Working document presented in the:

ICES Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA). Copenhagen, Denmark, 20-25 June 2014. ICES Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VII, VIII and IX (WGACEGG). Vigo, Spain, 17-21 November 2014.

# Acoustic assessment and distribution of the main pelagic fish species in the ICES Subdivision IXa South during the *ECOCADIZ 0813* Spanish survey (August 2013).

By

Fernando Ramos<sup>(1, \*)</sup>, Magdalena Iglesias<sup>(2)</sup>, Paz Jiménez<sup>(1)</sup>, Joan Miquel<sup>(2)</sup>, Dolors Oñate<sup>(2)</sup>, Jorge Tornero<sup>(1)</sup>, Ana Ventero<sup>(2)</sup> and Nuria Díaz<sup>(2)</sup>

(1) Instituto Español de Oceanografía (IEO), Centro Oceanográfico Costero de Cádiz.

(2) IEO, Centro Oceanográfico Costero de las Islas Baleares.

(\*) Corresponding author: e-mail: fernando.ramos@cd.ieo.es

#### ABSTRACT

The present working document summarises the main results from the Spanish (pelagic ecosystem-) acoustic survey conducted by IEO between 2<sup>nd</sup> and 13<sup>th</sup> August 2013 in the Portuguese and Spanish shelf waters (20-200 m isobaths) off the Gulf of Cadiz onboard the R/V "Cornide de Saavedra". The survey dates were somewhat delayed in relation to the usual ones and to the anchovy (Engraulis encrasicolus) peak spawning as well. Abundance and biomass estimates are given for all the mid-sized and small pelagic fish species susceptible of being acoustically assessed according to their occurrence and abundance levels in the study area. The distribution of these species is also shown from the mapping of their back-scattering energies. The bulk of the anchovy population was concentrated in the Spanish shelf, with a residual nucleus to the west of Cape Santa Maria. A delay of the usual survey dates may be the reason of a higher relative importance of smaller anchovies in the population as a probable consequence of the incorporation of the first waves of recently recruited juveniles to the adult population. The total biomass estimated for anchovy was 8.5 thousand tonnes (609 million fish), the lowest estimate in its series. Sardine showed a distribution pattern almost complementary to that described for anchovy, with higher densities occurring over the inner-middle shelf of both extremes of the surveyed area, mainly west to Cape Santa Maria, and in shallower waters than anchovy. Sardine yielded a total of 9.7 thousand tonnes (232 million fish). The 2013 sardine estimate was also the lowest one in its series and corroborates a clear recent decline in the population which has also been evidenced by the PELAGO surveys. Chub mackerel was present all over the surveyed area although showed a more "oceanic" distribution in the westernmost waters. The species was the most important in terms of assessed biomass, rendering estimates of 31.3 thousand tonnes (333 million fish). Acoustic estimates for jack and horse-mackerel species (Trachurus spp.), and bogue (Boops boops) are also given in the WD. No acoustic estimates either for mackerel S. scombrus or round sardinella (Sardinella *aurita*) were computed because their incidental occurrence in the study area during the survey.

#### INTRODUCTION

*ECOCADIZ* surveys constitute a series of yearly acoustic surveys conducted by IEO in the Subdivision IXa South (Algarve and Gulf of Cadiz, between 20 – 200 m depth) under the "pelagic ecosystem survey" approach onboard R/V *Cornide de Saavedra*. This series started in 2004 with the *BOCADEVA 0604* pilot acoustic - anchovy DEPM survey. The following surveys within this new series (named *ECOCADIZ* since 2006 onwards) are planned to be routinely performed on a yearly basis, although the series, because of the

available ship time, has shown some gaps in those years coinciding with the conduction of the (initially triennial) anchovy DEPM survey (the true *BOCADEVA* series, which first survey started in 2005).

Results from the *ECOCADIZ* series are routinely reported to ICES Expert Groups on both stock assessment (formerly in WGMHSA, WGANC, WGANSA, at present in WGHANSA) and acoustic and egg surveys (WGACEGG).

The present Working Document summarises the main results from the *ECOCADIZ 0813* survey. After conducting this survey the RV *Cornide de Saavedra* was definitively out of service.

## **MATERIAL AND METHODS**

The *ECOCADIZ 0813* survey was carried out between 2<sup>nd</sup> and 13<sup>th</sup> August 2014 onboard the Spanish R/V *Cornide de Saavedra* covering a survey area comprising the waters of the Gulf of Cadiz, both Spanish and Portuguese, between the 20 m and 200 m isobaths. The survey design consisted in a systematic parallel grid with tracks equally spaced by 8 nm, normal to the shoreline (**Figure 1**).

Echo-integration was carried out with a *Simrad*<sup>m</sup> *EK60* echo sounder working in the multi-frequency fashion (18, 38, 70, 120, 200 kHz). Average survey speed was between 7.5 - 8 knots (see below) and the acoustic signals were integrated over 1-nm intervals (ESDU). Raw acoustic data were stored for further post-processing using *Myriax Software Echoview*<sup>m</sup> software package (by *Myriax Software Pty. Ltd.,* ex *SonarData Pty. Ltd.*). Acoustic equipment was previously calibrated during the *MEDIAS 07 2013* acoustic survey, a survey conducted in the Spanish Mediterranean waters just before the *ECOCADIZ* one, following the standard procedures (Foote *et al.,* 1987).

Vessel self-noise tests and the revision/calibration of the *Scanmar* depth sensor were carried out on 2<sup>nd</sup> August after the finalization of the acoustic sampling and fishing hauls. Vessel self-noise tests were carried out with only one of the two R/V engines, since it was agreed to conduct the survey with only one engine in order to save fuel. With only one engine the maximum speed achievable by this R/V is of 8.6 knots (with good weather and sea conditions), or even decrease up to 7 knots with bad sea conditions.

Survey execution and abundance estimation followed the methodologies firstly adopted by the ICES *Planning Group for Acoustic Surveys in ICES Sub-Areas VIII and IX* (ICES, 1998) and the recommendations given more recently by the *Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES areas VIII and IX* (WGACEGG; ICES, 2006a,b).

Fishing stations were opportunistic, according to the echogram information, and they were carried out using a ca. 16 m-mean vertical opening pelagic trawl (*Tuneado* gear) at an average speed of 4 knots. Gear performance and geometry during the effective fishing was monitored with *Simrad™ Mesotech FS20/25* trawl sonar. Trawl sonar data from each haul were recorded and stored for further analyses.

Length frequency distributions (LFD) by 0.5-cm class were obtained for all the fish species in trawl samples (either from the total catch or from a representative random sample of 100-200 fish). Only those LFDs based on a minimum of 30 individuals and showing a normal distribution were considered for the purpose of the acoustic assessment.

Individual biological sampling (length, weight, sex, maturity stage, stomach fullness, mesenteric fat content) was performed in each haul for anchovy, sardine (in both species with otolith extraction), mackerel and horse-mackerel species, and bogue.

The following TS/length relationship table was used for acoustic estimation of assessed species (recent IEO standards after ICES, 1998; and recommendations by ICES, 2006a,b):

| Species                                         | <b>b</b> <sub>20</sub> |
|-------------------------------------------------|------------------------|
| Sardine (Sardina pilchardus)                    | -72.6                  |
| Round sardinella (Sardinella aurita)            | -72.6                  |
| Anchovy (Engraulis encrasicolus)                | -72.6                  |
| Chub mackerel (Scomber japonicus)               | -68.7                  |
| Mackerel (S. scombrus)                          | -84.9                  |
| Horse mackerel (Trachurus trachurus)            | -68.7                  |
| Mediterranean horse-mackerel (T. mediterraneus) | -68.7                  |
| Blue jack mackerel ( <i>T. picturatus</i> )     | -68.7                  |
| Bogue (Boops boops)                             | -67.0                  |

Trawl samples provided biological data on species and they were also used to identify fish species and to allocate the back-scattering values into fish species according to the proportions found at the fishing stations (Nakken and Dommasnes, 1975). The *PESMA 2010* software (J. Miquel, unpublished) has got implemented the needed procedures and routines for the acoustic assessment following the above approach.

A Continuous Underway Fish Egg Sampler (CUFES), a Sea-bird Electronics<sup>m</sup> SBE 21 SEACAT thermosalinometer and a Turner<sup>m</sup> 10 AU 005 CE Field fluorometer were used during the acoustic tracking to continuously monitor the anchovy egg abundance and to collect some hydrographical variables (subsurface sea temperature, salinity, and *in vivo* fluorescence). Vertical profiles of hydrographical variables were also recorded by night from 146 CTD stations by using a Sea-bird Electronics<sup>m</sup> SBE 911+ SEACAT profiler (**Figure 2**). Information on presence and abundance of sea birds, turtles and mammals was also recorded during the acoustic sampling by one onboard observer.

*ECOCADIZ 0813* was also utilized this year as observational platform for the IFAPA (Instituto de Investigación y Formación Agraria y Pesquera)/IEO research project entitled *Ecology of the early stages of the anchovy life-cycle: the role of the coupled Guadalquivir estuary-coastal zone of influence in the species' recruitment process (ECOBOGUE).* Thus, an *ad hoc* sampling grid of 4 stations including Carousel-CTD-LDCP, Bongo 40 and suprabenthic sledge samplings and 4 opportunistic Bongo 90 hauls were carried out in order to characterize the ichthyoplankton, mesozooplankton and suprabenthos species assemblages in the eastern sector of the study area (coastal area surrounding the Guadalquivir river mouth) and their relationships with environmental conditions (**Figure 3**).

## RESULTS

## Vessel self-noise tests

Results of the vessel self-noise tests (expressed in dB) are shown in the following enclosed table and revealed that the use of a single engine generated greater amount of self-noise than if the two vessel's engines were used. In any case, the tests' results advised to perform the acoustic sampling with a 40° blade pitch, equivalent to a speed of 8.6 knots.

| Tests/Working freq.   | 18 kHz | 38 kHz | 70 kHz | 120 kHz | 200 kHz | Speed |
|-----------------------|--------|--------|--------|---------|---------|-------|
| Propeller: disengaged | -152   | -158   | -161   | -163    | -167    | -     |
| Propeller: engaged    | -122   | -144   | -159   | -165    | -165    | 0.8   |
| Blade pitch: 10°      | -124   | -144   | -157   | -163    | -166    | 1.2   |
| Blade pitch: 20°      | -106   | -119   | -135   | -146    | -156    | 5.0   |
| Blade pitch 30°       | -110   | -124   | -140   | -155    | -163    | 7.0   |
| Blade pitch: 40°      | -115   | -130   | -143   | -158    | -164    | 8.6   |
| Tacking to port       | -115   | -128   | -145   | -157    | -165    | -     |
| Tacking to starboard  | -116   | -128   | -145   | -153    | -164    | -     |

#### Acoustic sampling

The acoustic sampling was carried out during the periods of 02 - 05 and 07 - 11 August (**Table 1**). The acoustic sampling started in the coastal end of the transect RA01 on 02 August towards the RA21. The acoustic sampling stopped on 06 August in order to dedicate that day to the sampling tasks of the *ECOBOGUE* project. Until 09 August the acoustic sampling started every day at 05:30 UTC. From then on (in the westernmost Algarve waters) the acoustic sampling started half an hour later. The whole 21-transect sampling grid was sampled. The foreseen start of transect RA09 by the coastal end had to be slightly displaced in order to avoid some tugs maneuvering in such shallow waters. As commented above, in order to save fuel, the acoustic sampling speeds of about 7,5 – 8 knots as an average, speeds quite lower than those ones considered as standard (10 knots). Lower speeds than the standard one negatively impacted in the progress of both the acoustic sampling and mainly in the number of fishing hauls per day (see below).

## **Groundtruthing hauls**

Seventeen (17) fishing operations, 16 of them valid according to a correct gear performance and resulting catches, were carried out (**Table 1**, **Figure 4**). Such a number of fishing hauls was nearly the half of hauls that are usually carried out during a standard survey.

As usual in previous surveys, some fishing hauls were attempted by fishing over an isobath crossing the acoustic transect as close as possible to the depths where the fishing situation of interest was detected over that transect. In this way the mixing of different size compositions (*i.e.*, bi-, multi-modality of length frequency distributions) was avoided as well as a direct interaction with fixed gears. The mixing of sizes is more probable close to nursery-recruitment areas and in regions with a very narrow continental shelf. Given that all of these situations were not very uncommon in the sampled area, 31% of valid hauls (5 hauls) were conducted over isobath.

Because of the echo-traces usually occurred close to the bottom, all the pelagic hauls were carried out like a bottom-trawl haul, with the ground rope working very close to the bottom. According to the above, the sampled depth range in the valid hauls oscillated between 36-146 m.

