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ABSTRACT 

The population status of the harbor porpoise (Phocoena phocoena) in the Baltic Sea and adjacent regions is still not 

fully resolved. Here, we present a pilot study using the double digest restriction-site associated DNA sequencing 

(ddRAD-seq) genotyping-by-sequencing method on specimens from the Baltic Sea, eastern North Sea, Spain and the 

Black Sea. From a single Illumina lane and a set of 49 individuals, we obtained around 6000 SNPs. We used these 

markers to estimate population structure and differentiation, and identified splits between porpoises from the North 

Sea and the Baltic, and within regions in the Baltic Sea (between the Belt Sea and the Inner Baltic Sea). The SNP 

analysis confirms population structure elucidated by previous mtDNA/microsatellite studies. We demonstrate the 

feasibility of SNP analysis on opportunistically sampled cetacean samples, with varying DNA quality, for population 

diversity and divergence analysis. 
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INTRODUCTION  

The harbor porpoise (Phocoena phocoena) population structure in the Baltic Sea relative to the adjacent western 

Skagerrak (SKA) region and the North Sea (NOS) population has been a continuous matter of debate particularly 

with regard to conservation management practices. While the eastern North Sea population behaves as a continuous 

population with significant isolation-by-distance (Fontaine et al, 2007), strong barriers to gene flow may exist in the 

Baltic Sea and adjacent regions (Wiemann et al, 2009). These regions are a series of relatively deep basins: the 

Kattegat (KAT), the Belt Sea (BES) and the Inner Baltic Sea (IBS), separated by shallower underwater ridges which 

could be oceanographic barriers hindering gene flow (Fig. 1). 

Porpoise population differentiation between these regions, based on morphology or genetics, has been inferred in 

several preceding studies (Wiemann et al, 2009 and references therein). Wiemann et al. (2009) have conducted one 

of the most recent and comprehensive ones, using mtDNA haplotypes and 15 microsatellite loci from nearly 500 and 

305 individuals, respectively. They showed that the NOS and Baltic Sea populations were not panmictic. Further, 

they identified a population split between the SKA and BES regions, and a possible further split between the BES 

and the IBS regions. Here, we revisit this study by using a subset of the same samples along with additional samples 

from Turkey, Spain and Iceland to perform restriction-site associated DNA sequencing (RAD-seq)-based population 

genomic analyses. 

RAD-seq has become one of the most widely used genotyping methods in population genomics studies of non-model 

organisms (Davey et al, 2011). It combines reduced representation library construction, achieved through restriction 

enzyme (RE) digestion of genomic DNA at conserved sites, and Next Generation Sequencing (NGS) methods. 

Traditional RAD-seq uses a single RE digest coupled with secondary random fragmentation to generate NGS 

libraries for single-end or paired-end sequencing (Baird et al, 2008; Etter et al, 2011). Double digest RAD 

sequencing (ddRAD-seq), uses a two enzyme double digest followed by a more precise size selection step which 

allows greater control of the fraction of regions represented in the final library and ensures better reproducibility 

(Peterson et al, 2012).  

 

Figure 1. Sampling locations (50 km x 50 km grids defined by the International Council for the Exploration of the 

Sea, ICES) and assignment to regions (solid lines). Regions are North Sea (NOS), Skagerrak (SKA), Kattegat 

(KAT), Belt Sea (BES), and Inner Baltic Sea (IBS). Except for the distinction between NOS and SKA, all boundaries 

(solid lines) are defined by shallow underwater ridges (up to 50 m depth) between SKA and KAT, KAT and BES, 

and the Darss sill between BES and IBS. Within KAT, BES, and IBS, regions are further divided into sub-regions of 

100 km width (subsequently numbered and indicated by alternating white/gray coloring). Reproduced from 

Wiemann et al (2009). 



In this study, we used a modified ddRAD-seq approach (Sonah et al, 2013) combined with the STACKS 

bioinformatics analysis pipeline (Catchen et al, 2011), which was specifically designed to deal with a wide array of 

RAD-tag sequencing data. The main objective of our study was to evaluate whether the RAD-tag genotyping-by-

sequencing method is appropriate for the study of population differentiation among the harbor porpoise populations 

of the Baltic Sea and adjacent regions by attempting to reproduce (or improve) the results of previous studies. 

