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Abstract

The spatial variability of biomass and stable ipetin plankton size fractions in the upper
200 m was studied in a high spatial resolutiongeah along 24°N from Canary Islands to
Florida to determine nitrogen and carbon sourcestidal advection of waters predominated
in lateral zones while the central Atlantic (30-70f) was characterised by a strong
stratification and oligotrophic surface waters.rmRtan biomass was low in the central zone
and high in both eastern and western sides, witkt mbthe variability due to either large
(>2000 pm) and small plankton (<500 um). Carbomnojses reflected mainly the advection
the deep water in lateral zones. Stable nitrogetofes showed a nearly symmetrical spatial
distribution in all fractions, with the lowest vaisi *°N<1%o) in the central zone, and were
inversely correlated to carbon stable isotopg#sC) and to the abundance of the nitrogen-
fixer Trichodesmium. Diazotrophy was estimated to account for >50%rgfnic nitrogen in
the central zone, and even >30% in eastern andemegbnes. The impact of diazotrophy
increased with the size of the organisms, supppttie wide participation of all trophic levels
in the processing of recently fixed nitrogen. Thesmilts indicate that atmospheric sources of
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carbon and nitrogen prevail over deep water sourcdse subtropical North Atlantic and that

the zone influenced by diazotrophy is much largantreported in previous studies.

Keywords. Stable isotopes, plankton, Subtropical North Atlaifrichodesmium
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INTRODUCTION

Large regions of the ocean at subtropical latitiatescharacterised by gyres of ocean currents
rotating clockwise in the Northern Hemisphere. Bgital production in the central regions
of these gyres is generally low because of lowientinputs while production is enhanced at
their borders (e.g. Behrenfeld et al., 2006). Fstance, the supply of nitrogen from deep
waters to the photic zone is lowest in the midaleamic gyres, where a deep thermocline and
smooth nutrient gradients determine slow rates uifient supply by diffusion (Mourifio-
Carballido et al., 2011). Notwithstanding their I@noduction, these gyres contribute a large
fraction of global biogenic carbon export into theep ocean because of their size (Emerson
et al., 1997; Karl et al., 2008).

A variety of physical mechanisms are known to dbate to nitrogen inputs in oligotrophic
gyres, including mesoscale and submesoscale tumri@schlies and Gargon, 1998), lateral
transport from other regions (Williams and Follow998; Torres-Valdes et al., 2009), and
atmospheric deposition (Duce et al., 2008). Howelarlogical fixation of atmospheric N
(diazotrophy) can be also a major input of nitrogerthe oligotrophic ocean (Gruber and
Sarmiento, 1997; Capone et al., 2005; Moore e2aD9). In the North Atlantic, diazotrophy
contributed to a large fraction of new productiemen exceeding the contributions by nitrate
diffusion across the pycnocline (Capone et al.,520Bernandez et al. 2010; Mourifio-
Carballido et al., 2010). Nitrogen fixation is caolked by temperature (Breitbarth et al.,
2007), CQ (Barcelos e Ramos et al., 2007) and the avaitgloli other nutrients, notably
phosphorus and iron, the latter provided by atmesphdust inputs (Moore et al., 2009;
Sohm et al., 2011). Nitrogen of diazotrophic origgtrmade available to the pelagic food web
through excretion and mortality of cyanobacteridiqf&t and Bronk, 1994) and further
processing by microbes and planktonic metazoa (Manét al., 2002).

The colonial cyanobacteria of the geflugchodesmium is the best known diazotroph, with a
widespread distribution across tropical and sulitedegions of the ocean (Capone et al.,
1997; Luo et al.,, 2012) where surface water temperaexceeds 20°C (Breitbarth et al.,
2007). In the North AtlanticTrichodesmium is more abundant between 20°N and 20°S
(Tyrrell et al., 2003; Davis and McGillicudy, 200Bgrnandez et al., 2010, 2012) but most
studies on Kfixation have been focused in the subtropical taoplical regions where blooms
are frequent (Voss et al., 2004; Capone et al.52Mulholland et al., 2006; Montoya et al.,
2007). Only a few studies have measured concuyrehtichodesmium abundance and
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nitrogen fixation over large spatial scales in Atkantic, as reviewed by Luo et al. (Luo et al.,
2012). However, further evidence of the impact cdzdtrophy at regional scales was
provided by measurements of the natural abundahstlle nitrogen isotopes in seston and
plankton (Waser et al., 2000; Mino et al., 2002;nttya et al., 2002; Reynolds et al., 2007;
Landrum et al., 2011).

