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Abstract. Nutrient availability is one of the major fac-

tors regulating marine productivity and phytoplankton com-

munity structure. While the response of phytoplankton

species to nutrient variation is relatively well known, that

of phytoplankton community remains unclear. We question

whether phytoplankton community growth rates respond to

nutrient concentration in a similar manner to phytoplank-

ton species composing the community, that is, following

Monod’s model. Data on in situ marine community growth

rates in relation to nutrient concentration and the behaviour

of a simple multi-species community model suggest that

community growth rate does not respond to nutrient con-

centration according to the Monod equation. Through a sim-

ulation study we show this can be explained as a conse-

quence of changes in size structure. Marine biogeochemi-

cal models must not parameterize phytoplankton community

growth rate response to nutrient concentration using a single

Monod equation but rather involve different phytoplankton

functional groups each with different equation parameters.

1 Introduction

There is little doubt that nutrient availability is one of the

major factors regulating marine productivity and phytoplank-

ton community structure. In most areas of the oceans, phyto-

plankton species compete for available nutrients. We know

from laboratory experiments that most of the steady state

growth rates of monocultures of phytoplankton species in

a gradient of nutrient concentration are well represented

by Monod theory (Dugdale, 1967). Small phytoplankton

species have low half-saturation constants and high maxi-

mum growth rates that allow them to uptake nutrients at a

faster rate than larger cells and to dominate in nutrient limited

conditions (Eppley et al., 1969; Aksnes and Egge, 1991; Hein

et al., 1995). Large phytoplankton species achieve slower

growth rates (Grover, 1989) but often dominate when nu-

trient concentration is high (Tremblay and Legendre, 1994;

Li, 2002) (Fig. 1). Indeed, large phytoplankton communities

seem to dominate in productive ecosystems thanks to their

physical and chemical capacities to escape to zooplankton

grazing (Irigoien et al., 2004, 2005). Furthermore, it has been

observed that large phytoplankton dominate in the high tur-

bulence regime (Rodríguez et al., 2001; Li, 2002) and that

when nitrogen supply is pulsed, large cells could dominate

due to their enhanced storage capacities (Litchman et al.,

2009).

This leaves a scenario (Fig. 1) where nutrient-limited

ecosystems are dominated by fast-growing, small phyto-

plankton cells, while high-nutrient environments are domi-

nated by slow-growing, large phytoplankton species. As a re-

sult, it is possible to reach the counterintuitive result that the

community growth rate (µcom), i.e. the mean growth rate of

the phytoplankton cells in a community, can be higher when

nutrients are limited (Fig. 1). Franks (2009) contended the

common practice in marine ecosystem models to parameter-

ize phytoplankton community growth rates using Michaelis–

Menten kinetics. Following our conceptual argumentation, it

is indeed quite likely that the response of community growth

rate is different to that of individual species.

In this study, we use a database of in situ phytoplankton

community growth rate measurements in surface waters of
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Figure 1. Conceptual diagram representing phytoplankton communities composed of small and large phytoplankton species (small grey and

large black circles, respectively) in nutrient-limited and productive ecosystems. Each phytoplankton species composing their respective com-

munities had its own growth rate response to nutrient concentration following a Monod kinetic. The growth rates for the whole community in

both ecosystems have been evaluated by the mean of the cell-specific growth rates of each phytoplankton species composing their respective

communities. At the bottom of the diagram, community growth rates for both ecosystems are represented at specific nutrient concentrations.

the global ocean covering oligotrophic as well as productive

ecosystems and test the hypothesis that the response of phy-

toplankton community growth rates to nutrient concentration

does not follow Monod kinetics. We also develop a sim-

ple statistical model summarizing our conceptual framework

(Fig. 1). We first parameterize, using in situ phytoplankton

size structure data (Marañón et al., 2012), the steeper phyto-

plankton size spectra slope when nutrient concentrations are

low. We then combine this size structure information with

simple allometric equations describing the response of phy-

toplankton species growth to nutrients (Edwards et al., 2012)

and calculate the predicted response of phytoplankton com-

munity growth rates to nutrients.