Furthermore, given that the sampling of porpoises is necessarily opportunistic, since samples originate from by-

caught or stranded individuals in various states of decomposition, we aimed to establish what effect DNA 

degradation has on the sequencing output and final number of usable SNP loci for population genomics analyses. 

METHODS 

Sample selection and DNA extraction 

We analyzed 49 samples from either by-caught or stranded individuals. Most of these samples were from the Baltic 

Sea and adjacent regions (North Sea – NOS, Skagerrak – SKA, Kattegat – KAT, Belt Sea – BES and the Inner Baltic 

Sea – IBS), of which the majority has been already used in a previous study (Wiemann et al, 2009). The rest were 

from Turkey, Spain, and Iceland (see Appendix for detailed sample information). 

We extracted total genomic DNA from approximately 25 mg of tissue from samples stored at -20 ⁰C (frozen or 

stored in ethanol) using the NucleoSpin Tissue Kit (Macherey-Nagel, Germany) following the manufacturer’s 

recommendations. We measured DNA concentration using a NanoDrop 1000 (Thermo Scientific, USA). Using the 

Agilent 2200 TapeStation with the Genomic ScreenTape System (Agilent Technologies, USA), we additionally 

assessed sample quality and quantity. 

 

Genotyping by sequencing and data analyses 

The ddRAD-tag libraries were prepared by a commercial sequencing service provider (LGC Genomics, Berlin) using 

total genomic DNA and the restriction enzymes PstI (rare cutter) and MspI (common cutter). Briefly, the DNA 

samples were normalized and simultaneously digested with both enzymes. This step was followed by adapter 

ligation, where the PstI adapter contained a unique sample barcode. The reaction mix clean-up was followed by an 

amplification step to add the flow cell binding sites. This step included a concurrent reduction of the amount of 

samples to be sequenced by elongating one of the two PCR primers by two bases (Sonah et al, 2013). The individual 

samples were then pooled and cleaned. Sequencing was preceded by a size selection step (low-melting point (LMP) 

agarose) to remove fragments smaller than 250 bp and larger than 500 bp.  

The libraries were sequenced on one lane of the Illumina HiSeq 2000 platform (Illumina Inc., USA) with the 100 bp 

paired-end read module. Raw Illumina reads were processed using the CASAVA v. 1.8.2 software (Illumina Inc., 

USA). Samples were de-multiplexed with inline barcodes using LGC-developed software and clipped to remove 

Illumina TruSeq™ adapters and inline barcode remnants of all reads. Reads shorter than 20 bases were discarded and 

the remaining mate read stored in a separate FASTQ file for single reads. FastQC reports 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) containing read quality metrics were generated for all 

FASTQ files. 

We processed the sequenced data and grouped the reads from all individuals using several programs from the 

STACKS v. 1.13 software package for analyzing RAD-seq data (Catchen et al, 2011, 2013). First, using the 

STACKS program process_radtags we filtered for read quality and trimmed the de-multiplexed paired-end and 

single reads to a length of 85 bp. We concatenated all three read files into one common FASTQ file per individual. 

With the wrapper program denovo_map.pl which can handle data without a reference genome, and which executes 

the three STACKS components (ustacks, cstacks and sstacks) we identified alleles in our populations set. The 

ustacks program aligns short sequence reads into matching stacks from which loci are formed and SNPs detected at 

each locus. We tested several combinations of parameter settings. For the final data analyses, the minimum depth of 

coverage required to create a stack and the maximum distance (in nucleotides) allowed between stacks were both set 

to 3; the removal of highly repetitive RAD-tags was enabled. A catalog of all loci across all individuals was created 

with the cstacks program with two mismatches allowed between loci when building the catalog. The sstacks program 

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/


then matched loci from each individual back to the catalog. We calculated population genetics statistics using the 

populations program. Loci were retained if they were present in all individuals and if the depth of coverage at each 

locus was equal or higher than 6 reads per individual. The populations program also enables output in several 

common file formats for downstream population genomics or phylogenetic analyses, such as GENEPOP and 

STRUCTURE formats. To compute pairwise FST values, we imported the set of SNPs into ARLEQUIN (Excoffier & 

Lischer, 2010). 

