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ABSTRACT

Fishery collapses frequently result from combined
pressures of the environment and man, which are
difficult to discern because of the complexities
involved and our limited knowledge. Models to re-
solve this complexity often become too sophisticated,
with too many assumptions and, consequently, with
little capacity to predict beyond calibration data. In
this paper we implement a different procedure where
the model is kept simple and uncertainty accounts for
the equation imperfectness to reproduce ecological
complexity. Human and environmental forcing on an
anchovy (Engraulis encrasicolus) stock are simulated
with only six parameters plus their error terms, and
the uncertainty is computed with Bayesian methods.
The simple structure is able to reproduce the major
dynamical features of this species in the Gulf of
Cádiz, including data on life stages and age structure
that had no contact with the model. This is a dis-
tinct performance for a frugal approach working on a
mid-trophic species and a positive instance where
parsimony can simulate the interaction of man,
fish and the environment, provided uncertainty is
accounted for in the process.
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INTRODUCTION

Fishery collapses frequently result from the combined
pressure of the environment and man. Although fish
populations fluctuate in the absence of human activity
(Baumgartner et al., 1992), fishing pressure increases
vulnerability to collapse (Cushing, 1996; Bakun and
Weeks, 2006), in particular when combined with an
adverse physical environment (Ruiz et al., 2007).
Short-lived pelagic species such as clupeoids are very
sensitive to their physical environment (Nakata et al.,
2000; Lloret et al., 2001; Guisande et al., 2004; Erzini,
2005; Basilone et al., 2006) as it affects the survival of
their early life stages and may cause recruitment fail-
ures (Cingolani et al., 1996; Dimmlich et al., 2004).
Mechanistic theories merge physical (transport, tur-
bulence, etc.) and biological (predation, growth, etc.)
components to connect environmental fluctuations
with clupeoid recruitment (Parrish et al., 1983;
Checkley et al., 1988; Cury and Roy, 1989; Bakun,
1996; Bakun and Broad, 2003). Hydrodynamic pro-
cesses retain (advect) early stages within (from)
favourable conditions. Adequate temperature and
food availability enhance growth rates and reduce
characteristic acute mortality owing to predatory
pressure and starvation. Hence, marine areas optimal
for the successful recruitment of clupeoids frequently
have slow currents, high primary production and warm
waters (Cole and McGlade, 1998).

The shelf zone between Capes Santa Marı́a and
Trafalgar in the Gulf of Cádiz embraces these
favourable features and sustains a significant fishing
activity, anchovy (Engraulis encrasicolus) being one of
the main resources. Bathymetry and coastline create a
cyclonic circulation segregated from the energetic
currents nearby the Strait of Gibraltar (Garcı́a-Lafu-
ente et al., 2006). Salt marshes and river input
respectively heat and fertilize the shelf during summer,
generating a large pool of warm and chlorophyll-rich
water (Navarro and Ruiz, 2006; Garcı́a-Lafuente and
Ruiz, 2007). At that time of year the concentration of
fish eggs and larvae is very high (Baldó et al., 2006),
particularly for anchovy (Ruiz et al., 2006). Besides
favourable conditions for planktonic stages, the shelf is
connected to the lower reaches of the Guadalquivir
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River, a nursery area for post-larvae of anchovy (Baldó
and Drake, 2002; Drake et al., 2007).

Favourable conditions for anchovy recruitment are
distorted under specific meteorological regimes at the
southern Iberian Peninsula. Shelf currents are highly
sensitive to easterly winds, which blow as intense
bursts in the area. Persistent easterlies cause the off-
shore spilling of waters from the shelf through Capes
Santa Marı́a and San Vicente (Relvas and Barton,
2002). Westward advection of fish larvae under this
regime has been documented (Catalán et al., 2006). In
addition, latent heat fluxes during easterlies cool shelf
waters and hamper anchovy spawning (Ruiz et al.,
2006). Rain at the south of the Iberian Peninsula
fertilizes the shelf through freshwater discharges from
the Guadalquivir River (Navarro and Ruiz, 2006).
A dam, 110 km upstream from Guadalquivir mouth,
tightly regulates discharges, which are dramatically
reduced during years of severe drought. Besides low-
ering the primary production of the shelf, the agri-
culture management of the dam during dry years
modifies the seasonal pattern of discharges and nega-
tively impacts the anchovy nursery within the estuary
(Drake et al., 2002).

