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Abstract 8 

Growing human population add to the natural nitrogen loads to coastal waters. As the 9 

excess nitrogen is readily incorporated in new biomass anthropogenic and natural nitrogen 10 

sources may be traced by the measurement of stable nitrogen isotopes (δ15N). In this study 11 

δ
15N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus 12 

vesiculosus), and in nitrate and ammonium to determine the relative importance of 13 

anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal 14 

species and nitrogen sources showed similar isotopic enrichment for a given site, but algal 15 

δ
15N was not related to either inorganic nitrogen concentrations or δ15N in the water 16 

samples. The latter suggests that inorganic nitrogen inputs are variable and do not always 17 

leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal 18 
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δ
15N along the coast is consistent with the differential effect of upwelling. Besides this 19 

geographic variability, the influence of anthropogenic nitrogen sources is evidenced by 20 

higher δ15N in macroalgae from rias and estuaries compared to those from open coastal 21 

areas and in areas with more than 15x103 inhabitants in the watershed. These results 22 

indicate that, in contrast with other studies, macroalgal δ15Nis not simply related to either 23 

inorganic nitrogen concentrations or human population size but depends on other factors as 24 

the upwelling or the efficiency of local waste treatment systems.  25 

Keywords: upwelling, wastewater, urban populations, biomonitors, Fucus, Ascophyllum  26 

1. Introduction 27 

Coastal areas, particularly estuaries, have been subjected to increasing nitrogen loads due to 28 

the growing human population and its associated anthropogenic activities (e.g. agriculture, 29 

sewage). As a consequence of these activities, coastal ecosystems are under increasing 30 

pressures of pollution and eutrophication (Paerl et al., 2006; Vidal et al., 1999). The latter, a 31 

problem first limited to enclosed or semi enclosed water bodies, is now being observed in 32 

most coastal areas (Cloern, 2001; Druon et al., 2004; Gilbert et al., 2009; Valiela et al., 33 

2000). Determining the origin of the dissolved nitrogen in estuarine environments can be an 34 

effective means of evaluating nutrient management policies, and may ultimately lead to more 35 

successful environmental regulation of anthropogenic nitrogen (Ahad et al., 2006). 36 

The adverse effects of anthropogenic nitrogen inputs have led to the development of suitable 37 

indicators to assess water quality of aquatic ecosystems, both for management or biological 38 

issues. Direct quantification of dissolved inorganic nitrogen in water has been frequently 39 

used (e.g. Hickel et al., 1993; Paerl et al., 2006; Rabalais et al., 1996). However, nutrient 40 
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concentrations in the water column alone seem not to be adequate to quantify anthropogenic 41 

loads as they are highly variable in time because of rapid consumption by primary producers 42 

(Fry et al., 2003). Moreover, changes in nitrogen concentrations may be due to 43 

anthropogenic inputs but also to natural processes, as coastal upwelling (e.g. Arístegui et al., 44 

2006). 45 

As an alternative to nutrient measurement, the ratio of nitrogen stable isotopes (δ15N) in 46 

macroalgae has been increasingly used to quantify the importance of different nitrogen 47 

sources for primary producers (Constanzo et al., 2005; Gartner et al., 2002; Lapointe and 48 

Bedford, 2007; McClelland and Valiela, 1998; McClelland et al., 1997; Piñón-Gimate et 49 

al., 2009; Riera et al., 2000; Savage and Elmgren, 2004; Tucker et al., 1999). Nitrogen has 50 

two stable isotopes, and its proportion might vary according to the different metabolic 51 

routes that a molecule follows, as light isotopes (14N) are mobilized faster by some 52 

processes than the heavy ones (isotopic fractionation). For some biological reactions, the 53 

reactants are progressively enriched in heavy isotopes while the products are relatively 54 

depleted at a rate characteristic of each reaction (Mariotti et al., 1981). Anthropogenic 55 

nitrogen sources, as sewage, manure, terrestrial runoff, fish farm waste and groundwater, 56 

are often more enriched in 15N than seawater (Heaton, 1986; Jordan et al., 1997; 57 

McClelland and Valiela, 1998; Vizzini and Mazzola, 2004; Voβand Struck, 1997) because 58 

of isotopic fractionation during nitrification and volatilization in the case of NH4
+, or 59 

denitrification in the case of NO3
- (Montoya, 2008). In contrast, nitrogen pools from most 60 

agricultural facilities are characterized by depleted isotopic values, as they are synthesized 61 

from atmospheric N2 (Heaton, 1986). Furthermore, δ15N in macroalgae can also be used to 62 

detect the intensity and variability of the anthropogenic nitrogen loading (Cole et al.,2004;; 63 
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Costanzo et al., 2005; Savage and Elmgren 2004) often related to the degree of urbanization 64 

in the watershed (Cole et al., 2004, 2005; McClelland and Valiela 1998; McClelland et al., 65 