During the survey were captured 1 species of Chondrichthyans, 38 species of Osteichthyes and 5 species of Cephalopods. The percentage of occurrence of the more frequent species in the trawl hauls is shown in the enclosed text table below (see also **Figure 5**). Chub mackerel and blue jack mackerel (13 hauls), and

anchovy and horse-mackerel (12 hauls) stood especially out from the set of small and mid-sized pelagic fish species. They were followed by mackerel (11 hauls), bogue (10), sardine (9), and Mediterranean horse mackerel (6 hauls).

| Species                 | # of positive<br>fishing stations | Occurrence<br>(%) | Total weight<br>(kg) | Total number |
|-------------------------|-----------------------------------|-------------------|----------------------|--------------|
| Merluccius merluccius   | 14                                | 88                | 150                  | 1364         |
| Scomber colias          | 13                                | 81                | 2862                 | 28981        |
| Trachurus picturatus    | 13                                | 81                | 279                  | 5258         |
| Engraulis encrasicolus  | 12                                | 75                | 1324                 | 65335        |
| Trachurus trachurus     | 12                                | 75                | 496                  | 10360        |
| Scomber scombrus        | 11                                | 69                | 82                   | 471          |
| Boops boops             | 10                                | 63                | 93                   | 941          |
| Spondyliosoma cantharus | 10                                | 63                | 10                   | 87           |
| Loligo media            | 10                                | 63                | 6                    | 1325         |
| Sardina pilchardus      | 9                                 | 56                | 362                  | 10122        |
| Loligo vulgaris         | 7                                 | 44                | 1                    | 28           |
| Trachurus mediterraneus | 6                                 | 38                | 340                  | 1921         |

For the purposes of the acoustic assessment, anchovy, sardine, round sardinella, mackerel species, horse & jack mackerel species, and bogue were initially considered as the survey target species. All of the invertebrates, and both bentho-pelagic (*e.g.*, manta rays) and benthic fish species (*e.g.*, flatfish, gurnards, etc.) were excluded from the computation of the total catches in weight and in number from those fishing stations where they occurred. Catches of the remaining non-target species were included in an operational category termed as "*Others*". According to the above premises, during the survey were captured a total of 6 092 kg and 158 thousand fish (**Table 2**). 47% of the total fished biomass corresponded to chub mackerel, 22% to anchovy, 8% to horse mackerel, 6% to sardine and Mediterranean horse mackerel, and 5% to blue jack-mackerel. The most abundant species in groundtruthing trawl hauls was anchovy (42%) followed by a long distance by chub mackerel (19%), horse-mackerel and sardine (7% each). Total catches and yields of Mediterranean horse-mackerel and blue jack mackerel were very low, with those of bogue, mackerel and round sardinella being almost incidental. The species composition, in terms of percentages in number, in each valid fish station is shown in **Figure 5**.

## Back-scattering energy attributed to the "pelagic assemblage" and individual species

A total of 320 nmi (ESDU) from 21 transects has been acoustically sampled by echo-integration for assessment purposes. From this total, 206 nmi (11 transects) were sampled in Spanish waters, and 114 nmi (10 transects) in the Portuguese waters. The enclosed text table below provides the nautical area-scattering coefficients attributed to each of the selected target species and for the whole "pelagic fish assemblage".

| s <sup>2</sup> -2 | Total con  | Sardina | Round      | Anchova | Mackaral | Chub   | Horse- | Medit.  | Blue       | Poguo  |
|-------------------|------------|---------|------------|---------|----------|--------|--------|---------|------------|--------|
| JA(m nmi)         | rotai spp. | Saruine | sardinella | Anchovy | Wackerer | mack.  | mack.  | h-mack. | jack-mack. | Dogue  |
| Total Area        | 89375      | 6062    | 6          | 10168   | 16       | 38545  | 16084  | 4832    | 5689       | 7973   |
| (%)               | (100.0)    | (6.8)   | (0.0)      | (11.4)  | (0.0)    | (43.1) | (18.0) | (5.4)   | (6.4)      | (8.9)  |
| Portugal          | 38858      | 3752    | 0          | 1194    | 5        | 3502   | 13950  | 0       | 3546       | 7149   |
| (%)               | (43.5)     | (61.9)  | (0.0)      | (11.7)  | (34.1)   | (24.0) | (86.7) | (0.0)   | (62.3)     | (89.7) |
| Spain             | 50517      | 2310    | 6          | 8974    | 10       | 29284  | 2133   | 4832    | 2143       | 824    |
| (%)               | (56.5)     | (38.1)  | (100.0)    | (88.3)  | (65.9)   | (76.0) | (13.3) | (100.0) | (37.7)     | (10.3) |

For this "pelagic fish assemblage" has been estimated a total of 89375 m<sup>2</sup> nmi<sup>-2</sup>. Portuguese waters accounted for 43.5% of this total back-scattering energy and the Spanish waters the remaining 56.5%.

However, given that the Portuguese sampled ESDUs were almost the half of the Spanish ones, the (weighted-) relative importance of the Portuguese area (*i.e.*, its density of "pelagic fish") is actually much higher. The mapping of the total back-scattering energy is shown in **Figure 6**. By species, chub mackerel accounted for 43.1% of this total back-scattering energy, a relative importance corroborated by its high frequency of occurrence in hauls. Horse mackerel is the following species in importance with 18.0%. Anchovy only contributed with 11.4%, followed by bogue with 8.9%, sardine with 6.8%, blue jack mackerel with 6.4%, Mediterranean horse mackerel with 5.4%, and negligible energetic contributions by mackerel and round sardinella.

Some inferences on the species' distribution may be carried out from regional contributions to the total energy attributed to each species: round sardinella, Mediterranean horse mackerel, anchovy, mackerel and chub mackerel seem to show greater densities in the Spanish waters, whereas bogue, horse mackerel, blue jack mackerel and sardine may be considered as typically "Portuguese species" in this survey.

According to the resulting values of integrated acoustic energy, the species acoustically assessed in the present survey finally were anchovy, sardine, chub mackerel, blue jack mackerel, horse mackerel, Mediterranean horse mackerel and bogue.

#### Spatial distribution and abundance/biomass estimates

#### Anchovy

Parameters of the survey's length-weight relationship for anchovy are given in **Table 11**. The backscattering energy attributed to this species, positive valid fishing stations with anchovy and the coherent strata considered for the acoustic estimation are shown in **Figure 6**. The estimated abundance and biomass by size and age class are given in **Tables 3** and **4** and **Figures 8** and **9**.

The bulk of the anchovy population was concentrated in the central part of the surveyed area which corresponds to the Spanish shelf. In this area the species distributed all over the shelf showing spots of high density at different depths. A residual nucleus was also recorded to the west of Cape Santa Maria, in waters with a bathymetry between 75 and 108 m depth (**Figure 6**).

The size class range of the assessed population varied between the 7.5 and 18 cm size classes, with two modal classes at 11 and 14.5 cm. As usual, largest anchovies occurred in the westernmost waters whereas the smallest ones were observed in the central coastal part of the sampled area, coinciding with the location of the main recruitment area close to the Guadalquivir river mouth. The delay of the survey dates in relation to the rest of surveys in the series may be the reason of a higher relative importance of the first modal component in the population, as also happened in the previous survey (in 2010). This fact is a probable consequence of the incorporation of the first waves of recently recruited juveniles to the adult population that usually occur in mid-late summer (**Tables 3** and **4**, **Figures 7** and **8**).

Six sectors have been differentiated according to the  $S_A$  value distribution and the size composition in the fishing stations. The acoustic estimates by homogeneous stratum and total area are shown in **Tables 3** and **4**, and **Figures 7** and **8**. A total of 8 487 t and 609 millions of fish have been estimated for this species for the whole surveyed area.

A total of 107 stations were sampled by CUFES from which 68 stations (64%) were positive with anchovy eggs. These positive stations were distributed all over the acoustic transects but the easternmost one and rendered a total of 10 005 anchovy eggs. The spatial distribution of anchovy eggs resembled to the above described for the adult population. Total, maximum and mean anchovy egg densities were estimated at 769, 130 and 7 eggs m<sup>-3</sup> respectively. Greater anchovy egg densities were mainly observed in the innermiddle shelf waters located between Cadiz Bay and Tinto-Odiel rivers mouths. However, the highest egg

density (130 eggs m<sup>-3</sup>) was recorded in a station with a bathymetry of 87.6 m depth located in the closest transect to the Portuguese-Spanish border (**Figure 9**). In that station were collected a total of 2014 eggs, accounting for 20% of the total of the collected anchovy eggs during the survey, with practically all of them belonging to the *no embryo* stage.

#### Sardine

Parameters of the survey's size-weight relationship for sardine are shown in **Table 11**. The back-scattering energy attributed to this species, positive valid fishing stations with sardine and the coherent strata considered for the acoustic estimation are shown in **Figure 10**. Estimated abundance and biomass by size class are given in **Table 5** and **Figure 11**.

Sardine preferably occurred over the inner-middle shelf of both extremes of the surveyed area, in shallower waters than anchovy, and curiously in those waters where anchovy was absent, resulting in a distribution pattern almost complementary to the one deployed by this last species (**Figure 10**). In any case, higher sardine densities were more constantly recorded in the waters west to Cape Santa Maria.

The size range of the assessed population ranged between 11 and 21.5 cm size classes, with two modal classes, a secondary one at 13 and the most important at 17 cm. As also evidenced in previous surveys, the size composition of the surveyed population evidences that the central coastal area might correspond with a recruitment area for the species (**Table 5**, **Figure 11**).

Five size-based homogeneous sectors were delimited for the acoustic assessment. The acoustic estimates by homogeneous stratum and total area are shown in **Table 5** and **Figure 11**. Sardine was the third most important species in terms of both biomass and abundance: 9 670 t and 232 millions of fish have been estimated for this species for the whole surveyed area.

## **Round sardinella and Mackerel**

The occurrence of round sardinella during the survey was incidental and restricted to a very small coastal area between Rota and Chipiona, in the eastern waters of the Gulf (Figure 12). Acoustic integration for the species was considered negligible and therefore the species was not acoustically assessed. The same also applies to mackerel, although in this case the species showed a wider distribution, occurring in all transects but the two easternmost ones, with the species distributing over the middle and outer shelf waters of the Gulf (Figure 12).

## **Chub mackerel**

Parameters of the survey's length-weight relationship are shown in **Table 11**. The back-scattering energy attributed to this species, positive valid fishing stations with chub mackerel and the coherent strata considered for the acoustic estimation are shown in **Figure 13**. Estimated abundance and biomass by size class are given in **Table 6** and **Figure 14**.

Chub mackerel was present all over the surveyed area although in the westernmost waters showed a more "oceanic" distribution than in the rest of the surveyed area, where the highest densities were mainly recorded in different locations over the inner shelf (**Figure 13**). The size class range for the assessed population oscillated between 19 and 32 cm size classes. Two mixed size cohorts may be differentiated in the sampled population, both corresponding to juvenile/sub-adult fish (with modes at 20 and 22 cm; **Table 6** and **Figure 14**). Larger fish were more frequent in the central area.

Seven sectors were differentiated for the purposes of acoustic assessment. The acoustic estimates by homogeneous stratum and total area are shown in **Table 6** and **Figure 14**. Chub mackerel in the sampled

area was the most important species in terms of assessed biomass, rendering estimates of 31 267 t and 333 million fish.

#### Blue jack-mackerel

The survey's length-weight relationship for this species is given in **Table 11**. The back-scattering energy attributed to this species, the species' positive fishing stations and the coherent strata considered for the acoustic estimation are illustrated in **Figure 15**. Estimated abundance and biomass by size class are given in **Table 7** and **Figure 16**.

Blue jack mackerel occurred in 3 main locations: the area between Cape San Vicente and Cape Santa Maria, the area close to the Guadiana river mouth (where the highest densities were recorded), and the easternmost extreme of the surveyed area. Spots of high density were indistinctly recorded both in the inner and middle shelf (**Figure 15**). The sampled population showed a well bell-shaped length frequency distribution, with size classes ranging between 14.5 and 21.5 cm, and a modal class at 17.5 cm, all of them probably corresponding to juvenile/sub-adult fish. Larger fish were mainly recorded in the easternmost waters of the sampled area (**Table 7**, **Figure 16**).

The estimates for the four post-strata considered in the assessment are shown in **Table 7** and **Figure 16**. A total of 3 889 t and 76 millions of fish were estimated for the whole surveyed area.

#### Horse mackerel

The survey's length-weight relationship for horse mackerel is shown in **Table 11**. The back-scattering energy attributed to this species, the distribution of fishing stations and their coherent strata are shown in **Figure 17**. Estimated abundance and biomass by size class are given in **Table 8** and **Figure 18**.

