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Abstract

In fisheries research bayesian state-space models have been proved to
be very useful because of their capacity to include new data while measur-
ing the uncertainty associated to biological and physical processes. The
ECOKNOWS (Effective use of ecosystem and biological knowledge in fish-
eries) project proposes to use bayesian analysis in a general population dy-
namics model GPDM as a powerful tool to include biological and physical
information in management strategies. Results of a preliminary Bayesian
model adapting this model to northern hake population dynamics are pre-
sented here. The model intends to reproduce as far as possible the struc-
ture and main assumptions of the current ICES model. Actually there are
some parameters with convergence problems but we are developing a new
version considering informative priors for the biological processes which
are supposed to ameliorate the estimations.

Introduction

European hake (Merluccius merluccius) is widely distributed over the Northeast Atlantic
shelf, from Norway to Mauritania, with a larger density from the British Islands to the south
of Spain (Casey and Pereiro, 1995; Murua, 2010) and in the Mediterranean and Black sea.
ICES assumes two different stock units, being the Northern stock distributed northwards than
Iberian peninsula, in ICES Division IIIa, Subareas IV, VI and VII and Divisions VIIIa,b,d.
Northern hake is caught by different countries (Spain, France, Ireland, UK, etc) and different
fleets (trawlers, gillnetters, longlinners, etc) in a mixed fishery where the other main species
are megrims, anglerfishes, neprhops, etc. The mean landings in recent years are around 45
thousand tonnes in the first decade of XXI century although these have risen to 73 thousand
tonnes in 2010 (ICES, 2012). Discards are around 2 thousand tonnes in recent years. Catch
data from 1978 are used for assessment purposes.
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Fleet Selection ICES fleet Discards Retention
1 Double Normal SPTRAWL7 Yes Logistic
2 Double Normal FRNEP8 Yes Logistic
3 Double Normal SPTRAWL8 Yes Logistic
4 Logistic TRAWLOTH+OTHERS No
5 Double Normal GILLNET+LONGLINE No

Table 1: Fleets in hake Bayesian GPDM.

Hake is an important species for the fishing activity in the area and also has an important
role in the ecosystem as top predator. Despite this their biology has many unknowns making
difficult an accurate assessment. Allometric length-weight relationship (W (g) = 0.00513 ∗
L(cm)3.074) and maturity-at-length logistic parameters (L50 = 42.85cm and slope = −0.2)
are assumed to be constant on time as used in the ICES assessment. Hake growth is relatively
unknown. Studies developed in the first years of XXI century showed that hake grows about
two times faster than assumed under previous otolith ring interpretation (de Pontual et al.,
2003, 2006; Piñeiro et al., 2007). Since age interpretation was wrong and there is not an
alternative to assign ages, ICES decided to move to a length based assessment model with
SS3 (Methot, 2000). Since the tagging information reported growth rates about two times
faster than previously assumed the natural mortality rate was corrected following Hewitt and
Hoenig (2005) from 0.2 to 0.4 year -1. For modelling purposes M was set as 0.4; the growth
follows Von Bertalanffy functions with Linf as 130 and k estimated by the model was 0.177
year−1.

ECOKNOWS (Effective use of ecosystem and biological knowledge in fisheries) is a FP7-KBBE
project in the topic “Improving fisheries assessment methods by integrating new sources of
biological knowledge”. The main aim of the project is to develop models that use all the
available biological information which is likely to be useful for the management of specific
stocks in a bayesian statistical context. Classical statistical methods do not allow combin-
ing existing information with new data. Bayesian statistics, uses prior knowledge, that is
knowledge we have before we start to analyze any new data. If the new data includes more
information about the parameters, then the Bayesian calculus combines the prior information
with the new information in a process that can be called scientific learning (Gelman et al.,
2003; Congdon, 2003). The ECOKNOWS project provides the support for the development of
a General Population Dynamic Model which will be adapted to simulate the ICES model used
to the hake dynamics and this model will be used to implement the hake biological knowledge
coming from other hake species related with growth, mortality or reproduction.

The goal of this work is to develop a Bayesian model for Northern hake able to deal with the
biological process. In this first stage we will present the current status and future development
of the Bayesian model. Our aim is that the model presented reproduces as far as possible the
structure and main assumptions of the current ICES model.