1997). 66 

Besides nutrients from anthropogenic origin, different natural processes also affect inorganic 67 

nitrogen concentrations and in consequence macroalgal isotopic values. For instance, algae 68 

from mangrove habitats that were exposed to nitrogen derived from N2 fixation were 69 

depleted in 15N while those in habitats with frequent coastal upwelling were relatively 70 

enriched (Lamb et al., 2012). In addition, δ
15N in estuarine waters vary as a consequence of 71 

freshwater inputs and local biogeochemical processes (Ahad et al., 2006). Because different 72 

combinations of sources may produce similar δ15N values, additional information on factors 73 

affecting local nitrogen dynamics is required to obtain unequivocal evidence that significant 74 

amounts of anthropogenic nitrogen are affecting the coastal zone. 75 

The regions of Galicia and Asturias (NW Spain, Fig. 1) are characterized by the presence of 76 

estuaries and rias sustaining high levels of biological production due to seasonal upwelling 77 

fertilization (Arístegui et al., 2006). Each of these rias has also an independent river basin, 78 

but the nutrient inputs from these rivers are lower than those from the upwelling (Bode et al., 79 

2011b). The upwelling has a larger impact in the production of western and southern rias 80 

(Galicia) because the initial nutrient inputs are amplified by remineralization of organic 81 

matter in the shelf and subsequent import with estuarine circulation (Álvarez-Salgado et al., 82 

1997). In contrast, upwelling in the northern coast (Asturias) is generally weaker than in the 83 

western coast and limited to the vicinity of major capes (Botas et al., 1990). Upwelling 84 

nutrients support a larger fraction of primary production in Galicia than in Asturias (Álvarez-85 

Salgado et al., 2002; Bode et al., 2011a). In consequence, geographic variability in the 86 
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nitrogen sources, and correspondingly in their isotopic signature, can be expected in NW 87 

Spain. Besides, most of the human population concentrates in the coastal zone, which 88 

showed large urbanization development in recent years (Viña, 2008). Previous studies of 89 

macroalgal δ15N in this region reported high enrichment near large urban areas and inside the 90 

rias, suggesting the influence of nitrogen from wastewater (Bode et al., 2006; Bode et al., 91 

2011b; Carballeira et al., 2012; Viana et al., 2011). 92 

In this study the variability in the isotopic composition of two intertidal macroalgae in 93 

relation to concurrent measurements of dissolved inorganic nitrogen concentrations and 94 

isotopic composition in the NW coast of Spain was analyzed to determine the relative 95 

importance of anthropogenic versus natural nitrogen sources. The effect of the coastal 96 

upwelling, as the main natural source of nitrogen, was represented by the geographical 97 

distribution of sampling sites along the coast, while the main anthropogenic input was 98 

represented by the size of the human population in the watershed as a proxy for wastewater 99 

production.  100 

2. Material and methods 101 

2.1. Sampling 102 

Samples were collected in the intertidal along the coast of NW Spain at sites representative 103 

of environments with variable influence of the upwelling and in a large range of urban 104 

influence (Fig. 1). As upwelling in the northern coast is generally weaker than in the western 105 

coast (Botas et al., 1990), an arbitrary reference point located at the sea discharge point of the 106 

River Miño (Fig. 1) was used to compute the distance along the coast between each sampling 107 

site and this reference point. This distance was intended to indicate the lower input of new 108 
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nitrogen by the upwelling in the northern coast (Mar Cantábrico, zone I in Fig. 1) compared 109 

to those in the western coast (Galicia). In the latter, two zones were considered to investigate 110 

potential differences between Rias Baixas (zone III) and other rias (zone II). Sampling sites 111 

covered a large range of urban population influence in the watershed (from ~240 to ~246,000 112 

inhabitants) according to Spanish Official Population Census (http://www.ine.es/inebase). 113 

Sampling surveys were carried out mostly during spring and summer 2010 and 2011, but 114 

some samples from 2006 were added to complete the range of geographic or urban 115 

population values (Table 1).  116 

Two species of Phaeophyceae (brown algae) were selected: Ascophyllum nodosum and 117 

Fucus vesiculosus. The species were present at 12 and at 26 sites respectively, and they 118 

were cohabiting at 11 sites. Three individuals of each macrophyte species fixed to the 119 

substrate were collected from the mesolittoral zone when emerged. Apical parts of the 120 

specimens (1 cm) were used for analysis of the stable nitrogen composition. Samples were 121 

rinsed with Milli Q water to remove sediments and other material and frozen (-20 °C) 122 

before processing. Samples were defrosted and dried (50 °C) until constant weight, before 123 

grinding into a homogeneous powder. 124 

Samples of surface water were collected concurrently with macroalgae. Salinity was 125 

measured in situ with a portable conductivity meter (YSI Model 30). Water samples were 126 

poisoned with HgCl2 (0.05% final concentration) to prevent microbial alteration and stored 127 

in tightly caped Pyrex flasks.  128 

2.2. Chemical analysis 129 
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Nitrate, nitrite and ammonium were determined in the laboratory using segmented flow 130 

analysis (Braun-Luebbe AAII) following the procedures of Grasshoff et al. (1983). 131 

Sensitivity was 0.05, 0.01 and 0.04 µM for nitrate, nitrite and ammonium, respectively. 132 