Due to the computational limitations of handling a large number of loci in the current STRUCTURE software 

package v. 2.3.4 (http://pritchardlab.stanford.edu/structure.html; (Pritchard et al, 2000; Falush et al, 2003; Hubisz et 

al, 2009)), we randomly selected 3000 retained loci in 45 individuals, assigned to 8 populations (Turkey, Spain, 

Iceland, NOS, SKA, KAT, BES, IBS) as input (4 samples with a relatively low number of SNP loci were left out in 

further analysis). To streamline batch mode analyses of population structure by setting up multiple iterations for 

various values of parameter K, we used the freely available program StrAuto 

(www.crypticlineage.net/pages/software.html). For analyses, we ran 15 000 burn-in iterations and 150 000 MCMC 

repetitions, with 5 replicates for each value of K. K ranged from 2 to 10. The StrAuto output builds a zip archive 

containing all result files which we uploaded to STRUCTURE HARVESTER 

(http://taylor0.biology.ucla.edu/structureHarvester/) (Earl & VonHoldt, 2011), a program for visualizing 

STRUCTURE output and implementing the Evanno method (Evanno et al, 2005). We chose optimal values of K 

based on the Evanno deltaK result. To align multiple replicates of our data sets and facilitate the interpretation of 

clustering results, we used the computer program CLUMPP (CLUster Matching and Permutation Program) 

(Jakobsson & Rosenberg, 2007). We visualized STRUCTURE results with distruct v. 1.1 

(http://www.stanford.edu/group/rosenberglab/distruct.html). 

RESULTS 

DNA quality and sequencing output 

The DNA quality analyzed with Agilent TapeStation instrument revealed striking differences in DNA integrity 

between samples. Fragment lengths with highest intensities per sample ranged from 665 to over 19 thousand bp, with 

the average length of fragments for all samples being 9 923 ± 4 782 bp (standard deviation, SD). 

One lane of sequencing produced over 303 million raw reads (or over 151 million raw read pairs) from 49 

individuals. The average number of adapter clipped read pairs per individual was 3 023 030 ± 949 813 (SD), with the 

lowest numbers just above 1.7 million and the highest 5.9 million read pairs per individual. Typically, samples of 

low DNA quality had a lower number of read pairs. The percentage of reads removed by quality and ambiguous 

RAD-tags filters in process_radtags was 13.4 and 9.9, respectively, resulting in 227 171 630, or 76.7% of retained 

reads. Just over 12% of the reads were further removed through filters set in denovo_map.pl. Thus, 63.4% of all 

reads were retained for downstream processing with STACKS.  

The average number of unique RAD-tag loci per individual identified by STACKS was 377 322 ± 65 872 (SD). 

Nearly 7% of those loci are polymorphic (Fig. 2). The average number of SNPs per individual was 33 431. After 

applying stringency filters in the populations program to ensure that the loci were present in all individuals from all 

populations with sufficient coverage, we retained a set of 6 006 loci.  

 

Genetic diversity of harbor porpoise populations 

For the loci that were polymorphic in at least one of the populations, the average major allele frequency ranged from 

0.915 (Iceland) to 0.951 (Turkey) (Table 1). The respective average observed heterozygosity ranged from 0.1431 to 

0.0769. The lowest levels of genetic diversity were found in the Spanish and Turkish populations which also had the 

lowest percentages of polymorphic loci. The highest levels were found in the Inner Baltic Sea populations (56.3%). 

Within the North Sea and Baltic populations, samples from SKA and KAT regions had higher levels of genetic 

diversity as compared to populations on either side of the transition zone between NOS and IBS. 

 

http://pritchardlab.stanford.edu/structure.html
http://www.crypticlineage.net/pages/software.html
http://taylor0.biology.ucla.edu/structureHarvester/
http://www.stanford.edu/group/rosenberglab/distruct.html


 
Figure 2. The number of unique and polymorphic RAD-tag loci identified with Stacks, per sample. Numbers are in 

order of the inclusion in the STRUCTURE analysis and refer to the Appendix. 



Table 1. Summary genetics statistics calculated by the populations program for variant (polymorphic) positions (top) 

and all positions (bottom).  