Materials and methods

The data used for this work were extracted from the input file used in the ICES assessment
with SS3. This data ranges from 1978 to 2010 split by quarters and considers 7 fleets and 4
surveys. 3 of the fleets have also discards. These data consist on total landings in weight and
length distribution for all fleets and surveys. Length distributions available are grouped by
2 cm length classes from 4 to 100 cm. The approach to develop this Bayesian model begins
with a simpler data grouping. The current version uses 10 years (2001-2010), four quarters,
19 length groups (1, 5, 10, 15, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 60, 70, 80, 100) and 5
fleets (Table 1).
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Model description

Process model

Spawning

At the beginning of each month the female population is assumed to spawn once each quarter.
They are supposed to produce a number of eggs computed with the following dot product:

Eggst = (Φt ·Nteggst)

Where Φt = (φt,1, . . . , φt,k) denotes the relative size class frequencies allocating the popula-
tion Nt in K length classes and eggst = (et,1, . . . , et,K), is the number of eggs per kilogram
spawned by a mature female of length class K (aprox 1000 eggs by kilogram). In order to
calculate the kilograms equivalent to a determined length, the weight-length relationship with
a = 0.00000531 and b = 3.074 was used.

Recruitment and population dynamics

Recruitment is determined by Kbh and α parameters in the following Beverton-Holt model:

Rt =
KbhEggst

Kbh
α

+ Eggst

The recruits are incorporated to the change in total population size equation as:

Nt+1 ≈ ptNt +Rt+1

Where Nt and pt are the number of individuals into the stock and the expected survival at
time t, respectively, while Rt+1 is the number of recruits at time t+ 1.

Growth

Growth of individuals is assumed to take place instantly in the beginning of each month. Each
individual has the possibility of stay in the same length class or move higher. This movement
is modelled through a transition matrix gt = (gt,i,j)K×K , where gt,i,j denotes the probability
of and individual to move from length class i to length class j at time t. A normally distributed
growth from each length class is assumed following the von Bertanlanffy growth function, such
that length at time t is lt = Linf ∗ (1 − exp(−kg ∗ (t − t0))), where kg is a parameter for
somatic growth rate and Linf is maximum size (see Appendix A in Mantyniemi 2013).

After growth, vector Φt becomes Φ
(G)
t = Φt × gt describing a modified size distribution of

the population.

Mortality and survival

A fish in length class k, k = 1, . . . ,K, after growth could be caught by fleet j, j = 1, . . . , F, or
to survive, with respective probabilities given by Baranov (see for example Quinn and Deriso,
1998) as follows:

γt,k,j =
Ft,k,j∑F

j=1 Ft,k,j +M
(1− e−(

∑F
j=1 Ft,k,j+M))φ

(G)
t,k

pt =
K∑

k=1

(1− e−(
∑F

j=1 Ft,k,j+M))φ
(G)
t,k

With M = 0.1 as the natural mortality and

Ft,k,j ≈ propFj · Fselk,j · F, (1)

the fishing mortality for the j − th fleet, where propFj is a parameter for the proportion of
fishing mortality corresponding to fleet j, Fselk,j is the fishing selectivity for fleet j and F
the parameter for total fishing mortality.

When the hake is caught it has two posibilities, to be landed with probability γt,k,jRselk,j or
to be discarded with probability γt,k,j(1−Rselk,j), both determined by the retention pattern
of the j − th fleet, Rselk,j .
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Then the proportion of landed fish and discarded fish from all death fish, qlt and qdt , is computed
respectively, as:

qlt =
1

1− pt

F∑
j=1

K∑
k=1

γt,k,jRselk,j =
1

1− pt

F∑
j=1

qlt,j

qdt =
1

1− pt

F∑
j=1

K∑
k=1

γt,k,j(1−Rselk,j) =
1

1− pt

F∑
j=1

qdt,j

Fishing selectivity, survey selection and retention patterns

Table 1 summarizes the descriptions of the functions chosen for the fishing selectivity, Fselk,j ,
survey selection, Sselk,s and retention patterns, Rselk,j , for each fleet. The particular case
of northern hake includes 5 fleets for fishing selectivity and retention (F = 5) and 3 different
ones for survey selectivity. Fishing selectivity for fleets 1,2,3 and 5 is modelled with a double
normal function while for fleet 4, a logistic function was used. Retention applies only for the
first three fleets and each one is modelled with a logistic function, for the other two fleets the
retention is assumed constant equal to 1. The double normal selection function is defined by
parameters τ1j , τ2j and lj , j = 1, 2, 3, 5, as follows:

For M = (M1, . . . ,MK) a vector with the midpoints of each length class k

Fselk,j =

{
e−τ1j(Mk−lj)

2
if Mk < lj,

e−τ2j(Mk−lj)
2

if Mk ≥ lj, j = 1, 2, 3, 5
, (2)

The logistic function with parameters αf
j and βf

j , j = 4 or αr
j and βr

j , j = 1, 2, 3 is used for
fishing selectivity and retention, respectively:

logit(Fselk,j) = βf
j (Mk − αf

j ), j = 4

logit(Rselk,j) = βr
j (Mk − αr

j ), j = 1, 2, 3

The survey selection patterns are modelled as double normal analogously to equation (2) ,
with parameters Iτ1s, Iτ2s and Ils, s = 1, 2, 3.

Observational model

Landings and discards in numbers

Landings and discards at time t, lt and dist, respectively, are assumed to follow a beta-binomial
distribution.

lt ∼ Betabin(qlt, 1− qlt, dt) t = 1, . . . , T

dist ∼ Betabin(qdt , 1− qdt , dt) t = 1, . . . , T

For qlt and qdt as defined before and dt ≈ Nt(1 − pt) representing all the death fishes (by
natural and fishing mortality) at time t.

Proportion of landings and discards by fleet

From available data for landings and discards numbers by fleet, the vector of proportions
Plt = (Plt,1, . . . , P lt,F ) and Pdt, respectively, are calculated. They are modelled with a
Dirichlet-Multinomial distribution.

Plt ∼ DM(lt,
1

qlt
(qlt,1, . . . , q

l
t,F )) t = 1, . . . , T

Pdt ∼ DM(dist,
1

qdt
(qdt,1, . . . , q

d
t,F )) t = 1, . . . , T

For speed up computational time the Dirichlet approximation described in Mantyniemi 2012
was implemented.
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Length Distribution of landings and discards by fleet

Vector of length distribution of landings by fleet, Llt,j = (Llt,j,1, . . . , Llt,j,K), and discards,
Ldt,j, are presented in percentages, and assumed to be multinomially distributed.

Llt,j ∼ Multi(100,
1

qlt,j
(γt,1,jRsel1,j , . . . , γt,K,jRselK,j))

Ldt,j ∼ Multi(100,
1

qdt
(γt,1,j(1−Rsel1,j), . . . , γt,K,j(1−RselK,j))

Survey indexes

Estimations of the population by length through surveys are available for some quarters with
three different fleets It,s, s = 1, 2, 3. They are assumed lognormally distributed with a coeffi-
cient of variation CV = 0.2, as follows:

It,k,s ∼ LN(log(qsNtφt,kSselk,s)−log(CV 2+1)/2, 1/log(CV 2+1)) k = 1, . . . ,K, s = 1, 2, 3.

Prior distributions

Function Priors 

Initial abundance log(N[1])~N(dnorm(muN,s2N), muN=0, s2N=10000

F F~dunif(0,0.5)

Fleet 1-Selection 
Double normal

tau11~dunif(0,0.3), tau21~dunif(0.0005,0.01)
l11~dunif(20,40)

Fleet2 - Selection 
Double normal

tau12~dunif(0.002,0.3), tau22~dunif(0.002,0.3)
l12~dunif(10,30)

Fleet3 -Selection 
Double normal

tau13~dunif(0,0.3), tau23~dunif(0.00005,0.01)
l13~dunif(20,60)

Fleet 4- Selection 
Logistic

alphaFsel~dnorm(-40,1/400)T(-60,-10) 
betaFsel~dunif(0.1,0.99)      

Fleet 5- Selection 
Double normal

tau15~dunif(0.002,0.01), tau25~dunif(0.0005,0.005)
l15~dunif(50,90)

Fleet 1 retention 
pattern –  Logistic

alphaGsel[1]~dnorm(-27,0.01), 
betaGsel[1]~dunif(0.001,3)

Fleet 2 retention 
patters –  logistic

alphaGsel[2]~dnorm(-27,0.01)
  betaGsel[2]~dunif(0.001,3)

Fleet 3 retention 
pattern - logistic

alphaGsel[3]~dnorm(-27,0.01)
  betaGsel[3]~dunif(0.001,3)