Precision (se of 3 replicates) was better than 14% of the mean value for any of the nitrogen 133 

species. Ammonium values >10 µM were excluded from further analysis because of 134 

suspect contamination of samples during processing, as values reported for coastal waters 135 

in the study region do not exceed 10 µM (e.g. Bode et al., 2011b). 136 

The isotopic composition of total nitrate (NO3
-+NO2

-) was determined by previous 137 

conversion into ammonium and later recovery of ammonium on a solid phase. The 138 

procedure is an adaptation of the diffusion method (Sigman et al.,1997) involving the 139 

incubation of samples in two steps. In this case the resulting ammonium was collected on a 140 

small disk of glass-fiber filter placed in the gas headspace of the diffusion flask (Slawyk 141 

and Raimbault, 1995). First, aliquots of the samples were incubated (50 °C, 1 week) in the 142 

same collecting flask without cap to reduce the volume and concentrate nitrate. Ashed MgO 143 

was added to raise pH above 9.7 to remove ammonia by volatilization. In the second step 144 

(50 °C, 2 weeks), ashed Devarda´s alloy was added to the reduced volume sample to 145 

convert nitrate and nitrite into ammonium. The high pH (>11) of the mixture ensured also 146 

the conversion of ammonium into ammonia gas that was collected on a sterilized glass-147 

fiber disk (Whatman GF/F), acidified with 0.5 ml of 0.25N H2SO4 and hooked on a needle 148 

fixed to the inner side of the flask cap. Care was taken to ensure that the filter disk did not 149 

contact the liquid sample. This extraction procedure does not allow separation between 150 

NO3
- and NO2

- therefore the values reported are the combined isotopic signatures of total 151 

nitrate (Ahad et al., 2006). After the second incubation step the disk filters were dried and 152 
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prepared for isotopic analysis. The stable isotope composition of ammonium was 153 

determined in another aliquot of the water samples by an adaptation of the diffusion method 154 

(Holmes et al.,1998). This method involves gas-phase diffusion as described for the second 155 

step of the total nitrate extraction. In all cases corrections for isotopic fractionation during 156 

the whole incubation and diffusion steps were made (Holmes et al., 1998). The measured 157 

values of natural abundance of dissolved inorganic nitrogen were retained for further 158 

analysis when the ammonium recovery after the diffusion procedure exceeded 45% and 159 

isotopic fractionation of internal standards was within 1‰ of values estimated from the 160 

empirical equation in Holmes et al. (1998).  161 

2.3. Stable isotopes 162 

The natural abundance of stable nitrogen isotopes was determined in macroalgae and water 163 

samples (total nitrate and ammonium). For macroalgae, 2.5 mg of dry sample was analyzed 164 

to ensure a minimum of 10 µg of N. For water samples, 1 ml of 4 mM-N (NH4)2SO4 was 165 

added to each sample during the diffusion phase to ensure the detection limit was achieved. 166 

Samples were placed in tin capsules and introduced into an isotope-ratio mass spectrometer 167 

(Thermo Finnigan Mat Delta Plus) via an element analyzer (Carlo Erba CHNSO 1108). 168 

Isotopic results are expressed in delta notation: 169 

δ
15N = [(15Nsample:

14Nsample/
15Nstd:

14Nstd)-1] x 1000 170 

where the standard (std) for δ15N is atmospheric N2. Precision (se of 5 replicates) was better 171 

than 0.05‰ for either IAEA-N-2, IAEA-N-1 or IAEA-NO-3 standards. The coefficient of 172 

variation of triplicate sample aliquots was always <2%. 173 

2.4. Statistical procedures 174 
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Relationships between variables were first analyzed using non parametric correlation 175 

(Spearman ρ). Further analyses were made using linear regression after excluding outliers 176 

exceeding 1.5 times the interquartile range. In the case of salinity vs. dissolved nitrogen 177 

concentrations and macroalgal δ15N vs. geographical distance product-moment regression 178 

was used because either the error in estimating the salinity was much lower than the error 179 

for dissolved nitrogen or because the resulting slope was further employed to account for 180 

systematic variability in δ15N with geographical distance (Sokal and Rohlf, 1981). In the 181 

case of the comparison of δ15N between the two macroalgal species standard major axis 182 

was used because both variables were measured with the same type of error (Sokal and 183 

Rohlf, 1981). In this later case, the obtained regression parameters were compared with the 184 

line of slope 1 and zero intercept by a t-test (Warton and Ormerod, 2007). 185 

The relative contribution of geographical distance and population size to δ15N was 186 

estimated as the sums of squares (Type I) obtained with an ANOVA design including two 187 

population size classes (larger and smaller than 15x103 inhabitants, respectively) with 188 

distance as covariable. Differences between sampling zones or classes of population size 189 

were further analyzed by non parametric Kruskal-Wallis test (Sokal and Rohlf, 1981). 190 

3. Results 191 

3.1. Dissolved inorganic nitrogen 192 

Total nitrate concentration in the samples ranged from 1.40 to 39.38 µM, while ammonium 193 

(excluding >10 µM values) ranged from 2.28 to 7.47 µM (Table 1). Total nitrate was 194 

negatively correlated with salinity in most samples (ρ = -0.682, P<0.001, n=24) except at O 195 

Burgo, where nitrate reached ca. 40 µM (Figure 2). In contrast, ammonium was not 196 
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correlated with salinity (P>0.05). These relationships with salinity suggest large potential 197 

contributions of nitrate from freshwater in most of the studied area but variable inputs of 198 

ammonium unrelated to freshwater discharges. 199 

Because of rapid contamination with ambient ammonia during the analytical preparation 200 

steps stable isotope composition of dissolved nitrogen was determined with confidence in a 201 

subset of samples only (Table 1). Total nitrate δ
15N varied between 2.5 and 19.6‰ while 202 