The spatial distribution of acoustic energy attributable to horse mackerel resembled in a great extent to that previously described for sardine and blue jack mackerel, with highest densities occurring in both extremes of the surveyed area and a relatively scarce presence in the central part. Again, westernmost Portuguese shelf waters were those where the species recorded the highest values (Figure 17). The sampled population, which ranged between 10.5 and 22.5 cm size classes, was basically distributed amongst two cohorts with one main mode at 17 cm (sub-adults), and a secondary one at 12.5 cm (juveniles, which were located in the central part of the middle-inner shelf of the surveyed area) (Table 8, Figure 18).

The estimates for the four coherent strata considered in the assessment and for the whole surveyed area are given in **Table 8** and illustrated in **Figure 18**. During this survey were estimated 10 398 t and 228 million fish of horse mackerel in the surveyed area, the species ranking as the second most important one in terms of biomass.

#### Mediterranean horse-mackerel

The survey's length-weight relationship for this species is shown in **Table 11**. Positive fishing stations, back-scattering energy attributed to the species and coherent strata are represented in **Figure 19**. Estimated abundance and biomass by size class are given in **Table 9** and **Figure 20**.

Mediterranean horse-mackerel was only present over the Spanish inner shelf waters, with the densest concentrations being recorded in the easternmost waters (Figure 19). Size range of the sampled population oscillated between 17 and 38 cm size classes, showing 3 modal classes at 19, 28.5 and 35 cm, although the bulk of the sampled specimens occurred around the second mode, between 22.5 and 32 cm. Again, the smallest fish occurred in the central part of the surveyed area, in front of the Coto de Doñana National Park (Table 9, Figures 19, 20).

The acoustic estimates, given in **Table 9** and **Figure 20**, were: 4 853 t and 26 millions of fish.

#### Bogue

Parameters of the survey's length-weight relationship for bogue are shown in **Table 11**. Positive fishing hauls, back-scattering energy attributed to bogue and coherent strata delimited for acoustic estimations are shown in **Figure 21**. Estimated abundance and biomass by size class are given in **Table 10** and **Figure 22**.

Bogue was mainly located in the westernmost Portuguese waters, where the species also recorded the highest densities. In the rest of the area the species showed a very scattered distribution with very low densities (Figure 21). The sampled population was composed by fish belonging to size classes comprised between 10.5 and 24 cm, although mainly distributed between the 19 and 24.5 cm size classes. Three modes were identified at 13.5, 17 and, the most important, at 21 cm. Large fish were mainly located in the western coherent strata, whereas juveniles were only observed in front of the Coto de Doñana and in the easternmost waters (Table 10, Figure 22).

The bogue acoustic estimates for the whole surveyed area, shown in **Table 10** and **Figure 22**, were: 4 783 t and 52 million fish.

## (SHORT) DISCUSSION

No standard acoustic survey (neither PELAGO nor ECOCADIZ) was carried out in 2012 in the Gulf of Cadiz for different reasons. Spain could finally conduct between 10 and 27 November of that year the ECOCADIZ-RECLUTAS 1112 survey, a survey aimed at obtaining acoustic estimates of Gulf of Cadiz anchovy and sardine juveniles in their main recruitment areas off the Gulf (Ramos et al., 2013). Although a probable underestimation should be assumed, since the surveyed area was restricted to the Spanish waters only, 2012 autumn acoustic estimates for anchovy (2 649 million fish, 13 680 t) and sardine (603 million fish, 22 119 t) were close to those ones estimated by IPMA five months after (5 April – 15 May 2013) during the PELAGO 13 survey (Marques et al., 2013; Table 12). A further within-year comparison between PELAGO 13 and ECOCADIZ 0813 estimates reveals however marked decreases in the population levels of both species in mid-summer 2013, with the decrease exhibited by sardine being much more evident. During the ECOCADIZ 0813 survey the greatest decreases in abundance and biomass were recorded in the Portuguese waters for anchovy and, more dramatically, in the Spanish ones for sardine. The above values are also illustrated in the context of their respective historical series in Figure 23. Anchovy and sardine biomass estimates in 2013 are amongst the lowest ones within their respective survey series. For both species, the 2013 ECOCADIZ survey estimates even were the lowest ones in the whole series. In their Portuguese counterparts, the anchovy estimate was about the half of the historical average (about 24 kt). In any case, Gulf of Cadiz anchovy has experienced a very fluctuating trend in the recent years. Since 2007 on the sardine biomass, as estimated by the PELAGO surveys, is experiencing a clear decreasing trend, which culminated in 2011 and it is still maintaining in the latest years. This decline is also corroborated, although based on less data points, by the Spanish summer surveys.

#### REFERENCES

Foote, K.G., H.P. Knudsen, G. Vestnes, D.N. MacLennan, E.J. Simmonds, 1987. Calibration of acoustic instruments for fish density estimation: a practical guide. *ICES Coop. Res. Rep.*, 144, 57 pp.

ICES, 1998. Report of the Planning Group for Acoustic Surveys in ICES Sub-Areas VIII and IX. A Coruña, 30-31 January 1998. *ICES CM 1998/G:2*.

ICES, 2006a. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES areas VIII and IX (WGACEGG), 24-28 October 2005, Vigo, Spain. *ICES, C.M. 2006/LRC: 01.* 126 pp.

ICES, 2006b. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG), 27 November-1 December 2006, Lisbon, Portugal. *ICES C.M. 2006/LRC:18*. 169 pp.

Nakken, O., A. Dommasnes, 1975. The application for an echo integration system in investigations on the stock strength of the Barents Sea capelin (*Mallotus villosus*, Müller) 1971-74. *ICES CM 1975/B:25*.

Marques, V., A. Silva, M.M. Angélico, E. Soares, 2013. Sardine acoustic survey carried out in April-May 2013 off the Portuguese Continental Waters and Gulf of Cadiz, onboard RV "Noruega". Working Document to the ICES Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA), 21-26 June 2013, Bilbao, Spain, *ICES, C.M 2013/ACOM:16*. 18 pp.

Ramos, F., M. Iglesias, J. Miquel, D. Oñate and M. Millán, 2010. A first attempt of acoustically assessing the shallow waters (<20 m depth) off the Gulf of Cádiz (ICES Subdivision IXa South): results from the *ECOCADIZ-COSTA 0709* Spanish survey (July 2009). Working document presented to the ICES Working Group on Anchovy and Sardine (WGANSA). 24-28 June 2010, Lisbon, Portugal. *ICES C.M.:2010/ACOM: 16*. 29 pp.

Ramos, F., M. Iglesias, J. Miquel, D. Oñate, J. Tornero, A. Ventero, N. Díaz, 2013. Acoustic assessment and distribution of the main pelagic fish species in the ICES Subdivision IXa South during the *ECOCADIZ-RECLUTAS 1112* Spanish survey (November 2012). Working document presented to the ICES Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA). 21-26 June 2013, Bilbao (Basque Country), Spain. *ICES C.M: 2013/ACOM:16*, and ICES Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG). By correspondence and 25-29 November 2013, Lisbon, Portugal. *ICES C.M: 2013/SSGESST:20.* 56 pp.

|                   |                       |            |              | Start       |             |                      |              | End         |             |                      |
|-------------------|-----------------------|------------|--------------|-------------|-------------|----------------------|--------------|-------------|-------------|----------------------|
| Acoustic<br>track | Location              | Date       | Latitude     | Longitude   | UCT<br>time | Mean<br>depth<br>(m) | Latitude     | Longitude   | UCT<br>time | Mean<br>depth<br>(m) |
| R01               | Trafalgar             | 02/08/2013 | 36º 13,670 N | 6º 7,620 W  | 10:17       | 25                   | 36º 2,070 N  | 6º 28,560 W | 14:44       | 190                  |
| R02               | Sancti-Petri          | 03/08/2013 | 36º 19,320 N | 6º 14,630 W | 5:38        | 31                   | 36º 8,980 N  | 6º 34,070 W | 9:38        | 208                  |
| R03               | Cádiz                 | 03/08/2013 | 36º 17,250 N | 6º 36,600 W | 11:00       | 172                  | 36º 27,180 N | 6º 19,110 W | 17:18       | 24                   |
| R04               | Rota                  | 04/08/2013 | 36º 34,460 N | 6º 23,260 W | 5:35        | 23                   | 36º 24,510 N | 6º 40,740 W | 9:50        | 214                  |
| R05               | Chipiona              | 04/08/2013 | 36º 30,990 N | 6º 46,430 W | 10:49       | 189                  | 36º 40,160 N | 6º 29,810 W | 14:35       | 25                   |
| R06               | Doñana                | 05/08/2013 | 36º 37,920 N | 6º 51,430 W | 6:01        | 149                  | 36º 46,410   | 6º 41,050 W | 10:28       | 23                   |
| R07               | Matalascañas          | 05/08/2013 | 36º 53,510 N | 6º 41,050 W | 10:28       | 23                   | 36º 43,980 N | 6º 58,190 W | 14:11       | 211                  |
| R08               | Mazagón               | 07/08/2013 | 36º 49,120 N | 7º 6,730 W  | 5:37        | 191                  | 37º 1,070 N  | 6º 44,520 W | 8:25        | 21                   |
| R09               | Punta Umbría          | 07/08/2013 | 37 º4,530 N  | 6º 55,870 W | 9:47        | 28                   | 36º 49,040 N | 7º 6,860 W  | 11:54       | 200                  |
| R10               | El Rompido            | 07/08/2013 | 36º 49.170 N | 7º 6.810 W  | 14:44       | 195                  | 37º 6.860 N  | 7º 6.910 W  | 16:41       | 24                   |
| R11               | Isla Cristina         | 08/08/2013 | 36º 52,370 N | 7º 16,710 W | 5:36        | 200                  | 37º 7,150 N  | 7º 16,950 W | 9:13        | 20                   |
| R12               | V. R. de Sto. Antonio | 08/08/2013 | 37º 6,190 N  | 7º 26,510 W | 10:11       | 30                   | 36º 56,190 N | 7º 26,500 W | 12:56       | 241                  |
| R13               | Tavira                | 08/08/2013 | 36º 57,070 N | 7º 36,100 W | 14:29       | 125                  | 37º 4,940 N  | 7º 36,050 W | 16:55       | 21                   |
| R14               | Fuzeta                | 08/08/2013 | 36º 59,280   | 7º 45,930 W | 18:19       | 78                   | 36º 55,7 N   | 7º 45,850 W | 18:34       | 160                  |
| R15               | Cabo de Sta. María    | 09/08/2013 | 36º 56,000 N | 7º 55,080 W | 5:33        | 67                   | 36º 51,870 N | 7º 55,990 W | 6:02        | 217                  |
| R16               | Cuarteira             | 09/08/2013 | 36º 50,170 N | 8º 5,900 W  | 7:52        | 122                  | 37º 1,340N   | 8º 5,960 W  | 11:12       | 21                   |
| R17               | Albufeira             | 09/08/2013 | 37º 2,450 N  | 8º 15,430 W | 12:12       | 31                   | 36º 49,380 N | 8º 15,490 W | 15:26       | 175                  |
| R18               | Alfanzina             | 10/08/2013 | 37º 4,170 N  | 8º 25,300 W | 6:04        | 32                   | 36º 50,360 N | 8º 25,240 W | 10:18       | 213                  |
| R19               | Portimao              | 10/08/2013 | 36º 51,480 N | 8º 35,360 W | 11:42       | 115                  | 37º 6,020 N  | 8º 35,390 W | 14:43       | 25                   |
| R20               | Burgau                | 11/08/2013 | 37º 1,400 N  | 8º 45,040 W | 10:04       | 60                   | 36º 52,380 N | 8º 45,030 W | 11:10       | 229                  |
| R21               | Ponta de Sagres       | 11/08/2013 | 36º 50,820 N | 8º 54,970 W | 12:10       | 161                  | 37º 0,490 N  | 8º 55,010 W | 13:23       | 25                   |

 Table 1. ECOCADIZ 0813 survey. Descriptive characteristics of the acoustic tracks.