 N Private Nucl. Sites % Poly. Loci P HObs FIS 

Variant positions        

Turkey 3.9 288 1646 16.9 0.9514 0.0769 -0.0066 

Spain 3.0 277 2298 23.7 0.9325 0.1161 -0.0111 

Iceland 3.0 440 3190 32.8 0.9148 0.1431 -0.0038 

NOS 5.9 659 4179 43.0 0.9180 0.1271 0.0088 

SKA 2.0 271 2437 25.1 0.9211 0.1400 -0.0034 

KAT 4.9 515 4058 41.8 0.9153 0.1363 0.0004 

BES 8.9 565 4841 49.9 0.9153 0.1308 0.0023 

IBS 12.7 866 5465 56.3 0.9158 0.1279 0.0075 

All positions        

Turkey 4.0 288 872586 0.19 0.9995 0.0009 -0.0001 

Spain 3.0 277 872585 0.26 0.9992 0.0013 -0.0001 

Iceland 3.0 440 872583 0.37 0.9991 0.0016 0.0000 

NOS 6.0 659 872582 0.48 0.9991 0.0014 0.0001 

SKA 2.0 271 872578 0.28 0.9991 0.0016 0.0000 

KAT 5.0 515 872582 0.47 0.9991 0.0015 0.0000 

BES 9.0 565 872576 0.55 0.9991 0.0015 0.0000 

IBS 13.0 866 872574 0.63 0.9991 0.0014 0.0001 

N – average number of individuals genotyped at each locus; Private – number of variable sites unique to each 

population; Nucl. Sites – number of polymorphic (top) or total (bottom) nucleotide sites; % Poly. Loci – percentage 

of polymorphic loci; P – average frequency of the major allele; HObs – average observed heterozygosity per locus; 

FIS – average Wright’s inbreeding coefficient. 

 

Pairwise FST comparisons between populations were calculated in ARLEQUIN from the set of 6006 loci that passed 

filtering criteria. Of those, 372 contained too much missing data and were not included in the analysis (allowed level 

of missing data: 0.05). Most values were statistically significant (P < 0.05), with the exception of several pairwise 

comparisons which include the Icelandic and SKA populations (Table 2). Highest FST values were calculated for 

pairwise comparisons which included the Turkish population (average FST = 0.26), followed by the population from 

Spain (average FST = 0.11). Comparisons between the Baltic Sea and adjacent regions yielded markedly lower, yet 

significant FST values. Comparisons between NOS and SKA, and the BES and IBS regions showed significant FST 

values ranging from 0.022 to 0.026. FST values between adjacent regions like NOS:KAT and KAT:BES were lower, 

around 0.011. 

Table 2. Pairwise FST values (above the diagonal) and FST P values. Values in bold are significant. 

 
Turkey Spain Iceland NOS SKA KAT BES IBS 

Turkey 
 

0.3484 0.2595 0.2371 0.3008 0.2454 0.2337 0.2241 

Spain 0.0273 
 

0.0923 0.1019 0.1201 0.1004 0.1147 0.1126 

Iceland 0.0244 0.1992 
 

0.0113 -0.0031 0.0060 0.0236 0.0267 

NOS 0.0049 0.0107 0.0889 
 

0.0120 0.0115 0.0220 0.0260 

SKA 0.0645 0.1777 0.5732 0.2813 
 

0.0082 0.0216 0.0257 

KAT 0.0059 0.0215 0.1709 0.0186 0.2178 
 

0.0109 0.0127 

BES 0.0000 0.0010 0.0059 0.0000 0.0244 0.0049 
 

0.0043 

IBS 0.0000 0.0029 0.0361 0.0039 0.0400 0.0938 0.2832 
 



 
Figure 3. Bayesian plot of group assignment of each individual into three (a), five (b) and seven (c) clusters based on 

STRUCTURE analyses using 3000 SNPs. Models with K = 3 (deltaK = 2.5), K=5 (deltaK = 1.3) and K = 7 (deltaK = 

2.3) best fit the data using the Evanno method. The results are grouped by region of origin. Each of 45 individuals is 

represented with a vertical column where the coloration is proportional to the individuals estimated membership 

coefficient in one of the clusters of genetic similarity. 

 



Table3. Occurrence of mtDNA haplotypes among specimens of SNP clusters B and C. The haplotype distribution 

among the two SNP clusters is significantly different (Χ2=9.904, p=0.019). 