δ
15N ammonium ranged from -1.6 to 2.6‰ (Table 1). When measured concurrently δ15N of 203 

ammonium and δ15N of total nitrate were correlated (ρ=0.943, P<0.01, n=6). The highest 204 

nitrate value corresponded to the sample from O Latón (Code 26), collected at the 205 

discharge outlet of a Water Treatment Plant, but a large value was also observed in 206 

Figueras (Code 9), in this case not obviously related to residual water discharges. Values of 207 

nitrate δ15N for marine waters (salinity >35) were near 5‰. 208 

3.2. δ15N in macroalgae 209 

Stable isotope composition of F. vesiculosus and A. nodosum were significantly correlated 210 

(ρ=0.806, P<0.010, n=10). The resulting regression line did not differ from a line with 211 

slope 1 and intercept 0 (P<0.05) indicating that the isotopic composition of these species 212 

was equivalent for a given site (Fig. 3). 213 

In contrast, macroalgal δ15N was not correlated with either dissolved inorganic nitrogen 214 

concentrations, salinity or isotopic composition (Fig. 4). 215 

 3.3. Geographic variability in δ15N 216 
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Macroalgal δ15N varied according to the geographical location of samples (Fig. 5). Both 217 

species showed a linear decrease in δ
15N with the distance from the reference point in the 218 

River Miño (Fig. 5a). The slope of the regression lines indicated a change of δ15N of 0.3 219 

and 0.4‰ per 100 km of coastline for F. vesiculosus and A. nodosum, respectively (Table 220 

2). In contrast a significant relationship was found between neither dissolved nitrogen 221 

concentrations nor δ15N of total nitrate with distance, as exemplified by total nitrate 222 

concentration (Fig. 5b). No significant differences resulted either when considering the 223 

sampling zones (I, II and III) in a Kruskal-Wallis test (P>0.05).  224 

Samples of F. vesiculosus collected inside the rias and estuaries (as shown in Fig. 1) had 225 

higher δ15N values than samples collected in open coastal sites (Kruskal-Wallis test, 226 

P<0.01). Mean (±se) values for rias and coastal sites, after correction for the geographic 227 

variability using the slope in Table 2, were 9.1±1.1‰ (n=17) and 7.6±1.1‰ (n=7), 228 

respectively. 229 

3.4. Variability of δ15N with human population  230 

The geographic variability accounted for more than half of total variance in δ15N for both 231 

species (Fig. 6). However, the size of the human population in the watershed was also an 232 

important factor for δ15N, particularly for A. nodosum. The isotopic values of both 233 

macroalgae, after removal of the geographic trend using the equation in Table 2, increased 234 

non-linearly with the size of the human population in the watershed (Fig. 7). Variability in 235 

δ15N was largest at small population sizes (<50x103 inhabitants) with clear outliers with 236 

unusually large or small values. At the three sites influenced by large populations 237 

(>100x103 inhabitants) δ15N values in F. vesiculosus (as A. nodosum was not found at these 238 
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sites) did not follow the increase observed at lower populations. In turn, the distribution of 239 

the human population has no relationship with the geographical gradient found for 240 

macroalgal δ15N (no significant correlation between population size and distance). In any 241 

case, and excluding the outliers, both species showed significantly higher δ15N values at 242 

population sizes larger than 15x103 inhabitants (Fig. 8, Kruskal-Wallis test, P<0.05). 243 

4. Discussion 244 

4.1. Natural variability of nitrogen sources  245 

Differences in both concentration and δ15N values of nitrate were expected in the NW 246 

Spanish coast because of the varying influence of the upwelling, as nitrate from the Eastern 247 

North Atlantic Central waters is the main natural source of nitrogen for primary production 248 

in shelf waters of NW Spain (Álvarez-Salgado et al., 2002; Botas et al., 1990; Casas et al., 249 

1997). Instead, our results indicated no significant spatial variability pattern of nitrate 250 

concentrations or δ15N. Nitrate was the main form of dissolved inorganic nitrogen and its 251 

highest concentrations were found in estuarine waters, suggesting a significant input from 252 

freshwater. However, given the low flow of rivers in this region (Rio Barja and Rodríguez 253 

Lestegás, 1996) the influence of riverine nitrate can be considered only of local importance, 254 

as reported in other studies (Bode et al., 2011b; Gago et al., 2005). This is supported by our 255 

δ
15N measurements in nitrate, the first reported for this region, with values close to 5‰ in 256 

most cases and particularly in seawater. These values agree with the range reported for 257 

subsurface nitrate in the N Atlantic (Liu and Kaplan, 1989), while the largest values 258 

(>10‰) suggest local influence of nitrate from nitrification of ammonium (Mariotti et al., 259 

1981).  260 
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Systematic observations of coastal waters revealed the importance of local, short-term 261 

upwelling for nutrient inputs in the study area (Álvarez-Salgado et al., 1997;Casas et al., 262 

1997; Nogueira et al., 1998). Because of this nutrient variability, instantaneous nitrogen 263 

concentrations and isotopic composition of water samples are not directly reflected in 264 

macroalgae collected in the field, in contrast to the findings in laboratory experiments 265 

allowing for isotopic equilibration between water nitrogen and algal tissues (Cohen and 266 

