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0. Abstract 21 

The European sea bass, Dicentrarchus labrax L., is a seasonal gonochoristic 22 

species, which males are generally mature during the second year of life. It has been 23 

demonstrated that cytokines and immune cells play a key role in the testicular 24 

development. This reproductive-immune interaction might be very important in the sea 25 

bass since several pathogens are able to colonize the gonad and persist in this tissue, 26 

altering further reproductive functions and spreading the disease. This study aims to 27 

investigate the reproductive cycle of one year European sea bass males by analyzing 28 

cell proliferation and apoptosis and expression profile of some reproductive and 29 

immune-related genes in the testis as well as the serum sex steroid levels. Our data 30 

demonstrate that in one year old European sea bass males, the testis undergoes the 31 

spermatogenesis process and that the reproductive and immune parameters analyzed 32 

varied during the reproductive cycle. In the testis, the highest proliferative rates were 33 

recorded at spermatogenesis stage, while the highest apoptotic rates were recorded at 34 

spawning stage. We have also analyzed, for the first time in European sea bass males, 35 

the serum levels of 17β-estradiol (E2) and dihydrotestosterone and the gene expression 36 

profile of the enzymes implied in their production, determining that at least E2 might be 37 

involved in the regulation of the reproductive cycle. Some immune relevant genes, 38 

including cytokines, lymphocyte receptors, anti-viral and antibacterial molecules were 39 

detected in the testis of naïve European sea bass specimens and their expression profile 40 

was related with the stages of the reproductive cycle, suggesting an important role for 41 

the defence of the reproductive tissues.  42 

 43 

 44 
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1. Introduction 45 

Fish are the most diverse and numerous group of vertebrates. However, our 46 

knowledge on fish spermatogenesis is limited to a few species used in basic research 47 

and/or in aquaculture biotechnology. In the case of the European sea bass 48 

(Dicentrarchus labrax L.) most of the studies, as far as we are concern, dealing with 49 

gonad physiology are focussed on early hatch specimens until 300 days post-hatching 50 

(dph) or on mature specimens from two years old onwards. However, the events that 51 

occur in the gonad of one year old fish have been scarcely studied. Interestingly, data 52 

obtained in the gilthead seabream (Sparus aurata L.), a hermaphrodite species, points to 53 

the fact that captive specimens quickly differentiated the testicular area and produced 54 

spermatozoa even when the specimens are not spermiogenic active males (Chaves-Pozo 55 

et al., 2009).  56 

The reproductive cycle of fish can be divided into four stages: spermatogenesis, 57 

spawning, post-spawning, and resting stages, according to the gonadosomatic index 58 

(GSI), the magnitude of some processes such as cell apoptosis and proliferation and the 59 

percentage of some cell types. In general, spermatogenesis stage is a complex 60 

developmental process, in which spermatogonia divide (renewal of spermatogonia stem 61 

cells and mitotic proliferation of spermatogonia), reduce their chromosome content by 62 

meiosis, and differentiate into spermatozoa. During post-spawning stage, an intensive 63 

remodelling of the testis occurs, while the enhancement of proliferation and the absence 64 

of apoptosis permit the repopulation of the testis by spermatogonia and Sertoli cells 65 

during resting stage (Chaves-Pozo et al., 2005; Liarte et al., 2007). In teleost fish, 66 

spermatogenesis is regulated by the interplay of systemic and intragonadal factors and 67 

the importance of each type of regulation vary depending on the developmental stage of 68 

the gonad (Schulz et al., 2010). Thus, the pituitary-derived gonadotropins, follicle-69 
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stimulating hormone (FSH) and luteinizing hormone (LH) regulate spermatogenesis by 70 

acting directly on germ cells and indirectly by stimulating steroid hormone secretion 71 

(Nagahama et al., 1994). In fact, plasma levels of sex steroids show important variations 72 

during the maturation of the male gonad. In fish, testosterone (T) and 11-73 

ketotestosterone (11KT) are generally considered the major and most potent circulating 74 

male androgens triggering spermatogenesis (Borg, 1994); however, recent data point to 75 

dihydrotestosterone (DHT) as another potent androgen, involved in regulating 76 

spermatogenesis in several fish species (Margiotta-Casaluci and Sumpter, 2011; 77 

Margiotta-Casaluci et al., 2013; Martyniuk et al., 2013). In the other hand, 17β-estradiol 78 

(E2) has been considered the main sex steroid of female fish, although some studies 79 

have suggested that estrogens are “essential” for normal male reproduction and might be 80 

involved in the recrudescence of the testis (Chaves-Pozo et al., 2007; Hess, 2003; Miura 81 

et al., 1999). Taken together, these data suggest that sex steroids have important and 82 

distinct roles in controlling fish spermatogenesis.  83 

Recent studies have also demonstrated the importance of leukocytes and several 84 

immune factors in the regulation of the reproductive functions of the gonad. In fact, in 85 

teleosts, the presence of immune cells and the expression of several relevant immune 86 

genes in the gonad guarantees and modulate the reproductive functions (Chaves-Pozo et 87 

al., 2008; Chaves-Pozo et al., 2009; Chaves-Pozo et al., 2003) and also conditioned the 88 

immune response in the gonad allowing the persistence of several pathogens in those 89 

tissues (Chaves-Pozo et al., 2010a; Chaves-Pozo et al., 2010b). Although the immune 90 

responses triggered in the European sea bass gonad has not been well documented, it is 91 

true that sea bass is very susceptible to several pathogens able to colonize the gonad, 92 

persist on this tissue and be transmitted (Gómez-Casado et al., 2011; Sitja-Bobadilla 93 

and Álvarez-Pellitero, 1993). Moreover, some of those pathogens alter the efficiency of 94 
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European sea bass reproduction and even block it (Sitja-Bobadilla and Álvarez-95 