Stable isotopes can trace Mputs because atmospheric nitrogen is relatidggleted in
heavy {°N) isotopes compared to marine nitrate (Owens, L 985similation of this light N

by diazotrophs produces organic matter with a datarstic isotopic signature that can be
traced along the food web. Because of the differemover time of planktonic organisms
(hours to days in bacteria and phytoplankton, gmtbbuseveral months in large zooplankton)
the isotopic signature of organic matter in varicosnpartments provides an integratiue,
situ tracer of the movement and transformation of geroin the water column beyond the
instantaneous effects reported duringugtake measurements. Nitrogen isotopes in seston
reflect the uptake of atmospherig by cyanobacteria (e.g. Montoya et al., 2002) wttilese

in zooplankton show the assimilation of organic teratnitially produced by diazotrophs
(McClelland et al., 2003). This feature allows atiraation of the contribution of diazotrophy
to net nitrogen assimilation in different comporgenf the food web (Mino et al., 2002;
Montoya et al., 2002; Reynolds et al., 2007; Landet al., 2011). Previous estimates using
measurements of natural abundance of nitrogengsstm seston and zooplankton revealed a
large contribution of diazotrophic nitrogen (up 160%) in the north-eastern tropical and
subtropical Atlantic (Montoya et al., 2002). Lanaret al. (Landrum et al., 2011) reported
lower contributions in the central and eastern raydital Atlantic compared to those in the
eastern region, however this study was made inrwatear 30°N, wher&richodesmium
abundances were lower than in southern waters€llhgtral., 2003; Davis and McGillicuddy,
2006; Fernandez et al., 2010). Direct measurenrentsaled significant Nfixation also in
the eastern subtropical Atlantic (Fernandez et281,0; Wannicke et al., 2010; Benavides et
al., 2011; Fernandez et al., 2012), although tleeefew measurements of either abundance

or N, fixation in the central region of the gyre (Lucagt 2012).

The objective of this study is to characterize isgpatatterns of plankton in the oligotrophic
subtropical North Atlantic by means of the analydisize-fractionated plankton biomass and
natural abundance of stable carbon and nitrogetopes. The patterns are related to the
abundance ofrichodesmium and indicate a large influence of diazotrophy asrplankton

size classes over most of the subtropical nortAdamtic.
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MATERIAL AND METHODS

Samples and water column measurements were obtdun@ny Leg 8 of Malaspina-2010

expedition fttp://www.expedicionmalaspina)e®n R/V Sarmiento de Gamboa (January-

March 2011) in a transect mostly along 24 °N betw€anary Islands and Florida (Fig. 1).
The transect was arbitrarily divided in eastermtic#, and western zones to summarize its

oceanographic and plankton characteristics.

Plankton samples were collected by vertical tows aficroplankton net (4@m mesh size)
and a mesoplankton net (200 pum mesh size) thrduglupper 200 m of the water column.
Sampling was made between 10:00 and 16:00 h GMankRIn was separated into five size
fractions (40-200, 200-500, 500-1000, 1000-2000 22@d00 pum) by gentle filtration of the
samples by a graded series of nylon sieves (20000,1500, 200 and 4@m). Large
gelatinous organisms were removed before filtratidliquots for each size-fraction were
collected on pre-weighted glass-fibre filters, dri@0°C, 48 h) and stored in a dessicator
before determination of biomass (dry weight), carland nitrogen content and natural

abundance of stable carbon and nitrogen isotopeseas

After determination of dry weight, finely groundaots of each size fraction were packed in
tin capsules for elemental and stable isotope arsalyy conversion into CQOand N in an
elemental analyser (Carlo Erba CHNSO 1108) coufdeth isotope-ratio mass-spectrometer
(Finnigan Mat Delta Plus). Samples were not a@&difio remove carbonates because other
studies showed that the acidification may not cauwdestantial modification in carbon isotope
results, but it may affect nitrogen determinatigBsinn etal., 1995; Bode atl., 2003).
Similarly no corrections were made for lipid coritgrotentially affecting carbon isotope
composition (Symantec et al., 2007). In this cdlse,average (xse) C:N molar ratio of all
samples was 4.8+0.0 (n=218) and showed little tiaria among size fractions, suggesting
low influence of lipids. Carbon and nitrogen staisietope abundance was expressed 3
and3™N relative to VPDB (Vienna PeeDee Belemnite carlenand atmosphericAisotope
standards. Precision (x standard error) of re@iaiterminations of both C and N stable

isotopes was <0.03%o.