Low recruitment under adverse meteorology, in-
tense easterlies and low precipitation, is thought to
decrease anchovy landings at the Gulf of Cádiz (Ruiz
et al., 2006). Although similar features are also
observed in other anchovy fisheries (Motos et al.,
1996), they are seldom included in management
models (Freon et al., 2005). Lack of an underlying
hypothesis and neglect of inferences from data are
among the flaws leading to this failure to connect
fisheries assessment and ecosystem functioning
(Barange, 2001). In addition, uncertainty owing to
imperfect model representation of recruitment and its
connection with the environment is barely accounted
for in these approaches. Uncertainty is a key compo-
nent to compute in the implementation of any science
aimed at supporting decision-making (Lindley, 1971).
When applied to fishery research, Bayesian approaches
compute this uncertainty as a natural output after
application of Bayes’ theorem (Punt and Hilborn,
1997). Implementation of state-space schemes of stock
dynamics under the Bayesian approach accounts for
both observational and hypothesis uncertainty (Meyer
and Millar, 1999; Rivot et al., 2004). As a result, they
elude the dichotomy between mechanistic (e.g., Fas-
ham-like ecosystem models) and purely data-driven
(e.g., generalized additive models) inference tech-
niques in addition to assimilating all available infor-
mation to reduce uncertainty. This is particularly
useful when connecting information sources with

different origin and format as are available for small
pelagic fisheries. For a small pelagic like anchovy, the
Bayesian approach straightforwardly applies these dif-
ferent sources to provide consistent simulation of stock
dynamics as well as projections of future scenarios
(Ibaibarriaga et al., 2008).

Available knowledge of stock dynamics may
include hypotheses concerning recruitment and its
interaction with the environment but also fishery data
of varying quality and resolution as well as estimates of
the stock by acoustic or other fishery-independent
methods. The former involves latent variables (sensu
Congdon, 2006; i.e., state variables that drive the
dynamics of the model but cannot be observed; e.g.,
spawning, recruitment or stock size) and accurate
measurements (e.g., wind, rain, currents, etc.) inter-
connected by processes consistent with an underlying
hypothesis where the environment forces population
dynamics. Therefore, error sources come from an
imperfect hypothesis or its inadequate mathematical
representation. The latter involves errors both in the
observations and in the model connecting these with
the latent variables, e.g., catch per unit effort is less
accurately measured than water temperature and its
connection with stock size frequently assumes a con-
stant catchability. The Bayesian approach easily and
consistently accommodates this disparity of knowledge
(e.g., hypothesis versus data, records of different
accuracy or frequency, observations connected to
latent variables) when modelling the dynamics of
small fish.

This paper implements this approach for a state-
space model of anchovy life stages. The model is used to
infer 17 years of stock size in the Gulf of Cádiz. As this
anchovy stock has proven to be sensitive to favourable
and adverse environmental conditions (Ruiz et al.,
2006), its population dynamics is modelled under the
influence of the physical environment and connected
to available observations of sea surface temperature,
river discharge, wind, catches, catch per unit effort, and
acoustic records, as available. The model diagnoses
values that are consistent with independent observa-
tions of anchovy early life stages in the Gulf of Cádiz. It
is also able to explain the main crises historically
recorded for this fishery in the region.

MODEL

Process model

The model is applied for the 204 months between
January 1988 and December 2004. Anchovy abun-
dance at various life stages is estimated at this monthly
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resolution to the maximum age of 24 months.
Anchovies of the 2+ year group are very rarely
observed in the fishery (Anonymous, 2006) and are
not included in the model. Therefore, the model
considers 0, 1, 2, …, and 23 monthly age groups. The
first age group (0) is considered eggs (H) and the
second, larvae (L).

Spawning peaks in May–June, and in March–April
of the next year most of the population is already
mature (Millán, 1999). On that account, eggs are
introduced in the model as a proportion of the biomass
of individuals beyond age group 9,

P
R, provided the

water is warmer than 16�C and the temperature (T)
has increased at least 1� in the last month. This
approach follows other attempts to model the popula-
tion dynamics of Engraulis encrasicolus where egg pro-
duction is proportional to reproductive biomass with a
factor that accounts for the proportion of females in the
population, the biomass invested by them in the pro-
duction of eggs, and the proportion of that biomass
resulting in healthy eggs (Oguz et al., 2008). Equa-
tion 1 summarizes all these factors into a single
parameter (a, see Tables 1 and 2 for model nomen-
clature and life-stages respectively) whose a posteriori
probability distribution is obtained after implementa-
tion of the Bayesian approach. Limiting egg production
to time periods when a minimum temperature is ob-
tained and to the warming phase of the seasonal cycle
follows observations made for this species (Garcı́a and
Palomera, 1996; Motos et al., 1996) and particularly for

its spawning in the Gulf of Cádiz (Ruiz et al., 2006).
The state equation for eggs is:

Ht ¼ a
X

Rt if Tt>16 and ðTt � Tt�1Þ>1;

or 0 otherwise:

Ht � NðHt; SHÞ ð1Þ

N stands for the normal distribution of egg abun-
dance at month t (Ht) with mean and standard devi-
ation (accounting for process error) equal to Ht and
SH, respectively.

