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Abstract

Stable isotopes (8'°N) have been used to determine trophic levels in marine food webs. This study assessed if Marine Pro-
tected Areas (MPAs) affect the trophic levels of fishes based on stable isotopes in the western Mediterranean. A total of 22 studies
including 600 observations were found and the final dataset consisted of 11 fish species and 146 observations comparing trophic
levels inside and outside MPAs. The database was analysed by meta-analysis and the covariate selected was the level of protec-
tion (inside vs. outside MPAs). The results indicate significant differences between trophic levels inside and outside the MPAs;
however, results differ from expectations since the trophic level was lower inside than outside MPAs. Three habitats were analysed
(coastal lagoons, demersal, and littoral) and significant statistical differences were found among them: trophic level was higher in
demersal habitats than in coastal lagoons and littoral areas. No significant differences were found in species classified by trophic
functional groups. Several hypotheses are considered as possible explanations linked to protection level, time since protection,
and MPA size. We debate the suitability of using the stable isotope 6'°N as a direct indicator of trophic level in evaluating MPA

effects on food webs.

Keywords: Diet, fisheries effects, marine reserves, Mediterranean Sea.

Introduction

Marine Protected Areas (MPAs) have been estab-
lished to prevent or reduce impacts exerted by humans in
marine ecosystems. The benefits of the establishment of
MPAs have been described both inside (Garcia-Rubies &
Zabala, 1990; Francour, 1994; Guidetti, 2002) and out-
side no-take areas (Russ & Alcala, 1996; Ojeda-Martinez
et al.,2007).

The trophic level (TL) of a species is an ecological
trait that might provide valuable information on the eco-
logical processes deriving from spatial regulations on
fish catches in marine protected areas. TL could be deter-
mined by fish stomach contents analyses or by quantify-
ing stable isotopes ratios of nitrogen (N). Stomach con-
tents analysis provides information on prey consumption
and is based on the transfer of organic matter through
food chains. Species position within the food chain is de-
termined by their diet and weight (Polis & Strong, 1996).
There are several limitations to this methodology: it only
provides a snapshot of the ingestion at a particular time,
there exists the difficulty of distinguishing between as-
similate and non- assimilated food sources, the amount
that has been assimilated, and that which has been the
contribution of primary producers.
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Stable isotope signatures rely on the assumption of
‘we are what we eat’ and are based on the transforma-
tion of the carbon isotope ('2C) and nitrogen isotope (**N)
within an organism to its most stable isotopes, *C and
15N, respectively. This process takes place because when
an organism feeds, the food tends to stabilize. The ratio
of stable isotopes of proteins in consumer species reflects
those proteins in the diet in a predictable way (Hobson &
Clark, 1992; Hobson, 1999).

This study focuses on 8"°N since that isotope is used
to estimate the trophic level of marine organisms, espe-
cially when the base level is the primary producers (Ca-
bana & Rasmussen, 1996). The abundance of 8N in
the tissues of the consumer species is enhanced, more or
less, by 3.4 %o relative to their prey (Vander Zanden et
al., 1997; Post, 2002). This type of analysis overcomes
the limitations of analysis by stomach content. The re-
sults reflect the actual assimilation of nutrients and can
be used for studies over a longer period of time because
assimilation is reflected in the tissue analysis.

Meta-analyses have been widely applied as a tool to
assess processes in MPAs so as to demonstrate the varia-
tions in ecological traits and fish life histories (Claudet
et al., 2008), effects of MPAs on fish populations (Coté
et al., 2001) as well as the interactions between cod and
shrimp in oceanic food webs (Worm & Myers, 2003).
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Although some meta-analyses on fisheries research have
been performed since the 1990s, to our knowledge our
study is the first to assess trophic level changes linked to
Marine Protected Areas through the evaluation of stable
isotopes in fishes.