Pellitero, 1993). Therefore, the characterization of the immune response, at both cellular 96 

and molecular levels, in the sea bass gonad under naïve conditions is mandatory and 97 

necessary to understand how those pathogens interact or block it. 98 

Bearing all this in mind, we have analyzed, throughout the reproductive cycle of 99 

one year old European sea bass males, the testis morphology, the serum levels of some 100 

sex steroid hormones and the expression profile of some reproductive genes. Moreover, 101 

we have analyzed the expression profile of some immune-relevant genes in the testis to 102 

demonstrate its presence and potential role in the defence of the reproductive tissues. 103 

We also made an effort to correlate all these data in order to provide a wide overview of 104 

the physiology of the testis in order to determine the more susceptible stages to 105 

pathogens and to develop successful preventive treatments.  106 

 107 

2. Materials and Methods 108 

2.1. Animals and experimental design 109 

 Healthy European sea bass (Dicentrarchus labrax L., Actinopterygii, 110 

Perciformes, Moronidae) specimens of one year old were bred and kept at the Centro 111 

Oceanográfico de Murcia (IEO, Mazarrón, Murcia). The fish were kept in 12.5 m3 112 

tanks with natural water temperature ranging from 14 to 26 ºC, a flow-through circuit, a 113 

suitable aeration and filtration system and a natural photoperiod. The specimens were 114 

fed with a commercial dry pellet diet (Skretting) ad libitum. The environmental 115 

parameters, mortality and food intake, were daily recorded.  116 

 The fish were sampled once a month (n=8 males/month) from September 2,010 117 

(121 ± 42 g mean of body weight, bw) to May 2011 (222 ± 70 g mean of bw). The 118 
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specimens were anesthetized with 40 µl/l of clove oil and blood was obtained from the 119 

caudal peduncle and the serum samples, obtained by centrifugation (10,000 g, 1 min, 4 120 

ºC), were immediately frozen in liquid nitrogen and stored at -80 ºC until use for sex 121 

steroid levels analysis. Then, specimens were weighed and decapitated, and the gonads 122 

were removed, weighed and processed for light microscopy and gene expression 123 

analysis as described below. Some specimens were intraperitoneally injected with 50 124 

mg/kg bw of 5-bromo-2’-deoxyuridine (BrdU, Sigma) 2 h before sampling. The 125 

experiments described comply with the Guidelines of the European Union Council 126 

(86/609/EU), the Bioethical Committee of the Instituto Español de Oceanografía 127 

(Spain) and of the University of Murcia (Spain) for the use of laboratory animals. 128 

2.2. Light microscopy and immunocytochemical staining 129 

The gonads (n=8/month) were fixed in 4% paraformaldehyde solution, 130 

embedded in paraffin (Paraplast Plus; Sherwood Medical), and sectioned at 5 µm. Some 131 

sections were stained with hematoxylin-eosin to determine the sex and the reproductive 132 

stage of each fish. Other sections were used to determine cell proliferation being 133 

subjected to an indirect immunocytochemical method using a monoclonal antibody anti-134 

BrdU (Becton Dickinson) at the optimal dilution of 1:100, that revealed the proliferative 135 

cells which have incorporated the BrdU, previously injected, during their DNA 136 

synthesis phase as described previously (Chaves-Pozo et al., 2005). Negative controls 137 

have been done by omitting the first antiserum or by using tissue sections from fish that 138 

had not been injected with BrdU. Other sections were subjected to in situ detection of 139 

DNA fragmentation (TUNEL) assay to identify apoptotic cells (in situ cell death 140 

detection kit; Roche) as described previously (Chaves-Pozo et al., 2007). Negative 141 

controls were processed in an identical manner except that the TdT enzyme was 142 

omitted. Positive controls were performed treating the sections with DNase I (3–3,000 143 
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U/ml, Sigma) in 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, and 1 mg/ml BSA for 10 min 144 

at room temperature to induce DNA strand breaks before labelling. All slides were 145 

examined with a Nikon Eclipse E600 light microscope. 146 

2.3. Analytical techniques 147 

Serum (n=4-6 fish/reproductive stage) levels of T, 11KT and E2 were quantified 148 

by ELISA following the method previously described (Rodríguez et al., 2000). Steroids 149 

were extracted from 10 µl of serum in 1.3 ml of methanol (Panreac). Then, methanol 150 

was evaporated at 37º C and the steroids were resuspended in 400 µl of reaction buffer 151 

[0,1 M phosphate buffer with 1mM EDTA (Sigma), 0.4 M NaCl (Sigma), 1.5 mM NaN3 152 

(Sigma) and 0.1% albumin from bovine serum (Sigma)]. Samples of 50 µl were 153 

dispensed into wells of microtiter plates (MaxiSorp; Nunc) so that 1.25 µl of serum 154 

were used in each well for all the assays. T, 11KT and E2 standards, mouse anti-rabbit 155 

IgG monoclonal antibody (mAb), and specific anti-steroid antibodies and enzymatic 156 

tracers (steroid acetylcholinesterase conjugates) were obtained from Cayman Chemical. 157 

A standard curve from 6.13 x 10-4 to 5 ng/ml (0.03-250 pg/well), a blank and a non-158 

specific binding control (negative control) were established in all the assays. Standards 159 

and extracted serum samples were run in duplicate and all the measures were corrected 160 

with the blank and negative control. The lower limit of detection for all the assays was 161 

24.4 pg/ml. The intra-assay coefficients of variation (calculated from sample duplicates) 162 

were 4.06 ± 1.02% for T, 6.00 ± 1.53% for 11KT and 1.54 ± 0.28% for E2 assays. 163 

Details on cross-reactivity for specific antibodies were provided by the supplier (T 164 

cross-reacts 0.01% in the 11KT assay and 0.1% in the E2 assay; 11KT cross-reacts 2.2% 165 

in the T assay). The serum (n=4-6 fish/reproductive stage) levels of dihydrotestosterone 166 

(DHT) were quantified using the 5α-Dihydrotestosterone ELISA kit (DRG diagnostics) 167 
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following the manufacturer’s instructions. Details on cross-reactivity for specific 168 

antibodies were provided by the supplier (T cross-reacts 8.7% in the DHT assay).  169 