Water properties were estimated from CTD casts (SBE Plus) in the upper 300 m. In
absence of more detailed observations, sea sudageerature (SST 0-10 m) was used as a



126  surrogate of nutrient supply to the surface by atioe from deeper layers, arid vivo
127  fluorescence (SFluor) as an estimate of phytoptankiomass. Total nitrate (NO+ NO,)
128 and phosphate were analysed colorimetrically (Gafiset al., 1983) on frozen samples

129  collected by Niskin bottles at standard depths.

130  Abundance of the diazotrogichodesmium sp. was estimated by counts of 50 ml aliquots of
131  the sample from the microplankton net preserveglutaraldehyde (25% final concentration)
132 using a FlowCAM® system (Fluid Imaging Technologid®rior to analysis the samples were
133  screened by a 100 um nylon mesh to prevent cloggintpe FlowCAM cell. Results are
134  reported as number of colonies (trichomes) per melwf seawater. Abundance of total
135  microzooplankton and phytoplankton (100 to 200 pmas also determined in the same
136 samples. Total abundance of mesozooplankton wasndieted by counts of aliquots of the
137 200 pm net preserved in 4% formalin and observedewum binocular microscope. The

138 relative frequency of the main taxa was also reedrd

139  The contribution of nitrogen fixed by diazotropltBagotroph N) to plankton fractions was

140  estimated using the isotope mass balance apprdé&dbrioya et al. (2002):

615Nm _ 815Nref }

%diazotroph= 100{
815Nd ) 515Nref

141

142 where 8'°N,, is the measured isotopic composition in the sampN, is the isotopic
143  reference value for plankton not influenced by dteaph N and&™Ny is the isotopic
144  composition for diazotrophs (-2%., Montoya et aDP2). Reference valu€s N, were 3.7,
145 4.3, 5.1 and 5.8 % for 200-500, 500-1000, 1000-2@@ >2000 um size-classes,
146  respectively, corresponding to plankton in tropiequatorial regions (Landrum et al., 2011).
147  No estimations of diazotroph N contribution weredador the 40-200 um class because of
148  potential bias caused by the presencérathodesmium filaments.

149 RESULTS
150 Temperature, salinity, fluorescence and nutrients

151 A large range in temperature (10 to 25 °C) was doumthe upper 300 m along the transect
152  (Fig. 2). Isotherms raised in the eastern endrigattie influence of the Canary upwelling, and
153  also at other points along the transect indicathggoscale features favouring upwelling (e.g.

154  near 50 and 70 °W). The highest surface temperatirees were found in the western and
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central regions, and the lowest in the easterroredbalinity showed a pattern similar to the
described for temperature, but in this case thexg avcore of high salinity (>37.4) between
25 and 48 °W in the upper 150 m. Strong salinigdgents characterised the eastern region

while the western region had in general low salindlues.

Low values ofin vivo fluorescence prevailed along the transect and stiavcharacteristic
subsurface maximum in nearly all stations. This imaxn was less developed in the eastern
region where fluorescence was more uniformly dstied in the upper 100 m but was sharper
and deeper in the central and western regions whexached ca. 150 m deep.

Nitrate was almost depleted (<0.05 puM) in the ur m for most of the transect but in the
central zone a layer of relatively high concentmatias found between 75 and 100 m depth
(Fig. 2). Phosphate also showed low concentraiionsost of the transect but in this case the
whole water column had higher concentrations (>Qu@% in the eastern than in the other
zones. Both nutrients showed higher concentrationdeep waters at the borders of the

transect.
Spatial patternsof plankton and stableisotopes

Plankton biomass decreased towards the central aotie transect and had high values at
both western and eastern zones (Fig. 3). Thisrpattas similar in all size classes although
mean values were significantly higher in the westame for plankton <500 um and lower in
the central zone for plankton >2000 um (Table heré were significant differences in mean
values of total plankton biomass, with the loweslue central zone, and the highest in the

western zone.

Microzooplankton abundance was similar in all zombde phytoplankton was significantly
more abundant in the western zone (Table 2). Mbandance of mesozooplankton followed
a similar pattern to total plankton biomass, witjuigalent values in the eastern and western
zones and minimum values in the central zone (T2pl€opepods were generally dominant
in all zones, but some genera were more frequettiariateral zonesQjthona) than in the
central region Qalanus, Macrosetella). Ostracoda were also more frequent in laterakgon

while salps and appendicularia showed higher freges in central and eastern zones.

The spatial variability in nitrogen isotopes wamiigar to the pattern described for biomass
(Fig. 4), as significant, positive correlations (F85) were found betweeit°N and biomass

in all plankton size-fractions. In this case adidiions showed mea@°N values in the central

7
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zone (<2%o) significantly lower than values in eitheastern or western zones (Table 1).
Isotopic enrichment was only noticeable betweensthallest and largest size classes, while
plankton between 200 and 2000 pm showed similan@el values within zones.