2 Methods

2.1 In situ community growth data

We used an independent data set containing phytoplankton in

situ growth rate measurements in surface waters of the ocean

compiled by Chen and Liu (2010) (see Chen and Liu (2010)

Web appendix, Table A1, http://www.aslo.org/lo/toc/vol_55/

issue_3/0965a.html). We refer here to community growth

rate (µcom) as the specific growth rate measured in a dilution

experiment which represents the average biomass-specific

growth rates of the cells in a phytoplankton community. The

data set covers open ocean, coastal regions as well as high-

nutrient, low-chlorophyll (HNLC) areas and is restricted to

experiments conducted in surface waters to reduce the effects

of light limitation. The results described here represent the

whole data set, including HNLC. We removed from the origi-

nal data set all data for which nitrate concentration was below

the detection limit or lower than 0.01 µmol L−1. The database

compiles data from experiments based on the dilution tech-

nique (Landry and Hassett, 1982) to estimate in situ phy-

toplankton community growth rate (µcom, d−1). Two differ-

ent estimates of phytoplankton community growth rates are

obtained in dilution experiments: nutrient amended or max-

imum growth rate (µcom_max) and non-amended or growth

rate (µcom) under natural conditions.

If the in situ community growth rate (µcom) responds to

the nutrient concentration following Monod’s equation, we

could formulate:

µcom =
S

S+Ks

µcom_max, (1)

where S is the nutrient concentration (e.g. nitrate, phosphate,

silicate, iron and so on) andKs is the half-saturation constant

for that nutrient.
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The population maximum growth rate (µcom_max) is the

growth rate measured when the population is not limited by

nutrients and depends directly on the same parameters than

the growth rate but nutrient concentration.

µcom_max = f (T , PAR, s.s., d.l., s.c., . . .), (2)

where T is the temperature, PAR is the photosynthetically

active radiation, s.s. is the species size, d.l. is the day length,

and s.c. is the species composition.

Thus, the ratio µcom :µcom_max is a direct index of

nutrient-limited growth (Brown et al., 2002), also called rel-

ative reproductive rate (µcom_rel) (Sommer, 1991).

µcom_rel =
µcom

µcom_max

µcom_rel =
S

S+Ks

(3)

2.2 Community growth rate model description

We simulate the growth rate of a community under differ-

ent nutrient concentrations. For that we used a database con-

taining size structure information for 423 different phyto-

plankton communities (Marañón et al., 2012). For simplic-

ity, only one nutrient (nitrogen) was considered to be lim-

iting. In our simulations, the phytoplankton community is

composed by 55 phytoplankton species ranging in cell size

from 0.33 to 5× 105 µm3 of volume. This size range encom-

passes the whole phytoplankton species size range observed

in situ, from prochlorococcus size (Partensky et al., 1999) to

the largest diatoms (Agustí et al., 1987). The size-abundance

spectrum slope determined the relative abundance of each

species. Because size spectra slope varies depending on the

trophic state of the system, we empirically derived a relation-

ship between size spectra slope and nutrient concentration

(see Sect. 2.3). Indeed, Platt and Denman (1977) exposed the

use of a property of the biomass size in that the normalized

biomass is an estimate of the number of density of organisms

in each size class. Although this should be considered an ap-

proximation (Blanco et al., 1994), we used the changes in

scaling of normalized biomass with different nutrient levels

to simulate the changes in the size scaling of the numerical

abundance of species at different nutrient levels. The com-

munity growth rate is the average growth rate of all the cells

within the community and is calculated as the mean growth

rate of the 55 phytoplankton species weighted by the total

biomass of each species. This rate is equivalent to the growth

rate measured experimentally as the rate of total community

in situ growth rate (µ, in the dilution data set).

2.3 Parameterization of the size-spectrum dependence

on resource levels with in situ size structure data

Chlorophyll a (Chl a) data for three different size classes

(0.2–2, 2–20, and > 20 µm) were collected from Marañón

et al. (2012). Like Sprules and Munawar (1986), we used

the Chl a data to calculate the normalized biomass spec-

trum (NBSS) by regressing the logarithm of the normalized

chlorophyll by biovolume. The biovolume was calculated us-

ing the volume equation of a sphere (Hillebrand et al., 1999).

Nutrient concentration (6, µmol (NO3
+NO2) L−1) for each

station of the Chl a data set was estimated from the nitrate

climatology in the World Ocean Atlas 2009 (WOA). We then

fitted a model describing the effects of nutrient concentration

on NBSS.