2.4. Analysis of gene expression 170 

Total RNA was extracted from testis fragments (n=7-12 fish/reproductive stage) 171 

with TRIzol reagent (Invitrogen) following the manufacturer’s instructions and treated 172 

with DNase I, amplification grade (1 unit/µg RNA, Invitrogen). SuperScript III RNase 173 

H− Reverse Transcriptase (Invitrogen) was used to synthesize first strand cDNA with 174 

oligo-dT18 primer from 1 µg of total RNA, at 50 ºC for 60 min. 175 

The expression of some genes was analyzed by real-time PCR performed with 176 

an ABI PRISM 7500 instrument (Applied Biosystems) using SYBR Green PCR Core 177 

Reagents (Applied Biosystems) as previously described (Chaves-Pozo et al., 2008). 178 

These genes code for (i) steroidogenic enzymes such as steroid 11-β-hydroxylase 179 

(cyp11b1), 3β-hydroxysteroid dehydrogenase (dhs3b), and aromatase (cyp19a1a); (ii) 180 

the anti-Mullerian hormone (amh); (iii) hormone receptors such as follicle stimulating 181 

hormone receptor (fshr), and estrogen receptor β 1 (erb1), and erb2; (iv) cytokines such 182 

as interleukin 1β (il1b), il6, and tumour necrosis factor α (tnfa); (v) lymphocyte 183 

receptors such as the heavy chain of immunoglobulin M (ighm) and the β subunit of T-184 

cell receptor (tcrb); (vi) viral recognition molecules such as melanoma differentiation-185 

associated 5 protein (mda5) and laboratory of genetics and physiology 2 protein (lgp2), 186 

anti-viral signalling pathway molecules such as TANK-binding kinase 1 (tbk1) and 187 

interferon regulatory factor 3 (irf3) and anti-viral response molecules such as interferon 188 

(ifn), anti-viral protein kinase (pkr) and myxovirus (influenza) resistance proteins (mx); 189 

and (v) anti-bacterial molecules such as lysozyme (lyz), complement component 3 (c3), 190 

dicentracin (dic), hepcidin (hamp), and the histones H1 (h1) and H2B (h2b). For each 191 

mRNA, gene expression was corrected by the elongation factor 1 alpha gene (ef1a) 192 
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content in each sample. The European sea bass specific primers used are shown in Table 193 

1. Some genes were identified in the expressed sequence tags (ESTs) databases and 194 

Table 2 shows their relation with the zebrafish orthologs. Before the experiments, the 195 

specificity of each primer pair was studied using positive and negative samples. 196 

Amplified products from positive samples were purified and sequenced. In all cases, 197 

each PCR was performed in triplicate wells. The ef1a gene expression showed 2 % of 198 

variability across stages.  199 

2.5. Calculation and statistics 200 

The gonadosomatic index (GSI) was calculated as an index of the reproductive 201 

stage [100*(MG/MB) (%)], where MG is gonad mass (in grams) and MB is body mass 202 

(in grams). 203 

The quantification of proliferative (BrdU+) and apoptotic cell areas was 204 

calculated as the mean value ± SEM of the stained area/total area of 50 randomly 205 

distributed optical areas at 200 x magnifications. The stained areas were measured by 206 

image analysis using a Nikon Eclipse E600 light microscope, an Olympus SC30 digital 207 

camera (Olympus soft imaging solutions GMBH), and Leica Qwin software (Leica 208 

microsystems).  209 

All data were analyzed by one-way ANOVA and a Duncan post hoc test to 210 

determine differences between groups (P≤0.05). Normality of the data was previously 211 

assessed using a Shapiro-Wilk test and homogeneity of variance was also verified using 212 

the Levene test. A non-parametric Kruskal–Wallis test was used when data did not meet 213 

parametric assumptions. In addition, non-parametric Pearson correlation tests were 214 

applied to test correlations among hormonal levels and gene expression levels. 215 

Statistical analyses were conducted using SPPS 15.0 software (SPSS).  216 
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 217 

3. Results 218 

3.1. The reproductive cycle is completed in one year old European sea bass 219 

specimens.  220 

We observed that the reproductive cycle of one year old European sea bass 221 

males is divided in four stages according to the GSI (Fig. 1a) and the testicular 222 

morphology (Fig. 1b-j). Thus, at resting stage, the GSI was low and the testis was 223 

formed by tubules without lumen or with a very small lumen and mainly formed by 224 

cysts of spermatogonia (Fig. 1b,c). At spermatogenesis stage, the spermatogonia start to 225 

progress through the spermatogenetic process and cysts of more developed germ cells 226 

appeared (Fig. 1d-f). As spermatogenesis progresses, the GSI progressively increased 227 

(Fig. 1a) and  the amount of cysts of spermatocytes, spermatids and spermatozoa and 228 

the amount of free spermatozoa in the lumen of the tubules were more visible, while the 229 

amount of cysts of spermatogonia were proportionally less visible (Fig. 1d-f). At 230 

spawning stage, the GSI reached its maximum and sharply decreased when the 231 

spermatozoa and the seminal fluid is released (Fig. 1a) and the tubules contained some 232 

cysts of spermatocytes, spermatids and a few cysts of spermatogonia which delimited a 233 

large lumen full of free spermatozoa (Fig. 1g) and the deferent duct is full of free 234 

spermatozoa (Fig. 1h). At post-spawning stage, the GSI showed a great variability and 235 

non-statistically significant difference respect the previous month was observed (Fig. 236 

1a). At this stage, the tubules were formed by cysts of spermatogonia and single Sertoli 237 

cells that limited the lumen of the tubules which appeared empty and reduced in size 238 

(Fig. 1i,j).  239 
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 3.2. Proliferation mainly occurs at spermatogenesis whilst apoptosis did at 240 

spawning.  241 

 The proliferative (Fig. 2) and apoptotic (Fig. 3) rates were related with the 242 

observed changes in the GSI and the testicular morphology (Fig. 1). At resting stage, the 243 

proliferative rate was low as only some spermatogonia were immunostained (Fig. 2a,b). 244 

