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Abstract 

Antimicrobial peptides (AMPs) have a crucial role in the fish innate immune 

response, being considered a fundamental component of the first line of defence against 

pathogens. Moreover, AMPs have not been studied in the fish gonad since this is used 

by some pathogens as a vehicle or a reservoir to be transmitted to the progeny, as occurs 

with nodavirus (VNNV), which shows vertical transmission through the gonad, and/or 

gonadal fluids but no study has looked into the gonad of infected fish. In this 

framework, we have characterized the antimicrobial response triggered by VNNV in the 

testis of European sea bass, a very susceptible species of the virus, and in the gilthead 

seabream, which acts as a reservoir, both in vivo and in vitro, and compared with that 

present in the serum and brain (target tissue of VNNV). First, our data show a great 

antiviral response in the brain of gilthead seabream and in the gonad of European sea 

bass. In addition, for the first time, our results demonstrate that the antimicrobial 

activities (complement, lysozyme and bactericidal) and the expression of AMP genes 

such as complement factor 3 (c3), lysozyme (lyz), hepcidin (hamp), dicentracin (dic), 

piscidin (pis) or β-defensin (bdef) in the gonad of both species are very different, but 

generally activated in the European sea bass, probably related with the differences of 

susceptibility upon VNNV infection, and even differs to the brain response. 

Furthermore, the in vitro data suggest that some AMPs are locally regulated playing a 

local immune response in the gonad, while others are more dependent of the systemic 

immune system. Data are discussed in the light to ascertain their potential role in viral 

clearance by the gonad to avoid vertical transmission. 
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1. Introduction 

The infection of the gonad by pathogens is the initial step to promote horizontal 

transmission through gonadal fluids and/or vertical transmission through infected 

gametes [1, 2]. In all vertebrates, the gonad is considered an immunologically-

privileged site, as also occurs with the brain and retina. In those tissues, the immune 

response proceeds in a different manner in order to avoid cell damage [3, 4], which is 

used by some pathogens to be hiden and scape to the immunological control. In fish, the 

implications of this different regulation of the immune functions inside the reproductive 

organs and its implication on pathogen dissemination through the gonad have very 

recently been documented [5-7]. However, this immune response in the gonad from 

infected fish deserves deeper characterization as a mean to control this route of 

pathogens dissemination. In that sense, antimicrobial peptides (AMPs) are increasingly 

recognized as a critical first line of defence against many pathogens and have been 

extensively studied in invertebrates and vertebrate species, including fish [8]. Their 

specific characteristics of low molecular weight, polarity or amino acid composition 

confer them a broad-spectrum of antimicrobial activities against bacteria, virus, fungi, 

protozoa, and even tumour cells [9-11]. The AMPs expressed in the mammalian gonad 

are considered to assume an important part of a highly effective immune response 

against pathogens since the production of pro-inflammatory factors is strictly restrictive 

in this tissue in order to avoid germ cell damage [12, 13] as also described in gilthead 

seabream gonad [4]. In teleost fish, more than 60 AMPs have been described and 

determined its expression in several tissues, including gonad [14]. Unfortunately, to our 

knowledge, nothing is known about their regulation and immunological role in the fish 

gonad despite the immune peculiarities of this organ and the important roles attributed 

to AMPs. 

Nodavirus (VNNV), a bipartite and positive single-stranded RNA virus, is a 

known vertical and horizontal transmitted pathogen [15-20] able to infect more than 50 

marine fish species, some of them especially sensitive, as the European sea bass 

(Dicentrarchus labrax), and others only susceptible to some strains of VNNV, as occurs 

with gilthead seabream (Sparus aurata) [18, 21]. Interestingly, though the main target 

tissues of VNNV are the brain and the retina [18, 21], both immune-privileged tissues, 

as the gonad, the virus has also been detected in the European sea bass liver, spleen and 

caudal fin [22] and more recently we have also found it into the gonad [23]. Previous 
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studies have evaluated the role of several immune responses in the head-kidney or brain 

after VNNV infections such as the gene expression of interferon, pro-inflammatory 

cytokines, chemokines or leucocyte markers as well as leucocyte functions such as 

proliferation, respiratory burst or cell-mediated cytotoxic activity but never the role of 

AMPs [24-28]. Regarding the AMPs, it is unknown if they are triggered upon nodavirus 

infection but it has been well demonstrated that some isolated AMPs showed anti-

VNNV activity in vitro [9]. However, no other study has evaluated the role of AMPs 

into the gonad from fish infected with nodavirus, nor any other immune response. 

Therefore, with the knowledge that VNNV uses the fish gonad to be transmitted 

and that it is detected and isolated form European sea bass and gilthead seabream 

gonads [23], we aimed in the present study to assess the potential role of AMPs in the 

innate immune response triggered by VNNV in the gonad. Thus, we have evaluated the 

antimicrobial activities (complement, lysozyme and bactericidal activities) in serum and 

gonad extracts, as well as the expression profiles of several AMP coding genes (c3, lyz, 

hamp, dic, pis or bdef) in brain and gonad, upon in vivo infection, in two fish species 

with different susceptibility to VNNV, the European sea bass and the gilthead 

seabream. The local immune response triggered in the gonad by VNNV without the 

systemic influence by means of an in vitro challenge of the gonad with VNNV and poly 

I:C have also been determined. Moreover, the capability of VNNV to infect brain and 

gonad causing different effect on tissue functionality prompted us to dilucidate the 

possible correlations between the AMPs gene expression levels found in the brain and 

the gonad.  