In contrast,3'°C displayedan opposite pattern to the one describ@edd>N and biomass, but
with more differences between size-fractions (B)g.Mean values for 40-200, 200-500 and
1000-2000 um classes were significantly lower ia #rastern zone, while no significant
differences between zones were found for otherselgTable 1). Biomass was only
significantly correlated with'3C for 200-500 and 500-1000 um classes.

Relationships with surface temperature, salinity and in vivo fluorescence

Biomass was negatively correlated with surface tatpre only for the largest size-class,
and also negatively with surface salinity for <5@Q@n classes, while non significant
correlations resulted between biomass and surfdgerebcence (Fig. 6). However,
fluorescence was positively correlated wWathN for all classes and wits*C for <1000 um
classes. Surface temperature was also correlatidd¥N (negatively) ors**C (positively)
for <1000 pm (and in case &C also for >1000 pm) classes.

Linearity between 8N and $*3C

Carbon and nitrogen isotope abundances showedndicagt negative linear relationship
within size-classes, except for the >2000 um c{&gs 7). The slopes and intercepts of the
lines were equivalent for classes <1000 um andfalsdasses >1000 pum, while within these
groups there were no significant differences (ANGQY<0.05).

Trichodesmium abundance and 3°N

With the exception of the two easternmost statiofirschodesmium was recorded at all
stations of the transect (Fig. 8). Its abundanosveld an abrupt increase at ca. 25°W followed
by a general decrease to the west. Mean values sigmdicantly higher in the eastern and
central zones (meanz+se = 4.77+0.73 trichomés+29) than in the western zone (2.04+0.57
trichomes [* n=14, ANOVA, P<0.05).

A negative linear relationship was found betw&&N and log-transformedrichodesmium
abundance for all size-classes (Fig. 9). The stdghe line was similar for all classes (mean
slope = -1.42+0.11, n=84) while there were diffeenin the intercept between the 40-200
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um and the other classes and between >2000 um lasses 200-1000 um (ANCOVA,
P<0.05).

Contribution of N from diazotrophs

Diazotroph N contributed to all size fractions imast all stations (Fig. 10). Only few
stations in the eastern zone with@uitchodesmium showed zero contribution while maximum
values (>70%) occurred in general in the centralezdMean contributions were ca. 50% in
the central zone but between 22 and 38% in theemasind western zones (Table 3). The
contributions of diazotroph N increased for largssses. On average there was an increase in
the contribution of diazotroph N between the 200-&0d the >2000 pum classes of 16, 10 and

4% for the eastern, central and western zones.

DISCUSSION
Plankton biomass across the subtropical Atlantic

The measured plankton biomass reflected well tihgotwbphy of most of the subtropical
North Atlantic. To our knowledge these results theefirst obtained in this region of the deep
ocean at such small spatial resolution showing adwal decrease from zones near the
continental shelves to the central basin. Howetbe studied transect included also
productive areas. Biomass of nearly all size ckasgas higher in the western than in the
eastern and central zones, with mean values eguitved those previously reported for both
western (Madin et al., 2001) and eastern zonesngtelez-Leon et al.,, 2007). The high
productivity of lateral zones can be attributedhe influence of the Canary upwelling in the
east (indicated by the upward trend in isotherntsthe shallow chlorophyll maxima in Fig.
2) and to mesoscale eddy pumping (McGillicudy et 2001) in the west (as indicated by
sharp changes in isotherms near 70°W). Zooplankiomass has been shown to track
upwelling dynamics and extend the influence of thgh productive waters near north-
western Africa well into the deep ocean (Hernandean et al., 2007). Also, zooplankton
biomass peaks follow winter-spring blooms in thesteen zone (Madin et al., 2001). The
high plankton productivity is directly linked torige advective fluxes of nitrate from deep
waters in both eastern (Pelegri et al., 2005) aestevn zones (Lipschulz, 2001) while low
production in the central zone of the basin istaited to low nutrient advection (Marafion et
al., 2000).
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In contrast to lateral zones, a substantial portbrthe central subtropical Atlantic was
characterised by low plankton biomass in all siasses but particularly in macrozooplankon
(>2000 um). This is consistent with a larger prignproduction in the oceanic borders that
will sustain more trophic levels than oligotropinégions, as occurs in upwelling ecosystems
(Hernandez-Leon et al., 2007). The oligotrophicegyr the North Atlantic, including most of
the central zone in our study, is a well known ieutrlimited region because of low inputs by
advection of deep waters, which explain its lowelswof primary production (Behrenfeld et
al., 2007). Sharp thermohaline stratification présemajor exchange between surface and
deep waters and most phytoplankton biomass coratedtin a deep maximum layer (Fig. 2)
where a large gradient in nutrient concentratienexpected to occur (Mourifio-Carballido et
al., 2011). As the stratification is produced mgibly the warming of the surface layer, a
negative correlation between plankton biomass & @ SSS would be expected. However,
in this study only macrozooplankton was correlatgth SST and the smallest plankton
classes (<500 um) displayed a negative correlatth SSS, suggesting that plankton
biomass was not a simple function of stratificateond that other nutrient inputs would be