| Fishing |            | Sta           | nrt          | En            | d            | UTC   | Time  | Dept   | h (m)  | Durati             | on (min.)          | Trawled          | A        | 7                  |
|---------|------------|---------------|--------------|---------------|--------------|-------|-------|--------|--------|--------------------|--------------------|------------------|----------|--------------------|
| station | Date       | Latitude      | Longitude    | Latitude      | Longitude    | Start | End   | Start  | End    | Effective trawling | Total<br>manoeuvre | Distance<br>(nm) | transect | (landmark)         |
| 01      | 02/08/2013 | 36° 07.5001 N | 6° 19.9345 W | 36° 08.5708 N | 6° 16.9120 W | 12:13 | 12:41 | 42,81  | 35,86  | 00:28              | 00:58              | 2,672            | R01      | Trafalgar          |
| 02      | 03/08/2013 | 36° 15.4470 N | 6° 21.8920 W | 36° 16.4845 N | 6° 19.9524 W | 07:01 | 07:28 | 50,52  | 45,12  | 00:27              | 00:55              | 1,88             | R02      | Sancti-Petri       |
| 03      | 03/08/2013 | 36° 21.1015 N | 6° 31.9429 W | 36° 18.7477 N | 6° 30.6034 W | 13:09 | 13:47 | 97,68  | 95,96  | 00:38              | 01:08              | 2,588            | R03      | Cádiz              |
| 04      | 03/08/2013 | 36° 24.6126 N | 6° 23.6392 W | 36° 23.4348 N | 6° 25.7391 W | 15:36 | 16:08 | 50,52  | 56,67  | 00:32              | 10:22              | 2,063            | R03      | Cádiz              |
| 05      | 04/08/2013 | 36° 31.6408 N | 6° 28.1515 W | 36° 30.6189 N | 6° 29.9770 W | 07:24 | 02:50 | 46,66  | 54,38  | 00:26              | 00:59              | 1,791            | R04      | Rota               |
| 06      | 04/08/2013 | 36° 33.9931 N | 6° 41.0815 W | 36° 32.4217 N | 6° 43.9122 W | 11:54 | 12:35 | 95,03  | 119,96 | 00:41              | 01:13              | 2,768            | R05      | Chipiona           |
| 07      | 05/08/2013 | 36° 43.7650 N | 6° 40.7755 W | 36° 42.5242 N | 6° 43.0849 W | 07:35 | 08:07 | 39,53  | 59,51  | 00:32              | 00:56              | 2,232            | R06      | Coto Doñana        |
| 08      | 05/08/2013 | 36° 47.6104 N | 6° 51.5898 W | 36° 48.9349 N | 6° 49.2508 W | 12:11 | 12:43 | 87,58  | 64,8   | 00:32              | 01:06              | 2,297            | R07      | Matalascañas       |
| 09      | 05/08/2013 | 36° 44.4166 N | 6° 57.3940 W | 36° 45.5032 N | 6° 55.4485 W | 14:45 | 15:15 | 140,95 | 115,33 | 00:30              | 01:10              | 1,903            | R07      | Matalascañas       |
| 10      | 07/08/2013 | 36° 50.6850 N | 7° 06.0118 W | 36° 52.2754 N | 7° 04.7218 W | 12:19 | 12:48 | 145,93 | 115,87 | 00:29              | 01:09              | 1,896            | R09      | Punta Umbría       |
| 11      | 08/08/2013 | 36° 57.6747 N | 7° 16.7926 W | 36° 55.4401 N | 7° 16.7557 W | 06:45 | 07:17 | 99,08  | 119,77 | 00:32              | 01:07              | 2,232            | R11      | Isla Cristina      |
| 12      | 08/08/2013 | 37° 04.9612 N | 7° 27.5697 W | 37° 04.9858 N | 7° 25.2487 W | 10:47 | 11:13 | 39,66  | 37,73  | 00:26              | 00:51              | 1,857            | R12      | V. R. Sto. Antonio |
| 13      | 08/08/2013 | 37° 01.0086 N | 7° 36.0274 W | 36° 59.0446 N | 7° 36.0439 W | 15:12 | 15:41 | 93,71  | 108,98 | 00:29              | 01:12              | 1,962            | R13      | Tavira             |
| 14      | 09/08/2013 | 36° 51.5641 N | 8° 06.3967 W | 36° 52.5043 N | 8° 04.3080 W | 08:56 | 09:26 | 104,07 | 103,62 | 00:30              | 00:01              | 1,921            | R16      | Quarteira          |
| 15      | 09/08/2013 | 36° 57.8074 N | 8° 12.8953 W | 36° 58.5202 N | 8° 15.4957 W | 13:30 | 14:01 | 52,57  | 50,04  | 00:31              | 01:00              | 2,202            | R17      | Albufeira          |
| 16      | 10/08/2013 | 36° 55.3374 N | 8° 27.8494 W | 36° 55.1391 N | 8° 25.3438 W | 08:09 | 08:39 | 106,72 | 103,76 | 00:30              | 01:03              | 2,019            | R18      | Alfanzina          |
| 17      | 11/08/2013 | 37° 01.9326 N | 8° 44.5479 W | 37° 02.0304 N | 8° 45.1161 W | 06:41 | 06:50 | 51,07  | 50,97  | 00:09              | 01:05              | 0,465            | R20      | Burgau             |

# **Table 2.** ECOCADIZ 0813 survey. Descriptive characteristics of the fishing stations. Null hauls shadowed.

|                 |         |         |            |          | A               | BUNDANCE (         | nº)                   |       |                      |            |        |
|-----------------|---------|---------|------------|----------|-----------------|--------------------|-----------------------|-------|----------------------|------------|--------|
| Fishing station | Anchovy | Sardine | Chub mack. | Mackerel | Horse-<br>mack. | Blue<br>Jack-mack. | Medit.<br>Horse-mack. | Bogue | Silvery<br>lightfish | Other spp. | TOTAL  |
| 01              |         |         |            |          |                 | 29                 | 17                    | 30    |                      | 10         | 86     |
| 02              |         | 441     | 264        |          | 367             | 300                | 302                   | 27    |                      | 65         | 1766   |
| 03              | 2628    |         | 1          | 8        | 18              |                    | 2                     |       |                      | 290        | 2947   |
| 04              | 694     | 8469    | 6706       |          | 543             | 28                 | 182                   | 32    |                      | 232        | 16886  |
| 05              | 4070    | 185     | 4519       |          | 231             | 12                 | 1378                  | 66    |                      | 116        | 10577  |
| 06              | 6339    |         |            | 2        | 2               | 1                  |                       |       | 9                    | 251        | 6604   |
| 07              | 8596    | 107     | 438        | 1        | 95              | 2                  | 40                    | 76    |                      | 640        | 9995   |
| 08              | 350     |         |            | 5        |                 |                    |                       | 1     |                      | 100        | 456    |
| 09              | 7750    |         | 37         | 90       |                 |                    |                       |       |                      | 155        | 8032   |
| 10              | 5224    |         | 142        | 139      |                 | 2                  |                       |       | 31835                | 174        | 37516  |
| 11              | 20663   | 2       | 81         | 19       | 2               | 4                  |                       |       |                      | 69         | 20840  |
| 12              |         | 271     | 8717       | 44       | 852             | 1342               |                       | 164   |                      | 176        | 11566  |
| 13              | 12      | 234     | 7          | 31       | 30              | 1449               |                       | 2     |                      | 30         | 1795   |
| 14              | 8898    |         | 10         | 72       | 405             | 7                  |                       |       |                      | 59         | 9451   |
| 15              |         | 404     | 3          |          | 484             | 16                 |                       | 186   |                      | 66         | 1159   |
| 16              | 111     | 9       | 8056       | 60       | 7331            | 2066               |                       | 357   |                      | 95         | 18085  |
| TOTAL           | 65335   | 10122   | 28981      | 471      | 10360           | 5258               | 1921                  | 941   | 31844                | 2528       | 157761 |

**Table 2.** ECOCADIZ 0813 survey. Catches by species in number (upper panel) and weight (in kg, lower panel) from valid fishing stations.

|                 | BIOMASS (kg) |         |           |          |                 |                    |                       |        |                      |            |          |  |
|-----------------|--------------|---------|-----------|----------|-----------------|--------------------|-----------------------|--------|----------------------|------------|----------|--|
| Fishing station | Anchovy      | Sardine | Chub mack | Mackerel | Horse-<br>mack. | Blue<br>Jack-mack. | Medit.<br>Horse-mack. | Bogue  | Silvery<br>lightfish | Other spp. | TOTAL    |  |
| 01              |              |         |           |          |                 | 1,556              | 2,734                 | 2,103  |                      | 0,79       | 7,183    |  |
| 02              |              | 25,74   | 23,1      |          | 13,767          | 16,22              | 50,875                | 2,039  |                      | 7,468      | 139,209  |  |
| 03              | 54,44        |         | 0,122     | 1,285    | 0,854           |                    | 0,219                 |        |                      | 28,515     | 85,435   |  |
| 04              | 12,701       | 269,107 | 640,059   |          | 21,842          | 1,979              | 31,793                | 3,78   |                      | 26,998     | 1008,259 |  |
| 05              | 56,034       | 6,862   | 476,077   |          | 8,804           | 0,794              | 247,517               | 8,361  |                      | 12,221     | 816,67   |  |
| 06              | 108,547      |         |           | 0,268    | 0,015           | 0,023              |                       |        | 0,004                | 19,955     | 128,812  |  |
| 07              | 93,6         | 4,496   | 72,7      | 0,256    | 3,546           | 0,161              | 7,15                  | 12,4   |                      | 26,188     | 220,497  |  |
| 08              | 6            |         |           | 1,078    |                 |                    |                       | 0,119  |                      | 8,251      | 15,448   |  |
| 09              | 172,16       |         | 5,222     | 10,7     |                 |                    |                       |        |                      | 20,88      | 208,962  |  |
| 10              | 117,24       |         | 18,2      | 22,08    |                 | 0,136              |                       |        | 22,34                | 15,672     | 195,668  |  |
| 11              | 461,477      | 0,127   | 10,352    | 3,236    | 0,033           | 0,196              |                       |        |                      | 6,297      | 481,718  |  |
| 12              |              | 16,884  | 719,557   | 16,613   | 34,13           | 65,851             |                       | 16,003 |                      | 18,219     | 887,257  |  |
| 13              | 0,331        | 13,61   | 0,546     | 5,446    | 1,553           | 74,94              |                       | 0,171  |                      | 5,51       | 102,107  |  |
| 14              | 237,798      |         | 1,358     | 10,683   | 19,167          | 0,446              |                       |        |                      | 6,219      | 275,671  |  |
| 15              |              | 24,78   | 0,358     |          | 21,226          | 0,976              |                       | 12,425 |                      | 14,724     | 74,489   |  |
| 16              | 3,248        | 0,434   | 894,281   | 10,075   | 371,554         | 115,802            |                       | 35,812 |                      | 13,085     | 1444,291 |  |
| TOTAL           | 1323,576     | 362,04  | 2861,932  | 81,72    | 496,491         | 279,08             | 340,288               | 93,213 | 22,344               | 230,992    | 6091,676 |  |

| ECO        | ECOCADIZ 0813 . Engraulis encrasicolus . ABUNDANCE (in number of fish). |          |           |          |          |          |           |          |  |  |  |  |  |
|------------|-------------------------------------------------------------------------|----------|-----------|----------|----------|----------|-----------|----------|--|--|--|--|--|
| Size class | POL01                                                                   | POL02    | POL03     | POL04    | POL05    | POL06    | TOTAL n   | Millions |  |  |  |  |  |
| 6          | 0                                                                       | 0        | 0         | 0        | 0        | 0        | 0         | 0        |  |  |  |  |  |
| 6,5        | 0                                                                       | 0        | 0         | 0        | 0        | 0        | 0         | 0        |  |  |  |  |  |
| 7          | 0                                                                       | 0        | 0         | 0        | 0        | 0        | 0         | 0        |  |  |  |  |  |
| 7,5        | 0                                                                       | 0        | 2108395   | 0        | 0        | 0        | 2108395   | 2        |  |  |  |  |  |
| 8          | 0                                                                       | 0        | 10541977  | 0        | 0        | 0        | 10541977  | 11       |  |  |  |  |  |
| 8,5        | 0                                                                       | 0        | 10541977  | 0        | 0        | 0        | 10541977  | 11       |  |  |  |  |  |
| 9          | 0                                                                       | 0        | 19015339  | 0        | 0        | 0        | 19015339  | 19       |  |  |  |  |  |
| 9,5        | 0                                                                       | 0        | 33774106  | 0        | 0        | 0        | 33774106  | 34       |  |  |  |  |  |
| 10         | 0                                                                       | 0        | 50641280  | 0        | 0        | 0        | 50641280  | 51       |  |  |  |  |  |
| 10,5       | 0                                                                       | 0        | 54897852  | 0        | 0        | 0        | 54897852  | 55       |  |  |  |  |  |
| 11         | 0                                                                       | 249819   | 59114625  | 0        | 0        | 0        | 59364444  | 59       |  |  |  |  |  |
| 11,5       | 0                                                                       | 499639   | 35882489  | 0        | 0        | 0        | 36382128  | 36       |  |  |  |  |  |
| 12         | 0                                                                       | 5959978  | 37990893  | 424102   | 0        | 0        | 44374973  | 44       |  |  |  |  |  |
| 12,5       | 1061277                                                                 | 9186217  | 14758767  | 2653834  | 0        | 0        | 27660095  | 28       |  |  |  |  |  |
| 13         | 3079196                                                                 | 8443898  | 8433580   | 6893501  | 1386595  | 0        | 28236770  | 28       |  |  |  |  |  |
| 13,5       | 6940750                                                                 | 2234100  | 4216790   | 12548190 | 7545128  | 0        | 33484958  | 33       |  |  |  |  |  |
| 14         | 8787371                                                                 | 1734461  | 0         | 13219247 | 12905746 | 2165248  | 38812073  | 39       |  |  |  |  |  |
| 14,5       | 7554796                                                                 | 499639   | 0         | 11312930 | 22877712 | 4759035  | 47004112  | 47       |  |  |  |  |  |
| 15         | 5626037                                                                 | 249819   | 0         | 6183753  | 18348680 | 11677680 | 42085969  | 42       |  |  |  |  |  |
| 15,5       | 3163653                                                                 | 0        | 0         | 3282773  | 11189921 | 13408748 | 31045095  | 31       |  |  |  |  |  |
| 16         | 452536                                                                  | 0        | 0         | 2388186  | 10320276 | 11243501 | 24404499  | 24       |  |  |  |  |  |
| 16,5       | 266812                                                                  | 0        | 0         | 791844   | 2967353  | 4324858  | 8350867   | 8        |  |  |  |  |  |
| 17         | 0                                                                       | 0        | 0         | 447198   | 1781239  | 2165248  | 4393685   | 4        |  |  |  |  |  |
| 17,5       | 0                                                                       | 0        | 0         | 148199   | 791469   | 434177   | 1373845   | 1        |  |  |  |  |  |
| 18         | 0                                                                       | 0        | 0         | 148199   | 0        | 0        | 148199    | 0        |  |  |  |  |  |
| TOTAL n    | 36932428                                                                | 29057570 | 341918070 | 60441956 | 90114119 | 50178495 | 608642638 | 609      |  |  |  |  |  |
| Millions   | 37                                                                      | 29       | 342       | 60       | 90       | 50       | 609       |          |  |  |  |  |  |