 

2. Material and methods 

2.1 Animals  

Healthy specimens of European sea bass (Dicentrarchus labrax L.) and gilthead 

seabream (Sparus aurata L.) were bred and kept at the Centro Oceanográfico de 

Murcia (IEO, Mazarrón, Murcia). The fish were kept in 14 m3 tanks with the water 

temperature ranging from 14.6 to 17.8°C, a flow-through circuit, a suitable aeration and 

filtration system, natural photoperiod and fed daily with 1% of biomass of a commercial 

pellet diet (Skretting). Before sampling, all specimens were anesthetized with 40 µl/l of 
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clove oil, bled and immediately decapitated and weighed. All animal studies were 

carried out in accordance with the European Union regulations for animal 

experimentation and the Bioethical Committee of the Instituto Español de Oceanografía 

and of the University of Murcia. 

2.2. Nodavirus stocks 

Nodavirus (VNNV) (strain 411/96, genotype RGNNV) were propagated in the 

SSN-1 cell line (Frerichs et al., 1996). The SSN-1 cells were grown at 25°C in 

Leibovitz's L15-medium (Gibco) supplemented with 10 % fetal bovine serum (FBS; 

Gibco), 2 mM L-glutamine (Gibco), 100 i.u./ml penicillin (Gibco), 100 µg/ml 

streptomycin (Gibco) and 50 μg/ml gentamicin (Gibco) using Falcon Primaria cell 

culture flasks (Becton Dickinson). Cells were inoculated with VNNV and incubated at 

25ºC until the cytopathic effect was extensive. Supernatants were harvested and 

centrifuged to eliminate cell debris. Virus stocks were titrated in 96-well plates as 

previously described [29]. 

2.3 In vivo infection 

Specimens of European sea bass [n = 50; 12525 g body weight (bw)] and 

gilthead seabream (n = 50; 30577 g bw) were translated to the University of Murcia 

aquaria. Fish were randomly divided into two tanks, kept in 450-500 L running seawater 

(28 ‰ salinity) aquaria at 22-26ºC and with a 12 h light: 12 h dark photoperiod and 

acclimatised for 15 days prior to the experiments. Each group received a single 

intramuscular injection of 100 µl of SSN-1 culture medium (mock-infected) or culture 

medium containing 106 TCID50/fish of VNNV since this route of infection has been 

proven as the most effective [30]. Fish (n = 6 fish/group and sampling time) were 

sampled 1, 7, or 15 days after viral infection and blood serum, gonad and brain were 

removed. The blood was obtained from the caudal peduncle and the serum samples 

were obtained by centrifugation at 10,000 g during 1 min at 4ºC, and immediately 

frozen and stored at -80ºC until used. Fragments of gonad and brain were immediately 

frozen in TRIzol Reagent (Invitrogen) and stored at -80ºC for later RNA isolation. 

Fragments of gonads were also immediately frozen in liquid nitrogen and stored at -

80ºC for later analysis of antimicrobial activities.  

2.4. In vitro treatments 
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Specimens of naïve European sea bass males (n = 6) or gilthead seabream males 

(n = 6) were bled and the gonad removed, weighed and chopped into 1 mm2 fragments 

to culture them in flat-bottomed 96-well microtiter plates (Nunc) with sL-15 

[Leibovitz’s L15-medium supplemented with 2 mM glutamine, 100 u.i./ml penicillin, 

100 µg/ml streptomycin, 2 µg/ml fungizone (Invitrogen), 2% FBS and 0.35% of NaCl] 

culture medium (control) or containing VNNV (107 TCID50/ml) or poly I:C (62.5 

µg/ml; Sigma) during 24 hours at 25ºC. Afterwards, fragments of tissue were washed 

with 0.01 M PBS and stored in TRIzol Reagent at -80ºC for later isolation of RNA. 

2.5. Analysis of gene expression by real-time PCR 

Total RNA was isolated from TRIzol Reagent (Invitrogen) frozen samples 

following the manufacturer’s instructions. One µg of total RNA was treated with 

DNAse I (1 unit/µg RNA, Promega) to remove genomic DNA. The first strand of 

cDNA was synthesized by reverse transcription using the Superscript III (Invitrogen) 

with an oligo-dT12-18 primer (Promega) followed by RNAse H (Invitrogen) treatment, 

at 50ºC for 60 min.  

