2012.12.006

Cervifio S, Dominguez-Petit R, Jardim E, Mehault S, Pifieiro C, Saborido-Rey F, et al. (2013) Impact of
egg production and stock structure on MSY reference points and its management implications for
southern hake (Merluccius merluccius). Fisheries Research 138: 168—178. doi: 10.1016/j.fishres.
2012.07.016

Cervifio S (2014) Estimating growth from sex ratio-at-length data in species with sexual size dimor-
phism. Fisheries Research 160: 112—119. doi: 10.1016/j.fishres.2013.11.010

R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Sta-
tistical Computing, Vienna, Austria. URL http://www.R-project.org.

Kell LT, Mosqueira |, Grosjean P, Fromentin JM, Garcia D, Hillary R, et al. (2007) FLR: an open-source
framework for the evaluation and development of management strategies. ICES Journal of Marine Sci-
ence 64: 640-646. doi: 10.1093/icesjms/fsm012

Anon (2014) Report of the benchmark workshop on southern megrim and hake (WKSOUTH). Techni-
cal Report ICES CM 2014/ACOM:40, ICES, ICES HQ, Copenhagen, Denmark.

von Bertalanffy L (1934) Untersuchungen Uber die Gesetzlichkeiten des Wachstums. . Allgemaine
Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei
Wassertieren Arch Entwicklungsmech., 131: 613-652.

Gompertz B (1825) On the Nature of the Function Expressive of the Law of Human Mortality, and on a
New Mode of Determining the Value of Life Contingencies. Philosophical Transactions of the Royal
Society of London 115: 513-585. doi: 10.1098/rstl.1825.0026

PLOS ONE | DOI:10.1371/journal.pone.0154922 May 10, 2016 20/21


http://dx.doi.org/10.1093/icesjms/fsu228
http://dx.doi.org/10.1111/j.1467-2979.2010.00363.x
http://dx.doi.org/10.1111/j.1467-2979.2010.00363.x
http://dx.doi.org/10.1139/f97-100
http://nefsc.noaa.gov/saw/pdfs/Guidance%20for%20Preparing%20SAW%20docs_10-16-14.pdf
http://nefsc.noaa.gov/saw/pdfs/Guidance%20for%20Preparing%20SAW%20docs_10-16-14.pdf
http://dx.doi.org/10.2307/2533961
http://dx.doi.org/10.1093/icesjms/fsu043
http://dx.doi.org/10.1093/icesjms/fsu050
http://dx.doi.org/10.1093/icesjms/fsu050
http://dx.doi.org/10.1093/icesjms/fsu023
http://dx.doi.org/10.1093/icesjms/fsq029
http://dx.doi.org/10.1016/j.icesjms.2006.07.007
http://dx.doi.org/10.1016/j.fishres.2012.12.006
http://dx.doi.org/10.1016/j.fishres.2012.07.016
http://dx.doi.org/10.1016/j.fishres.2012.07.016
http://dx.doi.org/10.1016/j.fishres.2013.11.010
http://www.R-project.org
http://dx.doi.org/10.1093/icesjms/fsm012
http://dx.doi.org/10.1098/rstl.1825.0026

@’PLOS ‘ ONE

Incorporating Multiple Sources of Uncertainty in Fisheries Stock Assessments

24.

25.
26.
27.

28.

29.

30.
31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

Sklar A (1959) Fonctions de répartitiona n dimensions et leurs marges. Publications de I'Institut de Sta-
tistique de L’Université de Paris 8:229-231.

Nelsen RB (2013) An Introduction to Copulas. Springer Science & Business Media.
Froese R, Pauly D. (2015). Fishbase world wide web electronic publication. URL www.fishbase.org.

Hofert M, Kojadinovic I, Maechler M, Yan J (2014) copula: Multivariate Dependence with Copulas. URL
http://CRAN.R-project.org/package=copula. R package version 0.999-10.

Carnell R (2013) triangle: Provides the standard distribution functions for the triangle distribution. URL
http://CRAN.R-project.org/package=triangle. R package version 0.8.

Kenchington TJ (2014) Natural mortality estimators for information-limited fisheries. Fish and Fisheries
15:533-562. doi: 10.1111/faf.12027

Vetter EF (1988) Estimation of natural mortality in fish stocks: a review. Fishery Bulletin 86: 25—43.

Hewitt DA, Hoenig JM (2005) Comparison of two approaches for estimating natural mortality based on
longevity. Fishery Bulletin 103: 433-437.