Fong 2005). Temporal variability in the isotopic composition of inorganic nitrogen is 267 

expected to be high, as reported for two northeastern English estuaries (Ahad et al., 2006) 268 

and related to changes in either nitrogen sources or in the biogeochemical processing of 269 

nitrogen. Such variability and the rapid turnover of surface waters in the region would 270 

prevent isotopic equilibration and therefore a close correspondence between the isotopic 271 

composition of single water samples and those of macroalgal tissues that integrate isotopic 272 

composition over time would not be expected. Both A. nodosum and F. vesiculosus are long 273 

lived and perennial macroalgae. Individual fronds can become up to 15 (A. nodosum) and 3 274 

years old (F. vesiculosus) before breakage (Keser and Larson, 1984; Niell,1979). Both 275 

species have apical growth (Moss, 1965; Strömgren and Nielsen, 1986), so the sampled 276 

apical tips integrate nutrient concentration and isotopic values from the water nutrients 277 

during their growing period. This period can be calculated from their growth rates. F. 278 

vesiculosus growth show pronounced latitudinal differences (Mathieson et al., 1976), but at 279 

latitudes similar to the study area it ranges between 0.6 and 2.8 cm month-1 (Fuentes, 1986; 280 

Knight and Parke, 1950). A. nodosum growth rates average 10 cm year-1 (Niell, 1979) thus 281 

implying that the observed δ15N values are the result of the integration of nitrogen inputs 282 

during one month period approximately. In our study macroalgae showed a general 15N 283 

depletion along the coast (Fig. 5), following the higher prevalence of upwelling in the 284 
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southern areas compared to those in the northern coast. Therefore, the integration at 285 

monthly time scales reflects nitrogen sources more appropriately than water samples. 286 

Similar isotopic gradients were observed in intertidal species in other upwelling regions 287 

(Hill and McQuaid, 2008). 288 

4.2. Anthropogenic nitrogen inputs and macroalgal δ15N 289 

Notwithstanding the frequent use of macroalgal δ
15N as a tracer for anthropogenic nitrogen 290 

in coastal ecosystems in the last decades, only few studies showed experimental evidence 291 

of isotopic enrichment in algal tissues after exposure to enriched dissolved nitrogen (Cohen 292 

and Fong, 2005; Gartner et al., 2002; Naldi and Wheeler, 2002). Instead, many studies 293 

report the progressive change in δ
15N of macroalgae with distance of a clearly identified 294 

wastewater discharge point (e.g. Carballeira et al., 2012; Constanzo et al., 2005; Gartner et 295 

al., 2002; Riera et al., 2000; Savage and Elmgren, 2004). When anthropogenic nitrogen was 296 

provided by diffuse or pulse inputs (e.g. from groundwater) over a relative large area, other 297 

studies showed a direct relationship between the size of the anthropogenic load (estimated 298 

from computation in the watershed) and macroalgal δ
15N (Cole et al., 2004, 2005; 299 

McClelland et al., 1997; McClelland and Valiela, 1998), as the degree of urbanization 300 

affects δ15N of groundwater nitrate (Cole et al., 2006; McClelland and Valiela, 1998). In 301 

the latter case, the use of direct measurements of concentration or δ15N in the water would 302 

not reveal clear anthropogenic influence because of the relatively low loading rates. The 303 

lack of direct correspondence between water concentrations and isotopic composition and 304 

macroalgal δ15N in our study suggest that the inputs of isotopically enriched nitrogen are 305 

from diffuse sources. While the influence of other natural sources of nitrogen, as runoff or 306 

precipitation with different isotopic signatures cannot be discarded, in the absence of 307 
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specific data on concentrations and isotopic composition of dissolved nitrogen in 308 

freshwater of the study region, the relatively high salinity found in most samples (Table 1) 309 

would support a minor role of freshwater nitrogen in coastal food webs. 310 

Dissolved nitrogen from urban wastewater generally shows δ15N values exceeding 10‰ 311 

(e.g. Gartner et al., 2002; Savage and Elmgren, 2004; Tucker et al., 1999). Similarly high 312 

values were reported for manure and other organic fertilizers used in agriculture (Kendall, 313 

1998). In our study the sampled nitrate from a water treatment facility (19.6‰) can be 314 

considered representative of wastewater nitrogen, and it was considerably enriched when 315 

compared to macroalgal samples (Table 1). Therefore it can be interpreted that the sampled 316 

macroalgae reflect the assimilation of variable fractions of nitrogen from anthropogenic and 317 

marine sources. The amount of nitrogen derived from each source could be estimated using 318 

a mixing model to compare the measured macroalgal δ
15N with that of marine or 319 

wastewater nitrogen, as done in other studies (e.g. Bode et al., 2011b; Gartner et al., 2002; 320 

Savage and Elmgren, 2004). However, we showed that there was a significant geographic 321 

trend of macroalgal δ15N (but not in other variables) that must be taken into account when 322 

performing further estimations in this region (Table 2).  323 

The influence of anthropogenic sources is evidenced by the higher δ15N in macroalgae from 324 

rias compared to those in open waters, when the effect of geographical variability is 325 

identified. This result agrees with the increasing nitrogen load from anthropogenic sources 326 

found in other estuaries (Cole et al., 2004; McClelland and Valiela, 1998; McClelland et 327 

al., 1997) and confirms the results from previous studies in the Galician rias (Bode et al., 328 