The expression of the genes codifying for the interferon-induced GTP-binding 

protein Mx (mx), complement component 3 (c3 1-2), lysozyme (lyz), hepcidin (hamp), 

dicentracin (dic), piscidin (pis) or beta-defensin (bdef) was analysed by real-time PCR 

performed with an ABI PRISM 7500 instrument (Applied Biosystems) using SYBR 

Green PCR Core Reagents (Applied Biosystems) as previously described [28]. Reaction 

mixtures were incubated for 10 min at 95ºC, followed by 40 cycles of 15 s at 95ºC, 1 

min at 60ºC, and finally 15 s at 95ºC, 1 min 60ºC and 15 s at 95ºC. For each mRNA, 

gene expression was corrected by the elongation factor 1 alpha (ef1a) content in each 

sample and expressed as 2-ΔCt, where ΔCt is determined by subtracting the ef1a Ct value 

from the target Ct. The specific primers used were designed using the Oligo Perfect 

software tool (Invitrogen) and are shown in Table 1. Before the experiments, the 

specificity of each primer pair was studied using positive and negative samples. A 

melting curve analysis of the amplified products validated the primers for specificity. 

Negative controls with no template were always included in the reactions. 

2.6. Antimicrobial activities 
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Antimicrobial activities were determined in serum and homogenated gonad 

samples. Fragments of gonad were weighed and mechanically homogenized in 1 ml of 

0.01 M PBS (9 mM sodium phosphate dibasic, 2 mM , sodium phosphate monobasic 

and 0.15 M NaCl), and centrifuged at 10,000 g during 10 min at 4 ºC to avoid cell 

debris. The supernatants of homogenated gonads, as well as the serum, were used for 

natural haemolytic complement, lysozyme and bactericidal activity assays.  

2.6.1. Natural haemolytic complement activity 

The activity of the alternative complement pathway was assayed using sheep red 

blood cells (SRBC, Biomedics) as targets [31]. Equal volumes of SRBC suspension (6 

%) in phenol red-free Hank's buffer (HBSS) containing Mg+2 (Panreac) and EGTA 

(Sigma) were mixed with serially diluted serum or gonad homogenates (5.2 ± 0.2 or 4.9 

± 0.01 mg of protein/ml of sea bass or gilthead seabream, respectively) to give final 

serum concentrations ranging from 10 % to 0.078 % or gonad homogenates ranging 

from 0.5 to 0.004 mg of protein/ml. After incubation for 90 min at 22ºC, the samples 

were centrifuged at 400 g during 5 min at 4°C to avoid unlysed erythrocytes. The 

relative haemoglobin content of the supernatants was assessed by measuring their 

optical density at 550 nm in a plate reader (Nunc). The values of maximum (100 %) and 

minimum (spontaneous) haemolysis were obtained by adding 100 µl of distilled water 

or HBSS to 100 µl samples of SRBC, respectively. The degree of haemolysis (Y) was 

estimated and the lysis curve for each specimen was obtained by plotting Y/(1-Y) 

against the volume of serum or gonad homogenates added (ml) on a log-log scaled 

graph. The volume of serum or gonad homogenates producing 50 % haemolysis 

(ACH50) was determined and the results were represented as ACH50 units/ml of serum 

or ACH50 units/g of gonad. Results were expressed as fold change of the infected group 

compared with the control group. 

2.6.2. Lysozyme activity 

The lysozyme activity of serum or gonad homogenates was measured according 

to a turbidimetric method modified from [32]. Briefly, 100 µl of serum or gonad 

homogenates diluted 1:2 with 0.01 M PBS at pH 6.2, were placed in flat-bottomed 96-

well plates in triplicate. To each well, 100 µl of 0.3 mg/ml freeze-dried Micrococcus 

lysodeikticus (Sigma) in phosphate citrate buffer (0.13 M disodium phosphate, 0.11 M 

citrate and 0.015 M NaCl, pH 6.2) was added as lysozyme substrate. The reduction in 
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absorbance at 450 nm was measured immediately every 30 s during 15 min at 22ºC in a 

plate reader (Nunc). One unit of lysozyme activity was defined as a reduction in 

absorbance of 0.001/min. The units of lysozyme present in serum and gonads 

homogenates were obtained from a standard curve made with hen egg white lysozyme 

(HEWL, Sigma) and the results were expressed as units/ml of serum or units/mg of 

gonad. Results were expressed as fold change of the infected group compared with the 

control group. 

2.6.3. Bactericidal activity 

The pathogenic marine bacteria Vibrio harveyi (Vh) (strain Lg 16/100) was 

grown in agar plates at 25ºC in tryptic soy agar (TSA, Sigma). Then, fresh single 

colonies of 1-2 mm were diluted in 5 ml of tryptic soy broth (TSB; Laboratorios 

Conda), cultured for 16 h at 25°C on an orbital incubator at 200-250 revolutions per 

minute (rpm) and adjusted to 108 bacteria/ml TSB. The absorbance of bacteria cell 

cultures were measured at 600 nm and used to know the concentration based on growth 

curves.  

The antibacterial activity of serum or gonad homogenates was determined by 

evaluating their effects on the bacterial growth of Vh curves using a method modified 

from [33]. Aliquots of 100 µl of the bacterial dilutions of Vh (1/10) were placed in flat-

bottomed 96-well plates and cultured with 100 µl of European sea bass or gilthead 

seabream serum or gonad homogenates dilutions (1/10). The absorbance of the samples 

was measured at 620 nm every 30 min intervals during 36 h at 25ºC. Samples without 

bacteria were used as blanks (negative control). Samples without serum or gonad 

homogenates were used as positive controls (100 % growth or 0 % antibacterial 

activity). Bactericidal activity was expressed as % of bacterial growth inhibition per ml 

of serum or mg of gonad. Results were expressed as fold change of the infected group 

compared with the control group. 