implied.
Sour ces of inorganic carbon and nitrogen

Both nitrogen and carbon isotopes showed a largatian along the transect mirroring that
of biomass. This variation is indicative of majdranges in the source of nutrients or in the
composition of plankton. Diatoms are expected tonidate in the Canary upwelling
(Margalef, 1978; Bode et al., 2001) but they args ldominant in the western subtropical
Atlantic (Goericke, 1998).Trichodesmium is a conspicuous member of phytoplankton
communities in this region (Tyrrell et al., 2003as and McGillicudy, 2006; Fernandez et
al., 2010, 2012) as found in the present study.preéerential use of different carbon sources
for primary production by the different phytoplaokittaxa may lead to variationsdfC that
can be transmitted up the food web. Inorganic canbptake by cyanobacteria occurs via
direct HCGO; transport while diatoms are able alsotri@ansport CQ derived from HCQ@
dehydration (Tortell and Morel, 2002). This diffece would result in a larger isotopic
fractionation (and highe$'°C) in diatoms compared to cyanobacteria and otheroaigae
thus allowing to track diatom consumption alongdowmebs (Fry and Wainright, 1991).
Therefore lows™*C would be expected in the central zone and Big@ in the lateral zones,
particularly in the eastern region. However in study5*°C values were high in the central

zone and western zones, where diatoms are not texbéz dominate, and low near the

10
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Canary upwelling. Diatom counts for some of theiste in this cruise (not shown) indicated
that even in lateral zones this group never dorath#étte phytoplankton communitghanges

in community composition may not tihe primary cause df>C variability along the transect,
instead the measure*C would reflect the main source of inorganic cartion primary
production: atmospheric in the central zone anchfuertical advection in the lateral zones, as
CO, from upwelled waters is depleted'fic (Gruber et al., 1999).

The significant linear relationships between carlamal nitrogen isotopes found along the
transect also support a major role of biogeochdmpracesses, rather than plankton
composition, in the determination of isotopic sigmas of plankton. However, both the slope
and the correlation were larger for <1000 um silsses than for larger size classes,
indicating that variations in the dominant planktara were also important. The occasional
presence of large salps and pteropods may haved#us large variability i6*°C values of

macrozooplankton classes, while zooplankton <10®0was mainly composed by copepods

(Table 2) and showed comparatively less variabitity"*C.

Higher planktons™N in lateral compared to central zones is consistéth a major N@
input from advection of deep sea waters, as deejerwdO; is more enriched ift°N
(Montoya et al., 2002). The lo&°N values found in all plankton size classes ind@etral
zone, however, may result from a major use of reggad nitrogen forms (mainly
ammonium) or from atmospheric fixation. As heterotrophic plankton preferentiadiycrete
isotopically light nitrogen, meso- and macrozooftan are expected to become more
enriched than subsurface nitrate in absence offisignt N, fixation (Montoya et al., 2002)
while phytoplankton (and seston) is depleted bexanfs the uptake of light dissolved
nitrogen. Alternatively, isotopic fractionation dg the decomposition of dissolved organic
nitrogen and subsequent assimilation by planktahensurface layer would also lower seston
8'°N (Knapp et al., 2011). Both effects may confodegleted isotopic signals in seston with
those caused by-Nixation (e.g. Mino et al., 2002). However, meaiues of planktonié*>N

in all zones and size classes were <3%., and onlyV@ues in the eastern zone reached
4.5%0, a typical value for deep NOn the oligotrophic Atlantic, as summarized landrum et

al. (2011) This result suggest that a large fraction of klan nitrogen in the transect
originates from M fixation and is supported by the significant negatelationship between
Trichodesmium abundance and planktorit™N in all size classes (Fig. 9). Furthermore, mean
8'°N for the smallest size-class in the central zoas wa. 0%o, the value for atmospherig N

which is consistent with the low concentration dfate in this region. The parallel changes

11



312 observed in™®N for all plankton size classes support the tranefefixed nitrogen up the
313 food web (Montoya et al., 2002; McClelland et @03). Nevertheless, the distribution of
314  Trichodesmium did not match exactly that @f"°N, in part because of the heterogeneous
315  spatial distribution of this species (Davis and Md&uddy, 2006; Mourifio-Carballido et
316 al.,, 2011) and because the possible presence ef dthzotrophs (Moisander et al., 2010;
317 Fernandez et al., 2012).