Table 1. Symbols for the parameters and variables implemented in the model.

Symbol Description Units Prior

a Parameter for egg inputs Month)1 Normal
q Parameter for the effect of discharges Month)1 Normal
s Parameter for the effect of sea temperature �C)1 Normal
k Parameter for the effect of easterlies Day)1 Normal
l Residual mortality after fishing and environmental

(temperature, wind and discharges) losses
Month)1 Normal

q Catchability Fishing trips Normal
SH Standard deviation of egg input process model n Gamma
SL Standard deviation of larval survival process model n Gamma
SJ Standard deviation of juvenile survival process model n Gamma
SYR Standard deviation of young and reproductive survival process model n Gamma
SCPUE Standard deviation of CPUE observational model Tons ⁄ fishing trip Gamma
SA Standard deviation of acoustics observational model n Gamma
CPUE Catch per unit effort Tons ⁄ fishing trip
A Acoustic estimate of stock size n

C Catches of anchovy in the Gulf of Cádiz n
T Sea surface temperature �C
D Monthly discharges from Alcalá del Rı́o dam hm3

W Days per month with easterlies >30 km h)1 Days

Table 2. Life stages considered in the model.

Age (months) Stage

0–1 (0) H (egg)
1–2 (1) L1 (larvae 1st month)
2–3 (2) L2 (larvae 2nd month)
3–4 (3) J1 (juvenile 1st month)
4–5 (4) J2 (juvenile 2nd month)
5–6 (5) J3 (juvenile 3rd month)
6–7 (6) Y1 (young 1st month)
7–8 (7) Y2 (young 2nd month)
8–9 (8) Y3 (young 3rd month)
9–10 (9) R1 (reproductive 1st month)
10–11 (10) R2 (reproductive 2nd month)
... ...
23–24 (23) R15 (reproductive 15th month)
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Larval survival is controlled by the intensity of
easterlies, due to its potential to advect the larvae
away from favourable conditions in the shelf zone
(Catalán et al., 2006; Ruiz et al., 2006). This survival
is also considered to improve with increased tempe-
ratures because less time is needed to grow and,
as a consequence, predation can be avoided more
(Regner, 1985). The state equation for the first stage of
larvae is:

L 1
t ¼ 1� e�sTt

� �
e�kWt Ht�1

L1
t � N L1

t ; SL

� �
ð2Þ

where Tt and Wt are respectively the average sea surface
temperature in the shelf and the time (number of days)
that strong easterlies (>30 km h)1) have blown during
the month number t. Parameters s and k modulate
thermal and wind effects, respectively. As for a, their a
posteriori probability distribution is obtained after
implementation of the Bayesian approach. L1

t and SL

are the mean and standard deviation (accounting for
process error) of larval abundance.

In the second larval stage
�
L2

t

�
are individuals of

the month 2 age group with sizes above 3 cm. They are
post-flexion larvae, although still undergoing meta-
morphosis (Arias and Drake, 1990) and have a certain
swimming capacity but not fully enough to control
their horizontal position in the shelf, where currents
are of the order of tens of centimetres per second
(Sánchez et al., 2006). Following this limited motility,
anchovy of this size can be found inside the Guadal-
quivir River estuary, although in lower numbers than
the massive appearance of larger sizes (Drake et al.,
2007). Their survival is, therefore, conditioned by a
mixture of the physical environment on the shelf
(wind and temperature) and in the estuary (freshwater
regime).

Survival of anchovy early life stages in the estuary is
connected to the freshwater regulation in the dam of
Alcalá del Rı́o (Drake et al., 2002). Lack of discharge
(Dt) implies lack of fertilization and low production of
the estuary with less food for anchovy early stages.
Excessive discharges, conversely, lower the salinity to
unsuitable values for anchovy, and individuals leave
the estuary or die (Fernández-Delgado et al., 2007).
Figure 1 shows the abundance of anchovy early stages
in the estuary versus discharges from Alcalá del Rı́o.
Variability is high because the data mixes seasons
when early stages are abundant because of the repro-
duction cycle (e.g., mid-summer) with periods when
they are not (e.g., early spring). However, maximum
values are enveloped within the standardized normal

function F(2(log(Dt) ) 2)), which identifies the
highest abundances achievable at the estuary for a
given discharge. This feature is used to model the
influence of discharge on the survival of anchovy
stages. As explained above, for the second larval stage
this influence is mixed with that of the physical
environment on the shelf and modelled as:

L2
t ¼ q 1� e�sTt

� �
e�kLt U 2 log Dt � 2ð Þð ÞL1

t�1

L2
t � N L2

t ; SL

� �
ð3Þ

where q makes survival proportional to F.
The next stages are individuals of age group 3, large

enough to move into the estuary. Anchovy of this and
larger sizes appear in large numbers within the estuary
until they are about 7 cm and leave for open waters
(Drake et al., 2007). The growth equation of von-
Bertalanffy applied to the anchovy of the Gulf of Cádiz
(Bellido et al., 2000) assigns this to size five individuals.
Accordingly, juvenile stages are modelled as:

J1
t ¼ qU 2 log Dt � 2ð Þð Þ L2

t�1

J i
t ¼ qU 2 log Dt � 2ð Þð Þ Ji�1

t�1 for i ¼ 2 and 3

Ji
t � N Ji

t; SJ

� �
for i ¼ 1; 2 and 3 ð4Þ

When juveniles leave the estuary, they swim
enough to avoid adverse environments and survival of
stages beyond 5 is therefore assumed to be indepen-
dent of physical conditions. They also leave the
estuarine protection from predation and fishery
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Figure 1. Concentration of anchovy at post-larval stage as a
function of monthly discharge from the Alcalá del Rı́o dam.
The solid line is the function F(2(log(D)-2)), where F is the
probability density function for the standardized normal.
Data derived from Drake et al. (2007).
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exploitation (Drake et al., 2007). The former loss is
included as a mortality term represented as parameter
l whose a posteriori probability distribution is obtained
after implementation of the Bayesian approach. Fish-
ery losses are obtained from ICES landing data for the
region IX.a south and considered to be proportional to
the relative abundance of that stage to the total of
individuals larger than the 5 age group(

P
Bt). As

Equation 5 shows, the resulting algorithm is equiva-
lent to considering fishing mortality constant through
ages. Although effort is frequently higher for larger
(older) individuals of other fisheries, there exists no
information on this selectivity for anchovy in the Gulf
of Cádiz. No clear a priori age-selection pattern seems
to be expected for a fishery where the negligible
abundance of group 2 narrows the window of captured
sizes and the market does not particularly appreciate
larger individuals over smaller ones.

Y1
t ¼ 1� lð Þ 1� Ct�1

.X
Bt�1

� �
J3
t�1

Yi
t ¼ 1� lð Þ 1�Ct�1

.X
Bt�1

� �
Yi�1

t�1 for i¼ 2 and 3

R1
t ¼ 1� lð Þ 1� Ct�1

.X
Bt�1

� �
Y3

t�1

Ri
t ¼ 1� lð Þ 1�Ct�1

.X
Bt�1

� �
Ri�1

t�1 for i¼ 2 to 15

Yi
t � N Yi

t; SYR

� �
for i ¼ 1; 2 and 3

Ri
t � N Ri

t; SYR

� �
for i ¼ 1 to 15 ð5Þ

where Yi
t and Ri

t are respectively the mean of young
(6 < age < 10) and reproductive (age > 9) stages of
anchovy outside the estuary. SYR is the standard
deviation accounting for process error.

The normal distributions in Equations 1–5 were
restricted to the positive domain while sampling the
posterior probabilities with Gibbs techniques (see
below). This follows the logical lack of negative values
for the abundance of individuals.

Observational model

The model connecting the observations to the latent
variables (life stages of the process model) assumes
that catch per unit effort (CPUE) equals stock size
(
P

Bt) divided by a catchability coefficient (q):

CPUEt ¼
X

Bt

.
q

CPUEt � N CPUEt; SCPUE

� �
ð6Þ

where SCPUE is the standard deviation accounting
for errors in the observation of CPUE data. The
model assumes a proportionality between CPUE and
stock abundance with a coefficient, q, that does not
vary over time. Changes in fleet efficiency or
dynamics, species targeting and environment vari-
ability among other factors may cause q to vary over
the exploitation history of a fishery (Maunder et al.,
2006). In addition, school dynamics of small pelagics
may result in density-dependent catchabilities (Fréon
and Misund, 1999) and produce nonlinear connec-
tions between CPUE and the stock in a dynamics
conditioned by vessel type (Bertrand et al., 2004;
Parente, 2004). These components may have limited
impact on q variability for a stock such as anchovy
in the Gulf of Cádiz that is spatially constrained to
a small area and for a CPUE data set (see below)
based on a homogeneous fraction of the purse-seine
fleet. Still, q has most probably differed from con-
stancy in a time span where the fleet has undergone
a process of significant modernization and in a
scenario where stock collapses and societal conflicts
are present. However, lack of detailed information
about the fleet as well as scarce fishery-independent
data on the stock prevented us from time-resolving q
variability. We rather allow the unresolved dynamics
to be part of the uncertainty accounted for by the
model.