2.7. Statistical analysis 

The data were analysed by a t-Student to determine differences between control 

and infected groups at each time point and specie (*P≤0.1; **P ≤ 0.05; ***P ≤ 0.01). In 

addition, non-parametric Pearson correlation tests were applied to test correlations 

among antibacterial activities and gene expression levels in the gonad or among the 
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gene expression levels in gonad or brain after in vivo infections with VNNV using 

Statgraphics 15.0 (StatPoint, Inc). 

 

3. Results 

3.1. VNNV infection induces the antimicrobial response in serum and gonad  

The natural haemolytic complement, lysozyme and bactericidal activity in serum 

and gonad homogenates of European sea bass and gilthead seabream upon an in vivo 

infection with VNNV were analysed (Fig. 1). Haemolytic activity in the gonad of any 

specie was non-detectable for any group and at any assayed time. In serum, the 

haemolytic activity was inhibited at the beginning of the infection in both species (7 or 

1 day post-infection in European sea bass or gilthead seabream, respectively), while 

only in the European sea bass the serum haemolytic activity increased and reached 2.6-

fold after 15 days of infection (Fig. 1a, b). In contrast, lysozyme activity was unchanged 

in serum, but greatly increased in the gonad homogenates of both species upon VNNV 

infection (Fig. 1c, d). Thus, this activity increased 2.5- and 1.4-fold after 1 and 15 days 

of infection, respectively, in European sea bass gonad (Fig. 1c), and 3.1-fold increase 

after 7 days of infection in gilthead seabream gonad (Fig. 1d). Regarding the 

bactericidal activity, some differences were observed between species and tissues 

analysed (Fig. 1e, f). Thus, in the European sea bass, the bactericidal activity increased 

in serum, while decreased in the gonad after 7 and 15 days of infection (Fig. 1e). 

However, in the gilthead seabream, the bactericidal activity of serum decreased after 1 

day and increased after 15 days of infection coinciding with an increase of the 

bactericidal activity in the gonad (Fig. 1f).  

 

3.2. VNNV in vivo infection up-regulates the AMPs gene expression in sea bass gonad 

Firstly, we evaluated the expression of mx gene upon in vivo challenge with 

VNNV as indicator of the antiviral response (Figs. 2a, 2b, 3a, 3b). The results showed a 

lower mx gene induction in the brain of European sea bass (Fig. 2b) than in the gilthead 

seabream (Fig. 3b), as previously documented [26, 28, 34]. Surprisingly, the 
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transcription of mx gene in the gonad was up-regulated at all time points in European 

sea bass (Fig. 2a), while kept unaltered in gilthead seabream (Fig. 3a). 

Afterwards, we have studied the expression profiles in the brain and in the gonad 

of some known AMP genes upon in vivo challenge with VNNV and found a different 

pattern of expression between the both analyzed species (Figs. 2, 3). Thus, in the 

European sea bass (Fig. 2), the transcription of all AMPs analysed increased in at least 

one tissue, gonad or brain, while in the gilthead seabream (Fig. 3), those genes were 

down-regulated or kept steady. Thus, in the European sea bass gonad (Fig. 2c, e, g, i), 

VNNV infection increased the level of expression of c3, hamp and dic at days 1 and 7, 7 

and 15 and 15 of infection, respectively, and decreased the levels of expression of lyz at 

day 7 of infection. However, in the brain (Fig. 2d, f, h, j), the VNNV infection 

decreased the expression level of c3 gene throughout the trial and increased the 

expression levels of lyz and dic at days 1 and 15 of infection, and of hamp at all assayed 

times. In the gilthead seabream (Fig. 3), however, the VNNV infection decreased the 

expression levels of c3 and hamp in the gonad (Fig. 3c, g) at days 7 and 15 and 7, 

respectively, and the expression levels of c3 in the brain (Fig. 3d) at day 15, while no 

differences were observed in the expression levels of lyz, bdef and pis in any of the 

tissues and sampled times analysed (Fig. 3e, f, i, j, k, l).  

 

3.3. Gonad AMPs gene expression and some antimicrobial activities are negatively 

correlated 

There are previous available evidences about the interrelation of complement, 

lysozyme and bactericidal activities [35, 36], for this reason the correlation between 

these measured activities and the gene expression level of AMPs in the gonad upon in 

vivo infection with VNNV (Tables S1, S2) have also been studied. We found that, in 

both species, the expression of AMP genes negatively correlated with some 

antimicrobial activities. Thus, the gene expression of lyz negatively correlated with 

lysozyme activity in the gonad of European sea bass (Table S1), while in gilthead 

seabream gonad only the expression levels of c3 gene negatively correlated with 

bactericidal activity (Table S2).   
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3.4. AMPs gene expression negatively correlated between gonad and brain upon VNNV 

infection. 