2.4 Parameterization of species size-dependent

nutrient resource acquisition and growth rate

The dependence of growth rate (µ) on ambient nutrient

concentration is usually modelled using the Droop model

(Droop, 1973). Aksnes and Egge (1991) developed a theo-

retical framework that explains how cell size should affect

the parameters in the Droop model. This theoretical predic-

tion was demonstrated with experimental data by Litchman

et al. (2006). Edwards et al. (2012) estimated the allometric

parameters for Vmax (the maximum cell-specific nutrient up-

take rate, µmol nutrient cell−1 d−1) and Km that we use here

in our model (Fig. 2b):

log10(Vmax)=−8.1+ log10(Vol)× 0.82 (4)

log10(Km)=−0.84+ log10(Vol)× 0.33, (5)

where Vol is the cell volume (µm3) and Km is the nutrient

concentration where V = Vmax/2 (Litchman et al., 2009).

To reach an estimate of a relationship between µ and S

using the Droop model requires the solution of a set of dif-

ferential equations. Because our intention is only to evaluate

the possible effects that a nutrient dependence formulation

can have on the determination of community growth rates,

we have followed a simpler approach by using relative up-

take rate as a proxy for growth rate (Aksnes and Egge, 1991).

Hence we have formulated the relative uptake rate (Vrel, d−1)

as:

Vrel = µsp = Vmax

S

Q(Km+ S)
, (6)

where µsp is the growth rate (d−1), the subscript “sp” is used

to differentiate the monospecific growth rate (µsp) from the

multispecific community-average growth rate (µcom) as mea-

sured in dilution experiments, Q is the cell nutrient content

(µmol of nutrient cell−1) and Vmax is the maximum uptake

rate constrained by diffusion in the boundary layer outside

the cell. In Eq. (6), Vmax and Km are calculated from cell

size using Eqs. (4) and (5). To estimateQ, we follow Aksnes

and Egge (1991) in assuming biomass as the average number

of atoms of a given element within the cell, estimated from

cell carbon content using a carbon-to-volume ratio (C :Vratio)
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Figure 2. Functional forms of (a) normalized biomass spectrum

(NBSS) and (b) phytoplankton species growth rate to nutrient con-

centration. (b) Simple allometric equations are indicated by the

size range from small (thinnest lines) to large (thickest lines) size

species. (a) The solid line represents the linear regression.

of 0.28 pg C µm3 based on the empirical equation given in

Litchman et al. (2007) and a Redfield ratio of 106 C : 16 N.

The implications of these assumptions are evaluated in the

discussion.

The community-average growth rate (µcom) as measured

in dilution experiments can be calculated from knowledge

of the monospecific growth rate for each of the species in the

community µsp_i and the biomass of each species in the com-

munity which can be calculated from the numerical abun-

dance times the species cell carbon content. The community

biomass at the beginning of the dilution experiment (Binitial)

is:

Bi =Ni ×Ci

Binitial =

i=1∑
n

Bi,
(7)

where Bi is the biomass (g C mL−1), Ni is the numeri-

cal abundance (cell mL−1) and Ci the cell carbon content

(g C cell−1) of each species in the community.

At the end of the experiment (assuming a 24 h experiment

in the absence of grazing), the biomass (Bfinal) would be:

Bfinal =

i=1∑
n

(Biexpµspi
×t ), (8)

where t is the duration of experiment (d−1).

The predicted community growth rate is so defined as:

µcom =

log
(
Bfinal

Binitial

)
t

. (9)

3 Results

3.1 In situ data

In situ phytoplankton community growth rates (µcom) do

not respond to nutrient variation following Monod’s kinet-
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Figure 3. Relationships between in situ community growth rate

(µcom, d−1) and nutrient concentration (a) from 0 to 40 mmol m−3

and (b) from 0 to 1 mmol m−3. Relationships between in situ

µcom :µcom_max ratio and nutrient concentration (c) from 0 to

40 mmol m−3 and (d) from 0 to 1 mmol m−3. Crosses represent

phytoplankton communities of Table A1 sampled in HNLC regions

and circles represent the rest of the phytoplankton communities

from Table A1 data set. (c, d) The solid lines represent the non-

linear least square fits for the global data set (HNLC included).