ICES data (Anonymous, 2006) provide acoustic
estimates of the stock size (A) for the June of years
1993 and 2004. These are included in the observa-
tional model as:

At � N
X

Bt; SA

� �
for t ¼ 66 and 198 (June 1993

and 2004, respectively) ð7Þ

where SA is the standard deviation accounting for
errors in the observation of the acoustic estimates.
Preliminary tests (not shown) showed little sensitivity
of the model output to the inclusion of a ‘catchability’
parameter for acoustic data (i.e., to formulate the
observational model for acoustic as Equation 6 rather
than 7). Therefore, the simpler Equation 7 was
preferred to save one parameter in the model
implementation.

Directed acyclic graph

A directed acyclic graph (DAG) representation of
the model is shown in Fig. 2. Following Millar and
Meyer (2000), hollow and solid arrows represent
logical functions and stochastic dependencies,
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respectively. Data are represented as rectangles
whereas oval nodes represent stochastic variables.
Structures of the state-space model that are repeated
from month 2 to 204 are enveloped within the
heavy-line rectangle. The different stages Ht, Lt

1, Lt
2,

Jt
1,…correspond to 0, 1, 2, 3, … (see Table 2)

monthly age groups, respectively. Despite its appar-
ent complexity, the DAG incorporates the effect of
the environment on the dynamics of 24 life stages of
anchovy during 204 months and connects it with
observations using only six parameters (a, s, k, q, l
and q) plus sources of errors (SH, SL,SJ, SYR, SCPUE

and SA).

Prior probability distributions

Conditional independence of state-space models
demands that priors for the parameters (a, s, k, q, l
and q), the errors (SH, SL,SJ, SYR, SCPUE and SA), and
for the first month of the state variables (H1, L1

1, L2
1, J1

1,
…) be declared. It is commonly recommended to
make use of available information to define priors in
stock assessment (Punt and Hilborn, 1997; Hilborn
and Liermann, 1998), although there is frequently
criticism of altering objective inference.

We follow the rationale of Millar and Meyer (2000)
and use non-informative priors for the errors and
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Figure 2. Directed acyclic graph of the
model. Hollow and solid arrows repre-
sent logical functions and stochastic
dependencies respectively. Data are rep-
resented as rectangles and oval nodes
represent stochastic variables. Structures
of the state-space model that is repeated
from month 2 to 204 are enveloped
within the heavy-line rectangle.
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diffuse normal distributions for the first month of the
state variables. As in Millar and Meyer (2000), the
inverse of error priors were approximated by Gamma
(0.001, 0.001) functions to avoid improper distribu-
tions. Normal distributions for the initial priors of
eggs, larvae-juveniles and young-adults are, respec-
tively, N(1000,10000), N(100,1000) and N(10,100),
where mean and standard deviation are millions of
individuals.

All parameters were restricted to positive values as
the sign of the process is already made explicit
in Equations 1–7. Little a priori information can be
derived from the values of environmental parameters
in the model (s, k and q) except for the qualitative
knowledge that the environment modulates recruit-
ment (Ruiz et al., 2006). This knowledge was trans-
lated into priors as normal distributions with standard
deviation equal to a mean (0.5�C)1, 0.15 days)1 and
0.1 month)1 for s, k and q, respectively) whose
value significantly modifies the survival for the
average value of the environmental variable (e.g., the
product of the mean k and the monthly average of
easterlies duration results in a factor of �e)1 for the
wind).

Similar diffuse normal distributions were also
given to q, l and a. It is not straightforward to assign
a prior mean to a parameter such as l, the residual
mortality after environmental effects and fishery
catches. It was then decided to explore its domain
(from 0 to 1) with three values (0.01, 0.5 and 0.99).
A parallel procedure was implemented for a and q.
The domain of a was enclosed between zero and a
(unrealistically high) top where females spawn every
2 days during 1 month with an exceptionally high
batch fecundity of 40 000 eggs (Motos, 1996) that
are all viable as input to the model. Similarly, the
domain of q was generously constructed after con-
sidering that its value in Equation 6 can be thought
(only in the algorithm world) as the number of
fishing trips necessary to deplete the stock. This
produces a minimum value of 1 (one trip captures the
stock) and a maximum of about 107 (each fishing trip
only captures 1 kg of anchovy). The singularities of
anchovy in the Gulf of Cádiz, heavy environmental
control and reduced life span (Ruiz et al., 2007),
prevented us from defining a prior for q from infor-
mation of other fisheries (Hilborn and Liermann,
1998). This preliminary exploration of model
behaviour showed little sensitivity of the parameter
posterior to the point of the domain explored in the
prior, except for the case of q. When values of q
chosen were too small, the prior prevents high values
of the posterior, whereas avoiding these small ranges

of values results in about the same posterior mean
and variance. Given our lack of prior knowledge
for q, we avoided this small end range of prior values
for q.