When the correlation between the different gene expression in gonad and brain 

was studied, some differences between species were observed (Tables 2, 3). In the 

European sea bass brain, the expression of mx gene, up-regulated upon viral-infection, 

negatively correlated with c3 or hamp gene expression (Table 2), while no correlations 

were observed in the gilthead seabream brain (Table 3). In the other hand, in the 

gilthead seabream gonad, positive correlations were observed between mx and either c3, 

lyz, hamp or pis gene expressions (Table 3), while no correlations were observed in the 

European sea bass gonad (Table 2). Moreover, in European sea bass gonad, the 

expression pattern of c3 positively correlated with hamp gene expression (Table 2), 

while in the gilthead seabream gonad, strong correlations were observed between c3 and 

either lyz, hamp or pis gene expression and between hamp and either lyz or pis gene 

expression (Table 3). Regarding the brain, the transcription levels of hamp and lyz as 

well as hamp and pis positively correlated in European sea bass and gilthead seabream, 

respectively (Tables 2, 3). Interestingly, in the European sea bass positive correlation 

was observed between the mx gene expression in brain and the hamp gene expression in 

gonad (Table 2). However, negative correlations were found between some AMPs gene 

expression in brain and gonad in both species. Thus, in European sea bass (Table 2), the 

transcription levels of lyz gene in brain was negatively correlated either with c3 

expression levels in gonad, while in the gilthead seabream (Table 3), the transcription 

levels of bdef in the brain were negatively correlated either with c3 or lyz gene 

expression in the gonad.  

 

3.5. In vitro exposure to VNNV differently alters the expression of AMP genes  

Firstly, we found that both European sea bass and gilthead seabream gonad 

failed to mount an antiviral immune response after incubation with poly I:C or VNNV 

during 24 h (Fig. 4a, b), suggesting that these conditions might be suboptimal for this 

response. Regarding the AMPs, in the European sea bass (Fig. 4a), the expression of lyz 

gene was down-regulated upon VNNV infection, while hamp and dic gene expression 

was up-regulated upon VNNV and VNNV or poly I:C challenges, respectively. In the 

gilthead seabream (Fig. 4b), however, the c3 gene expression was up-regulated upon 
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poly I:C challenge, while pis and bdef gene expression were down-regulated upon 

VNNV. Moreover, poly I:C completely blocked the transcription of bdef gene (Fig. 4b). 

Noteworthy, there was not transcription of c3 gene in control gilthead seabream gonad 

unless stimulated with poly I:C (Fig. 4b). 

 

4. Discussion 

The role of AMPs as a part of innate immune response, as well as its regulation, 

has been studied in many vertebrates [37]. Interestingly, immune privilege is a term 

applied to eye, brain and reproductive organs where immune responses either do not act, 

or act in a different manner from other parts of the animal body. In this framework, the 

AMPs expressed in the reproductive system of vertebrates probably assume an 

important role in the innate immune response against pathogens [9, 38-40]. In fish, 

AMPs have been mainly studied in the immune organs [14], however, it is worth to 

study their role in the reproductive organs since the regulation of the immune response 

in those organs is different and it is also known that they allow to several virus colonize 

the gonad, persist and be transmitted [5, 6]. Between those pathogens, viruses and in 

particular VNNV can spread both horizontally and vertically from mother to offspring, 

producing persistent infections and giving raise to asymptomatic carriers in European 

sea bass and gilthead seabream specimens [25, 41, 42]. In fact, in addition to the 

nodavirus detection by PCR and ELISA techniques in asymptomatic brood fish and 

their embryos [16, 18, 20, 30], we have already detected and isolated infective VNNV 

particles from the gonads of infected European sea bass and gilthead seabream 

specimens [23]. Interestingly, in the brain, one of the target tissues of VNNV, the 

antiviral activity, determined as mx gene expression, was higher in gilthead seabream 

than in European sea bass, a fact that has been related with the resistance and 

susceptibility of these fish species to VNNV disease. Conversely, the European sea bass 

gonad from VNNV-infected fish showed an important up-regulation of the mx gene, 

which failed to do so in the gilthead seabream, indicating a strong interferon and 

antiviral response in this specie, which has never been observed. Therefore, we are 

trying to characterize the gonadal immune response under VNNV infection, focussing 

in this study on the AMP response.  



13 

C3, a major component of the complement system, is considered as an AMP 

because of their direct implication in the defence against pathogens [43, 44]. Thus, 

when the haemolytic activity of the complement in European sea bass and gilthead 

seabream serum were studied, small alterations were detected from its basal levels upon 

infection in contrast to the low increase in other trial [45]. However, non-detectable 

activity was observed in the gonads of any specie neither in control nor in infected 

specimens. Interestingly, a detectable transcription level of c3 gene was observed in the 

gonad of control specimens of both species, which was greatly up-regulated in the 

European sea bass whilst down-regulated in gilthead seabream. Interestingly, upon in 

vitro challenge of the gonad, no variation on c3 gene expression was observed in the 

European sea bass neither by poly I:C or VNNV. Curiously, in the gonad of gilthead 

seabream challenged in vitro, no detectable transcription of c3 gene was observed, 

except after poly I:C stimulation, as also reported in a previous in vivo study [46]. 