**Table 3.** ECOCADIZ 0813 survey. Anchovy (E. encrasicolus). Estimated abundance and biomass by size class.Polygons (i.e., coherent or homogeneous post-strata) numbered as in Figure 6.

| ons        | 37      | 29        | 342       | 60        | 90          | 50        | 609      |
|------------|---------|-----------|-----------|-----------|-------------|-----------|----------|
|            | ECOCAD  | NZ 0813 . | Engraulis | encrasico | olus . BION | MASS (t). |          |
| Size class | POL01   | POL02     | POL03     | POL04     | POL05       | POL06     | TOTAL    |
| 6          | 0       | 0         | 0         | 0         | 0           | 0         | 0        |
| 6,5        | 0       | 0         | 0         | 0         | 0           | 0         | 0        |
| 7          | 0       | 0         | 0         | 0         | 0           | 0         | 0        |
| 7,5        | 0       | 0         | 5,404     | 0         | 0           | 0         | 5,404    |
| 8          | 0       | 0         | 33,139    | 0         | 0           | 0         | 33,139   |
| 8,5        | 0       | 0         | 40,162    | 0         | 0           | 0         | 40,162   |
| 9          | 0       | 0         | 86,862    | 0         | 0           | 0         | 86,862   |
| 9,5        | 0       | 0         | 183,227   | 0         | 0           | 0         | 183,227  |
| 10         | 0       | 0         | 323,487   | 0         | 0           | 0         | 323,487  |
| 10,5       | 0       | 0         | 409,706   | 0         | 0           | 0         | 409,706  |
| 11         | 0       | 2,163     | 511,807   | 0         | 0           | 0         | 513,97   |
| 11,5       | 0       | 4,986     | 358,082   | 0         | 0           | 0         | 363,068  |
| 12         | 0       | 68,149    | 434,407   | 4,849     | 0           | 0         | 507,405  |
| 12,5       | 13,829  | 119,703   | 192,318   | 34,581    | 0           | 0         | 360,431  |
| 13         | 45,496  | 124,762   | 124,609   | 101,854   | 20,487      | 0         | 417,208  |
| 13,5       | 115,742 | 37,255    | 70,318    | 209,251   | 125,821     | 0         | 558,387  |
| 14         | 164,67  | 32,503    | 0         | 247,721   | 241,846     | 40,575    | 727,315  |
| 14,5       | 158,453 | 10,479    | 0         | 237,276   | 479,834     | 99,815    | 985,857  |
| 15         | 131,575 | 5,842     | 0         | 144,618   | 429,116     | 273,103   | 984,254  |
| 15,5       | 82,21   | 0         | 0         | 85,305    | 290,779     | 348,437   | 806,731  |
| 16         | 13,023  | 0         | 0         | 68,729    | 297,004     | 323,573   | 702,329  |
| 16,5       | 8,478   | 0         | 0         | 25,16     | 94,283      | 137,415   | 265,336  |
| 17         | 0       | 0         | 0         | 15,642    | 62,303      | 75,735    | 153,68   |
| 17,5       | 0       | 0         | 0         | 5,691     | 30,392      | 16,672    | 52,755   |
| 18         | 0       | 0         | 0         | 6,231     | 0           | 0         | 6,231    |
| TOTAL      | 733,476 | 405,842   | 2773,528  | 1186,908  | 2071,865    | 1315,325  | 8486,944 |

**Table 4.** *ECOCADIZ 0813* survey. Anchovy (*E. encrasicolus*). Estimated abundance (thousands of individuals) and biomass (tonnes) by age group. Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 6** and ordered from west to east.

|           | POL06  | POL05  | POL03  | POL04  | POL02  | POL01  | TOTAL  |
|-----------|--------|--------|--------|--------|--------|--------|--------|
| Age class | Number |
| 0         | 0      | 140    | 167444 | 403    | 958    | 186    | 169131 |
| Т         | 35607  | 76721  | 161824 | 56519  | 28081  | 35140  | 393891 |
| П         | 14572  | 13253  | 0      | 3520   | 19     | 1606   | 32970  |
| ш         | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TOTAL     | 50178  | 90114  | 329268 | 60442  | 29058  | 36932  | 595992 |

|           | POL06  | POL05  | POL03  | POL04  | POL02  | POL01  | TOTAL  |
|-----------|--------|--------|--------|--------|--------|--------|--------|
| Age class | Weight |
| 0         | 0      | 2      | 1105   | 6      | 12     | 3      | 1128   |
| I         | 889    | 1684   | 1630   | 1079   | 394    | 688    | 6364   |
| п         | 426    | 386    | 0      | 102    | 0      | 42     | 957    |
| ш         | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TOTAL     | 1315   | 2072   | 2735   | 1187   | 406    | 733    | 8448   |

| ECOCA      | DIZ 0813 . | Sardina p | oilchardu | s . ABUN | DANCE (in | number o  | f fish). |
|------------|------------|-----------|-----------|----------|-----------|-----------|----------|
| Size class | POL01      | POL02     | POL03     | POL04    | POL05     | TOTAL n   | Millions |
| 8          | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 8,5        | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 9          | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 9,5        | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 10         | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 10,5       | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 11         | 0          | 0         | 36825     | 0        | 0         | 36825     | 0        |
| 11,5       | 0          | 0         | 184124    | 0        | 0         | 184124    | 0        |
| 12         | 0          | 3195967   | 405072    | 0        | 0         | 3601039   | 4        |
| 12,5       | 0          | 14275531  | 441897    | 0        | 0         | 14717428  | 15       |
| 13         | 294457     | 15866996  | 36825     | 0        | 0         | 16198278  | 16       |
| 13,5       | 147228     | 7274144   | 36825     | 0        | 0         | 7458197   | 7        |
| 14         | 147228     | 2811152   | 36825     | 0        | 0         | 2995205   | 3        |
| 14,5       | 147228     | 4960128   | 36825     | 0        | 0         | 5144181   | 5        |
| 15         | 1361863    | 4960128   | 36825     | 0        | 0         | 6358816   | 6        |
| 15,5       | 1509091    | 1651838   | 110474    | 0        | 1505941   | 4777344   | 5        |
| 16         | 2134811    | 4847806   | 110474    | 0        | 5722577   | 12815668  | 13       |
| 16,5       | 1509091    | 4078177   | 184124    | 0        | 15661787  | 21433179  | 21       |
| 17         | 1509091    | 4847806   | 405072    | 76766    | 37046166  | 43884901  | 44       |
| 17,5       | 1656320    | 3031445   | 184124    | 643122   | 21384367  | 26899378  | 27       |
| 18         | 1509091    | 4847806   | 368248    | 2203682  | 14155847  | 23084674  | 23       |
| 18,5       | 1361863    | 2918864   | 257773    | 2114660  | 18673667  | 25326827  | 25       |
| 19         | 1509091    | 1651838   | 331423    | 1552191  | 4216636   | 9261179   | 9        |
| 19,5       | 1214635    | 1267024   | 478722    | 809833   | 2710695   | 6480909   | 6        |
| 20         | 147228     | 0         | 184124    | 522010   | 0         | 853362    | 1        |
| 20,5       | 0          | 0         | 36825     | 76766    | 0         | 113591    | 0        |
| 21         | 0          | 0         | 36825     | 230298   | 0         | 267123    | 0        |
| 21,5       | 0          | 0         | 0         | 153532   | 0         | 153532    | 0        |
| 22         | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 22,5       | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| 23         | 0          | 0         | 0         | 0        | 0         | 0         | 0        |
| TOTAL n    | 16158316   | 82486650  | 3940251   | 8382860  | 121077683 | 232045760 | 232      |
| Millions   | 16         | 82        | 4         | 8        | 121       | 232       |          |

**Table 5.** ECOCADIZ 0813 survey. Sardine (S. pilchardus). Estimated abundance and biomass by size class. Polygons(i.e., coherent or homogeneous post-strata) numbered as in Figure 10.

# Table 5 (cont'd).

|            | ECOCAI  | DIZ 0813 . Sa | rdina pilcha | rdus . BIOM/ | ASS (t). |          |
|------------|---------|---------------|--------------|--------------|----------|----------|
| Size class | POL01   | POL02         | POL03        | POL04        | POL05    | TOTAL    |
| 8          | 0       | 0             | 0            | 0            | 0        | 0        |
| 8,5        | 0       | 0             | 0            | 0            | 0        | 0        |
| 9          | 0       | 0             | 0            | 0            | 0        | 0        |
| 9,5        | 0       | 0             | 0            | 0            | 0        | 0        |
| 10         | 0       | 0             | 0            | 0            | 0        | 0        |
| 10,5       | 0       | 0             | 0            | 0            | 0        | 0        |
| 11         | 0       | 0             | 0,414        | 0            | 0        | 0,414    |
| 11,5       | 0       | 0             | 2,376        | 0            | 0        | 2,376    |
| 12         | 0       | 47,122        | 5,972        | 0            | 0        | 53,094   |
| 12,5       | 0       | 239,166       | 7,403        | 0            | 0        | 246,569  |
| 13         | 5,578   | 300,575       | 0,698        | 0            | 0        | 306,851  |
| 13,5       | 3,139   | 155,101       | 0,785        | 0            | 0        | 159,025  |
| 14         | 3,519   | 67,183        | 0,88         | 0            | 0        | 71,582   |
| 14,5       | 3,928   | 132,342       | 0,983        | 0            | 0        | 137,253  |
| 15         | 40,418  | 147,209       | 1,093        | 0            | 0        | 188,72   |
| 15,5       | 49,648  | 54,344        | 3,635        | 0            | 49,544   | 157,171  |
| 16         | 77,606  | 176,229       | 4,016        | 0            | 208,03   | 465,881  |
| 16,5       | 60,434  | 163,317       | 7,374        | 0            | 627,202  | 858,327  |
| 17         | 66,386  | 213,259       | 17,819       | 3,377        | 1629,692 | 1930,533 |
| 17,5       | 79,825  | 146,097       | 8,874        | 30,995       | 1030,598 | 1296,389 |
| 18         | 79,476  | 255,31        | 19,394       | 116,057      | 745,518  | 1215,755 |
| 18,5       | 78,189  | 167,581       | 14,8         | 121,409      | 1072,112 | 1454,091 |
| 19         | 94,238  | 103,152       | 20,696       | 96,93        | 263,317  | 578,333  |
| 19,5       | 82,323  | 85,874        | 32,446       | 54,887       | 183,721  | 439,251  |
| 20         | 10,808  | 0             | 13,516       | 38,321       | 0        | 62,645   |
| 20,5       | 0       | 0             | 2,922        | 6,092        | 0        | 9,014    |
| 21         | 0       | 0             | 3,153        | 19,72        | 0        | 22,873   |
| 21,5       | 0       | 0             | 0            | 14,16        | 0        | 14,16    |
| 22         | 0       | 0             | 0            | 0            | 0        | 0        |
| 22,5       | 0       | 0             | 0            | 0            | 0        | 0        |
| 23         | 0       | 0             | 0            | 0            | 0        | 0        |
| TOTAL      | 735.515 | 2453.861      | 169.249      | 501.948      | 5809.734 | 9670.307 |