Sampling the posterior probabilities of the parameters

The Bayesian approach estimates the parameters by
updating their a priori probability with the likelihood
of the observations. Bayes’ theorem makes the a pos-
teriori probability of the parameters proportional to the
product of the priors and the likelihood:

POSTERIORI / pða; s; k; q; l; q; SH; SL; SJ; SYR;

SCPUE; SA; H1; L1
1; L2

1; J1
1; :::; R15

1 Þ � pðA66; A198;

CPUE1; :::; CPUE204 j a; s; k; q; l; q; SH; SL; SJ;

SYR; SCPUE; SA; H1; L1
1; L2

1; J1
1; :::; R15

1 Þ ð8Þ

Explicit formulation of this joint probability density
function is extremely laborious because of the need to
construct the full conditional of a stage-resolving
model with 24 states and 204 time steps. We imple-
mented the whole Bayesian model in version 1.4 of
WINBUGS (free at http://www.mrc-bsu.cam.ac.uk/
bugs/). The software avoids this tedious formulation as
it is designed to construct complex posteriors for the
user and to sample them by means of Gibbs techniques
(Spiegelhalter et al., 1996).

Slow convergence is a chronic issue in state-space
models owing to the high correlation of variables in
the time series (Rivot et al., 2004). We followed
Kass et al. (1998) to ensure convergence. An initial
run (5000 iterations of burn-in period plus 10 000
additional iterations) was used to select over-
dispersed parameter values. Parameter values for the
mean as well as the 5 and 95 percentiles of this
initial run initiated three sample chains. The con-
vergence was diagnosed when Gelman and Rubin
(Brooks and Gelman, 1998) statistics reached values
below 1.2 for the parameters at about 100 000
iterations.

Data

Three sources of data have been used throughout this
paper: environmental records as covariates, fisheries
information for the observational model and field data
of early life stages to validate results.

Sea surface temperature (SST) was derived from
data obtained by the Advanced Very High Resolution
Radiometer (AVHRR) sensor. The nighttime
AVHRR PATHFINDER SST v5 monthly means with
4 · 4 km2 pixel resolution were obtained from NASA
PO.DAAC website (http://podaac.jpl.nasa.gov/). Our

68 J. Ruiz et al.

� 2009 The Authors, Fish. Oceanogr., 18:1, 62–76.



region of interest was extracted from the global image
and arithmetic means were calculated based on all
pixels within this region. Discharges from the Alcalá
del Rı́o dam were provided by Confederación Hid-
rográfica del Guadalquivir. They correspond to the
monthly accumulated cubic hectometres that are dis-
charged from the dam each month. Wind data are the
monthly accumulated time (in days) that easterlies
faster than 30 km h)1 have been recorded in the
meteorological station of Cádiz. Figure 3 shows
the time series of these environmental data for the
time period covered by the model.

Annual CPUE data from ICES were transformed
into monthly values by assuming the same (ICES)
value for all months of that year. This approach was
preferred to more sophisticated methods that incor-
porate monthly changes in CPUE. Exploratory ana-
lysis of other (non-ICES) CPUE data with monthly
resolution shows signals that are more related to the
dynamics of the fishing fleet than to variations of stock
size. The relative importance of anchovy and sardine
(Sardina pilchardus; an alternative, lower price
resource) on the total catch of the purse-seine fleet
consistently fluctuates from sardine in winter to
anchovy in spring and summer, as does the effort
expended on both species. However, the low fishing
effort expended on anchovy during winter months
makes occasional catches result in artifactually high
CPUE. ICES acoustic data for the years 1993 and 2004
were selected as reliable estimators of stock size.
Although more acoustic data exist for other years, they
were not included in the model because they are under
review (Anonymous, 2006).

Average monthly egg and larval abundance at the
shelf of the Gulf of Cádiz for the years 2002–2004
were obtained from Ruiz et al. (2006), where
methodological details can be found. Briefly, they

correspond to averages of 26 stations covering the
whole north-eastern section of the Gulf with
monthly sampling with double-oblique hauls using
Bongo nets (40-cm mouth diameter and 200-lm
mesh size). Abundance of early stages inside the
Guadalquivir River estuary for the years 1997–2004
were taken from Drake et al. (2007), where meth-
odological details can be found. Briefly, they corre-
spond to monthly sampling of the last 32 km of the
estuary with passive hauls with large nets (2.5-m
mouth and 1-mm mesh size) using tidal currents.