However, in the in vivo experiment, we reported basal and regulated c3 gene expression 

in the gonad. These differences could be due to different acute stress conditions, which 

could affect a gene expression during weeks [47]. Overall, these data suggest that C3 

convertase is produced and this production is regulated upon infection in the testis of 

both species of teleost, however its activity could be inactivated by specific inhibitors 

produced locally, as occurs in humans [48]. All these data together suggest that c3 gene 

expression might be regulated and influenced by multiple stimuli that could affect the 

local immune response of both gonad and brain.  

Regarding lysozyme activity, previous data showed that this activity was 

decreased in European sea bass and gilthead seabream specimens exposed to VNNV 

[45]. We found that in the gonad, but not in serum, this activity was changed upon 

infection in both species. However, the lysozyme activity recorded in the gonad of 

European sea bass increased earlier (1 day upon VNNV infection) and lasted longer (15 

days upon infection) than in gilthead seabream gonad (7 days upon VNNV infection). 

Interestingly, in the gonad, we found that lysozyme activity negatively correlated with 

the expression levels of lyz gene of European sea bass, suggesting that there are 

regulatory mechanisms of the protein activity involved in the up-regulation of lysozyme 

activity upon 1 day of infection and that this increased activity triggers a down-

regulation of lyz gene transcription later on. In mammals, lyz gene is selectively 

expressed in the testis and its expression levels differ during its different developmental 
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stages [49-52] as also occurs during the reproductive cycle of European sea bass [23]. 

Furthermore, in both species, the lyz expression data obtained from the in vivo infection 

are in concordance with those observed in the gonad after 24 hours of in vitro challenge, 

suggesting that the lyz expression changes are triggered by a local immune response.  

In this study, the bactericidal activity against Vh upon VNNV infection was 

clearly different in European sea bass and gilthead seabream. Thus, in European sea 

bass, this activity decreased in gonad and increased in serum from 7 days onwards; 

whether in gilthead seabream, after a slight down-regulation in serum at day 1, this 

activity was increased at day 15 post-infection in both gonad and serum. Evaluation of 

the direct lytic activity against pathogens is the most practical determination awaited for 

farmers whilst researchers also try to identify and characterize the molecules involved in 

this activity. Thus, determination of the bactericidal activity of the gonad might be more 

important than single AMP activities. In that sense, we have analysed the expression of 

several AMP coding genes known in both species, hepcidin and dicentracin in the 

European sea bass and hepcidin, piscidin and beta-defensin in the gilthead seabream; all 

of them cationic antimicrobial peptides [14]. Some of these peptides are suggested to be 

involved in the defence against virus, as happens with C3 and piscidin [53, 54]. 

Furthermore, some of them have demonstrated antiviral function, as occurred with 

lysozyme, hepcidin and beta-defensin [9, 14, 55]. Our data showed that in the European 

sea bass gonad, where the bactericidal activity is inhibited upon infection, the 

expression of most of the genes is up-regulated (c3, hamp, dic) with the exception of lyz 

mRNA. However, in the gilthead seabream gonad, where the activity is stimulated upon 

infection, the expression of most of the genes is down-regulated (c3 and hamp) or 

unchanged (lyz, bdef and pis). Interestingly, the bactericidal activity was inversely 

correlated with c3 gene expression in gilthead seabream gonad, while no correlations 

were found between the bactericidal activity and the expression of any of the AMP 

genes analysed in the European sea bass gonad. These data point to the complexity in 

the regulation of the processes analysed and to the need of further and deeper studies at 

molecular and functional levels. 

When compared those AMPs gene expression in the gonad upon an in vivo 

infection with an in vitro challenge of the gonad with VNNV or poly I:C, we found that 

lyz, hamp and dic gene expression (but not c3 gene expression) was similarly modified 

in both experimental situations in the European sea bass gonad, suggesting this that the 
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expression profile changes observed are triggered by immune local responses. However, 

our in vitro and in vivo data are difficult to compare since the in vitro stimulation of the 

gonad failed to change the antiviral mx gene expression in sharp contrast to what 

occurred in the in vivo infection. This fact would suggest that the antiviral and 

antimicrobial responses, at least those studied in this work, have different regulations 

and mediators. Furthermore, we also found that even when brain and gonad are 

immune-privileged organs, those tissues behave differently upon infection with VNNV 

at the gene expression level. Thus, in the European sea bass, the changes observed in the 

expression of c3 and lyz genes were different in gonad and brain, while the hamp and 

dic expression levels were similarly modified upon infection in both tissues. Regarding 

gilthead seabream, all the genes analysed were similarly modified upon infection in 

both tissues, except hamp gene, which transcription was down-regulated in the gonad 

and unchanged in the brain. Interestingly, transcription of mx and some AMP genes 

were positively correlated in the gilthead seabream brain, adding more data to the idea 

that the high immune response in this tissue is the responsible for the viral clearance. 

Taking into account the brain-pituitary-gonadal axis, where both brain and gonad are 

closely linked by positive or negative feedback mechanisms [56] and that VNNV is 

capable to infect both, brain and gonad, and alter some reproductive functions as the 

steroid serum levels [23], we have analysed the relation between gonad and brain 

responses at the gene expression levels. Our analysis showed that in the European sea 

bass, lyz gene expression in brain negatively correlated with c3 and hamp gene 

expressions in the gonad. Similarly, in the gilthead seabream, the bdef gene expression 

in brain negatively correlated with c3 and lyz gene expressions in gonad. This data 

showed that the AMPs response, at the gene expression level, is inversely regulated in 

both tissues. This could partially explain the ability of VNNV to be transmitted through 

the gonad without severely affecting the reproductive functions of the specimens.    