However, at spermatogenesis stage, the proliferative rate reached its maximum value 245 

due to the proliferation of spermatogonia and Sertoli cells (Fig. 2a,c). Later on, the 246 

proliferative rates decreased to minimum levels that kept steady during spawning and 247 

post-spawning stages (Fig. 2a). In these stages only spermatogonia proliferated (Fig. 248 

2d,e). Regarding the apoptosis rate, the maximum value was recorded at spawning stage 249 

and there were no differences on the apoptotic rates at resting, spermatogenesis or post-250 

spawning stages (Fig. 3a). The TUNEL positive cells were some spermatogonia and 251 

Sertoli cells at resting stage (Fig. 3b), some Sertoli cells or interstitial cells at 252 

spermatogenesis stage (Fig. 3c) and the Sertoli cells that limited the lumen of the 253 

tubules at spawning (Fig. 3d) and post-spawning (Fig. 3g) stages. In addition, numerous 254 

remaining spermatozoa present on the lumen of the tubules were TUNEL positive cells 255 

at spawning stage (Fig. 3d,e). Interestingly, some TUNEL positive spermatozoa were 256 

located in the cytoplasm of the cells that limited the efferent ducts (Fig. 3f).  257 

 3.3. T, 11KT and E2 serum levels varied through the reproductive cycle. 258 

 In one year old European sea bass the serum levels of T were increased at 259 

spermatogenesis stage, kept high during spawning stage and decreased at post-spawning 260 

stage reaching levels similar to those observed at resting stage (Fig. 4a). However, the 261 

11KT serum levels showed the greatest variation reaching its maximum level at 262 

spermatogenesis stage and progressively decreasing until its minimum level at post-263 

spawning stage, which is lower than the level recorded during resting stage (Fig. 4b). 264 
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However, the serum levels of DHT did not show any modification during the 265 

reproductive cycle analyzed (Fig. 4c). Interestingly, the levels of T were positively 266 

correlated with the levels of 11KT and DHT, although 11KT and DHT serum levels did 267 

not correlated (Table 3). Regarding estrogens, the serum levels of E2 increased after 268 

resting and kept steady onwards (Fig. 4d). The serum levels of E2 did not correlated 269 

with the levels of any androgen studied (Table 3).  270 

 3.4. Most of the steroidogenetic, hormones and hormones receptor gene 271 

expressions were undetected at spawning stage. 272 

The cyp11b1 gene, codifies an enzyme (11β-hydroxylase) shared by the 273 

glucocorticoid (mainly produced in the interrenal tissue) and androgen (mainly 274 

produced in the gonad) pathway. This enzyme converts 11-deoxycortisol to cortisol and 275 

also participates in the final steps of the synthesis of the 11-oxigenated androgens being 276 

involved in the transformation of T to DHT than later on is transformed to 11KT. The 277 

expression levels of cyp11b1 in the gonad, the main synthesis site of androgens, were 278 

high at spermatogenesis and post-spawning stages and very low during spawning stage 279 

(Fig. 5a). However, the expression levels of dhs3b (Fig. 5b) and cyp19a1a (Fig. 5c) 280 

were similar during resting, spermatogenesis and post-spawning stages, but not detected 281 

at spawning stage. The expression pattern levels of amh gene were low during resting 282 

and spermatogenesis stages and not detectable at spawning stage; however, increased 283 

during post-spawning stage (Fig. 5d). Regarding the expression of the genes that code 284 

for hormone receptors, the fshr gene expression was low during resting and 285 

spermatogenesis stages, not detectable at spawning stage and increased at post-286 

spawning stage (Fig. 5e). The expression levels of erb1 were low during resting, 287 

spermatogenesis and spawning stages and increased at post-spawning stage (Fig. 5f). 288 

However, the mRNA levels of erb2 were similar during resting, spermatogenesis and 289 
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post-spawning stages and not detectable at spawning stage (Fig. 5g). The levels of 290 

expression of dhs3b were positively correlated with T and negative correlated with fshr 291 

gene expression (Table 3). As expected, the transcript levels of cyp19a1a showed a 292 

negative correlation with T serum levels (Table 3), although this gene expression 293 

showed a positive correlation with the expression of cyp11b1 gene (Table 3). Moreover, 294 

the expression level of cyp11b1 gene was positively correlated with the serum levels of 295 

E2 and with the transcription levels of amh, erb1 and fshr genes (Table 3). Additionally 296 

the expression of erb2 gene showed a positive correlation with the expression of amh 297 

and erb1 genes, while the transcript levels of fshr gene correlated with transcript levels 298 

of amh, erb1 and erb2 genes (Table 3). 299 

 300 

3.5. Immune-related genes are expressed in the testis and changed with the 301 

reproductive cycle.  302 

 We next determined the presence and status of the immune response in the 303 

gonad. For then, we analyzed the expression of several immune-relevant molecules such 304 

as: cytokines (il1b, il6 and tnfa), immune receptors (ighm and tcrb) (Fig. 6), viral 305 

recognition molecules (mda and lgp2), anti-viral signalling pathway molecules (tbk1 306 

and irf3), anti-viral response molecules (ifn, pkr and mx) (Fig. 7) and antimicrobial 307 

peptides (lyz, c3, dic, hamp, h1 and h2b) (Fig. 8). Thus, the il1b expression (Fig. 6a) 308 

decreased during spermatogenesis and spawning stages and showed the same levels of 309 

expression during resting and post-spawning stages. The il6 expression (Fig. 6b) also 310 

showed similar levels at resting, spawning and post-spawning stages and slightly 311 

decreased during spermatogenesis stage. The expression of tnfa (Fig. 6c), however, did 312 

not show any statistically significant change during the reproductive cycle. Regarding 313 

the immune receptors (Fig. 6d,e), the expression of both, ighm and tcrb, genes increased 314 
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at spermatogenesis stage, however, while the expression of ighm decreased later on 315 

showing similar levels of expression during resting, spawning and post-spawning stages 316 

(Fig. 6d), the expression of tcrb was kept steady from spermatogenesis stage onwards 317 