2006, 2011b). As most of the population concentrates near the rias (Viña, 2008) is not 329 

surprising that there was a relationship between the number of inhabitants and macroalgal 330 



16 

 

δ
15N. This relationship, however, is not a simple function of the size of the population, and 331 

thus on the potential load of wastewater nitrogen, as found in other studies (McClelland et 332 

al., 1997) and a large range of δ
15N values was observed below 15,000 inhabitants. Highly 333 

15N enriched isotope values close to small populations (e.g. S. Juan de la Arena, Cedeira, 334 

Ramallosa; Table 1) might be due to inefficient or lacking treatment of wastewater before 335 

disposal, regardless of the population size, as reported in other studies (Costanzo et al., 336 

2005; Savage and Elmgren, 2004). 337 

Depleted δ15N values (e.g. Soutomaior δ15N= -2‰ in A. nodosum and +2‰ in F. 338 

vesiculosus, Table 1) may indicate other sources of nitrogen. One possible source would be 339 

synthetic fertilizers (δ15N= 1 to 2.6‰, Heaton 1986) but they are much less used in the 340 

study area than manure (Nuñez Delgado, 2002). Another depleted source would be 341 

atmospheric nitrogen, as macroalgae found in oligotrophic ecosystems supported by 342 

diazotrophy (e.g. mangroves) have characteristically low δ15N because of the assimilation 343 

of nitrate remineralized from mangrove litter (Lamb et al., 2012). While there are no 344 

reports of high atmospheric nitrogen fixation in the study area, most likely depleted δ
15N 345 

may result from high isotopic fractionation during assimilation of a large pool of dissolved 346 

nitrogen. Experimental studies have shown that the assimilation of nitrate caused a decrease 347 

in algal δ15N between 0 and 20‰ both in phytoplankton (Needoba et al., 2004; Waser et al., 348 

1998) and macroalgae (e.g. Naldi and Wheeler, 2002) with the highest values associated to 349 

high nitrogen concentrations. High isotopic fractionation is expected at Soutomaior, located 350 

at the innermost zone of the Ria de Vigo, and characterized by high dissolved nitrate 351 

concentrations likely resulting from organic matter remineralization in the sediments (Gago 352 

et al., 2005). Isotopic fractionation is not generally considered in estimations of source 353 
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contributions to macroalgal nitrogen (e.g. Gartner et al., 2002; Savage and Elmgren, 2004) 354 

but it can largely affect the estimates, as illustrated by our measurements at Soutomaior. 355 

Our wide scale survey of macroalgal δ15N further supports a dominant role of marine 356 

nitrogen in coastal ecosystems of NW Spain, as found in previous studies (Bode et al., 357 

2006, 2011b). Large inputs of anthropogenic nitrogen from wastewater appear limited to 358 

local scales, likely related to failures in disposal or treatment procedures. As an example, 359 

nitrogen waste for fish farms in Galicia has been traced at scales of a few kilometers with 360 

δ
15N in macroalgae (Carballeira et al., 2012) while most macroalgae collected far from 361 

dumping sites displayed values similar to marine nitrate (Viana et al., 2011). Because of 362 

growing urban pressures wastewater treatment in NW Spain is constantly improving with 363 

treatment facilities available not only for large cities but including urban aggregations of 364 

2,000 inhabitants and less (Augas de Galicia, internet). An indirect evidence of this 365 

improvement is the correspondence between macroalgal δ15N and the number of inhabitants 366 

in the watershed when the population exceeds 105 inhabitants found in our study. In 367 

addition, Viana et al. (2011) noted a general decrease of macroalgal δ15N in the rias 368 

between surveys carried out in 1990 and those in 2007, suggesting a general decrease in the 369 

impact of wastewater in this region. 370 

5. Conclusions 371 

Macroalgal δ15N integrate nitrogen assimilated at time scales of months, thus better 372 

reflecting changes in the available nitrogen from different sources than occasional 373 

measurements in the water. However, the interpretation of δ15N values requires a good 374 

knowledge of local and regional factors affecting isotopic signatures. Our study showed 375 
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that large spatial changes can be due to changes in natural sources, such as the influence of 376 

upwelling, while the input of anthropogenic nitrogen is not always related to the size of the 377 

human population. These factors are not taken into account in most studies using 378 

macroalgal δ15N to estimate anthropogenic nitrogen impacts in coastal ecosystems. Isotopic 379 

fractionation and identification of the main nitrogen processes operating at local spatial 380 

scales are also key factors for the interpretation of macroalgal δ15N because, as pointed out 381 

for other systems (e.g. Lamb et al., 2012), δ15N values alone do not provide unequivocal 382 

evidence that large amounts of anthropogenic nitrogen are affecting the coastal zone. 383 
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Figure legends 567 

Figure 1.Location of sampling sites along NW Spain. Three environment types representing 568 

coastal sites in large rias (I), sites in or near middle rias (II) and mostly open sea sites at the 569 

northern coast (III) were considered. The arrow indicate the River Miño discharge point 570 

used as the southernmost reference point to compute intersite distances in this study.  571 