In this context, the main aim of the present study was
to investigate changes in trophic levels based on stable
isotopes for fish species both inside Marine Protected
Areas and outside MPAs. We have considered only data
derived from stable isotopes in our analysis, not taking
into consideration shifts in biomass, abundance or densi-
ty related to fisheries effects. The initial hypothesis is that
the fishing pressure exerted outside protected areas deter-
mines lower trophic levels of fishes with respect to those
measured inside the protected areas. For that reason, we
aimed to analyse how fish trophic level is influenced by
protection. Additionally, we wanted to investigate differ-
ences in trophic level (TL) by habitat types, and assess
differences in TL regarding trophic functional groups.

Material and Methods

This study has focused on the western Mediterra-
nean, considering large number of observations of fish
species that cover a vast array of ecosystems, coastal la-
goons, demersal, and littoral areas and several functional
trophic groups, carnivorous, omnivorous and piscivorous
(according to FISHBASE!).

TL for a given species can be modelled as a function
of the , according to the equation:

_ 615Ni _ 615Nref
TE

where TE represents the trophic enrichment and TL_ re-
fers to base trophic level in the studied ecosystem. For
the Mediterranean, the final equation is:

L,

+ TLyes

_ 515Nl' _ 615Nref

TL; = 2
¢ 3.4 +

where 3.4 is the enrichment in each trophic level in-
crease (Post, 2002) and 2 is the trophic level base at the
Mediterranean Sea.

Database

Data have been obtained from a search in the ISI
Web of Science using “trophic”, “stable isotopes”, and
“Mediterranean” as keywords. A total of 22 studies were

found until 2008, which corresponds to 600 observations.

—

. Diet based on fishbase.org:
Piscivorous: Feed mainly on fishes and invertebrates.
Carnivorous: Feeds on crustaceans, decapods, mysids, worms,
and molluscs
Omnivorous: Feed on seaweeds and small invertebrates, algae,
crustaceans, etc
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Subsequently, the information was summarised in a da-
tabase in which an identity code was provided for each
observation including different fields: study author, fish
species and family, fish size, depth average, stable iso-
tope ratios (carbon and nitrogen data), standard devia-
tion, location, geographical coordinates, country, type of
habitat, diet, protection effect (inside vs. outside), protec-
tion status, trophic level obtained from our calculations
from stable isotope data, trophic level recorded from bib-
liographical cites at www.fishbase.org, and trophic level
based on stomach contents reported in Stergiou & Kar-
pouzi (2002).

From the original pool of studies, the observations
lacking sample size and therefore without standard devi-
ation estimates were rejected. The observations retained
were those concerning species with information from
both inside and outside the Marine Protected Area. Thus,
the final dataset consists of 11 species and 146 observa-
tions. The covariate selected is the level of protection
(inside vs. outside the marine protected area) (Table 1).

Analysis

To test the differences between trophic levels inside
and outside the marine protected areas, the size effect
(e) was utilised, with log-response ratio (Hedges ef al.,

1999):
e = ln( iin )
TLiout

where TL, and TL,  are the trophic levels inside and
outside the marine protected area, respectively. Subse-
quently, variance of the size effect (V) was calculated. V,
is used to derive weights in the meta-analysis to increase
both the precision and the power of the test (Gurevitch &
Hedges, 1999; Osenberg ef al., 1999). Thus, studies with
more observations provide a greater weight. Variance of
the size effect was calculated according to the equation:

(Siin)2 (Siout)z

V, = — +
‘ Niin (TLiin)2 Niout (ﬁiout)2

where ¥ is the variance associated toe, N, and N cor-
responds to the number of observations inside and out-
side the protected area respectively, TLiin and TLiout are
the mean trophic levels inside and outside the protected
area respectively, and S, and S, are the standard devia-
tions associated with the trophic levels. The variance is

applied to calculate the weight for meta-analysis:

Wi:V
i

where w, is the weight associated to the size effect ei; V) is

the variance defined above. Weighted cumulative effect
was then calculated as:
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where 7, is the number of studies for consideration and e,and
w, are defined above. The fixed effect model was used since,
among variance studies, it is lower than 0 and therefore, rel-
ative weights for the fixed effect model are more balanced
than those for the random effect model. Total heterogeneity
was obtained according to Hedges & Olkin (1985):

Nk
Qr, = E w; (e; — &)?
i=1

and the corresponding significance is tested against X? dis-
tributions with 7,-7 degrees of freedom. The meta-analysis
was performed using R and Excel software packages.