(Fig. 6e). Most of the anti-viral molecules analyzed (Fig. 7) showed a basal expression 318 

that did not change throughout the reproductive cycle, with the exception of the single 319 

stranded RNA receptor coding gene, the lgp2 (Fig. 7b), a interferon response factor 320 

coding gene, the irf3 (Fig. 7d), and a interferon response molecule coding gene, the pkr 321 

(Fig. 7f), which expression increased at spawning stage. Regarding the antimicrobial 322 

peptides analyzed, hepcidin dicentracin, lysozyme and complement factor 3 are well 323 

characterized in terms of molecular sequences and gene expression profiles that related 324 

those proteins to innate immune responses (Rodríguez et al., 2006; Salerno et al., 2007; 325 

Buonocore et al., 2014). In the case of histones, fish proteins highly homologous to or 326 

identical to core nuclear histones have been identified and linked to innate defence 327 

(Noga et al., 2011; Valero et al., 2013) but further characterization is still needed at 328 

molecular and functional levels. Our data revealed different patterns of expression of 329 

these genes (Fig. 8). Thus, the expression of lyz (Fig. 8a) and c3 (Fig. 8b) increased at 330 

spermatogenesis stage, remaining high during the rest of the reproductive cycle in the 331 

case of lyz or decreased at spawning stage in the case of c3. The dic gene expression 332 

(Fig. 8c) progressively increased from spermatogenesis stage to spawning stage when it 333 

reached its maximum levels decreasing later on at post-spawning stage to the levels 334 

observed at resting stage. The h1 gene expression (Fig. 8e) decreased at 335 

spermatogenesis stage, was not detectable at spawning stage and increased at post-336 

spawning stage, while the expression of hamp (Fig. 8d) and h2b (Fig. 8f) genes was 337 

kept unchanged throughout the reproductive cycle.  338 

 339 
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4. Discussion 340 

In teleost fish, spermatogenesis is regulated by the interplay of systemic and 341 

intragonadal factors and the importance of each type of regulation vary depending on 342 

the developmental stage of the gonad (Schulz et al., 2010). Our data demonstrate that in 343 

one year old fish, the testis undergo the complete spermatogenesis process although it 344 

was previously described that European sea bass males mature after two years of age 345 

(Carrillo et al., 1995). Interestingly, the proliferative rates of germ cells on the testis of 346 

teleosts are known to be regulated by endocrine and paracrine factors. Thus, in several 347 

fish species, FSH, androgens and estrogens have been reported to trigger germ or Sertoli 348 

cell proliferation, while other factors like AMH prevents this proliferation (Mazon et al., 349 

2014; Miura et al., 2002; Miura et al., 1999; Miura et al., 1991; Skaar et al., 2011). In 350 

the sea bass, FSH regulates Sertoli cell proliferation (Mazon et al., 2014) and the 351 

expression of fshr gene has also been related with early stages of the gonad 352 

development and with Sertoli cell proliferation (Rocha et al., 2009). However, in one 353 

year old European sea bass, the fshr gene expression is higher at post-spawning as also 354 

occurs with other reproductive genes analyzed as cyp11b1, erb1, erb2 and amh. 355 

Interestingly, most of the reproductive genes analyzed showed non detectable levels of 356 

transcription at spawning that could be explained due to the dilution of somatic cells 357 

with respect to the high amount of spermatozoa together with a lower transcription level 358 

of those genes. In fact, in two year old sea bass, a decrease in the expression levels of 359 

some reproductive genes such as fshr and cyp11b1 at the final stages of spermatogenesis 360 

was observed (Rocha et al., 2009). Thus, the fshr and cyp11b1 gene expressions showed 361 

similar patterns in these two populations of fish (Rocha et al., 2009). It is worthy to note 362 

that even when the levels of expression of these genes is very low and not detected in 363 

our real time PCR assay, these levels could be enough to maintain serum hormone 364 
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levels. Moreover, the precise relation among the mRNA transcripts, enzyme activity and 365 

hormone levels is unknown, an aspect that might be worthy to asses in a future. 366 

Our data demonstrate that European sea bass apoptosis is involved in the 367 

depletion of the remaining spermatozoa after spawning as determined by the massive 368 

spermatozoa stained by TUNEL, an issue that do not occurs in all fish species. 369 

Interestingly, the elimination of remained spermatozoa is a variable process in different 370 

species of vertebrates independently of their taxonomical association. Thus, in a 371 

seasonal breeder mammal, the Iberian mole (Talpa occidentalis) (Dadhich et al., 2010), 372 

and in a teleostean fish, the gilthead seabream (Chaves-Pozo et al., 2005), apoptosis is 373 

not involved in the depletion of spermatozoa after spawning, while in other mammalian 374 

species as the mink (Mustela vison) (Blottner et al., 1999) and in the teleostean 375 

European sea bass (as our data demonstrate) apoptosis has a prominent role. Moreover, 376 

as European sea bass spermatozoa underwent apoptosis, the apoptotic spermatozoa are 377 

in turn phagocytosed by the Sertoli cells that limited the lumen of the tubules, as the 378 

presence of this apopototic cells, determined by the TUNEL staining, in the cytoplasm 379 

of the Sertoli cells that limited the efferent ducts suggests, as also occurred in other 380 

vertebrates (Carr et al., 1968; Shiratsuchi et al., 1997).  381 

Serum 11KT levels were higher than T levels, however both hormone levels 382 

increased at spermatogenesis stage and decreased during spawning and post-spawning 383 

stages. This pattern of 11KT production has also been described in two years old sea 384 

bass males (Rocha et al., 2009). DHT has been considered to be a major androgen in 385 

many male vertebrates (Borg, 1994) and physiologically important in some fish species 386 

(Margiotta-Casaluci and Sumpter, 2011, Margiotta-Casaluci et al., 2013) but not in 387 

others (Cavaco et al., 1998). Although the function of DHT in teleosts is not clear yet, 388 

there are growing lines of evidence that teleost fish are capable of synthesizing DHT 389 
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(Martyniuk et al., 2013; Sánchez-Hernández et al., 2013). Interestingly, we have 390 

detected low levels of DHT in one year old European sea bass serum, which were kept 391 

steady throughout the reproductive cycle. Moreover, our data showed that DHT serum 392 

levels positively correlated with T serum levels, suggesting that the variation of T is 393 

important for the maintenance of DHT levels. In addition, the mean T/DHT ratio was 394 

calculated and resulted of 12 in fathead minnow males and of 20 in females (Margiotta-395 