|            | ECOCA    | DIZ 0813 | . Scombei | r colias | . ABUND | DANCE (in I | number o | f fish). |          |
|------------|----------|----------|-----------|----------|---------|-------------|----------|----------|----------|
| Size class | POL01    | POL02    | POL03     | POL04    | POL05   | POL06       | POL07    | TOTAL n  | Millions |
| 13         | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 13,5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 14         | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 14,5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 15         | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 15,5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 16         | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 16,5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 17         | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 17,5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 18         | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 18,5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |
| 19         | 0        | 0        | 0         | 0        | 0       | 7808826     | 0        | 7808826  | 8        |
| 19,5       | 0        | 0        | 0         | 0        | 0       | 19522061    | 874020   | 20396081 | 20       |
| 20         | 0        | 0        | 0         | 0        | 0       | 27312978    | 3053165  | 30366143 | 30       |
| 20,5       | 0        | 291024   | 0         | 0        | 0       | 14310211    | 5238217  | 19839452 | 20       |
| 21         | 3688690  | 589707   | 646142    | 0        | 0       | 9098356     | 13529596 | 27552491 | 28       |
| 21,5       | 15961106 | 2052485  | 161535    | 0        | 0       | 3904412     | 6549247  | 28628785 | 29       |
| 22         | 18412628 | 3224240  | 161535    | 0        | 0       | 13002768    | 7417359  | 42218530 | 42       |
| 22,5       | 17175463 | 2933216  | 323071    | 0        | 51422   | 13002768    | 3927185  | 37413125 | 37       |
| 23         | 10541533 | 6456139  | 484606    | 0        | 77133   | 14310211    | 4364195  | 36233817 | 36       |
| 23,5       | 4086622  | 3813948  | 928829    | 0        | 192858  | 6501385     | 874020   | 16397662 | 16       |
| 24         | 1968065  | 6157455  | 1251900   | 3274     | 204664  | 5211855     | 1311030  | 16108243 | 16       |
| 24,5       | 1354612  | 3224240  | 1574971   | 13096    | 216520  | 5211855     | 437010   | 12032304 | 12       |
| 25         | 1933855  | 2343510  | 1574971   | 11459    | 120603  | 5211855     | 0        | 11196253 | 11       |
| 25,5       | 1047885  | 880731   | 928829    | 13096    | 88989   | 3904412     | 0        | 6863942  | 7        |
| 26         | 0        | 880731   | 807677    | 14733    | 75133   | 2596971     | 0        | 4375245  | 4        |
| 26,5       | 0        | 1171755  | 928829    | 1637     | 45519   | 2596971     | 0        | 4744711  | 5        |
| 27         | 0        | 291024   | 2059578   | 1637     | 17807   | 1307441     | 0        | 3677487  | 4        |
| 27,5       | 0        | 291024   | 928829    | 1637     | 17807   | 1307441     | 0        | 2546738  | 3        |
| 28         | 0        | 0        | 928829    | 0        | 13856   | 0           | 0        | 942685   | 1        |
| 28,5       | 0        | 0        | 646142    | 0        | 0       | 0           | 0        | 646142   | 1        |
| 29         | 0        | 0        | 1090364   | 0        | 0       | 0           | 0        | 1090364  | 1        |
| 29,5       | 0        | 0        | 646142    | 0        | 0       | 0           | 0        | 646142   | 1        |
| 30         | 0        | 0        | 484606    | 0        | 0       | 0           | 0        | 484606   | 0        |
| 30,5       | 0        | 0        | 161535    | 0        | 0       | 0           | 0        | 161535   | 0        |
| 31         | 0        | 0        | 484606    | 0        | 0       | 0           | 0        | 484606   | 0        |
| 31,5       | 0        | 0        | 161535    | 0        | 0       | 0           | 0        | 161535   | 0        |
| 32         | 0        | 0        | 323071    | 0        | 0       | 0           | 0        | 323071   | 0        |
| 32.5       | 0        | 0        | 0         | 0        | 0       | 0           | 0        | 0        | 0        |

Millions

TOTAL n 76170459 34601229 17688132 60569 1122311 156122777 47575044 333340521

Table 6. ECOCADIZ 0813 survey. Chub mackerel (S. colias). Estimated abundance and biomass by size class. Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in Figure 13.

# Table 6 (cont'd).

|            | l        | COCADIZ  | 0813 . Sc | omber | <i>colias</i> . B | IOMASS (t | ).       |           |
|------------|----------|----------|-----------|-------|-------------------|-----------|----------|-----------|
| Size class | POL01    | POL02    | POL03     | POL04 | POL05             | POL06     | POL07    | TOTAL     |
| 13         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 13,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 14         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 14,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 15         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 15,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 16         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 16,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 17         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 17,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 18         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 18,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 19         | 0        | 0        | 0         | 0     | 0                 | 430,085   | 0        | 430,085   |
| 19,5       | 0        | 0        | 0         | 0     | 0                 | 1166,571  | 52,228   | 1218,799  |
| 20         | 0        | 0        | 0         | 0     | 0                 | 1767,2    | 197,545  | 1964,745  |
| 20,5       | 0        | 20,349   | 0         | 0     | 0                 | 1000,579  | 366,26   | 1387,188  |
| 21         | 278,205  | 44,476   | 48,733    | 0     | 0                 | 686,207   | 1020,416 | 2078,037  |
| 21,5       | 1296,215 | 166,684  | 13,118    | 0     | 0                 | 317,081   | 531,87   | 2324,968  |
| 22         | 1607,392 | 281,471  | 14,102    | 0     | 0                 | 1135,12   | 647,523  | 3685,608  |
| 22,5       | 1609,194 | 274,817  | 30,269    | 0     | 4,818             | 1218,248  | 367,944  | 3505,29   |
| 23         | 1058,353 | 648,186  | 48,654    | 0     | 7,744             | 1436,722  | 438,158  | 3637,817  |
| 23,5       | 439,015  | 409,722  | 99,782    | 0     | 20,718            | 698,426   | 93,894   | 1761,557  |
| 24         | 225,907  | 706,792  | 143,701   | 0,376 | 23,493            | 598,25    | 150,488  | 1849,007  |
| 24,5       | 165,918  | 394,917  | 192,908   | 1,604 | 26,52             | 638,368   | 53,527   | 1473,762  |
| 25         | 252,422  | 305,893  | 205,577   | 1,496 | 15,742            | 680,292   | 0        | 1461,422  |
| 25,5       | 145,579  | 122,357  | 129,039   | 1,819 | 12,363            | 542,427   | 0        | 953,584   |
| 26         | 0        | 130,074  | 119,285   | 2,176 | 11,096            | 383,544   | 0        | 646,175   |
| 26,5       | 0        | 183,758  | 145,661   | 0,257 | 7,138             | 407,264   | 0        | 744,078   |
| 27         | 0        | 48,408   | 342,582   | 0,272 | 2,962             | 217,475   | 0        | 611,699   |
| 27,5       | 0        | 51,29    | 163,695   | 0,289 | 3,138             | 230,421   | 0        | 448,833   |
| 28         | 0        | 0        | 173,261   | 0     | 2,585             | 0         | 0        | 175,846   |
| 28,5       | 0        | 0        | 127,445   | 0     | 0                 | 0         | 0        | 127,445   |
| 29         | 0        | 0        | 227,186   | 0     | 0                 | 0         | 0        | 227,186   |
| 29,5       | 0        | 0        | 142,085   | 0     | 0                 | 0         | 0        | 142,085   |
| 30         | 0        | 0        | 112,365   | 0     | 0                 | 0         | 0        | 112,365   |
| 30,5       | 0        | 0        | 39,459    | 0     | 0                 | 0         | 0        | 39,459    |
| 31         | 0        | 0        | 124,609   | 0     | 0                 | 0         | 0        | 124,609   |
| 31,5       | 0        | 0        | 43,687    | 0     | 0                 | 0         | 0        | 43,687    |
| 32         | 0        | 0        | 91,826    | 0     | 0                 | 0         | 0        | 91,826    |
| 32,5       | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| 33         | 0        | 0        | 0         | 0     | 0                 | 0         | 0        | 0         |
| TOTAL      | 7078,2   | 3789,194 | 2779,029  | 8,289 | 138,317           | 13554,28  | 3919,853 | 31267,162 |

**Table 7.** ECOCADIZ 0813 survey. Blue jack-mackerel (T. picturatus). Estimated abundance and biomass by size class.Estimated abundance and biomass by size class. Polygons (i.e., coherent or homogeneous post-strata) numbered as inFigure 15.

| ECOCA      | DIZ 0813 . TI | rachurus pict | <i>turatus</i> . ABl | JNDANCE (ii | n number of | f fish). |  |  |  |  |  |  |  |  |
|------------|---------------|---------------|----------------------|-------------|-------------|----------|--|--|--|--|--|--|--|--|
| Size class | POL01         | POL02         | POL03                | POL04       | TOTAL n     | Millions |  |  |  |  |  |  |  |  |
| 10         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 10,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 11         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 11,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 12         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 12,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 13         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 13,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 14         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 14,5       | 236152        | 0             | 0                    | 0           | 236152      | 0        |  |  |  |  |  |  |  |  |
| 15         | 314869        | 0             | 0                    | 0           | 314869      | 0        |  |  |  |  |  |  |  |  |
| 15,5       | 118076        | 574977        | 0                    | 0           | 693053      | 1        |  |  |  |  |  |  |  |  |
| 16         | 551021        | 275989        | 0                    | 0           | 827010      | 1        |  |  |  |  |  |  |  |  |
| 16,5       | 787172        | 5427785       | 0                    | 167142      | 6382099     | 6        |  |  |  |  |  |  |  |  |
| 17         | 1456269       | 10280592      | 0                    | 1177957     | 12914818    | 13       |  |  |  |  |  |  |  |  |
| 17,5       | 2322158       | 9153634       | 1022971              | 2515096     | 15013859    | 15       |  |  |  |  |  |  |  |  |
| 18         | 1456269       | 4852808       | 3568773              | 3693053     | 13570903    | 14       |  |  |  |  |  |  |  |  |
| 18,5       | 1653062       | 275989        | 6637684              | 3016524     | 11583259    | 12       |  |  |  |  |  |  |  |  |
| 19         | 1456269       | 0             | 4254628              | 3183667     | 8894564     | 9        |  |  |  |  |  |  |  |  |
| 19,5       | 669096        | 0             | 848601               | 2515096     | 4032793     | 4        |  |  |  |  |  |  |  |  |
| 20         | 551021        | 0             | 511485               | 167142      | 1229648     | 1        |  |  |  |  |  |  |  |  |
| 20,5       | 118076        | 0             | 0                    | 0           | 118076      | 0        |  |  |  |  |  |  |  |  |
| 21         | 118076        | 0             | 0                    | 0           | 118076      | 0        |  |  |  |  |  |  |  |  |
| 21,5       | 118076        | 0             | 0                    | 0           | 118076      | 0        |  |  |  |  |  |  |  |  |
| 22         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 22,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 23         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 23,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 24         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 24,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 25         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 25,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 26         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 26,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 27         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 27,5       | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| 28         | 0             | 0             | 0                    | 0           | 0           | 0        |  |  |  |  |  |  |  |  |
| TOTAL n    | 11925662      | 30841774      | 16844142             | 16435677    | 76047255    | 76       |  |  |  |  |  |  |  |  |
| Millions   | 12            | 31            | 17                   | 16          | 76          |          |  |  |  |  |  |  |  |  |