To conclude, the results obtained in this study demonstrate that the immune 

response based on AMPs in the European sea bass or gilthead seabream gonads are 

clearly different upon VNNV infection, at both expression and activity levels. These 

differences could be due to different susceptibility of the species to the infection and 

could determine the transmission rates of VNNV in each species. Moreover, the 

differences observed between the in vivo and in vitro experiment suggest that some 

AMPs are locally regulated by a local immune response in the gonad while others might 
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be more dependant of the systemic immune responses. In addition, our results determine 

clear differences in the immune responses triggered by VNNV in brain and gonad, 

explaining this, the differences observed in the affection of the functionality of both 

tissues upon VNNV infection.  
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Figure legends 

 

Figure 1: European sea bass and gilthead seabream antimicrobial activities in 

serum (black bars) and gonad homogenates (grey bars) upon in vivo VNNV infection. 

Haemolytic complement activity (a, b), lysozyme activity (c, d) and bactericidal activity 

(e, f). Data represent the mean ± standard error of the activity of VNNV-infected group 

respect to the control group (n = 6/group and time). Significance level (P) was fixed at 

0.1 (P0.1*; P0.05**; P0.01***). ND, not detected. 

 

Figure 2: Expression of mx (a, b) and antimicrobial peptide genes c3 (c, d), lyz 

(e, f), hamp (g, h) and dic (i, j) in the gonad (a, c, e, g, i) or brain (b, d, f, h, j) from 

control (white bars) or VNNV-infected (grey bars) European sea bass pecimens. Data 

represent the mean ± standard error (n = 6/group and time). Significance level (P) was 

fixed at 0.1 (P0.1*; P0.05**; P0.01***).  

 

Figure 3: Expression of mx (a, b) and antimicrobial peptide genes c3 (c, d), lyz 

(e, f), hamp (g, h), bdef (i, j) and pis (k, l) in the gonad (a, c, e, g, i, k) or brain (b, d, f, h, 

j, l) from control (grey white bars) or VNNV-infected (grey bars) gilthead seabream 

specimens. Data represent the mean ± standard error (n = 6/group and time). 

Significance level (P) was fixed at 0.1 (P0.1*; P0.05**; P0.01***). 

 

Figure 4: Expression of mx and antimicrobial peptide genes in the gonad of 

European sea bass (a) or gilthead seabream (b) upon in vitro treatment with medium 

(control group, white bars), VNNV (grey bars) or poly I:C (black bars) during 24 hours. 

Data represent the mean ± standard error (n = 6/group). Significance level (P) was fixed 

at 0.1 (P0.1*; P0.05**; P0.01***). ND, not detected. 

 











Table 1: Gene accession numbers and primer sequences used for gene expression 

analysis. 

Specie Name Abbreviation 
Accession 

number 
Sequence (5’-3’) 

GAAGAAGGGCTACATGATCGTC Interferon-induced GTP-

binding protein Mx 
mx 

AM228977, 

HQ237501, 

AY424961 CCGTCATTGTAGAGAGTGTGGA 

ACCAAAGAACTGGCAACCAC complement component 

3-1 and 3-2  
c3 1-2 

HM563078, 

HM563079  
CTAGCAGTCGGTCAGGGAAC 

ATTTCCTGGCTGGAACACAG 
lysozyme  lyz FN667957 

GAGCTCTGGCAACAACATCA 

CCAGTCACTGAGGTGCAAGA 
hepcidin  hamp DQ131605 

GCTGTGACGCTTGTGTCTGT 

GGCAAGTCCATCCACAAACT 
dicentracin dic AY303940 

ATATTGCTCCGCTTGCTGAT 

CGTTGGCTTCAACATCAAGA 

European 

sea bass 

elongation factor 1 alpha  ef1a FM019753 

GAAGTTGTCTGCTCCCTTGG 

AAGAGGAGGACGAGGAGGAG Interferon-induced GTP-

binding protein Mx 
mx 

FJ490556, 

FJ490555, 

FJ652200   CATCCCAGATCCTGGTCAGT 

ATAGACAAAGCGGTGGCCTA complement component 

3 
c3 CX734936 

GTGGGACCTCTCTGTGGAAA 

CCAGGGCTGGAAATCAACTA 
lysozyme  lyz AM749959 

CCAACATCAACACCTGCAAC 

GCCATCGTGCTCACCTTTAT 
hepcidin hamp CB184616 

CTGTTGCCATACCCCATCTT 

CCCCAGTCTGAGTGGAGTGT 
beta-defensin  bdef FM158209 

AATGAGACACGCAGCACAAG 

CCTTGTGTTGTCCATGGTTG 

Gilthead 

seabream 

piscidin  pis FM158699 

ACTGCTCCAGCTGCAAGTCT 



CTGTCAAGGAAATCCGTCGT 
elongation factor 1 alpha  ef1a AF184170 

TGACCTGAGCGTTGAAGTTG 

 



 Table 2: Correlation observed between mx and AMPs gene expression in brain and 
gonad of European sea bass after in vivo infection with VNNV. The first number 
corresponds to Pearson coefficient of correlation and the second to the significant 
difference P≤0.05. Written in bolds are the parameters correlated. 
 