Casaluci et al., 2013) in a similar way to the one year sea bass males which showed a 396 

mean ratio of 13.22 (ranging from 4.5 to 20.3). DHT levels might be kept steady thanks 397 

to its transformation into β-diol as suggested by the regulation of dhs3b transcription 398 

levels. As occurs with DHT, the serum levels of E2 were also very low in European sea 399 

bass males although they increased slightly from spermatogenesis onwards. E2 has been 400 

related in several teleost fish species with the final events of spermatogenesis stage and 401 

the regulation of germ and Sertoli cells proliferation and apoptosis (Chaves-Pozo et al., 402 

2007; Miura et al., 1999). However, high levels of E2 triggered spermatogenesis 403 

disruption and sex change in vertebrates including fish species (Chaves-Pozo et al., 404 

2007; Condeca and Canario, 1999; O'Donnell et al., 2001). Our data showed a negative 405 

correlation between cyp19a1a gene expression and T serum levels, suggesting that the 406 

regulation of cyp19a1a gene expression is an important point of regulation to allow the 407 

maintenance of male physiology and explaining the effectiveness of estrogenic disruptor 408 

pollutants to affect male physiology (Martinovic et al., 2007).  409 

Interestingly, E2 has also been related to the recruitment of leukocytes and the 410 

regulation of the cytokine network of the immune response in the gonad (Cabas et al., 411 

2011; Seemann et al., 2013). The regulation of the immune response in the gonad of 412 

teleost fish to avoid germ cell damage allows the persistence of several pathogens in 413 

those tissues (Chaves-Pozo et al., 2010a; Chaves-Pozo et al., 2010b). The European sea 414 
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bass is very susceptible to several pathogens able to colonize the gonad, persist on this 415 

tissue and be transmitted (Gómez-Casado et al., 2011; Sitja-Bobadilla and Álvarez-416 

Pellitero, 1993). In this framework, we have analyzed the gene expression pattern of 417 

several pro-inflammatory cytokines, lymphocyte receptors and anti-viral and anti-418 

bacterial molecules in one year old European sea bass testis. In general, we observed 419 

that the expression levels of the pro-inflammatory cytokines are low at spermatogenesis 420 

and spawning stages while the gene expression of ighm and tcrb genes, together with 421 

several anti-viral molecules (lgp2, tbk1 and pkr) and antimicrobial peptides (lyz, dic, c3) 422 

increased at spermatogenesis and/or spawning stages. These increments could be 423 

explained due to protective reasons to infection during the sperm storage in the efferent 424 

ducts until the release of spermatozoa.  425 

Histones package DNA in all eukaryotes and play key roles in regulating gene 426 

expression. Interestingly, in mammals and birds, the linker histone H1 display tissue 427 

specificity and encompass a variety of important biological processes, including cellular 428 

proliferation and apoptosis. Moreover, it has been recently described their functions as 429 

antimicrobial peptides (AMPs) in vertebrates linking them to the immunity. In fish, 430 

proteins highly homologous to or identical to core nuclear histones have been identified 431 

and linked to innate defence, and more concretely to the antimicrobial response (Noga 432 

et al., 2011; Valero et al., 2013). In this framework, our data show that the h1 433 

transcription profiles suggest that the European sea bass substitute the H1 histone of 434 

germ cells with protamines or other sperm-specific histones, as spermatogenesis 435 

proceeds, as occur in mammals and in contrast to what happens in other fish species 436 

when histones are not fully or partially replaced (Saperas et al., 1994; Yan et al., 2003). 437 

Moreover, h2b expression was kept steady through the reproductive cycle instead of 438 

being decreased, as expected in the case that this fish species replace the core histones, 439 
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or increased, as expected in the case that this fish species did not replace the core 440 

histones. Taken all this data together, we can suggest that H2b has a role other than 441 

DNA packaging.  442 

Our data demonstrate that in one year old European sea bass males, the testis 443 

undergoes the complete spermatogenesis process, although these specimens are not 444 

considered fully mature. Moreover, serum levels of 11KT and T and the gene 445 

expression profile of the steroidogenic enzymes involved in their synthesis varied 446 

during the reproductive cycle. We have described for the first time in European sea bass 447 

males, the serum levels of E2 and DHT, determining that at least E2 might be involved 448 

in the regulation of the reproductive cycle of European sea bass males as also occurs in 449 

other species of teleosts. Regarding the status of the immune response on the gonad, our 450 

data showed high levels of expression of several AMPs such as lysozyme, C3 or 451 

dicentracin during spermatogenesis and spawning and lower levels of pro-inflammatory 452 

cytokines at the same stages, suggesting an important role for AMPs in the defence of 453 

the reproductive tissues.  454 
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Figure 1. GSI (a) and testicular sections stained with hematoxylin-eosin (HE; b-j) of 663 

one year old European sea bass males. Resting (R) stage (b,c). Early (d), midd (e) and 664 

late (f) spermatogenesis (SPG) stage. Spawning (S) stage (g,h). Post-spawning (PS) 665 

stage (i,j). Letters denoted statistically significant differences between groups (P≤0.05) 666 

(n=8 fish/month). SG: spermatogonia; SC: spermatocytes; SD: spermatids; SZ: 667 

spermatozoa; Arrow: interstitial cells; black arrowheads: Sertoli cells enclosing a 668 

spermatogonium; white arrowheads: Sertoli cells limited the lumen of the tubules; 669 

asterisks: spermatogonia. Scale bars = 25 µm (c,j) and 50 µm (b,d-i). 670 

Figure 2. The mean of the immunostaining rates (immunostaining area/total optical 671 

area) with anti-BrdU (a) and testicular sections of one year old European sea bass males 672 

immunostained with anti-BrdU at resting (R) (b), spermatogenesis (SPG) (c), spawning 673 