318 Impact of diazotrophy in the subtropical North Atlantic

319  Our results indicate that Nixation is one of the major sources of nitrogen the pelagic
320 ecosystem in this region. Previous studies reppriinect measurements ®fichodesmium

321 abundance and nitrogen fixation have stressedntipertance of this process mainly for the
322 eastern zone, while boffrichodesmium abundance and diazotrophy decreased towards the
323 central and eastern zones (Voss et al., 2004; @apbal., 2005; Davis and McGuillicuddy,
324 2006; Mulholland et al., 2006; Montoya et al., 2P(Hstimations from planktor5™N also
325 highlight this effect (Montoya et al., 2002; Landruet al., 2011) with contributions of
326 diazotrophic nitrogen up to 38%. Biogeochemicabis based on the N@PO,* ratios of
327 subsurface waters, however, suggested that thentmdtarea for nitrogen fixation in the
328 northern Atlantic would be much larger (Caponelgt2905; Montoya et al., 2007; Reynolds
329 et al.,, 2007), as found in our study, where coatrdns of diazotrophic nitrogen exceeded
330 50% in the central zone. These variations in thpaich of the diazotrophy between the
331 different studies may result from geographic vadligbin the subtropical North Atlantic,
332 which high resolution cruises as the one in thesgme study, revealed more heterogeneous
333 than expected. For instance previous cruises weriher south (Montoya et al., 2002;
334  McClelland et al., 2003; Montoya et al., 2007) orth (Landrum et al. 2011) than 24°N, and
335 most latitudinal transects concentrated in theeeastone (Reynolds et al., 2007; Fernandez
336 et al.,, 2010; 2012) while the central zone was miesls studied. As diazotrophy requires
337 phosphate and iron, besides high water temperaaack the presence of diazotrophic
338 organisms, the input of these elements to the ulager from atmospheric (dust) or oceanic
339  sources (upwelling) largely determines the abscdum®unt of fixed nitrogen (Moore et al.,
340 2006; 2009). The influence of upwelling nutriemssubsurface layers (>100 m) was evident
341 in the western zone of the studied transect, bulewiitrate was almost depleted in the upper
342 100 m, phosphate concentrations were still relptivegh (>0.5 uM) up to 50°W. This
343 suggests the input of phosphate (and likely alsm)irfrom the Saharan dust (Safiudo-
344  Wihelmy et al., 2001; Moore et al., 2006) that veidtend the influence of diazotrophy well
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into the oligotrophic ocean. While iron inputs frodust cannot be neglected, recent
experimental studies found a major role of diffesifluxes of phosphate, rather than
atmospheric inputs, for nitrogen fixation east 6PW (Fernandez et al., 2012). The large
gradient provided by the upwelling would favourfdgion (Mourifio-Carballido et al., 2011)

but also the occasional advection of shelf watBedggri et al., 2005) that would explain the

proliferation of Trichodesmium in the otherwise oligotrophic central zone.

Contributions of diazotrophy for >1000 um planktexceeded those estimated for smaller
classes, as found previously byndrum et al. (2011)This result suggests a major circulation
of diazotrophic nitrogen through the water colunecduse vertical migrations and large fecal
pellet export of macrozooplankton. Experimentaldsts have shown the ability of some
copepod species to consuifréchodesmium (O’Neil et al., 1996) while others are sensitige t
its toxicity (Hawser et al., 1992). In our studigetdominance oMacrosetella in the central
zone may be explained by the ability of speciethisf genus to graze ofrichodesmium and
release isotopically depleted ammonium (O’Neillet2096). The unbalance between carbon
and N fixation and the relative large releases of digswlorganic nitrogen often observed in
field studies has been interpreted as an indicatiab most of the recently fixed nitrogen is
processed by the microbial food web before reachpyuer trophic levels (Mulholland, 2007).
Rapid transfer of fixed N to zooplankton consumbwsyever, was demonstrated by analysing
the stable isotope composition of esseramino acidMcClelland et al., 2003) thus showing
a tight coupling of zooplankton to nitrogen fixatiohile the exact mechanisms of transfer
of this nitrogen fromTrichodesmium and other diazotrophs to zooplankton are diffidalt
demonstrate in the field, stable isotope compasititearly show a major influence of
diazotrophic nitrogen in plankton food webs througbst of the subtropical North Atlantic.
The participation of all the components of the faweb would explain the magnitude of the
impact of diazotrophic nitrogen in the oligotroplsabtropical North Atlantic, with a rapid
recycling of dissolved organic nitrogen in the uplager (Mulholland, 2007) and its transfer
to particles via meso- and macrozooplankton (Moatey al., 2002). The relatively high
nitrate concentration (>4 uM) found near 100 m deptthe central zone of this study, where
the estimated diazotrophic contribution reached thighest values, supports the
remineralisation of recently fixed nitrogen by aupted N-fixation-nitrification pathway, as
suggested for the subtropical Pacific (e.g. Karlakf 2008).This nitrogen would then be
availablefor non-diazotrophic phytoplankton that, in tuwguld be consumed by zooplankton
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herbivores and these by carnivores, thus amplifyiregdiazotrophic impact (Montoya et al.,
2002).