Gislason H, Daan N, Rice JC, Pope JG (2010) Size, growth, temperature and the natural mortality of
marine fish. Fish and Fisheries 11: 149-158. doi: 10.1111/j.1467-2979.2009.00350.x

Jensen AL (1996) Beverton and Holt life history invariants result from optimal trade-off of reproduction
and survival. Canadian Journal of Fisheries and Aquatic Sciences 53: 820—822. doi: 10.1139/f95-233

Ricker WE (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada 11: 559—
623. doi: 10.1139/f54-039

Wood S (2006) Generalized Additive Models: An Introduction with R. CRC Press.

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning. Springer Series in Sta-
tistics. New York, NY: Springer New York.

Maechler M (2015) diptest: Hartigan’s Dip Test Statistic for Unimodality—Corrected. URL http://CRAN.
R-project.org/package=diptest. R package version 0.75-7.

Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and Regression Trees. Chapman and
Hall/CRC.

Therneau T, Atkinson B, Ripley B (2015) rpart: Recursive Partitioning and Regression Trees. URL
http://CRAN.R-project.org/package=rpart. R package version 4.1-10.

Thorpe RB, Le Quesne WJF, Luxford F, Collie JS, Jennings S (2015) Evaluation and management
implications of uncertainty in a multispecies size-structured model of population and community
responses to fishing. Methods in Ecology and Evolution 6: 49-58. doi: 10.1111/2041-210X.12292
PMID: 25866615

Hjort J (1926) Fluctuations in the year classes of important food fishes. Journal du Conseil 1: 5-38. doi:
10.1093/icesjms/1.1.5

Dickey-Collas M, Engelhard GH, Rindorf A, Raab K, Smout S, Aarts G, et al. (2014) Ecosystem-based
management objectives for the North Sea: riding the forage fish rollercoaster. ICES Journal of Marine
Science 71:128-142. doi: 10.1093/icesjms/fst075

Claeskens G, Hjort N (2008) Model Selection and Model Averaging. New York: Cambridge University
Press.

Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC.
Ecology 95: 631-636. doi: 10.1890/13-1452.1 PMID: 24804445

International Whaling Commission (2008) Report of the first intersessional RMP workshop on North
Atlantic fin Whales International Whaling Commission Report 3

Stewart IJ, Martell SJD (2015) Reconciling stock assessment paradigms to better inform fisheries man-
agement. ICES Journal of Marine Science 72: 2187-2196. doi: 10.1093/icesjms/fsv061

Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 365: 2053—2075. doi: 10.1098/rsta.2007.2076

Geromont HF, Butterworth DS (2015) Complex assessments or simple management procedures for
efficient fisheries management: a comparative study. ICES Journal of Marine Science 72: 262-274.
doi: 10.1093/icesjms/fsu017

Cotter AJR, Burt L, Paxton CGM, Fernandez C, Buckland ST, Pan J-X. (2004) Are stock assessment
methods too complicated? Fish and Fisheries 5: 235-254. doi: 10.1111/].1467-2679.2004.00157.x

Hilborn R (2003) The state of the art in stock assessment: where we are and where we are going.
Scientia Marina 67 (Suppliment 1): 15-20.

PLOS ONE | DOI:10.1371/journal.pone.0154922 May 10, 2016 21/21


http://www.fishbase.org
http://CRAN.R-project.org/package�=�copula
http://CRAN.R-project.org/package�=�triangle
http://dx.doi.org/10.1111/faf.12027
http://dx.doi.org/10.1111/j.1467-2979.2009.00350.x
http://dx.doi.org/10.1139/f95-233
http://dx.doi.org/10.1139/f54-039
http://CRAN.R-project.org/package�=�diptest
http://CRAN.R-project.org/package�=�diptest
http://CRAN.R-project.org/package�=�rpart
http://dx.doi.org/10.1111/2041-210X.12292
http://www.ncbi.nlm.nih.gov/pubmed/25866615
http://dx.doi.org/10.1093/icesjms/1.1.5
http://dx.doi.org/10.1093/icesjms/fst075
http://dx.doi.org/10.1890/13-1452.1
http://www.ncbi.nlm.nih.gov/pubmed/24804445
http://dx.doi.org/10.1093/icesjms/fsv061
http://dx.doi.org/10.1098/rsta.2007.2076
http://dx.doi.org/10.1093/icesjms/fsu017
http://dx.doi.org/10.1111/j.1467-2679.2004.00157.x