The equation was proposed as a method to quantify
heterogeneity and it is expressed in percentage of the to-
tal variability in a set of size effects due to true hetero-
geneity, that is, between-studies variability (Higgins &
Thompson, 2002).

I? = (%) x100

where Q stands for “heterogeneity” and stands for “de-
grees of freedom”.

Results

The results indicate significant differences between fish
trophic levels inside and outside MPAs. However, those dif-
ferences differ from initial expectations, with higher TL out-
side MPAs despite the protection level (Fig. 1).

Total heterogeneity was obtained according to Hedg-
es & Olkin (1985) by applying Q test measures heteroge-
neity among studies (Qt = 1638.93, p < 0.001, df = 145).

The result points out the corresponding size effects were
heterogeneous among the studies.

The heterogeneity (I?) calculated in this meta-anal-
ysis was 98.71%. This result suggests that mean differ-
ences of 8 "N-fish varied more between protected areas
and non-protected areas than could be expected by ran-
dom error alone.

The final dataset used consists of eleven species and
the covariate selected was the level of protection (inside
vs. outside MPAs). The meta-analysis provided the fol-
lowing results on the carnivorous species: Coris julis
(ei = -0.055 + 0.019, 95% CI, n = 145), Diplodus an-
nularis (ei = -0.195 + 0.023, 95% CI, n = 135), Mullus
barbatus (ei = -0.002 + 0.004, 95% CI, n = 498), Mul-
lus surmuletus (ei = -0.207 £ 0.018, 95% CI, n = 440),
Spicara maena (ei= 0.026+0.000, 95% CI n=105), Sym-
phodus tinca (ei= -0.209+0.013, 95% CI, n=286); om-
nivorous species: Boops boops (ei= -0.055+0.019, 95%
Cl, n=145), Symphodus ocellatus (ei= 0.107£0.032,
95% CI, n=23); piscivorous species: Merluccius mer-
luccius (ei= 0.010+0.000, 95% CI, n=50), Serranus
cabrilla (ei=-0.085+0.006, 95% CI, n=180) and Ser-
ranus scriba (ei= -0.193+0.018, 95% CI, n=155). Sig-
nificant size effect was found in all the fish species.
In order to test habitat effects on the trophic level, the spe-
cies were classified by habitat according to literature (Ta-
ble 1). The meta-analysis showed significant size effect
at all the habitats considered: coastal lagoons (ei = 0.037
+0.004, 95% CI, n=5), demersal (ei= 0.006+0.001, 95%
CI, n=41) and littoral (ei= -0.144+0.004, 95% CI, n=
100). The results exhibit higher trophic level in demersal
areas than in littoral and coastal lagoons (Fig. 2).

Similarly, to evaluate trophic changes at MPAs, the
species were classified by trophic functional groups (Ta-
ble 1) (Fig.3): carnivorous (ei= -0.126+0.003, 95% ClI,
n= 86), omnivorous (ei= -0.001+0.008, 95% CI, n= 12)
and piscivorous (ei= -0.065+0.001, 95% CI, n= 48). No
significant effect was found in omnivorous species.

Trophic level

Inside MPAs

Outside MPAs

Fig. 1: Mean fish trophic level based on stable isotopes (£SD) inside and outside Marine Protected Areas.
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Fig. 3: Size effect average (+ SD) by trophic functional groups of the fish species. No significant size effect has been found.