RESULTS

Figure 4 shows the a posteriori histogram of the model
error and parameters, the latter together with their
prior probability density functions. Parameter posteri-
ors are less dispersed than priors, evidence of data
added to the priors and their effects on model para-
meters. In addition, posteriors of environmental
parameters, such as the thermal (s) and discharge (q)
effect, increase their mean value compared to their
priors, whereas wind (k) shows a decrease. This indi-
cates a greater environmental effect than foreseen a
priori for s and q as well as less of an impact (or a
model formulation that does not grasp all the intri-
cacies of the process) for k. Low values of the mortality
parameter (l) point at the environment and catches as
the main factors controlling the population. High
mortalities induced by the environment and the fish-
ery reduce l to values that are negligible for the
functioning of the process model.

Posterior probabilities for the different stages of the
life cycle show evident seasonal patterns (Fig. 5), with
higher larvae concentration usually found during the
first half of the year when sea-water heating is manifest
(Fig. 3). In addition, larvae showed conspicuous in-
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terannual signals with low values during 1994–1995.
During these years, particularly in 1995, the model
predicts a severe decline of the juvenile population
with a very high level of certainty. The model predicts
a sudden end to this decrease of juvenile abundance in
1996, when probability persistently accumulates at
population values above the average of the time series.
The decline of juveniles in 1995 is preceded by a
decline of individuals vulnerable to the fishery (

P
B)

which is predicted by the model in the transition
between 1994 and 1995. The probability of

P
B then

has low population values until 1996, when the
model predicts a recovery which, although not as
evident as for juveniles in that particular year, is
manifest later on. Besides this interannual signal, the
probability of

P
B shows a clear seasonal signal with

continuous declines after the recruitment occurs early
in the year.

Seasonal and interannual fluctuations of
P

B can
be better discerned in connection with fishery

information (Fig. 6). Highs and lows of
P

B and
catches evolve consistently. Catch data for 2000 are
shaped by a serious societal conflict which dramati-
cally reduced the fishing effort that year. The catch
per unit effort (CPUE) is less affected by this feature
and its evolution is more coherent with

P
B (which

it estimates) than catches for year 2000. The first
available CPUE data (until the early 1990s) are,
nevertheless, very stable compared with catch andP

B values. These data are under consideration for
review by ICES because of inconsistencies with more
recent information obtained from the fishery
(Anonymous, 2006).

The consistency of CPUE, catch and
P

B evolution
in Fig. 6 partially validates the model outputs. Figure 7
adds to this exercise by comparing predicted egg, lar-
vae and juvenile numbers with in situ abundance data
when available. Eggs and larvae abundance are derived
from Ruiz et al. (2006), and juvenile information from
Drake et al. (2007). The model reproduces the overall
pattern of eggs and larvae abundance, although dis-
crepancies also exist in the peak of egg abundance
during early 2003. The overall pattern of the modelled
juvenile population is also consistent with in situ data,
except for years such as 1997 when the timing is
correct but the magnitude of the modelled peak is
greater than observed.

DISCUSSION

Uncertainty is ubiquitous in our knowledge on
clupeoid dynamics. Use of fishery, acoustic or egg-
production methods to estimate population size is
impaired by significant flaws (Brehmer et al., 2006;
Stratoudakis et al., 2006). The dynamics itself is
highly unstable in connection with environmental and
ecological processes, and models do not fully resolve it
(Bakun and Broad, 2003). Increased model complexity
to resolve the dynamics does not decrease the uncer-
tainty (Hill et al., 2007). More structure implies more
assumptions and a decreased capacity to predict
beyond calibration data (Anderson, 2005).
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The model presented above is parsimonious. Its
straight connection between the environment and
anchovy dynamics implements previous knowledge
(Ruiz et al., 2006) with simple equations and few
parameters. These elude the intricacies of biogeo-
chemical cycles and trophic interactions that relate
physical forcing to anchovy fluctuations. Those
intricacies are encapsulated in Equations 1–4. The
simplification might generate apparent inconsistencies
between model output and validation data such as
stock overestimation for the year 2000, egg timing for

the year 2003 or the magnitude of juvenile abundance
for the year 1997 (Fig. 7). Considering that observa-
tional data are not an exact image of the real world
assists in analysing these inconsistencies. For instance,
low catches in 2000 do not result from low abundance
but from societal issues in the fleet. In this case, the
discrepancy between data and model favours model
validation, because predictions stay close to CPUE,
and the data are not affected.