In conclusion, this study confirms the major demema® of the planktonic food web from
atmospheric carbon and nitrogen fixation in thetsycal North Atlantic. The high spatial
resolution data revealed that the influence of aliaphy is high in the central region of the
subtropical gyres (>50%), but it is still importaom the edges of the gyres (20-38%), while
previous studies stressed the major impact of tliegby in the eastern zone. Future studies
will elucidate the importance of diazotrophic ngem through the food web, for instance by

calculating precise estimates of trophic levelsgsiompound-specifis*°N determinations.
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Figurelegends

Figure 1. CTD and plankton sampling stations durangise Leg 8 of Malaspina-2010
expedition along 24N (dashed line). The vertical lines indicate theits of the eastern (E),

central (C) and western (W) regions described entéixt.

Figure 2. Temperature, salinity and in vivo flua@sce in the upper 300 m along 24.
CTD stations are indicated in the upper panel. d&ghed lines indicate the limits between

eastern (E), central (C) and western (W) zonesribestin the text.

Figure 3. Accumulated biomass (mg dry weight)mof size fractionated plankton along 24
°N. The dashed lines indicate the limits betweerteeasE), central (C) and western (W)

zones described in the text.

Figure 4. Natural abundance of stable nitrogenojses §"°N, %o) of size fractionated
plankton along 24N. The dashed lines indicate the limits betweerteeaqE), central (C)

and western (W) zones described in the text.

Figure 5. Natural abundance of stable carbon isst@d°C, %o) of size fractionated plankton
along 24°N. The dashed lines indicate the limits betweenegagE), central (C) and western
(W) zones described in the text.

Figure 6. Correlation coefficients (Pearson r) lesw size fractionated plankton: a) biomass

(mg DW m-3), b)315N or ¢)d13C of and sea surface temperature (SE7,,salinity (SSS) or

in vivo fluorescence (Sfluor) along 2N. The dashed lines indicate the significance value
(P<0.05).
Figure 7. Relationships betweé™N and 3°C for size fractionated plankton (um). All

regression lines are significant with P<0.01 exdeptthe >2000 um fraction (dashed line,
P<0.05).

Figure 8. Abundance ofrichodesmium (trichomes [') along 24°N. The dashed lines
indicate the limits between eastern (E), centrdl 4&d western (W) zones described in the

text.
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596  Figure 9. Relationships betwe&’N and Trichodesmium abundance (lag(trichomes [%)).
597  All regression lines are significant with P<0.00ieTdashed line indicates the regression line

598 for the >2000 um fraction.

599  Figure 10. Diazotrophic N contribution (%) to plaoik size-classes >200 pm estimated from

600 &N along 24 N.

601
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602 Table 1. Mean (+se) biomass (mg DWPmd™N and3*C by size-fractions in the western (W), central &8}l eastern (E) zones along 24°N.
603  Total biomass (Total) is the sum of biomass forsak-fractions. n: number of data. Shaded valnesletters indicate significant differences
604  between means (ANOVA and C-Dunnafposteriori test, P<0.05).