 Mitochondrial haplotype 
 PHO 1 PHO 4 PHO 7 other haplotype 

SNP cluster B 7 3 2 2 
SNP cluster C 4 0 11 3 

haplotype specific 
comparison 

p=0.366 p=0.083 p=0.013 p=0.655 

 

Harbor porpoise population structure 

To investigate harbor porpoise populations structure, we randomly selected 3000 loci for analyses. Because loci in 

tight linkage, such as those originating from a single RAD site, should be avoided in STRUCTURE analyses 

(Pritchard et al, 2000), only one SNP was chosen from each selected RAD-tag locus. By using the deltaK approach 

(Evanno et al, 2005), we found that models with K = 3 (deltaK = 2.5), K=5 (deltaK = 1.3) and K = 7 (deltaK = 2.3) 

best fit the data. The plot shows a pattern where at the highest level of structure, the Turkish populations is clearly 

separated from the North Sea, Baltic Sea and the adjacent populations (Fig. 3a-c). Similarly, two individuals from the 

Spanish population are clustered together. The third Spanish individual shows a clustering pattern that is found in the 

Icelandic, NOS and SKA populations. There is a change in cluster representation in the transition between SKA and 

KAT, and further in the BES populations. The pattern then changes again with transition into the Inner Baltic Sea, 

with several individuals showing unique clustering. The two specimens forming the Inner Baltic cluster C2 in the 

k=5 (blue) and k=7 (light green) analysis are two females by-caught east of Sweden in May. 

SNP clusters identified by STRUCTURE significantly differed in their mitochondrial haplotype composition (Table 

3, see Fig. 3 and Appendix for assignments). There was a significant over-representation of haplotype PHO7 in SNP 

cluster C and a tendency towards over-representation of PHO4 in SNP cluster B. 

DISCUSSION 

Our study of population differentiation using the RAD-seq genotyping-by-sequencing successfully reproduced the 

harbor porpoise population differentiation inferred from 15 microsatellite and mitochondrial control region sequence 

data (Wiemann et al, 2009), including the correlation between nuclear DNA clustering (microsatellites/SNPs) and 

certain haplotypes of the genetically unlinked mtDNA. Furthermore we achieved a comparatively more precise 

population assignment of individuals to specific clusters with a much smaller sample set (45 individuals compared to 

the microsatellite data from 305 samples used in the study mentioned above). Expected clustering was achieved with 

SNP data from just two individuals (e.g. samples from Turkey, Spain, or SKA). Using the RAD-seq method we were 

able to obtain a higher resolution with substantially fewer individuals because the method provides a genome-wide 

sampling of loci that is much denser than with microsatellites (Gärke et al, 2012; Haasl & Payseur, 2011; DeFaveri 

et al, 2013; Helyar et al, 2011).  

Our results show the isolation of Turkish (designated as the subspecies P. phocoena relicta), as well as Galician 

population (the latter however with some affinity to North Sea/North Atlantic). This is in accordance with studies 

that report limited gene flow in to and out of the porpoise population from Iberian waters, and on a larger scale for 

porpoises from the Black Sea (Fontaine et al, 2007 and references therein). Conversely, the samples from Iceland 

showed the same assignment pattern as those from NOS and SKA, indicating that there is not much genetic 

differentiation between porpoises from North Sea and Central North Atlantic. This finding is partly in accordance 

with  Fontaine et al (2007) who reported significant isolation-by-distance for the central and eastern North Atlantic 

population. A much clearer differentiation can be seen between the Icelandic/NOS/SKA clustering, and the 

clustering in the BES/IBS regions. The Kattegat region appears as a transition zone, with individuals showing 

clustering patterns characteristic of both adjacent regions. As has been suggested by Fontaine et al (2007), barriers 

separating oceanic basins can cause profound population structure on a small geographic scale. Such might be the 

case with the Kattegat, Belt Sea and Inner Baltic sea basins separated by shallower underwater ridges (Wiemann et 

al, 2009). Wiemann et al (2009) reported that the most striking characteristic of the BES region was the presence of 

a distinct mtDNA haplotype (PHO7) which rarely appeared in the NOS/SKA region and was absent everywhere else, 



indicating a split between the North Sea and the Baltic porpoises. Another split was further suggested between the 

BES and IBS populations which is to some extent also seen in our data. Furthermore, there appears to be 

differentiation among individuals within the Inner Baltic Sea with several individuals from the IBS showing a pattern 

similar to porpoises from the Icelandic/NOS/SKA populations. There are two individuals (females by-caught in May 

east of Sweden) assigned to a cluster specific to IBS, while others are assigned to Icelandic/NOS/SKA or BES. A 

scenario that could explain such a clustering pattern would be some seasonal migration between IBS and adjacent 

areas, but the data do not rule out the possibility of a relict IBS population.  