(S) (d) and post-spawning  (SP) (e) stages showing proliferative spermatogonia (black 674 

arrows), and Sertoli cells (white arrowheads).L: lumen of the tubules. Letters denoted 675 

statistically significant differences between groups (P≤0.05) (n=10 fish/reproductive 676 

stage). Scale bars = 30 µm (b-e). 677 

Figure 3. The mean of the immunostaining rates (immunostaining area/total optical 678 

area) with TUNEL (a) and testicular sections of one year old European sea bass stained 679 

with TUNEL at resting (R) (b), spermatogenesis (SPG) (c), spawning (S) (d-f) and post-680 

spawning (PS) (g) stages showing apoptotic spermatogonia (white arrowheads), Sertoli 681 

cells (black arrows) and spermatozoa (white arrows). Notice (f) that some Sertoli cells 682 

that limited the lumen of the tubules have apoptotic spermatozoa phagocyted in their 683 

cytoplasm (black arrowheads). Asterisks denoted the nuclei of the Sertoli cells. ED: 684 

efferent duct. Letters denoted statistically significant differences between groups 685 

(P≤0.05) (n=10 fish/reproductive stage). Scale bars = 15 µm (d,e,f,g), 25 µm (c) and 50 686 

µm (b). 687 
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Figure 4. Sex steroid levels of testosterone (T) (a), 11-ketotestosterone (11KT) (b), 688 

dihydrotestosterone (DHT) (c) and 17β-estradiol (E2) in the serum of one year old 689 

European sea bass males through the reproductive cycle. R: resting stage; SPG: 690 

spermatogenesis stage; S: spawning stage; PS: post-spawning stage. Letters denoted 691 

statistically significant differences between groups (P≤0.05) (n=4-6 fish/reproductive 692 

stage).  693 

Figure 5. Expression of reproductive cyp11b1 (a), dhs3b (b), cyp19a1a (c), amh (d), 694 

fshr (e), erb1 (f) and erb2 (g) genes in the testis of one year old European sea bass 695 

males through a reproductive cycle. R: resting stage; SPG: spermatogenesis stage; S: 696 

spawning stage; PS: post-spawning stage. Letters denoted statistically significant 697 

differences between groups (P≤0.05) (n=7-12 fish/reproductive stage).  698 

Figure 6. Expression of the cytokines il1b (a), il6 (b) and tnfa (c) as well as lymphocyte 699 

markers ighm (d) and tcrb (e) genes in the testis of one year old European sea bass 700 

males through a reproductive cycle. R: resting stage; SPG: spermatogenesis stage; S: 701 

spawning stage; PS: post-spawning stage. Letters denoted statistically significant 702 

differences between groups (P≤0.05) (n=7-12 fish/reproductive stage).  703 

Figure 7. Expression of viral recognition molecules mda5 (a) and lgp2 (b), anti-viral 704 

signalling pathway molecules tbk1 (c) and irf3 (d) and anti-viral response molecules ifn 705 

(e), pkr (f) and mx (g) coding genes in the testis of one year old European sea bass 706 

males through a reproductive cycle. R: resting stage; SPG: spermatogenesis stage; S: 707 

spawning stage; PS: post-spawning stage. Letters denoted statistically significant 708 

differences between groups (P≤0.05) (n=7-12 fish/reproductive stage).  709 

Figure 8. Expression of anti-microbial peptide lyz (a), c3 (b), dic (c), hamp (d) h1 (e) 710 

and h2b (f) genes in the testis of one year old European sea bass males through a 711 
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reproductive cycle. R: resting stage; SPG: spermatogenesis stage; S: spawning stage; 712 

PS: post-spawning stage. Letters denoted statistically significant differences between 713 

groups (P≤0.05) (n=7-12 fish/reproductive stage).  714 

 715 

 716 

 717 
 718 
 719 
 720 



Highlights 

1. In one year old European sea bass males, the testis undergoes the complete 

spermatogenesis process and steroidogenesis. 

2. We have described for the first time that European sea bass males have detecting 

levels of E2 and DHT in serum.  

3. The levels of expression of several relevant-immune genes suggest an important 

role for antimicrobial peptides in the defence of the reproductive tissues.  

 



















Table 1: Genes and primer sequences used for gene expression analysis. ESTs, 

expression sequences tags. GenBank (http://www.ncbi.nlm.nih.gov/genbank). 

Protein name 
Gene 

abbreviation 
Acc.number Sequence (5’-3’) 

Source of the sequences 

CCCATCTACAGGGAGCATGT Steroid 11-β-

hydroxylase 
cyp11b1 AF449173   

GGAAGACTCCTTTGCTGTGC 
(Socorro et al., 2007) 

CACCTCTGGGCTTCAACATT 3β-hydroxysteroid 

dehydrogenase 
dhs3b FF578926 

GTGCTTCCTCCCACGTGTAT 
ESTs 

CTGGAGCCACACAGACAAGA 
Aromatase cyp19a1a 

AJ298290, 

AJ311177 AACTGAGGCCCTGCTGAGTA 
(Blazquez et al., 2008) 

TGCAGGTCTCACAAGGACTG Anti-Mullerian 

hormone 
amh AM232703      

CTGGATGCAAAACCTCCAAT 
(Halm et al., 2007) 

ACTCCACCTCCATCATCTGC Follicle stimulating 

hormone receptor 
fshr AY642113    

AACGGGGAACAGTCAGTTTG 
(Rocha et al., 2007) 

GGGTGAGAGAGCTCAAGCTC 
Estrogen receptor β1 erb1 AJ489523 

AAGCTAAGGCCGGTTTTGGC 
(Halm et al., 2004) 

AGTGGGCATGATGAAGTGCG 
Estrogen receptor β2 erb2 AJ489524 

TGCACGTGGTTCACCTGAGG 
(Halm et al., 2004) 

CAGGACTCCGGTTTGAACAT 
Interleukin 1 il1b AJ269472 

GTCCATTCAAAAGGGGACAA 
(Scapigliati et al., 2001) 