 

Gonad Brain 
European sea bass 

mx c3 lyz hamp dic mx c3 lyz hamp 

0.62         
c3 

0.08         

-0.30 0.54        
lyz 

0.39 0.14        

0.40 0.76 0.34       
hamp 

0.28 0.02 0.37       

-0.36 0.11 0.47 0.17      

Gonad 

dic 
0.38 0.82 0.29 0.72      

0.56 0.39 -0.19 0.65 0.17     
mx 

0.11 0.16 0.49 0.02 0.56     

-0.32 -0.09 0.47 -0.07 0.44 -0.62    
c3 

0.43 0.78 0.34 0.90 0.56 0.03    

0.05 -0.72 -0.61 -0.32 0.36 0.01 -0.16   
lyz 

0.89 0.03 0.08 0.40 0.43 0.98 0.76   

0.42 -0.59 -0.16 -0.22 0.35 -0.74 0.29 0.81  
hamp 

0.24 0.10 0.68 0.57 0.44 0.01 0.58 0.01  

0.30 0.59 0.55 0.09 0.28 -0.20 0.21 -0.54 -0.38 

Brain 

dic 
0.55 0.21 0.26 0.86 0.65 0.55 0.79 0.27 0.45 

 
 



 
Table 3: Correlation observed between mx and AMPs gene expression in brain and 

gonad of gilthead seabream after in vivo infection with VNNV. The first number 

corresponds to Pearson coefficient of correlation and the second to the significant 

difference P≤0.05. Written in bolds are the parameters correlated. 

 

Gonad Brain Gilthead 
seabream mx c3 lyz hamp bdef pis mx c3 lyz hamp bdef 

0.68           
c3 

0.00           

0.79 0.74          
lyz 

0.00 0.00          

0.79 0.71 0.77         
hamp 

0.00 0.00 0.00         

0.30 0.01 -0.34 0.28        
bdef 

0.16 0.98 0.31 0.37        

0.76 0.67 0.48 0.57 0.26       

Gonad 

pis 
0.00 0.01 0.09 0.03 0.41       

0.06 -0.22 -0.01 -0.03 -0.04 -0.13      
mx 

0.76 0.29 0.97 0.89 0.85 0.51      

0.57 0.43 0.09 0.25 -0.03 -0.43 -0.18     
c3 

0.16 0.34 0.85 0.54 0.95 0.29 0.66     

-0.34 0.05 -0.06 -0.42 -0.54 0.12 -0.06 -0.61    
lyz 

0.09 0.86 0.85 0.12 0.07 0.67 0.75 0.14    

-0.21 0.07 -0.07 -0.10 -0.05 0.32 -0.19 -0.61 0.50   
hamp 

0.28 0.82 0.83 0.74 0.87 0.26 0.34 0.14 0.06   

-0.15 -0.60 -0.65 -0.35 0.41 -0.50 -0.11 -0.04 -0.24 -0.34  
bdef 

0.46 0.02 0.02 0.19 0.18 0.07 0.56 0.93 0.40 0.22  

0.02 0.32 0.03 0.20 0.05 0.44 0.15 -0.54 0.12 0.77 -0.28 

Brain 

pis 
0.93 0.26 0.92 0.47 0.88 0.12 0.45 0.19 0.67 0.00 0.31 

 
  

 



Table S1: Correlation observed between AMPs gene expression and antimicrobial 

activities in gonad of European sea bass after in vivo infection with VNNV. The first 

number corresponds to Pearson coefficient of correlation and the second to the 

significant difference P≤0.05. Written in bolds are the parameters correlated. 

 

 

Gene expression 
Antimicrobial 

activities European sea bass 

c3 lyz hamp dic lysozyme 

-0.68 -0.72 -0.29 0.17  
lysozyme 

0.07 0.04 0.48 0.75  

-0.31 0.34 -0.21 -0.06 0.19 

Antimicrobial 
activities 

bactericidal 
0.46 0.41 0.62 0.91 0.65 

 
 



 
Table S2: Correlation observed between AMPs gene expression and antimicrobial 

activities in gonad of gilthead seabream after in vivo infection with VNNV. The first 

number corresponds to Pearson coefficient of correlation and the second to the 

significant difference P≤0.05. Written in bolds are the parameters correlated.  

 

Gene expression 
Antimicrobial 

activities Gilthead seabream 

c3 lyz hamp bdef pis lysozyme 

-0.50 -0.08 -0.17 -0.25 -0.52   lysozyme 
0.08 0.80 0.55 0.47 0.07   
-0.80 -0.48 -0.31 -0.23 -0.54 0.33 

Antimicrobial 
activities 

bactericidal 
0.00 0.11 0.28 0.50 0.06 0.25 

 



Highlights 

1. Great differences between brain and gonad immune responses are 

triggered by VNNV. 

2. VNNV triggers a different AMPs response in European sea bass or 

gilthead seabream gonads. 

3. Some AMPs are locally regulated in the gonad. 
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