ics (Fig. 3a). The correlation between in situ µcom and es-

timated in situ nutrient concentration was non significant

(R2
= 0.01, p = 0.2849). The response of the growth rate to

nutrient concentration is often considered to follow a Monod

model when phytoplankton community is limited by nutri-

ent (below 1 µmol L−1). In our data set, for nutrient con-

centrations below 1 µmol L−1, in situ phytoplankton com-

munity growth rate does not respond to nutrient concentra-

tion either (R2
= 0.05, p = 0.0578, Fig. 3b). Even if data

are corrected for temperature effects (using the Arrhenius–

Boltzmann equation with an activation energy of −0.33 eV,

López-Urrutia et al., 2006), the in situ community growth

rate did not follow Monod kinetics (Fig. 4). However, our re-

sults show that the in situ µcom :µcom_max ratios (or µcom_rel)

do indeed follow a Monod model with Ks = 0.16±0.02 and

µcom_rel_max = 0.99± 0.02 (Fig. 3c). For nutrient concentra-

tion below 1 µmol L−1, in situ µcom_rel also follows Monod’s

growth kinetics with Ks = 0.14± 0.06 and µcom_rel_max =

0.91± 0.14 (Fig. 3d).

3.2 Simulation

A linear model of NBSS vs. nutrient concentration ex-

plained 43 % of the variance with an increasing size spec-
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Figure 4. Relationship between in situ community growth rates

(µcome
Ea/KT, d−1) corrected by temperature using the average ac-

tivation energy for autotrophic respiration (Ea=−0.33 eV; López-

Urrutia et al., 2006) and nitrate concentration (mmol m−3). Crosses

represent phytoplankton communities of Table A1 sampled in

HNLC regions and circles represent the rest of the phytoplankton

communities from the Table A1 data set.

tra slope (i.e. less negative NBSS) with increasing nutri-

ent concentration (Fig. 2a). Each species composing the

simulated phytoplankton community was limited by nutri-

ent and responded to the nutrient concentration following

Monod’s model. However, the predicted community growth

rate (µcom_predicted) for the simulated communities did not

follow Monod kinetics (Fig. 5a). On the contrary, and simi-

lar to in situ results, the predicted µcom_rel was well in accor-

dance with Monod’s model (Fig. 5b, Ks = 0.11± 0.01 and

µcom_rel_max = 0.98± 0.01).

4 Discussion

In this study, we observed that in situ phytoplankton commu-

nity growth rate does not respond to nutrient concentration

following a Monod kinetic as phytoplankton species com-

posing the community do. However, for the relative repro-

ductive rates, the Monod model is a good characterization of

community dynamics.

The lack of significant response following a Monod ki-

netic may be explained by factors other than nitrate con-

centration limiting phytoplankton community growth rate.

Indeed, we observed that from the total 242 in situ phyto-

plankton community growth rate data, 110 were from HNLC

oceanic regions and thus under iron limitation. If the data

from HNLC zones are removed from our analysis, we ob-

serve that the relationship between phytoplankton commu-

nity growth rate and nitrate concentration is closer to follow-

ing a Monod kinetic than when considering the whole data

set (R2
= 0.43, p < 0.05). The iron limitation may partly ex-

plain the lack of Monod kinetic between the in situ phyto-

plankton community growth rate and nitrate concentration

presented here. However, we observed that in situ phyto-

plankton community growth rate does not respond to nutrient

concentration following a Monod kinetic at nutrient concen-

trations below 1 µmol L−1 although these data do not corre-

spond to iron-limited HNLC regions. The estimation of phy-

toplankton growth rate by dilution experiments in the most

oligotrophic regions may be biased and have to be treated

with caution. Indeed, Latasa et al. (2014) explained that most

of the studies determining phytoplankton growth rate from

dilution experiments presented regression slopes between ap-

parent phytoplankton growth rate and dilution different from

zero when the null hypothesis to be tested in dilution experi-

ment should be the positive slope (b < 0) and not a null slope

(b = 0). Latasa and co-workers believed that a proportion of

the experiments with non-significant regressions were disre-

garded eliminating ecological situations of low growth and

grazing. This may result in an overestimation of phytoplank-

ton growth rates.

Although the presented patterns from dilution experiments

have to be treated with caution considering the iron limitation

at high nutrient concentration and the possible overestima-

tion of phytoplankton growth rate at low nutrient concentra-

tion, we observed similar results from in situ phytoplankton

community growth rate determined by another methodology.

Indeed, we analysed the response of the in situ phytoplankton

community growth rate calculated from primary production

and standing stocks (Chen and Liu, 2010) and nitrate con-

centration (Fig. 6). As we observed for the dilution experi-

ment, the in situ phytoplankton community growth rate does

not respond to nitrate concentration following a Monod ki-

netic both considering and excluding data from HNLC zones

(R2
= 0.17, p < 0.05 and R2

= 0.06, p < 0.05 respectively).