DW 35N RS

Size fraction
(Lm) W C E W C E W C E
40-200 4.65+0.24 3.38x0.1f 3.46+0.18 1.7+0.2 0.6x0.f 2.1+0.7 -19.6+0.2 -19.7+0.P -20.30.f
200-500 3.00+0.24 1.89+0.08 2.04+0.12 2.020.2 1.2+0.f 2.5+0.3 -19.7+0.f -19.620.3 -20.4+0.7
500-1000 2.69+0.74 1.95+0.09 2.48+0.22 2.3+0.2 1.2+0.F 25+0.3 -20.0+0.7 -20.1+0.3 -20.6+0.2
1000-2000 2.31+0.f6 1.74+0.26 2.08+0.1f 2.4#0.2 15207 2.620.3 -19.4+0.4 -18.7+0.2 -20.9+0.7

>2000 2.39+0.17 1.65+0.1F 2.71+028 3.2+0.2 1.6+0.3 2.9+0.3 -19.5+0.5 -19.3+0.5 -20.9+0.6
Total 15.04+0.93 10.60+0.38 12.78+0.68
n 14 12 17 14 12 17 14 12 17
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Table 2. Mean (+se) abundance of microplanktont Land dominant taxa (% frequency)

and mean (+sd) total abundance (ff)rof mesozooplankton in the western (W), centrdl (C

and eastern (E) zones along 24°N. Shaded valuetetiats indicate significant differences
between means (ANOVA and C-Dunnafposteriori test, P<0.05).

zone
Group Taxa W C E
Total abundance (n'l)
Microplankton
(40-200 pum)
PhytoplanktonMean + se 8.1+1.0 4.5+0.5 3.7+0.4
Zooplankton Mean * se 11.0+1.G 7.3+0.7 7.5+1.4
Frequency (%)

Mesozooplankton Calanus 4.7 9.9 10.0

(>200 pum) Corycaeus 8.1 8.3 5.6
Macrosetella 4.0 7.4 4.4
Oithona 8.7 7.4 10.0
Appendicularia 2.0 2.5 6.1
Chaetognatha 6.7 7.4 7.8
Ostracoda 8.7 5.0 7.2
Polychaeta 7.4 3.3 5.6
Salps 2.7 5.8 5.0

Total abundance (n'M

Mean + se 186.9+29°1 124.3+16.6 178.0+32.4
n 14 12 17
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Table 3. Mean (tse) contribution of N from diazqins (%) to plankton size-fractions in the
western (W), central (C) and eastern (E) zonesga®#iN. N: number of data. Shaded values
and letters indicate significant differences betwaaeans (ANOVA and C-Dunneth
posteriori test, P<0.05).

Size fraction
(um) wW C E
200-500 29.4+39 43.1+1.4  225+39
500-1000 31.9+2.7 49.2+1.9  29.0+4.4
1000-2000 38.3+3.7 50.4+3.2  355x4.F
>2000 33.2+4.3 535+4.f  38.7x4.7
n 14 12 17
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Figure 1. CTD and plankton sampling stations during cruise Leg 8 of iimas2010 expedition
along 24°N (dashed line). The vertical lines indicate the limits of the eagtg), central (C) and

western (W) regions described in the text.
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Figure 2. Temperature, salinity, in vivo fluorescence, nitrate andgdtate in the upper 300 m
along 24°N. CTD stations are indicated in the upper panel. The dashed lines imdheatimits
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along 24°N. CTD stations are indicated in the upper panel. The dashed lines imdheatimits
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described in the text.
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Figure 4. Natural abundance of stable nitrogen isotop¥bl( %) of size fractionated plankton
along 24°N. The dashed lines indicate the limits between eastern (E), t€@rand western
(W) zones described in the text.
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515N

515N

5 1 5 n
*
4 A 4 1
3 A z 3 4
2 1 oo, ]
1 7 1 4
0 0 A
B 200-500
-1 T T T | -1 T T T |
-2 -1 0 1 2 -2 -1 0 1 2
logyo(Trichodesmium) log,o(Trichodesmium)
6 1 6 -
A o
o
5 1 5 - )
o % ° o
4 4 1 ~
3 1 z 3 A
2 S I
14 14
© 1000-2000
o)
0 A 0 4 e}
A 500-1000 0>2000 °
-1 T T T 1 -1 T T T ]
-2 -1 0 1 2 -2 -1 0 1 2
log4o(Trichodesmium) log,o(Trichodesmium)

Figure 9. Relationships betwe®%N and Trichodesmium abundance (log(trichomes L%)). All
regression lines are significant with P<0.001.The dashed line irdithé regression line for the
>2000 um fraction.



sydonozelp N %
o o o
[{e) N <

<

r 80
r 80

o o
©
L

sydonozelp N %

r 20

20

=) 8
o o o N
o — w
= N\ & _
o o o o
o o ITe) o
N =) N
n\v/ { +_ +
r T T T ) r T T T
o o o o o o o o o o
5] © < N 3] © < N

sydonozelp N %

sydonozelp N %

60 40

80

100

Longitude W

Figure 10. Diazotrophic N contribution (%) to plankton size-class280>um estimated from

O'>N along 24 N.



