brought to you by $\widetilde{\mathbb{I}}$ CORE

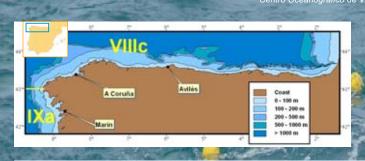
Areas of Interest

Port of Marin
Port of A Coruho

Regular foring regulate specific of split regulate

No fishable areas

2


Not to be cited without prior reference to the author ICES CM 2005/S:22

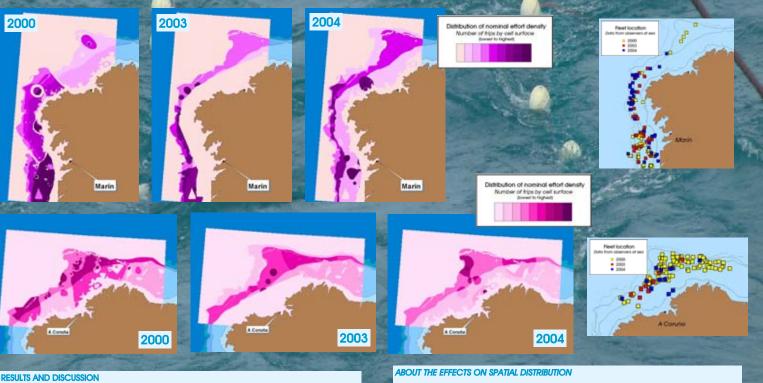
ANALYSIS OF THE TRAWL FLEET SPATIAL DISTRIBUTION DURING AND POST PRESTIGE OIL SPILL BY GIS SIMULATIONS AND REAL DATA

Esther Abad¹, Jose María Bellido², Antonio Punzón¹; Nélida Pérez² and Marco Antonio Ámez¹

¹Centro Oceanográfico de Santander, Promontorio San Martín s/n, 39004, Santander, Spain esther.abad@st.ieo.es ²Centro Oceanográfico de Vigo, Cabo Estay s/n, 36200 Vigo, Spain

INTRODUCTION

During and after the Prestige oil spill (13 November 2002), the Spanish Government adopted a series of fisheries management measures in North Atlantic waters of the Ibertan Peninsula (ICES Divisions Vilic and IXa North). The limitations were fishing closure areas, with absolute banning for fishing, and restrictions for fleet types and gears. The Program of observers on board commercial vessels of the Instituto Español tor treet types and gears. Ine Program of observers on board commercial vessels of the instituto Espanol de Oceanografía resumed as soon as management measures allowed it. These restrictions could have affected the use of the traditional fishing grounds, specially the spatial fishing effort distribution. The ban could have a similar effect like the produced by the Marine Protected Areas, in terms of transfers to other fishing grounds and changes in the exploitation pattern (Pastoors et al., 2000 and Rijnsdorp et al., 2001), as an Indirect result of the management (Dipper and Chua, 1997).


The aims of this work are to determine these possible changes on spatial effort distribution derived by the oil spill as well as to explore and test "simulations module FAST" in this kind of analysis.

MATERIAL AND METHODS

Two fishing ports, A Coruña and Marín, were selected as the most important landing sites of greatest affected area to carry out this work. Other-trawl fleet was chosen as representative fleet because of its importance, both socio-economically and biologically. Fishing effort data for the years 2000, 2003 and 2004 were selected as representative of periods pre-spill, during oil spill and post-spill. The effort unit was the number of trips for fleet and ports in the studied years. Observers onboard data from these years were used to locate the fishing fleet geographic locations during the periods. Year 2000 was chosen because it presents the best sampling coverage of last years preceding the oil spill. In 2003 onboard sampling was more reactive to the the the methods. restricted due to banning of fishing operation.

The distribution of fishing effort is obtained by FAST, a computerized simulation tool based on two models focussing on the analysis of the spatial components. One of these models was developed by Caddy and Carocci (1999) and is based in two methods, the "friction of distance" approach and the Gaussian Effort Allocation Model approach. The other is based on deductive modelling of use of space (Corsi, 2000). This application is an extension of Arcview GIS software (v. 3.2). The distribution is based on the assigned score to each value of the variables in each location. So, each space unit of the affected area will have assigned a proportion of the effort based on the combined score of different information layers. These constraint layers determine the fishing effort density distribution.

The accessible zone, the authorized zone and the exploited area were defined. The basic information geo-referenced layers were land-sea, location of the ports and the area of interest for the fleet segment. The constraint layers were bathymetry (fleets bathymetry segregation), seabed substrate (fishable areas), regular fishing regulation and specific oil spill regulation (fishing closure areas) as well as hauls duration.

ABOUT THE SOFTWARE

FAST simulations do not show the real effort distribution in some cases. FAST is a tool which allow This probabilistic distribution is the result of the combination of different "constraint layers".

Despite the scoring of each layer are based on previous knowledge of the fishery, the application gives as results zones with Identical characteristics that can be really exploi not, as maps of data from observers at sea show it. A greater precision in score functions and a better definition of the area of interest are needed to improve the simulations.

Other softwares as ArcGIS, GRASS, Interfaces GRASS-R, could be used in the same analysis to obtain a higher assessment of this application.

x a GIB application. /CBB Journal of Mc vards the use of Geographic informat

Caddy J.J. and Canool F. (1999) The spatial allocati Case F. (2000) Boolial childration of fining effort: m Informer y Statutics COPEMED IP 4 Dipper, R. and Chus, T.B. (1997). Biological impacts of Pathorn M.A., Rijnstorp A.D. and Van beek F.A. (20 Bindarb A.D., Wei G.J. and Poor J.J. (2001). Billet cont S nies, Vol. 8. 28 pp. London I of Marine Salence, 67(4): 1014-1023 k F. A. (2000). Effects of a partially alc a in the North Sea

Elinedoup A.D.

loped in the fi ct (VEM2003-2 nework of 081-CO2),

Both areas, Marín and A Coruña, were affected by the Prestige fishing closure, with an effort movement towards deeper waters. In the case of Marín, this was the only option to this fleet because of the fishing closure location. The banned zone was delimited in an area with very high effort density in 2000. After the ban, in 2004, this fleet continued fishing in de waters, probably because a change in target species occurred, without rejecting a fishing closure effect. In A Coruña, it is necessary to clarify why during 2003, movement towards not restricted area have not been detected. Maybe this shallower waters are not a traditional fishing ground. For this port, in 2004 (post-spill) the effort spatial distribution was similar to pre-spill period. A further analysis is necessary to determine if an insufficient sampling in 2003 due to the complications derived from the oil spill, could have had an effect in the simulations.

A spatial pattern in relation to effort (hauls duration) can be observed. This pattern define high effort density localized areas, that could correspond to fishing grounds.

Further work could improve the application. For instances using abundance data of target species from the commercial fleet. In this case, information on total commercial catch and effort by ICES squares, or any other georefenced grid, would be necessary. Both observers onboard data and surveys are quite useful information but they are more restricted spatiotemporally than the total commercial catch and effort. The use of fish abundance based on survey data could distort the commercial effort distribution, since spatial exploitation pattern and sampling survey are totally different.