Figure 2. Linear relationships between ammonium (NH4
+, black squares) or total nitrate 572 

(NO3
-+NO2

- gray circles) and salinity in water from the sampling sites. The point encircled 573 

was an outlier (>1.5 times the interquartile range) not used in the estimation of the 574 

regression line (Spearman ρ = -0.666, P<0.01). 575 

Figure 3. Relationship between stable isotope composition of Ascophyllum nodosum and 576 

Fucus vesiculosus sampled at the same locations. The regression line computed without the 577 

outlier (open circle, >1.5 times the interquartile range) is significant and with zero intercept 578 

(Spearman ρ = 0.806, P<0.01) while the slope is non-significantly different from 1.  579 

Figure 4. Biplots of macroalgal δ15N and concentrations of total nitrate (a) and ammonium 580 

(b) or δ15N in total nitrate (c) and ammonium (d). None of the relationships is significant 581 

(Spearman ρ, P>0.05).  582 

Figure 5. Variability of δ15N in macroalgae (a) or total nitrate (b, µM) with the relative 583 

distance of sampling locations to the River Miño discharge point (see Fig. 1). The 584 

regression lines for Ascophyllum nodosum (Spearman ρ = -0.855, P<0.01) and Fucus 585 

vesiculosus (Spearman ρ = -0.590, P<0.01) are indicated. Outliers of δ15N (>1.5 times the 586 



28 

 

interquartile range and not used in the estimation of regression lines) are enclosed in circles 587 

(a) while the corresponding inorganic nitrogen concentrations are shown as open dots (b).  588 

Figure 6. Contribution of distance to the reference point (as covariable) and human 589 

population (as fixed factor with two levels: larger and smaller than 15x103 inhabitants, 590 

respectively) to the variance of δ15N in Fucus vesiculosus and Ascophyllum nodosum. The 591 

error term includes the remaining variability not accounted for by all other components. 592 

The outliers in Fig. 5 were not included in the analysis (ANOVA, P<0.05 for all 593 

components).  594 

Figure 7. Variability of δ15N in Fucus vesiculosus (a) and Ascophyllum nodosum (b) with 595 

the size of the human population in the watershed. The curves are polynomial (a) or lineal 596 

(b) fits and 95% confidence limits only intended for descriptive purposes. Isotopic values 597 

were corrected for the geographic variability using the equations in Table 2. Open symbols 598 

indicate outliers (>1.5 times the interquartile range) not used to fit the curves. 599 

Figure 8. Box and whisker plots of δ15N in Fucus vesiculosus (a) and Ascophyllum 600 

nodosum (b) grouped according to the size of the human population in the watershed. The 601 

differences between classes are significant for both species (Kruskal-Wallis test, P<0.05).  602 

 603 
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Table 1. Mean (±se) values of total nitrate (NO3
-+NO2

-) and ammonium (NH4
+) concentrations and δ15N in water and macrophyte samples at the 604 

sampling sites. Salinity (S) and the number of inhabitants in the watershed (population) are also indicated. Code is the number of each site in Fig. 605 

1. 606 

            Concentration (µM) δ15N 

Code Site Latitude Longitude Date Population S NO3
- + NO2

- NH4
+ NO3

- + NO2
- NH4

+ A. nodosum F. vesiculosus 

1 El Sardinero 43.48145 -3.78715 11/05/2011 141,269 34.3 2.15±0.02 - - - - 5.8±0.3 

2 Toró 43.41743 -4.74270 12/05/2011 276 34.9 3.63±0.51 - - - - 4.5±0.1 

3 El Sablón 43.42247 -4.75226 12/05/2011 5,358 33.8 3.63±0.04 - - - - 5.5±0.1 

4 La Griega 43.50288 -5.26320 06/08/2010 3,878 33.9 4.33±0.60 ≥10 5.1±0.3 - - 4.5±0.2 

5 El Puntal 43.52605 -5.38812 06/08/2010 239 32.7 1.80±0.25 ≥10 4.0±0.2 - 6.1±0.3 - 

6 Xivares 43.56827 -5.71207 05/08/2010 2,675 34.2 5.36±0.75 ≥10 4.8±0.3 - - - 

7 S. Juan de la Arena 43.55705 -6.07709 16/04/2010 1,970 5.3 19.68±2.74 4.03±0.55 4.5±0.2 - - 10.5±0.1 

8 Navia 43.55214 -6.72481 16/04/2010 8,906 1.8 22.37±3.12 2.28±0.31 3.7±0.2 - - 6.2±0.2 

9 Figueras 43.53794 -7.02360 16/04/2010 3,845 29.8 14.80±2.06 2.82±0.38 18.0±1.0 - 5.1±0.2 6.9±0.1 

10 Ribadeo 43.53539 -7.03596 31/07/2010 9,983 29.3 9.50±1.32 ≥10 6.2±0.3 - - 6.8±0.6 

11 Foz 43.56468 -7.24599 31/07/2010 13,214 27.2 14.40±2.01 2.75±0.37 3.7±0.2 - 5.7±0.3 6.4±0.1 

12 Cedeira 43.66007 -8.05606 16/08/2010 7,465 31.7 4.28±0.60 ≥10 6.5±0.3 - - 13.8±0.6 
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13 Vilarrube 43.64518 -8.08386 16/08/2010 363 28.6 5.83±0.81 3.67±0.50 2.5±0.1 - 7.8±0.2 8.2±0.0 