Survey1- double 
normal

Itau11~dunif(0.0001,0.01), Itau21~dunif(0.0005,0.005) 
Il11~dunif(40,80), q1~dunif(5e-5,10e-3)

Survey2- double 
normal

Itau12~dunif(0.001,0.5), Itau22~dunif(0.001,0.1) 
Il12~dunif(1,30), q2~dunif(10e-3,10e-1)

Survey3- double 
normal

Itau13~dunif(0.001,0.5), Itau23~dunif(0.00001,0.1)
Il13~dunif(5,30), q3~dunif(10e-5,10e-3)

Growth (Logit) Gk = mink+(maxk-mink)*pk, mink=0.025; maxk = 
0.075;  logit pk ~ dnorm(0,1)

Beverton-Holt log(K)~dnorm(muK,s2K), muK=log(0.2), s2K=25

FunctionPriors run 24Abundancia 1st time stepF time stepF~dunif(0,0.5)Fleet 1-Selection Double normalFleet2 - Selection Double normalFleet3 -Selection Double normalFleet 4- Selection LogisticalphaFsel~dnorm(-40,1/400)T(-60,-10) betaFsel~dunif(0.1,0.99)      Fleet 5- Selection Double normalFleet 1 retention pattern – LogisticFleet 2 retention patters – logisticFleet 3 retention pattern - logisticBiologyGrowth (Logit) Beverton-Holttau11~dunif(0,0.3)tau21~dunif(0.0005,0.01)l11~dunif(20,40)tau12~dunif(0.002,0.3)tau22~dunif(0.002,0.3)l12~dunif(10,30)tau13~dunif(0,0.3)tau23~dunif(0.00005,0.01)l13~dunif(20,60)tau15~dunif(0.002,0.01)tau25~dunif(0.0005,0.005)l15~dunif(50,90)alphaGsel[1]~dnorm(-27,0.01)  betaGsel[1]~dunif(0.001,3)alphaGsel[2]~dnorm(-27,0.01)  betaGsel[2]~dunif(0.001,3)alphaGsel[3]~dnorm(-27,0.01)  betaGsel[3]~dunif(0.001,3)Survey1- double normalLinear catchabilityItau11~dunif(0.0001,0.01)Itau21~dunif(0.0005,0.005) Il11~dunif(40,80) q1~dunif(5e-5,10e-3)Survey2- double normalLinear catchabilityItau12~dunif(0.001,0.5)Itau22~dunif(0.001,0.1) Il12~dunif(1,30) q2~dunif(10e-3,10e-1)Survey3- double normalLinear catchabilityItau13~dunif(0.001,0.5)Itau23~dunif(0.00001,0.1)Il13~dunif(5,30) q3~dunif(10e-5,10e-3)Gk = mink+(maxk-mink)*pk mink=0.025;: maxk = 0.075; logit pk ~ norm(0,1)log(K)~dnorm(muK,1/s2K), muK=log(0.2)s2K=25
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The prior distributions have been chosen uninformative but with plausible boundaries in order
to allow parameters to move in a wide range of values.

Preliminary results

The results presented here correspond to 520000 iterations. The first 20000 for adaptation
without thinning and after that a thinning of 100 was applied. The total run takes 562.68
hours.

Observed-expected (total numbers)

GPDM works minimizing the catch and discards in numbers in every time step. The plot 1
shows how this fit performs. We can see a good performance fitting discards and similarities
with landings, except for year 2009 where the model overestimate the values. The coherence
between the time series data and the estimations could be interpreted as a partial validation
of the model definition.
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Figure 1: Comparison between modelled and real quaterly
data for landings and discards in numbers (thousands). Blue
line corresponds to real numbers transformed from ICES land-
ings biomass data using the lenght at weight relationship. Solid
black line corresponds the modelled median and dotted lines
represent the 0.05 and 0.95 percentiles.
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Model results

Selection and Retention plots

Selection and retention patterns are displayed in Figures 2 and 3, respectively. The model
reproduces propperly the selection and retention patterns compared with ICES estimations,
except for the discards of fleet SPTRAWL8, which is coherent with the mixing problems
associated to the parameters involved, alphaGsel[3] and betaGsel[3], see Appendix I.
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Figure 2: Modelled selection patterns for the five fleets consid-
ered. Black solid line corresponds to the median while dotted
black lines represent the 0.05 and 0.95 percentiles