Discussion

The size effect for protection effects exhibits higher
trophic levels outside Marine Protection Areas in spite
of protection (Fig. 1). The initial hypothesis holds that
inside MPAs with full protection, species have food re-
sources available to achieve the maximum trophic level
within the food web for each of the fish species con-
sidered. However, outside MPAs, species do not have
plentiful food resources available because of fishing and
overfishing effects so their trophic level is lower. The
increased mortality caused by fishing changes both diet
and trophic level (Pope & Knights, 1982). Also, a reduc-
tion in the average fish size associated with fishing could
increase the apparent decline in the mean trophic level
(Pauly et al., 2000) and even change the trophic structure
globally (Christensen et al., 2014).
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There is extensive literature about effects inside
MPAs documenting increased density, biomass, individ-
ual size, and diversity in all functional groups (Dufour
et al., 1995; Halpern & Warner, 2002; Halpern, 2003),
increased abundance and richness of fishes (Rowley,
1994; Bohnsack, 1998; Barrett et al., 2007), improve-
ment in the conservation and restoration of population
and marine habitats (Fox et al, 2012), avoidance of
depletion of high trophic level populations due to fish-
ing, and recovery of natural ecological structures (Jones,
2014) and management, education, and research issues
(Angulo-Valdés & Hatcher, 2010). However, there is not
much literature about how the establishment of MPAs
modifies the species trophic level based on stable iso-
topes. Badalamenti et al. (2002) reported an increase of
trophic level (based on 8'°N) of some fish species (M.
merluccius, M. barbatus and Lophius budegassa) after
nine years of no-trawling at the Gulf of Castellammare.
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Our overall results indicate that the trophic level does
not increase with the presence of the protection itself.
This conclusion is in line with previous studies indi-
cating that trophic level does not necessarily increase
with protection and in some cases it can even decrease
(Deudero et al., 2004; Vizzini & Mazzola, 2009; Sinopoli
etal.,2012).

The establishment of MPAs provides benefits within
MPAs borders but also to adjacent no-take areas. For
example, there are increases of fish abundance (Ojeda-
Martinez et al., 2007), density and species richness (Russ
& Alcala, 1996) linked to the “spill-over effect” (Harme-
lin-Vivien et al., 2008; Stobart ef al., 2009; Chateau &
Wantiez, 2009), and/or a surplus of fish available in ad-
jacent areas (Roberts & Polunin, 1991; DeMartini, 1993;
McClanahan & Magni, 2000). However, no studies have
been found to support the fact that trophic levels could be
higher outside MPAs than inside in spite of protection, as
this study concludes.

Protection Level

In this study, there is a wide array of protection status
at the studied MPAs: fishing is prohibited in Columbretes
and some parts of “Egadi Islands”, trawling is prohibited
in some parts of “Egadi Island” and Gulf of Castellam-
mare, and professional fishing and recreational marine
fishing are under regulation in Cala Ratjada. The differ-
ent fishing types developed inside the MPAs could have
indirect effects on trophic structures (Pauly et al., 1998)
and alter the sources of primary production (Kaiser &
Spencer, 1994) with implications for prey (Pinnegar et
al., 2000). Each type of fishing is aimed at capturing a
specific type of organism, which occupies a different po-
sition within the food chain (Stergiou et al., 2004). For
example, angling aims at fishing for larger species of a
higher trophic level, while trawling, purse or dredging are
directed towards catching smaller species placed at lower
trophic levels, such as shellfish and crustaceans. These
types of fishing have increased in the last 50 years, with
a consequent reduction in both sizes and trophic level of
the catches (Watson et al., 2006).

In areas where fishing is restricted the target species
increase both their size and biomass (Roberts & Polunin,
1991). For instance, piscivorous species (predators) prey
on small fishes, decreasing both their numbers and sizes
and, this in turn, causes an increase in invertebrate spe-
cies at the base of the food chain. Therefore, one would
expect a higher trophic level where fishing is restricted
than in fishing areas (Pauly et al., 2001; Pinnegar et al.,
2002). In the case of Mallorca Island, sport fishing im-
pacts coastal fish communities: Morales-Nin et al. (2005)
estimated that recreational fisheries exerted an impact on
the majority of species within trophic level 4 (31%), rep-
resenting at least 1209.25 tons/year catches. This might
be a feasible explanation of the results obtained in this
study, related to a low protection level in the MPAs ana-
lysed.
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Establishment of MPAs