Including more fishery-independent estimates of
stock size to the observational part of the model would
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undoubtedly ameliorate its capacity to resolve these
discrepancies and, therefore, the response of fish to
the environment. Lack of sensitivity to the inclusion
of a ‘catchability’ coefficient in Equation 7 indicates
that available acoustics estimates of the stock are
still too few to significantly impact the overall
behaviour of the model. Ibaibarriaga et al. (2008)
showed that enough fishery-independent information
makes Bayesian approaches sensitive to the inclusion
of ‘catchability’ coefficients in the observational
model. Additional environmental factors could also
further improve the fitting of the model to the data.
For instance, wind affects both the advection of eggs
and larvae (Ruiz et al., 2006) as well as the trophic
dynamics of the spawning area (Navarro and Ruiz,
2006). The latter results from Ekman pumping
driving coastal upwelling⁄downwelling, and the sub-
sequent enrichment⁄impoverishment of nutrients in
the surface waters of the shelf. Advection and tro-
phic effects of wind could be distinctly resolved if
chlorophyll concentrations derived from the remote
sensing of ocean colour were included as an addi-
tional covariate. This inclusion would allow simu-
lation of the trophic environment of larvae, a key
component of their survival (Blaxter et al., 1982;
Painting et al., 1998). However, sea surface colour
from SeaWiFS data have only been available since
September 1997, and including them in the model
implies a non-homogeneous treatment of environ-
mental forcing along the time series. We avoided
this inconsistency, which nonetheless seems to
decrease the potential of the model for resolving
wind effects as the posterior of k renders the

expected influence of this covariate on stock
dynamics lower than a priori.

The Bayesian framework consistently transforms
into uncertainty components of the dynamics left
unresolved by model simplification but still maintains
substantial diagnostic power. The main stock collapse
in 1995 is explained with a high level of certainty as a
failure of recruitment in juveniles in that year in
connection with severe decreases of dam discharges
(Figs 3 and 5). Juvenile failures were already detected
with low uncertainty the year before, when the stock
collapse was not yet evident. The concentration of
probability at such low values 1 year ahead of the crisis
suggests that future developments of the approach
could result in some prognostic capacity. This poten-
tial was further evaluated by implementing the model
with different runs that progressively incorporate the
years of the time series (year 2–17). In each run, the
distribution of

P
B⁄q for the last year of the series was

predicted without including the observational model
for that particular year. Figure 8 shows the

P
B⁄q

predicted with this sequential implementation of the
model. At the beginning of the time series, when little
information is available to infer parameter posteriors,
the predictions significantly differ from data and
uncertainty is large. However, uncertainty decreases as
the model ‘learns’ from the data and the evolution of
the predicted

P
B⁄q is coherent with the tendencies of

CPUE observed later. This coherence must, never-
theless, be analysed with caution as the process model
includes observed catch and environmental data in
the prediction. However, the coherence between the
predicted

P
B⁄q and the later observed CPUE supports
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the use of this approach to analyse the outcome of
potential future scenarios (meteorological regime and
catches) on the evolution of the stock size.

Moreover, the model predicts the breakaway from
the crisis with three successive years (1996–1998)
when juvenile probability is concentrated at values
above standard levels (Fig. 5). Age composition of
catches depicts a contribution of the 0+ year group
that is also above the average for that period (Fig. 9),
thus indicating the singular abundance of small fish at
that time. It is noteworthy that Equations 1–7 have no
contact with the age or size structure of the catch.
Hence, the ability of the model to reproduce this
feature is process- and not data-driven. Similarly,
Equations 6 and 7 do not assimilate data of Fig. 7 and
the capacity of the model to reproduce the pattern of
egg, larvae or juvenile abundance is process-driven.

This model demands few process parameters in
comparison with other modelling approaches. Six
parameters (a, l, s, k, q and q) plus their errors
implement the population dynamics as well as its
connection with the environment and observational
data. In comparison, Fasham et al. (1990) and
ERSEM (Vichi et al., 2007) models demand respec-
tively 45 and more than 130 parameters. For anchovy
in this region, this simple structure is able to repro-
duce the major dynamical features detected by the
information available on fishery and life stages. Ruiz
et al. (2007) point out that this dynamics is a case of
BOT-TOP control. Under this type of control the
fishing pressure restrains the population from the top
and prevents adults from surviving beyond 1 year.
Without sustenance of adults, the population relies
totally on recruits to persist. Owing to the vulnera-
bility of early stages to ocean processes, the stock is
then totally controlled by environmental fluctuations.
This is a neat case of fish dynamics forced by the
environment and not necessarily easy to extrapolate
to other anchovy populations. However, at least for
the Gulf of Cádiz, a simple Bayesian model that
represents our lack of knowledge as uncertainty
characterizes anchovy dynamics well beyond the
trivial fact that fish populations fluctuate.
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