Growth plots

The modelled von-Betallanfy growth curve corresponding to the dotted and red line in left
panel of Figure 4 was calculated assuming Linf = 130. The somatic growth rate kg was es-
timated following a logit normal prior distribution bounded by 0.025 and 0.075. This curve
result very similar to the ICES estimation (black solid line) even when the posterior distri-
bution for the annual somatic growth rate parameter is bimodal (Right panel of Figure 4).
Traceplot for quaterly parameter kg in Appendix I shows two chains witouth mixing but with
a very small difference between their means. The first one around 0.0425 and the other one
around 0.0445. When they are transformed into annual values they result also in different but
closer values, which lead us to conclude that an annual somatic growth rate between 0.17 and
0.178 will be adequate to model the growth dynamics as done in ICES.
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Figure 3: Modelled retention patterns for the fleets discard-
ing. Black solid line corresponds to the median while dotted
black lines represent the 0.05 and 0.95 percentiles
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Figure 4: Left:Comparison between modelled von-Bertallanfy
growth curve (dotted and red) and the one estimated by ICES
(black). Right: Posterior distribution for the annual somatic
growth rate parameter, kg.

Summary plots and tables (Recruits, SSB, landings, discards and fish-
ing mortality)

Tables 2 and 3 shows a comparison between modelled (solid black line) and ICES estimations
(dotted line) of recruitment, SSB, landings, discards and fishing mortality by year Fa. This
data is plotted in Figure 5. The comparison shows an inconsistency with ICES results. While
recruitment is coherent, the landings and stock spawning biomass is less with a higher fishing
mortality. We think this discrepancy is mainly driven by the lack of convergence of some
parameters and problems in the definition of the fishing mortality. This problems are explained
below in the Discussion section. A detailed quaterly output for the same variables is displayed
in Figure 6.
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ICES Recr. Mod.Recr. ICES SSB Mod.SSB ICES F Mod.F
2001 317173 226314 36791 8928 0.72 2.6
2002 265151 214509 37888 6277 0.78 5.1
2003 145895 117508 38161 4247 0.78 2.8
2004 334983 609397 43609 3473 0.78 2.1
2005 224857 213164 42802 21206 0.87 0.75
2006 303304 382818 36530 6750 0.72 3
2007 454286 351191 45909 4166 0.61 0.68
2008 381687 769588 56968 6874 0.47 0.58
2009 99576 376328 85181 19975 0.4 0.53
2010 176248 291357 131075 41404 0.39 0.49

Table 2: Comparison between ICES estimations and GPDM
medians of Recruitment(thousands), SSB (tonnes) and Fishing
mortality F

ICES land. Mod.land. ICES disc. Mod.disc
2001 36675 17979 9663
2002 40107 26484 6617
2003 43162 8958 2170 3746
2004 46417 6564 2169 4161
2005 46550 12063 4988 8878
2006 41467 7211 2974 5357
2007 45098 5861 3774 6357
2008 47823 6101 4076 10084
2009 58975 46569 3445 33760
2010 73125 53908 1476 15874

Table 3: Comparison between ICES estimations and GPDM
medians of landings and discards (tonnes)

Supplementary material

Diagnostics (Gelman plots, traces, posteriors) are presented in Appendix I. An acceptable
level of convergence is achieved when: Gelman plots should tend towards 1; traces should be
random and horizontal with overlapping in all chains; and posteriors. Posteriors represent the
distribution of the parameter.

The modelled length frequency of the population at each quarter is displayed in Appendix II.

Computation

The model have been run in the Centre of Supercomputing of Galicia (CESGA) using the
SVG cluster with an AMD Opteron and AMD Bulldozer Processors. The software used was
R 2.14.1 (R Development Core Team, 2011) and JAGS 3.3.0 (Just another Gibbs sampler)
(Plummer, 2013). The code is written in R linking with the MCMC sampler through the
package rjags (Plummer, 2012).
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Figure 5: Comparison between modelled (solid black line)
and ICES estimations (dotted line) by year

Discussion and future work

As a starting point, a general rule to develop models is doing it simple and to evolve eventually
towards a complexity level that allows answering the relevant questions. As stated before,
this requires having a model similar (at least in their main assumptions) than the model that
ICES uses to provide advice (ICES, 2012). The model and data described before accomplished
this requirement; however the Bayesian implementation has huge computational requirements
expending many days for a single run. This makes the initial model development impossible
in a feasible time since every run provide the clues for the next runs. The current ICES model
has 33 years split in quarters, i.e. 132 time steps; 94 length groups from 1 to 130 cm (every
1 cm until 40 cm; every 2 cm until 100 cm and every 10 cm until 130 cm) and 7 fleets, 3 of
them with discards. This model structure is not feasible for the GPDM development process
so we decided to simplify the data making bigger groups.