14 A Graña 43.47893 -8.26019 25/07/2010 74,273 34.5 4.14±0.58 ≥10 2.9±0.2 0.3±0.1 7.7±0.1 7.2±0.4 

15 Cabanas 43.41146 -8.17255 17/08/2010 11,793 29.6 7.20±1.00 ≥10 4.9±0.3 - 6.2±0.3 6.9±0.2 

16 Mera 43.38247 -8.34397 18/04/2011 32,947 32.8 14.74±2.05 3.51±0.48 4.7±0.3 - - 8.2±0.0 

17 O Burgo 43.32770 -8.37034 18/04/2011 83,691 26.5 39.38±5.49 4.72±0.64 3.3±0.2 - 8.9±0.1 9.5±0.0 

18 A Coruña 43.36916 -8.38836 16/02/2006 243,349 - 1.92±0.27 4.85±0.66 - - - 8.0±0.2 

19 Bens 43.36926 -8.45777 26/07/2010 246,056 35.6 5.93±0.83 ≥10 4.8±0.3 0.8±0.1 - 4.8±0.2 

20 Caión 43.31825 -8.60719 15/02/2006 661 - 3.10±0.43 7.47±1.02 - - - 4.7±0.0 

21 Pontevedra 42.42799 -8.65340 24/07/2010 81,756 26.4 11.80±1.64 ≥10 4.0±0.2 -1.6±0.1 - 8.9±0.2 

22 Placeres 42.40659 -8.68541 10/08/2010 16,996 35.3 3.29±0.46 4.25±0.58 4.7±0.3 - 7.2±0.2 6.5±0.2 

23 Aguete 42.37571 -8.72958 10/08/2010 1,075 35.6 1.40±0.20 ≥10 4.8±0.3 - - 6.4±0.1 

24 Soutomaior 42.34022 -8.61412 24/07/2010 6,867 26.5 5.22±0.73 ≥10 5.7±0.3 2.4±0.1 -1.6± 0.4 1.6±1.3 

25 Cesantes 42.29945 -8.61677 24/07/2010 30,001 35.5 5.61±0.78 ≥10 6.5±0.3 2.6±0.2 9.9±0.3 8.7±0.2 

26 O Latón 42.27885 -8.70626 28/08/2010 19,014 2.4 7.10±0.99 ≥10 19.6±1.0 - - 9.5±0.5 

27 Meira 42.27654 -8.71091 18/02/2006 18,415 - 2.27±0.32 4.12±0.56 - - 10.1±0.1 8.0±0.2 

28 Ramallosa 42.12180 -8.81998 24/07/2010 18,021 32.5 10.85±1.51 ≥10 5.3±0.3 1.9±0.1 10.1±0.9 10.2±0.1 
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Table 2. Linear regression parameters (δ15N = a + b distance) of the variation of δ15N in 

Fucus vesiculosus and Ascophyllum nodosum with the distance in km to the River 

Miño. P: significance, n: number of data points, se: standard error. The outliers in Fig. 5 

were excluded from the estimation. 

species a±se b±se r P N 

F. vesiculosus 8.774±0.530 -0.003±0.001 0.639 0.001 23 

A. nodosum 9.889±0.610 -0.004±0.001 0.819 0.002 11 

 



Figure 1. Location of sampling sites along NW Spain. Three environment types representing coastal sites in large
rias (I), sites in or near middle rias (II) and mostly open sea sites in the northern coast (III) were considered. The
arrow indicate the River Miño discharge point used as the southernmost reference point to compute intersite
distances in this study.
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Figure 4. Biplots of macroalgal δ15N and concentrations of total nitrate (a) and ammonium (b) or δ15N in
total nitrate (c) and ammonium (d). None of the relationships is significant (Spearman ρ, P>0.05).
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Figure 5 Variability of δ15N in macroalgae (a) or total nitrate (b, µM) with the relative distance of sampling locations
to the River Miño discharge point (see Fig. 1). The regression lines for A. nodosum (Spearman ρ = -0.855, P<0.01)
and F. vesiculosum (ρ = -0.590, P<0.01) are indicated. Outliers of (not used in the estimation of regression lines) are
enclosed in circles (a) or shown as open dots (b).
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Figure 6. Contribution of distance to the reference point (as covariable) and human population (as

fixed factor with two levels: larger and smaller than 15x103 inhabitants, respectively) to the variance of

δ15N in F. vesiculosus and A. nodosum. The error term includes the remaining variability not accounted
for by all other components. The outliers in Fig. 5 were not included in the analysis (ANOVA, P<0.05 for

all components).
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Figure 7. Variability of δ15N in F. vesiculosus (a) and A. nodosum (b) with the size of the human

population in the watershed. The curves are polynomial (a) or lineal (b) fits and 95% confidence limits

only intended for descriptive purposes. Isotopic values were corrected for the geographic variability

using the equations in Table 2. Open symbols indicate outliers (>1.5 times the interquartile range) not

used to fit the curves.
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Figure 8. Box and whisker plots of δ15N in F. vesiculosus (a) and A. nodosum (b) grouped according the

size of the human population in the watershed. The differences between classes are significant for

both species (Kruskal-Wallis test, P<0.05).
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