Other factors regarding processes at MPAs affecting
life history and ecology of marine species are dependent
on time since establishment of the MPAs and the size of
the no-take zone (Claudet et al., 2008). There are several
analyses where the “reserve effect” emerges during dif-
ferent periods of time. For example, after the first year
an increase in biomass was observed (Russ & Alcala,
1996); during the first three years of protection, increas-
es in density, biomass, and diversity occur (Halpern &
Warner, 2002) with a significant increase in density, spe-
cies richness, and size of the target (Seytre & Francour,
2008). Six years after MPA establishment, significant
differences were found in total abundance, species rich-
ness, and diversity on species such as S. cabrilla and C.
julis (Claudet et al., 2006); 5-10 years after protection,
the “reserve effect” emerges (Gell & Roberts, 2003) and
MPAs are more effective when maintained for at least 15
years following establishment (Molloy et al., 2009).

In our study, several temporal scenarios in MPA des-
ignation are included. Thus, “Egadi Islands” were estab-
lished in 1991, Gulf of Castellammare was established in
1990, Columbretes were established in 1990, and Cala
Ratjada was established in 2007. Some studies reported
increase abundance, biomass, mean body size, and tro-
phic level (based on stomach content) after 8 - 16 years
of'no fishing at Columbretes (Stobart et al., 2009). There-
fore, contrasting responses at temporal scales seems to
be relevant from studies including 15 years of effective
protection.

The trophic level responses of fish at MPAs are in
agreement with previous research from Claudet et al.
(2008) that exhibited no effect on economic value, body
size, habitat, depth range and schooling behaviour of sev-
eral species at MPAs in 12 locations of the Mediterranean
Sea. Similarly, Tunesi et al. (2006) did not record a clear
“reserve effect” after five years of protection in spite of
significant differences in the size of the target species.
That lack of results could be due to the critical lack of
empirical knowledge about MPAs and the unsuccessful
conservation measures made (Planes et al., 2000; Fra-
schetti et al., 2002; Claudet & Fraschetti, 2010), or a lack
of knowledge in important scientific facts such as knowl-
edge about dispersal schemes, the geographical range of
the population, an appropriate experimental design, and
environmental evaluation (Claudet & Pelletier, 2004).
Establishment of appropriate MPA designation within the
proper context such as a large-scale marine spatial plan-
ning has to be made (Agardy et al., 2011).

Food sources

Habitat effects on the trophic levels have been anal-
ysed. Our results showed significant size effect in all the
habitats considered (Fig.2). However, in our analyses, de-
mersal habitats have a trophic level higher than coastal la-
goons and littoral areas, which have similar trophic levels.

The species found in demersal areas are M. merluc-
cius and M. barbatus. Mullus barbatus is carnivorous,
feeding mainly on benthic invertebrates (Labropoulou &
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Eleftheriou, 1997) such as the shrimp Leptochela pugnax
(Golani & Galil, 1991). During its life cycle an increase
in consumption of polychaetes and shrimps with predator
size occurs along with a decrease in the smaller crusta-
ceans consumption (Bautista-Vega et al., 2008). Merluc-
cius merluccius is piscivorous but juveniles feed on small
crustaceans such as euphausiids and mysids (Bozzano et
al., 1997), shifting to fish prey when older as M. merluc-
cius, Argentina sphyraena, Spicara flexuosa, Centracan-
thidae, M. barbatus (Carpentieri et al., 2005). Both fish
species Merluccius and Mullus feed on organisms with
high nitrogen content (Bautista-Vega et al., 2008; Froese
& Pauly, 2014), explaining the higher trophic level than
species that live in littoral habitats and coastal lagoons.