# Table 7 (cont'd).

| EC         | COCADIZ 081 | 3 . Trachuru | s picturatus | . BIOMASS ( | t).      |
|------------|-------------|--------------|--------------|-------------|----------|
| Size class | POL01       | POL02        | POL03        | POL04       | TOTAL    |
| 10         | 0           | 0            | 0            | 0           | 0        |
| 10,5       | 0           | 0            | 0            | 0           | 0        |
| 11         | 0           | 0            | 0            | 0           | 0        |
| 11,5       | 0           | 0            | 0            | 0           | 0        |
| 12         | 0           | 0            | 0            | 0           | 0        |
| 12,5       | 0           | 0            | 0            | 0           | 0        |
| 13         | 0           | 0            | 0            | 0           | 0        |
| 13,5       | 0           | 0            | 0            | 0           | 0        |
| 14         | 0           | 0            | 0            | 0           | 0        |
| 14,5       | 6,546       | 0            | 0            | 0           | 6,546    |
| 15         | 9,629       | 0            | 0            | 0           | 9,629    |
| 15,5       | 3,971       | 19,337       | 0            | 0           | 23,308   |
| 16         | 20,318      | 10,177       | 0            | 0           | 30,495   |
| 16,5       | 31,737      | 218,837      | 0            | 6,739       | 257,313  |
| 17         | 64,029      | 452,014      | 0            | 51,792      | 567,835  |
| 17,5       | 111,067     | 437,813      | 48,928       | 120,296     | 718,104  |
| 18         | 75,593      | 251,903      | 185,25       | 191,702     | 704,448  |
| 18,5       | 92,921      | 15,514       | 373,114      | 169,563     | 651,112  |
| 19         | 88,459      | 0            | 258,44       | 193,387     | 540,286  |
| 19,5       | 43,833      | 0            | 55,592       | 164,765     | 264,19   |
| 20         | 38,857      | 0            | 36,069       | 11,787      | 86,713   |
| 20,5       | 8,947       | 0            | 0            | 0           | 8,947    |
| 21         | 9,597       | 0            | 0            | 0           | 9,597    |
| 21,5       | 10,278      | 0            | 0            | 0           | 10,278   |
| 22         | 0           | 0            | 0            | 0           | 0        |
| 22,5       | 0           | 0            | 0            | 0           | 0        |
| 23         | 0           | 0            | 0            | 0           | 0        |
| 23,5       | 0           | 0            | 0            | 0           | 0        |
| 24         | 0           | 0            | 0            | 0           | 0        |
| 24,5       | 0           | 0            | 0            | 0           | 0        |
| 25         | 0           | 0            | 0            | 0           | 0        |
| 25,5       | 0           | 0            | 0            | 0           | 0        |
| 26         | 0           | 0            | 0            | 0           | 0        |
| 26,5       | 0           | 0            | 0            | 0           | 0        |
| 27         | 0           | 0            | 0            | 0           | 0        |
| 27,5       | 0           | 0            | 0            | 0           | 0        |
| 28         | 0           | 0            | 0            | 0           | 0        |
| TOTAL      | 615,782     | 1405.595     | 957.393      | 910.031     | 3888.801 |

| ECOCAD     | Z 0813 . T | rachurus t | rachurus . A | BUNDANC   | E (in numbe | er of fish). |
|------------|------------|------------|--------------|-----------|-------------|--------------|
| Size class | POL01      | POL02      | POL03        | POL04     | TOTAL n     | Millions     |
| 10         | 0          | 0          | 0            | 0         | 0           | 0            |
| 10,5       | 0          | 36363      | 0            | 0         | 36363       | 0            |
| 11         | 0          | 36363      | 0            | 0         | 36363       | 0            |
| 11,5       | 0          | 327267     | 0            | 0         | 327267      | 0            |
| 12         | 0          | 363630     | 0            | 0         | 363630      | 0            |
| 12,5       | 0          | 1418157    | 0            | 0         | 1418157     | 1            |
| 13         | 0          | 690897     | 0            | 0         | 690897      | 1            |
| 13,5       | 0          | 290904     | 0            | 0         | 290904      | 0            |
| 14         | 0          | 145452     | 0            | 0         | 145452      | 0            |
| 14,5       | 50650      | 109089     | 0            | 0         | 159739      | 0            |
| 15         | 1002859    | 36363      | 207396       | 0         | 1246618     | 1            |
| 15,5       | 3245639    | 0          | 1055836      | 0         | 4301475     | 4            |
| 16         | 5978250    | 0          | 3808552      | 5588103   | 15374905    | 15           |
| 16,5       | 5255795    | 0          | 6335017      | 32632875  | 44223687    | 44           |
| 17         | 2518284    | 0          | 2545319      | 55828023  | 60891626    | 61           |
| 17,5       | 1142183    | 0          | 1055836      | 43941502  | 46139521    | 46           |
| 18         | 530503     | 0          | 641043       | 22613200  | 23784746    | 24           |
| 18,5       | 320713     | 0          | 414793       | 12189257  | 12924763    | 13           |
| 19         | 151951     | 0          | 0            | 4457895   | 4609846     | 5            |
| 19,5       | 50650      | 0          | 0            | 5619913   | 5670563     | 6            |
| 20         | 50650      | 0          | 0            | 3160522   | 3211172     | 3            |
| 20,5       | 50650      | 0          | 0            | 1828186   | 1878836     | 2            |
| 21         | 50650      | 0          | 0            | 0         | 50650       | 0            |
| 21,5       | 50650      | 0          | 0            | 0         | 50650       | 0            |
| 22         | 50650      | 0          | 0            | 0         | 50650       | 0            |
| 22,5       | 50650      | 0          | 0            | 0         | 50650       | 0            |
| 23         | 0          | 0          | 0            | 0         | 0           | 0            |
| 23,5       | 0          | 0          | 0            | 0         | 0           | 0            |
| 24         | 0          | 0          | 0            | 0         | 0           | 0            |
| 24,5       | 0          | 0          | 0            | 0         | 0           | 0            |
| 25         | 0          | 0          | 0            | 0         | 0           | 0            |
| 25,5       | 0          | 0          | 0            | 0         | 0           | 0            |
| 26         | 0          | 0          | 0            | 0         | 0           | 0            |
| 26,5       | 0          | 0          | 0            | 0         | 0           | 0            |
| 27         | 0          | 0          | 0            | 0         | 0           | 0            |
| 27,5       | 0          | 0          | 0            | 0         | 0           | 0            |
| 28         | 0          | 0          | 0            | 0         | 0           | 0            |
| TOTAL n    | 20551377   | 3454485    | 16063792     | 187859476 | 227929130   | 228          |
| Millions   | 21         | 3          | 16           | 188       | 228         |              |

**Table 8.** ECOCADIZ 0813 survey. Horse mackerel (T. trachurus). Estimated abundance and biomass by size class.Polygons (i.e., coherent or homogeneous post-strata) numbered as in Figure 17.

# Table 8 (cont'd).

| ECOCA      | DIZ 0813 | . Trachur | us trachu | rus . BIOM | ASS (t).  |
|------------|----------|-----------|-----------|------------|-----------|
| Size class | POL01    | POL02     | POL03     | POL04      | TOTAL     |
| 10         | 0        | 0         | 0         | 0          | 0         |
| 10,5       | 0        | 0,374     | 0         | 0          | 0,374     |
| 11         | 0        | 0,43      | 0         | 0          | 0,43      |
| 11,5       | 0        | 4,416     | 0         | 0          | 4,416     |
| 12         | 0        | 5,572     | 0         | 0          | 5,572     |
| 12,5       | 0        | 24,551    | 0         | 0          | 24,551    |
| 13         | 0        | 13,449    | 0         | 0          | 13,449    |
| 13,5       | 0        | 6,34      | 0         | 0          | 6,34      |
| 14         | 0        | 3,535     | 0         | 0          | 3,535     |
| 14,5       | 1,367    | 2,945     | 0         | 0          | 4,312     |
| 15         | 29,973   | 1,087     | 6,198     | 0          | 37,258    |
| 15,5       | 107,032  | 0         | 34,818    | 0          | 141,85    |
| 16         | 216,86   | 0         | 138,155   | 202,708    | 557,723   |
| 16,5       | 209,114  | 0         | 252,053   | 1298,374   | 1759,541  |
| 17         | 109,599  | 0         | 110,776   | 2429,711   | 2650,086  |
| 17,5       | 54,235   | 0         | 50,135    | 2086,518   | 2190,888  |
| 18         | 27,418   | 0         | 33,131    | 1168,699   | 1229,248  |
| 18,5       | 17,999   | 0         | 23,279    | 684,095    | 725,373   |
| 19         | 9,241    | 0         | 0         | 271,098    | 280,339   |
| 19,5       | 3,331    | 0         | 0         | 369,563    | 372,894   |
| 20         | 3,595    | 0         | 0         | 224,301    | 227,896   |
| 20,5       | 3,872    | 0         | 0         | 139,765    | 143,637   |
| 21         | 4,164    | 0         | 0         | 0          | 4,164     |
| 21,5       | 4,47     | 0         | 0         | 0          | 4,47      |
| 22         | 4,791    | 0         | 0         | 0          | 4,791     |
| 22,5       | 5,127    | 0         | 0         | 0          | 5,127     |
| 23         | 0        | 0         | 0         | 0          | 0         |
| 23,5       | 0        | 0         | 0         | 0          | 0         |
| 24         | 0        | 0         | 0         | 0          | 0         |
| 24,5       | 0        | 0         | 0         | 0          | 0         |
| 25         | 0        | 0         | 0         | 0          | 0         |
| 25,5       | 0        | 0         | 0         | 0          | 0         |
| 26         | 0        | 0         | 0         | 0          | 0         |
| 26,5       | 0        | 0         | 0         | 0          | 0         |
| 27         | 0        | 0         | 0         | 0          | 0         |
| 27,5       | 0        | 0         | 0         | 0          | 0         |
| 28         | 0        | 0         | 0         | 0          | 0         |
| TOTAL      | 812,188  | 62,699    | 648,545   | 8874,832   | 10398,264 |

 Table 9. ECOCADIZ 0813 survey. Mediterranean horse-mackerel (T. mediterraneus). Estimated abundance and biomass by size class. Polygons (i.e., coherent or homogeneous post-strata) numbered as in Figure 19.

# Table 9 (cont'd).

| ECOCADI    | Z 0813 . Trac | hurus medit | erraneus . B | IOMASS (t).         |
|------------|---------------|-------------|--------------|---------------------|
| Size class | POL01         | POL02       | POL03        | TOTAL               |
| 10         | 0             | 0           | 0            | 0                   |
| 10,5       | 0             | 0           | 0            | 0                   |
| 11         | 0             | 0           | 0            | 0                   |
| 11.5       | 0             | 0           | 0            | 0                   |
| 12         | 0             | 0           | 0            | 0                   |
| 12         | 0             | 0           | 0            | 0                   |
| 12,5       | 0             | 0           | 0            | 0                   |
| 13         | 0             | 0           | 0            | 0                   |
| 13,5       | 0             | 0           | 0            | 0                   |
| 14         | 0             | 0           | 0            | 0                   |
| 14,5       | 0             | 0           | 0            | 0                   |
| 15         | 0             | 0           | 0            | 0                   |
| 15,5       | 0             | 0           | 0            | 0                   |
| 16         | 0             | 0           | 0            | 0                   |
| 16.5       | 0             | 0           | 0            | 0                   |
| 17         | 0             | 0           | 1 522        | 1 522               |
| 17 5       | 0             | 0           | 2,302        | 2,309               |
| 1/,5       | 0             | 0           | 3,298        | 3,298               |
| 18         | 0             | 0           | 5,348        | 5,348               |
| 18,5       | 0             | 0           | 11,539       | 11,539              |
| 19         | 0             | 0           | 10,353       | 10,353              |
| 19,5       | 0             | 0           | 13,349       | 13,349              |
| 20         | 0             | 0           | 9,546        | 9,546               |
| 20,5       | 0             | 0           | 12,777       | 12,777              |
| 21         | 0             | 0           | 5,464        | 5,464               |
| 21.5       | 0             | 0           | 5.832        | 5.832               |
| 22         | 0             | 0           | 3 108        | 3 108               |
| 22 5       | 0             | 12 622      | 2 209        | 16 021              |
| 22,5       | 0             | 13,023      | 3,508        | 10,551              |
| 23         | 0             | 14,48       | 3,510        | 17,996              |
| 23,5       | 0             | 15,37       | 3,732        | 19,102              |
| 24         | 0             | 32,589      | 0            | 32,589              |
| 24,5       | 0             | 51,764      | 0            | 51,764              |
| 25         | 0             | 91,25       | 0            | 91,25               |
| 25,5       | 10,052        | 112,26      | 0            | 122,312             |
| 26         | 21,218        | 69,081      | 0            | 90,299              |
| 26,5       | 50,336        | 246,03      | 0            | 296,366             |
| 27         | 129.602       | 199.378     | 0            | 328.98              |
| 27.5       | 136 382       | 197.26      | 0            | 333 642             |
| 28         | 254 183       | 219.051     | 0            | 473 234             |
| 20         | 204,100       | 213,031     | 0            | <del>7</del> 73,234 |
| 20,5       | 306,06        | 251,091     | 0            | 555,771             |
| 29         | 1/2,449       | 230,62      | 0            | 403,069             |
| 29,5       | 52,746        | 1/6,816     | 0            | 229,562             |
| 30         | 55,27         | 61,759      | 0            | 117,029             |
| 30,5       | 49,603        | 38,59       | 0            | 88,193              |
| 31         | 34,599        | 40,376      | 0            | 74,975              |
| 31,5       | 54,261        | 28,523      | 0            | 82,784              |
| 32         | 37,794        | 14,304      | 0            | 52,098              |
| 32,5       | 0             | 14.935      | 0            | 14.935              |
| 33         | 20.587        | 15.583      | 0            | 36.17               |
| 33 5       | 21 467        | 16 2/0      | ۰<br>۱       | 37 716              |
| 2/         | 21,407        | 10,249      | 0            | 37,710              |
| 34<br>24 F | 200,007       | 0           | 0            | 300,007             |
| 54,5       | 209,687       | 0           | - 0          | 209,687             |
| 35         | 315,262       | 0           | 0            | 315,262             |
| 35,5       | 315,35        | 0           | 0            | 315,35              |
| 36         | 144,265       | 0           | 0            | 144,265             |
| 36,5       | 109,029       | 0           | 0            | 109,029             |
| 37         | 28,31         | 0           | 0            | 28,31               |
| 37,5       | 29,389        | 0           | 0            | 29,389              |
| 38         | 15.247        | 0           | 0            | 15.247              |
| 38.5       | ,,,           | 0           | 0            |                     |
| 20,0       | 0             | 0           | 0            |                     |
| 35         | 2609 724      | 2151 502    | 02.002       | 4953.000            |
| TOTAL      | 2008,724      | 2131,382    | 92,092       | 4002,998            |

3080503 43468440 51701348

1390710 802177

24,5

25,5

26,5

27,5

TOTAL n

Millions

 Table 10. ECOCADIZ 0813 survey. Bogue (B. boops). Estimated abundance and biomass by size class. Estimated abundance and biomass by size class. Polygons (i.e., coherent or homogeneous post-strata) numbered as in Figure 21.