Another important issue to consider is the quality of genomic DNA, as RAD-seq can be limiting in this respect – it 

requires at least 1 μg of high-quality genomic DNA per sample (Hohenlohe et al, 2011). Specifically with regard to 

harbor porpoise tissue samples it is difficult to acquire or expect ‘fresh’ samples, since most are collected from 

stranded individuals and a smaller number are from by-catches (Wiemann et al, 2009; Wright et al, 2013). 

Particularly in the case of strandings, tissue is collected from animals in various stages of decomposition with 

concomitant decreases in DNA quality. As we have shown in this study, samples of very low DNA quality typically 

yield a small number of unique RAD-tag loci. If stringency filters are applied, such that all loci for downstream 

analyses must be present in all samples, then we can expect a smaller data set as output. It is therefore critical to 

consider what level of genomic DNA degradation is acceptable for a sample to be sequenced given an expected 

RAD-tag output and the highest possible number of samples. 

In summary, this pilot study demonstrates the feasibility of SNP analysis on opportunistically sampled cetacean 

samples for population diversity and divergence analysis. The ddRAD-seq method delivered around 6000 SNP loci 

from 49 specimens in a single Illumina lane. Clearly, this approach should be applied to a larger sample set, such that 

specimens can be stratified by sex and season. Provided a meaningful and sufficiently large set of samples, RAD-tag 

genotyping has the potential to analyze population differentiation with an unprecedented number of loci, which 

should yield high resolution power and precision in parameter estimation and population delimitation. 
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Appendix: Samples in order of the STRUCTURE plot (Figure 3). For the different k values, the STRUCTURE 

cluster with the highest relative assignment is stated (k=3: A=yellow, B=orange, C=dark green; k=5: A=orange, 

B1=light green, B2=dark green, C1=yellow, C2=dark blue; k=7: A=orange, B1=dark green, B21=yellow, B22=light 

blue, C11=violet, C12=dark blue, C2= light green; no specimen was assigned to C12). mt data are from Wiemann et 

al. 2009). 

Structure 
plot ID 

Area Month k=3 k=5 k=7 
mtDNA 

haplotype 
Sex 

1 TUR / A A A / f 

2 TUR / A A A / f 

3 TUR / A A A / f 

4 TUR / A A A / f 

5 SP Feb B B1 B1 / m 

6 SP Feb B B2 B21 / m 

7 SP Feb B B1 B1 / m 

8 IS Jan B B2 B22 / / 

9 IS Apr B B2 B22 / m 

10 IS Jun B B2 B22 / m 

11 NOS Sep B B2 B22 1 f 

12 NOS Jun B B2 B21 4 f 

13 NOS May B B2 B22 1 f 

14 NOS May B B2 B21 / f 

15 NOS May B B2 B22 / f 

16 NOS Apr B B2 B22 4 m 

17 SKA Aug B B2 B22 1 f 

18 SKA Feb B B2 B22 1 m 

19 KAT1 Jul B B2 B22 7 f 

20 KAT2 May B B2 B21 27 f 

21 KAT2 Jun BC C1 C11 7 f 

22 KAT2 Jul B B2 B21 1 f 

23 KAT2 Feb B B2 B21 1 m 

24 BES1 Aug C C1 C11 7 f 

25 BES1 Sep C C1 C11 7 f 

26 BES1 Apr C C1 C11 11 f 

27 BES1 Nov B B2 C11 1 f 

28 BES2 Sep C C1 C11 7 f 

29 BES2 Sep C C1 C11 7 f 

30 BES2 Aug C C1 C11 1 f 

31 BES2 Aug C C1 C11 14 f 

32 BES2 Aug C C1 C11 / f 

33 IBS1 Sep C C1 C11 1 f 

34 IBS1 Aug C C1 C11 7 f 

35 IBS1 Jul C C1 C11 7 f 

36 IBS2 May C C2 C2 7 f 



37 IBS2 May C C2 C2 7 f 

38 IBS2 Aug B C1 C11 1 m 

39 IBS3 Nov C C1 C11 14 f 

40 IBS3 Aug B B2 B21 7 m 

41 IBS4 Feb C C1 C11 7 f 

42 IBS4 Jun B B2 B21 27 f 

43 IBS4 Jul C C1 C11 1 m 

44 IBS5 Okt B B2 B22 4 f 

45 IBS5 Jan C C1 C11 7 m 

 