Littoral habitats and coastal lagoons exhibit high fish
trophic levels (Fig. 2) since both habitats are highly influ-
enced by many human activities impacting the function-
ing of coastal marine ecosystems. Due to human influ-
ences the inputs of nutrients with §"*N from sewage and
aquaculture facilities are variable (Vizzini & Mazzola,
2004). Studies of the largest sources of nitrogen (air, fer-
tilizer, soil, and waste water) show that waste water has
the higher content 6'°N (the modal value of >15 %o) com-
pared to other sources with lower values of 6'°N (between
-5 %o and 5 %o). All these nitrogen loads combined with
fraction occurring during the ammonification processes
(Cabana & Rasmussen, 1996) increase nutrients and or-
ganic matter in the ecosystem, resulting in eutrophica-
tion. Eutrophication may cause a reduction in species
richness and diversity and indirectly change the trophic
level occupied by each species in the system. Enrichment
of 6N is significantly higher in coastal areas than in ma-
rine ecosystems due to anthropogenic influences (Mc-
Clelland & Valiela, 1998; McGhie et al., 2000; Umezawa
et al., 2002). The rise in available nitrogen makes 6'>N
values increase in all benthic primary producers occur-
ring during the ammonification processes and in the main
herbivorous species, such as Paracentrotus lividus and
Sarpa salpa (Prado et al., 2009).

The trophic level can be influenced both by species
diet and by human-derived activities. The lack of knowl-
edge about the appropriate determination of the food
sources represents limitations of trophic level estimation
by stable isotope analysis. The uncertainty about species
diet could limit trophic level estimation due to the fact
that diet is a direct reflection on the trophic level. For this
reason, the combined use of stable isotopes and stom-
ach analysis could decrease this uncertainty (Ramsvatn,
2013; Shannon et al., 2014).

Among the aims of this study the size effect change
of trophic functional groups was assessed (Fig.3). Om-
nivorous species did not show significant size effect (B.
boops and S. ocellatus), linked to the generalist diet of
omnivorous species. Accordingly, the diet of B. boops
is composed of zooplanktonic crustaceans (copepods),
fish eggs, gastropods, macroalgae, Posidonia oceanica
(Cresson et al., 2014), and S. ocellatus feeds on zoob-
enthos (gastropods, polychaetes, copepods), plants, and
zooplankton (mainly fish eggs and larvae) (Froese &
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Pauly, 2014). Due to their diet, higher wide trophic levels
could be expected in these species than in piscivorous
species. Resource limitation outside the MPAs due to
fishing and overfishing along with reserve effect within
MPA boundaries could explain the lower trophic level re-
corded outside the MPA.

Life cycle

In this meta-analysis study, different trophic levels
associated with fish species have been analysed, includ-
ing different fish sizes. Size is a factor that might in-
fluence the species trophic level, linked to ontogenetic
changes in fish diets and increasing TL with fish size (du
Buit, 1995; Pinnegar et al., 2003; Sara & Sara, 2007).
The body mass of fish can increase by five times dur-
ing their life cycle, and the trophic level increases with
body size during ontogeny (Jennings et al., 2002). Also,
mean trophic level measured over time and space and its
high variability may mask the potential of trophic level
associated with the dynamics of the food chain (Green-
street et al., 1997) and ontogenetic change. Moreover, the
trophic level of a species can be altered by the top-down
and bottom-up dynamics within the trophic structure of
an ecosystem (Devaraj, 2004; Shackell ef al., 2010).

0N as direct indicator of trophic level

In this investigation, 8'°N has been considered as a
direct indicator of trophic level; however, based on our
results combined with published studies (Vanderklint &
Ponsard, 2003; Schmidt et al., 2004; Mancinelli et al.,
2013), other factors may bias trophic level interpretation.
Thus, the isotopic fractionation should be considered.
For example, with isotopic fractionation associated with
herbivorous species, some studies show an increase
higher than 3.4 %o relative to their prey, due to differences
found in enzymatic and digestive systems of herbivorous
species (Mill et al., 2007; Wyatt et al., 2010). Olive et
al. (2003) indicated trophic level may be distorted by the
feeding ratio, the nitrogen content of food, excretion rate,
and assimilation efficiency.

The present study has showed differences in fish
trophic level from stable isotope data obtained from the
literature. Higher fish trophic levels are observed outside
MPAs, indicating that many factors are involved in tro-
phic responses and that protection by itself cannot guar-
antee the increase in food resources for fish species. The
suitability of using the stable isotope (6'°N) as a direct
indicator of trophic level in evaluating MPA effects on
food webs should be considered carefully.
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