# Table 10 (cont'd).

| E          | COCADIZ | . 0813 | Boops bo | oops . BIO | OMASS (t) |          |
|------------|---------|--------|----------|------------|-----------|----------|
| Size class | POL01   | POL02  | POL03    | POL04      | POL05     | TOTAL    |
| 10         | 0       | 0      | 0        | 0          | 0         | 0        |
| 10,5       | 0       | 0      | 0,467    | 0          | 0         | 0,467    |
| 11         | 0       | 0      | 0,535    | 0          | 0         | 0,535    |
| 11,5       | 0       | 0      | 0,609    | 0          | 0         | 0,609    |
| 12         | 0       | 0      | 2,757    | 0          | 0         | 2,757    |
| 12,5       | 0,924   | 0      | 3,105    | 0          | 0         | 4,029    |
| 13         | 2,072   | 0      | 8,703    | 0          | 0         | 10,775   |
| 13,5       | 3,47    | 0      | 9,716    | 0          | 0         | 13,186   |
| 14         | 2,572   | 0      | 8,644    | 0          | 0         | 11,216   |
| 14,5       | 1,425   | 0      | 7,183    | 0          | 0         | 8,608    |
| 15         | 6,294   | 0      | 6,609    | 0          | 0         | 12,903   |
| 15,5       | 8,659   | 0      | 7,274    | 0          | 0         | 15,933   |
| 16         | 9,502   | 0      | 4,789    | 0          | 0         | 14,291   |
| 16,5       | 6,239   | 0      | 8,735    | 0          | 0         | 14,974   |
| 17         | 9,078   | 0      | 17,159   | 0          | 0         | 26,237   |
| 17,5       | 0       | 0      | 6,227    | 4,887      | 0         | 11,114   |
| 18         | 0       | 0      | 2,254    | 10,614     | 0         | 12,868   |
| 18,5       | 0       | 0      | 0        | 5,751      | 0         | 5,751    |
| 19         | 0       | 0      | 0        | 18,657     | 0         | 18,657   |
| 19,5       | 0       | 0      | 0        | 20,135     | 229,821   | 249,956  |
| 20         | 0       | 3,953  | 0        | 41,93      | 161,86    | 207,743  |
| 20,5       | 0       | 6,281  | 0        | 15,546     | 174,031   | 195,858  |
| 21         | 0       | 8,92   | 0        | 31,704     | 1120,763  | 1161,387 |
| 21,5       | 0       | 14,448 | 0        | 17,88      | 706,459   | 738,787  |
| 22         | 0       | 14,599 | 0        | 28,695     | 969,986   | 1013,28  |
| 22,5       | 0       | 13,594 | 0        | 20,436     | 228,776   | 262,806  |
| 23         | 0       | 11,655 | 0        | 32,701     | 129,202   | 173,558  |
| 23,5       | 0       | 9,098  | 0        | 11,612     | 259,981   | 280,691  |
| 24         | 0       | 0      | 0        | 12,354     | 146,43    | 158,784  |
| 24,5       | 0       | 0      | 0        | 0          | 155,588   | 155,588  |
| 25         | 0       | 0      | 0        | 0          | 0         | 0        |
| 25,5       | 0       | 0      | 0        | 0          | 0         | 0        |
| 26         | 0       | 0      | 0        | 0          | 0         | 0        |
| 26,5       | 0       | 0      | 0        | 0          | 0         | 0        |
| 27         | 0       | 0      | 0        | 0          | 0         | 0        |
| 27,5       | 0       | 0      | 0        | 0          | 0         | 0        |
| 28         | 0       | 0      | 0        | 0          | 0         | 0        |
| TOTAL      | 50,235  | 82,548 | 94,766   | 272,902    | 4282,897  | 4783,348 |

**Table 11.** *ECOCADIZ 0813* survey. Parameters of the size-weight relationships for survey's target species. Mackerel was not acoustically assessed because of the negligible backscattering energy attributed to the species. FAO codes for the species: PIL: *Sardina pilchardus; ANE: Engraulis encrasicolus; MAS: Scomber colias; MAC: Scomber scombrus; JAA: Trachurus picturatus; HOM: Trachurus trachurus; BOG: Boops boops; HMM: Trachurus mediterraneus.* 

| Parameter      | PIL       | ANE       | MAS       | MAC       | JAA       | НОМ       | HMM       | BOG       |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| n              | 347       | 555       | 443       | 213       | 266       | 439       | 228       | 260       |
| а              | 0,0049376 | 0,0031904 | 0,0045302 | 0,0019810 | 0,0099823 | 0,0073594 | 0,0143861 | 0,0103193 |
| b              | 3,1936283 | 3,2664826 | 3,1802800 | 3,3993235 | 2,9462604 | 3,0497220 | 2,8043959 | 2,9723640 |
| r <sup>2</sup> | 0,98      | 0,95      | 0,97      | 0,95      | 0,95      | 0,91      | 0,99      | 0,97      |

**Table 12.** *ECOCADIZ 0813* survey. Comparison of anchovy (ANE) and sardine (PIL) acoustic estimates from the present survey with those ones derived from the same area during the *ECOCADIZ-RECLUTAS 1112* (10 -27 November 2012) *PELAGO13* (5 April – 15 May 2013) surveys. ALG: Portuguese (Algarve) waters; CAD: Spanish waters. Sardine estimates from the post-stratum 4 in the *ECOCADIZ 0813* survey (shared between Portuguese and Spanish waters) have been equally allocated between both countries for the purposes of this table.

| ESTIMATE                |                 |      | ANE   |       | PIL  |       |       |  |
|-------------------------|-----------------|------|-------|-------|------|-------|-------|--|
|                         | SURVET          | ALG  | CAD   | TOTAL | ALG  | CAD   | TOTAL |  |
| ABUNDANCE<br>(Millions) | ECOCADIZ-R 1112 | ?    | 2649  | ?     | ?    | 603   | ?     |  |
|                         | PELAGO 13       | 262  | 634   | 897   | 197  | 493   | 690   |  |
|                         | ECOCADIZ 0813   | 50   | 558   | 609   | 125  | 107   | 232   |  |
| DIOMASS                 | ECOCADIZ-R 1112 | ?    | 13680 | ?     | ?    | 22119 | ?     |  |
| BIOIVIASS               | PELAGO 13       | 5044 | 7656  | 12700 | 9492 | 21049 | 30541 |  |
| (1)                     | ECOCADIZ 0813   | 1315 | 7172  | 8487  | 6061 | 3609  | 9670  |  |



**Figure 1**. *ECOCADIZ 0813* survey. Location of the acoustic transects sampled during the survey. The different protected areas inside the Guadalquivir river mouth Fishing Reserve and artificial reef polygons are also shown.



Figure 2. ECOCADIZ 0813 survey. Sampling grid of CTD stations.



Figure 3. ECOCADIZ 0813. Location of the ECOBOGUE research project sampling stations.



Figure 4. ECOCADIZ 0813. Location of groundtruthing fishing hauls. Null hauls in red.

-8.50

-8.00

Portugal

-7.50

-9.00

37.50





**Figure 5**. *ECOCADIZ 0813* survey. Top: species composition (percentages in number) in fishing hauls. Bottom: Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the pelagic fish species assemblage.



**Figure 6.** *ECOCADIZ 0813* survey. Anchovy (*Engraulis encrasicolus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum. Bottom right: distribution of anchovy egg densities (eggs 100 m<sup>-3</sup>) as sampled by CUFES.



## ECOCADIZ 0813: Anchovy (E. encrasicolus)

**Figure 7.** *ECOCADIZ 0813* survey. Anchovy (*E. encrasicolus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 6**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



ECOCADIZ 0813: Anchovy (E. encrasicolus)

**Figure 8.** *ECOCADIZ 0813* survey. Anchovy (*E. encrasicolus*). Estimated abundances (number of fish in millions) by age class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 6**) and total sampled area. Post-strata ordered in the W-E direction. Mean length (±SD) by age group is also shown.The estimated biomass (t) by age class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



**Figure 9.** *ECOCADIZ 0813* survey. Anchovy (*Engraulis encrasicolus*). Distribution of anchovy egg densities (eggs m<sup>-3</sup>) as sampled by CUFES. Middle and bottom panels show the same egg distribution superimposed to the distribution of sea temperature and salinity at 5 m depth respectively.



**Figure 10.** *ECOCADIZ 0813* survey. Sardine (*Sardina pilchardus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.

## ECOCADIZ 0813 Sardine (S. pilchardus)



**Figure 11.** *ECOCADIZ 0813* survey. Sardine (*S. pilchardus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 10**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



**Figure 12.** *ECOCADIZ 0813* survey. Round sardinella (*Sardinella aurita*) and Mackerel (*Scomber scombrus*). Distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species.



**Figure 13.** *ECOCADIZ 0813* survey. Chub mackerel (*Scomber colias*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.

## ECOCADIZ 0813: Chub mackerel (S. colias)



13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Size class (cm)

**Figure 14.** *ECOCADIZ 0813* survey. Chub mackerel (*S. colias*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 13**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



# ECOCADIZ 0813: Chub mackerel (S. colias)

Figure 14. ECOCADIZ 0813 survey. Chub mackerel (S. colias). Cont'd.



**Figure 15.** *ECOCADIZ 0813* survey. Blue jack mackerel (*Trachurus picturatus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



#### ECOCADIZ 0813: Blue jack mackerel (T. picturatus)

**Figure 16.** *ECOCADIZ 0813* survey. Blue jack mackerel (*T. picturatus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 15**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



**Figure 17.** *ECOCADIZ 0813* survey. Horse mackerel (*Trachurus trachurus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.





**Figure 18.** *ECOCADIZ 0813* survey. Horse mackerel (*T. trachurus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 17**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



**Figure 19.** *ECOCADIZ 0813* survey. Mediterranean horse mackerel (*Trachurus mediterraneus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



## ECOCADIZ 0813: Mediterranean horse mackerel (T. mediterraneus)

**Figure 20.** *ECOCADIZ 0813* survey. Mediterranean horse mackerel (*T. mediterraneus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 19**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



**Figure 21.** *ECOCADIZ 0813* survey. Bogue (*Boops boops*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Middle: valid fishing hauls for the species (more than 30 individuals showing a normal distribution). Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 22.** *ECOCADIZ 0813* survey. Bogue (*B. boops*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous stratum (POL01-POLn, numeration as in **Figure 21**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



Biomass trends (in tons)



# **Chub mackerel biomass estimates**



**Figure 23.** Trends in biomass estimates (in tons) for the main assessed species in Portuguese (*PELAGO*) and Spanish (*ECOCADIZ*) survey series. Gaps for the 2005, 2008 and 2011 anchovy acoustic estimates in the *ECOCADIZ* series are filled with the *BOCADEVA* Spanish egg survey estimates. Note that the *ECOCADIZ* survey in 2010 partially covered the whole study area. The anchovy null estimate in 2011 from the *PELAGO* survey should be considered with caution.