ACTTCCAAAACATGCCCTGA 
Interleukin 6 il6 AM490062 

CCGCTGGTCAGTCTAAGGAG 
(Sepulcre et al., 2007) 

AGCCACAGGATCTGGAGCTA Tumor necrosis factor-

α 
tnfa DQ200910 

GTCCGCTTCTGTAGCTGTCC 
(Nascimento et al., 2007) 

AGGACAGGACTGCTGCTGTT Heavy chain of 

immunoglobulin M 
ighm FN908858  

CACCTGCTGTCTGCTGTTGT 
GenBank 

GACGGACGAAGCTGCCCA β subunit of T-cell 

receptor 
tcrb FN687461 

TGGCAGCCTGTGTGATCTTCA 
(Buonocore et al., 2012) 

AATTCGGCAATGGTGAAGTC Melanoma 

differentiation-

associated 5 protein 

mda5 AM986362 
TCATTGGTCACAAGGCCATA 

ESTs 

TGATGGCAGTCAGTGGAGAG Laboratory of genetics 

and physiology 2 

protein 

lgp2 AM984225 
TGAGAGCTCAACGTGTTTGG 

ESTs 

ACAAGGTCCTGGTGATGGAG TANK-binding kinase 

1 
tbk1 FM013306 

CGTCCTCAGGAAGTCCGTAA 
ESTs 

Interferon regulatory irf3 CBN81356 AGAGGTGAGTGGCAATGGTC GenBank 



factor 3 GAGCAGTTTGAAGCCTTTGG 

GGCTCTACTGGATACGATGGC 
Interferon ifn AM765847 

CTCCCATGATGCAGAGCTGTG 
(Casani et al., 2009) 

AGGGTCAGAGCATCAAGGAA dsRNA-dependent 

protein kinase 
pkr FM008342 

GACACCTTGCTGTCCCAGTC 
ESTs 

GAAGAAGGGCTACATGATCGTC Myxovirus (influenza) 

resistance proteins 
mx 

AM228977, 

HQ237501, 

AY424961 CCGTCATTGTAGAGAGTGTGGA 

(Scapigliati et al., 2010) 

ATTTCCTGGCTGGAACACAG 
Lysozyme lyz FN667957 

GAGCTCTGGCAACAACATCA 
(Buonocore et al., 2014) 

ACCAAAGAACTGGCAACCAC Complement 

component 3 
c3 HM563078 

CTAGCAGTCGGTCAGGGAAC 
(Mauri et al., 2011) 

GGCAAGTCCATCCACAAACT 
Dicentracin dic AY303949 

ATATTGCTCCGCTTGCTGAT 
(Salerno et al., 2007) 

CCAGTCACTGAGGTGCAAGA 
Hepcidin hamp DQ131605 

GCTGTGACGCTTGTGTCTGT 
(Rodrigues et al., 2006) 

AAGAAGACGGGTCCCTCAGT 
Histone H1 h1 JN410661 

CTTGACCTTCTTCGCTTTGG 
(Terova et al., 2011) 

GGAGAGCTACGCCATCTACG 
Histone H2B h2b JN410660 

GCTCAAAGATGTCGCTCACA 
(Terova et al., 2011) 

CGTTGGCTTCAACATCAAGA 
Elongation factor 1α ef1a AJ866727 

GAAGTTGTCTGCTCCCTTGG 
GenBank 

  



Table 2. Identification of the interest genes in the expressed sequence tags (ESTs) 
databases and their relation with the zebrafish orthologs. 

Predicted 
protein 

Fish specie 
Gene acc. 
number 

Protein 
length 

Protein 
homologya 

E-valueb 

dhs3b 
Sea bass 

Zebrafish 

FF578926 

NP_997962 

185 

374 

72 7e-70 

 

mda5 
Sea bass 

Zebrafish 

AM986362 

XP_694124 

206 

997 

72 1e-91 

lgp2 
Sea bass 

Zebrafish 

AM984225 

NP_001244086

297 

679 

71 2e-115 

tbk1 
Sea bass 

Zebrafish 

FM013306 

NP_001038213

220 

727 

95 3e-33 

pkr 
Sea bass 

Zebrafish 

FM008342 

CAM07151 

304 

682 

41 1e-41 

 

Percentage of homology (a) and E-value (b) of the predicted proteins respect to the 
zebrafish ortholog. 

 



Table 3: Correlations observed between the sex hormone levels in serum and reproductive related gene expressions in gonad of one year old 

European sea bass males throughout a reproductive cycle. The first number corresponds to Pearson coefficient of correlation and the second to 

the significant difference P. Written in bolds are the parameters that correlated. 

  11KT DHT E2 cyp11b1 dhs3b cyp19a1a amh erb1 erb2 fshr 

0.715 0.557 0.345 -0.295 0.608 -0.525 -0.250 -0.143 0.296 -0.265 
T 

0.002 0.025 0.190 0.267 0.027 0.065 0.369 0.625 0.350 0.382 
 0.299 0.238 -0.221 0.228 -0.311 -0.153 -0.173 0.127 -0.202 

11KT 
 0.261 0.375 0.411 0.453 0.300 0.587 0.554 0.694 0.508 
  0.328 -0.057 0.141 -0.271 -0.087 -0.039 -0.219 -0.239 

DHT 
  0.215 0.834 0.646 0.370 0.758 0.895 0.494 0.431 

   0.693 0.285 0.253 -0.236 0.257 0.093 -0.241 E2 
   0.003 0.345 0.405 0.397 0.374 0.773 0.427 
    -0.311 0.445 0.525 0.393 0.161 0.557 

cyp11b1 
    0.149 0.043 0.008 0.035 0.485 0.007 
     0.028 -0.319 -0.252 -0.133 -0.470 

dhs3b 
     0.908 0.159 0.257 0.576 0.031 
      -0.308 -0.082 0.070 -0.120 

cyp19a1a 
      0.199 0.723 0.788 0.625 
       0.307 0.661 0.885 

amh 
       0.165 0.002 0.000 
        0.600 0.628 

erb1 
        0.005 0.002 
         0.708 

erb2 
                  0.001 
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