This result confirms our previous observation of the lack

of Monod kinetic between in situ phytoplankton commu-

nity growth rate and nutrient concentration. Unfortunately,

the primary production data were not analysed under nutri-

ent amended and the maximum growth rate could not have

been estimated.

The marine biogeochemical models in use are composed

of three or four compartments (i.e. nutrient phytoplankton

zooplankton, NPZ or nutrient phytoplankton zooplankton de-

tritus, NPZD) (McCreary et al., 2001; Hood et al., 2003;

Kantha, 2004) to 20 or more components including differ-

ent phytoplankton functional groups, various nutrients and so

on (Anderson, 2005; Lancelot et al., 2005; Le Quéré et al.,

2005). The NPZ and NPZD models describe a simple food

web system assuming dissolved nutrients are consumed by

the phytoplankton community following Monod kinetics. For

these models, the phytoplankton compartment is considered

as a whole community and assumed to respond to nutrient

concentration as phytoplankton species do. As we observed

www.biogeosciences.net/12/1915/2015/ Biogeosciences, 12, 1915–1923, 2015
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Figure 5. Relationships between (a) predicted community growth rate (µcom_predicted, d−1) and (b) predicted µcom :µcom_max ratio, and

nutrient concentration (mmol m−3). The solid lines represent the nonlinear least square fits.
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Figure 6. Relationships between in situ community growth rates

(µPP, d−1) estimated from primary production and standing stocks

and nitrate concentration (a) from 0 to 40 mmol m−3 and (b) from

0 to 1 mmol m−3 from Chen and Liu (2010) Table A2 data set.

Crosses represent phytoplankton communities of Table A2 sampled

in HNLC regions and circles represent the rest of the phytoplankton

communities from the Table A2 data set.

in this study, the in situ and predicted phytoplankton com-

munities do not necessarily respond to nutrient concentration

like individual phytoplankton. Thus, marine biogeochemical

models using different phytoplankton functional groups (An-

derson, 2005; Le Quéré et al., 2005) or based on phytoplank-

ton size structure (Follows et al., 2007; Edwards et al., 2012)

should be used instead of simpler models as NPZ or NPZD.

This is well in line with the findings of Friedrichs et al. (2006,

2007) that observed that complex models with multiple phy-

toplankton functional groups fit the available data better than

the simpler models. This is mainly due to the use of many

tuning parameters and thus degrees of freedom. The parame-

terization of planktonic ecosystem models should not use the

same variables for a community as for species. Franks (2009)

warned about the use of community variables parameterized

using data from individual species and suggested that the re-

sponse to nutrient concentration of an individual or species

should not necessarily represent the response of a diverse

community. Contrary to our results, Franks (2009) observed

a linear relation between the community nutrient uptake rate

and nutrient concentration that could be explained by the use

of the same half-saturation constant (Ks) for all phytoplank-

ton size classes in his simulations. Several published works

reported thatKs is different between species (Sommer, 1991;

Chisholm, 1992; Cermeño et al., 2011). In our study, the re-

lationship between the in situ community growth rate and

nutrient concentration did not follow a Monod kinetic, or a

linear relationship.

Many models (e.g. Darwin model) use a trade-off between

Ks and µmax – some organisms grow fast at high nutrient

concentrations (high Vmax or µmax) and others may be bet-

ter competitors at low nutrient concentrations with low Ks.

Without this trade-off, small phytoplankton would outcom-

pete large phytoplankton in the whole ocean unless other

constraints are introduced (e.g. top-down differences). Al-

though this trade-off would maintain species coexistence in a

competition model, this theoretical perspective is in contrast

with the empirical evidence on the size dependence ofKs and

µmax. Indeed, the most up-to-date compilations on the size

dependence of Ks and µmax do not reveal the existence of a

trade-off between these two variables. Edwards et al. (2012)

found that Ks increases with increasing cell size and Vmax

and µmax decrease with increasing size. Furthermore, Fiksen

et al. (2013) were unable to identify any mechanistic trade-

off conflicts between Ks and Vmax. In this work, we decided

to parameterize empirical phytoplankton growth rate and size

(Fig. 1) without accounting for the trade-off between Ks and

µmax considering that recent empirical data do not reveal its

existence.