In the initial run the time period were reduced to 10 years (from 2001 to 2010); the length
groups were reduced to 13 and the fleets were reduced to 1. This simple structure allowed us to
compile the model, to identify problems in the code, to improve the definition of un-informative
priors and to define Bayesian settings such us the iterations number, the adaptation period,
the burning and the thinning. However after extending the iterations the model did not
converge.

In a second stage we extended the fleets from 1 to 5 as described in table 1. The 3 fleets
with discards were kept and the other 4 were joined making 2 new fleets. The model was
extended to deal with discards and also to estimate the discards in the time steps without
discard observations. The convergence problems remained. The runs with this data structure
were used to modify the non-informative priors, allowing to a better model performance,
particularly with some priors that do not allow covering the full parameter range, something
that a priori is difficult constraint. The fact that the growth parameter (Von Bertalanffy
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Figure 6: Modelled percentiles 0.5 (Solid black line), 0.05 and
0.95 (Dotted lines) by quarter

kg) did not converge suggest us that increasing the number of length classes could allow a
better performance of growth model. In this third stage we did 2 alternative length groups:
(1) with 19 length classes and (2) with 27 length groups. The second one, with 27 length
groups and 200000 iterations dies after 450 hours, the limit of time we have in the CESGA
supercomputers to run process. With the first one we got good values for the growth parameter
(Von Bertalanffy kg) so we decided to use this for future development of the model. We took
this code but we implemented it with more iterations (500000) looking for convergence, this
time we used a new processor (AMD bulldozer) and we ask for an special permission in CESGA
for 600 hours. This is the run whose results are presented here.

This run has been running for 23.4 days and even so the time was not enough to get conver-
gence. Diagnostic analysis in Appendix I shows that some parameters have more difficulties to
converge than others. Most of the chains that are not mixing enought, remain very close, which
gives an idea about the range of the values being coherent with the results and with ICES
estimations. The more problematic parameters are kg ,Kbh, alphaGsel[3] and betaGsel[3];
and the annual fishing mortality parameter Fa, a = 1, . . . , 10, plotted in Figure 5. The first
group failed in the convergence process while the fishing mortality parameter has problems of
definition. Convergence problems could be solved when biological-based priors will be incor-
porated. Adding information of the processes involved are supposed to improve the internal
mechanics of the model. Also a bigger number of iterations could help, but considering that
actually it spends 562.68 hours for 500000 iterations, it will be an expensive solution in terms
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of computational cost.

In order to compare with ICES estimations, Fa was calculated as the sum of the fishing
mortality corresponding to each fleet and each size class bigger than 15 cm and less than 80
cm (15 ≤ k ≤ 80) divided by the total number of classes matching this conditions, as follows :

Fa =
17∑

k=4

5∑
j=1

Fa,j,k

14
(3)

with Fa,j,k =
∑4a

t=1+4(a−1) Ft,k,j the fishing mortality in year a, a = 1, . . . , 10, for fleet

j, j = 1, . . . , 5, at size class k, k = 1, . . . , 19, and Ft,k,j as defined in equation (1).

The proportion of fishing mortality corresponding to each fleet, propFj , is defined constant
in time and we think that this assumption is incorrect driving to the following means and
standard deviations for propFj , j = 1, . . . , 5, output:

Mean SD

1 0.09682728 0.01380948

2 0.07017254 0.01024625

3 0.11818517 0.01603182

4 0.08031845 0.01150752

5 0.63449656 0.02546795

When the mean of the observed catch proportion by fleet was:

Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5

0.17232600 0.05267043 0.26924902 0.23228009 0.27350134

It could be seen how the fishing mortality proportion by fleet results higher for the fleet 5
which is inconsistent with observed data. As a consequence of this, considering the equation
(1), Fa results also in an overestimation. This could explain the incompatibilities in Figure 5.

Hake GPDM has a problem of convergence. As future work, we will try to re-define propFj

dependent on the time step and we will include relevant biological knowledge to the priors in
order to improve mixing and achieve convergence.
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