Several studies have shown that the high surface area to

volume (S :V ) ratio of small phytoplankton species results

in high maximum nutrient uptake rates and low Ks and may

explain why small phytoplankton species dominate in natu-

Biogeosciences, 12, 1915–1923, 2015 www.biogeosciences.net/12/1915/2015/
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ral nutrient-limited ecosystems (Eppley et al., 1969; Aksnes

and Egge, 1991; Hein et al., 1995). Conversely, large phyto-

plankton species seem to dominate in productive and well-

mixed ecosystems (Irwin et al., 2006) due to their physical

and chemical capacities to escape to zooplankton grazing

(Irigoien et al., 2004, 2005) and due to upward motion in-

creasing their residence time in the upper layer against their

tendency to sink (Li, 2002; Rodríguez et al., 2001). Further-

more, allometric equations explain that a small phytoplank-

ton species achieves higher growth rate than a large phy-

toplankton species at the same nutrient concentration (Ed-

wards et al., 2012). Considering the allometric equations

and the low nutrient–small phytoplankton and high nutrient–

large phytoplankton relations, the community growth rate

can be higher at low than at high nutrient concentration. We

observed in this study that most of the community growth

rates tended to decrease from 5 to 30 mmol NO3
+NO2 m−3

(Fig. 3a) for the in situ data (R2
= 0.15, p < 0.001) and from

2.5 to 25 mmol NO3
+NO2 m−3 (Fig. 5a) for the predicted

data (R2
= 0.17, p < 0.001). Therefore, our results support

our hypothesis of higher community growth rates at interme-

diate than at the highest nutrient concentrations.

In our simulation, we assumed that the intrinsic nutrient

storage is related to the growth rate and ignored, for the sake

of simplicity in the simulations of the cell storage capacity.

Indeed, Litchman et al. (2009) observed that when nitrogen

supply is pulsed, large cells could dominate due to their en-

hanced storage capacities. By this observation, we should ex-

pect to observe higher growth rates for large phytoplankton

species at high nutrient concentration than for small phyto-

plankton species, but if so a better relationship between com-

munity growth rate and nutrient concentration would be ex-

pected. The relationship between µsp_max and cell volume

might influence the kinetic of the community growth rate re-

sponse to nutrient concentration. Although there is consensus

on the fact that smaller cells have lower half-saturation con-

stants, the relationship between µsp_max and cell size is still

under debate (Chen and Liu, 2011; Sal and López-Urrutia,

2011). Two different relations have been observed between

µsp_max and cell volume: unimodal (Bec et al., 2008; Chen

and Liu, 2011; Marañón et al., 2013) and declined lineal

(Edwards et al., 2012). In addition, the parameterizations of

some models argue for an increased lineal relationship (Fol-

lows et al., 2007). To understand the consequences of differ-

ent relationships between µsp_max and cell size, we repeated

our simulations but using unimodal (Fig. 7a) and positive

(Fig. 7b) relationships between µsp_max and cell size. We ob-

served that when the relation between µsp_max and cell vol-

ume is unimodal, the predicted community growth rates did

not follow Monod’s kinetic either (Fig. 7a). When the rela-

tion between µsp_max and cell volume is positive (i.e. larger

cells have higher µsp_max), the model output suggests a pos-

sible relation between the predicted community growth rates

and nutrient concentration (Fig. 7b). Hence, the observed

lack of relationship in the in situ data (Fig. 3a) could be re-

 

Figure 7. Relationships between the predicted community growth

rates (µcom_predicted, d−1) and nitrate concentration (mmol m−3)

with (a) unimodal and (b) positive relationships between µcom_max

and cell size.

produced with the unimodal but not with the positive rela-

tionship.

Although community growth rates did not respond to nu-

trient concentration following Monod kinetics, the in situ

and simulated µcom_rel did (Figs. 3b, 5b). The µcom_rel is ex-

empted from the effects of temperature, light and community

composition. The Ks and µcom_rel_max were quite similar be-

tween the in situ (Ks = 0.16±0.02 andµcom_rel_max = 0.99±

0.02) and predicted (Ks = 0.11± 0.01 and µcom_rel_max =

0.98± 0.01) µcom_rel. So when the community growth rate

depends only on nutrient concentration, the response of the

community growth rate to nutrient variation follows the pre-

dicted Monod kinetic.

In summary, our study demonstrates that the lack of rela-

tionship between community growth rates and nutrients can

be explained even if we disregard the effects of tempera-

ture, light or community composition. We could expect that

such factors might further distort the observed relationship

between the community growth rate and nutrient concentra-

tion.
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