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Abstract 

Seasonal cycles, mainly due to great variations in the light duration and temperature, are 

important and modulate several aspects of the animal behavior. In the case of 

poikilotherms animals such as fish this is very relevant. Thus, temperature changes fish 

immunity and affects disease resistance. We evaluate in this work the season variations 

of the European sea bass (Dicentrarchus labrax) humoral innate parameters focusing on 

winter months, at which the culture of this specie is more difficult. Our results showed 

that not all the innate immune parameters are depressed by low temperatures. Moreover, 
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some of them are more dependent than others to the season and both temperature and 

photoperiod are operating together.  

 

Seasonality dominates the life cycle of animals, mainly in the case of 

poikilotherms such as fish. It is now widely demonstrated that season cycles affect to 

fish physiology including animal behavior, body weight and food intake, reproduction, 

locomotor activity or immunity [1]. Several natural factors may influence these cycles 

but photoperiod and temperature are the most important. Focusing on temperature, it is 

generally accepted that the innate immune response is independent of the temperature 

whilst the adaptive response is dependent on it. However, low temperature has been 

associated with an increase in fish susceptibility to disease [2, 3] suggesting that both 

innate and adaptive immunity are affected by temperature. Thus, the influence of 

temperature on fish immunity has been described and varied with the fish species [4-6]. 

Otherwise, temperature also represents a crucial factor in the survival and infective 

ability of several pathogens, as occurs with viral hemorrhagic septicemia virus (VHSV), 

some alphavirus or some bacteria such as Vibrio sp, Flavobacterium psychorophilum or 

Moritella viscose which cause disease when water temperature drops [7-11]. All this 

data highlight the relevance of water temperature in fish health, but little is known in the 

case of Mediterranean aquaculture species, mainly gilthead seabream (Sparus aurata) 

and European sea bass (Dicentrarchus labrax). In the case of gilthead seabream, it was 

reported that the complement and agglutination activities of serum were lowest in 

winter months whilst the lysozyme activity was similar during all the year [5]. In sea 

bass, there is only a study reporting the effect of seasonality on cortisol, hematocrit, 

leucocrit, serum lysozyme activity and total glutathione [12]. Due to the economical 

importance of the European sea bass in the Mediterranean aquaculture and the season 

cycles on fish immunity and health, we propose in this study the evaluation of several 

humoral innate parameters of European sea bass at different seasons but focusing on 

winter, the most challenging for fish culture.  

Healthy specimens of European sea bass were bred at the Centro Oceanográfico 

de Murcia with natural conditions of photoperiod, temperature, salinity and aeration.  

One year old fish were sampled once a month (n=10 fish/month) from September 

(121±13 g body weight (bw)) to May (225±21 g bw). The specimens were bred with a 

commercial pellet dry diet (Skretting) ad libitum. Temperature, mortality and food 
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intake were recorded daily. Mean temperature in each month was represented. The 

specimens were anesthetized with 40 µl L-1 of clove oil before handling. The blood was 

obtained from the caudal peduncle and the serum samples, obtained by centrifugation 

(10,000 g, 1 min, 4 ºC), immediately frozen in liquid nitrogen and stored at -80 ºC until 

use. Protease activity was determined as the percentage of hydrolysis of azocasein by 2 

mg/ml of proteinase K [13]. Total anti-protease activity was determined as the 

percentage of inhibition of the hydrolysis of azocasein by 2 mg/ml of proteinase K [14]. 

Hemolytic activity of complement was assayed using sheep red blood cells (SRBC; 

Biomedics) as targets [15]. The results were expressed in ACH50 units, as the titre at 

which 50 % haemolysis is produced [16]. Lysozyme activity was measured according to 

a turbidimetric method that uses the lysis of Micrococcus lysodeikicus for determination 

of the lysozyme activity using hen egg-white lysozyme as standard [17]. Serum 

antibacterial activity was determined by evaluating the inhibition on the bacterial 

growth of Vibrio harveyi curves [16]. The peroxidase activity was measured with a 

method previously described [18]. Data were presented as mean  S.E.M (n = 10) and 

significance analysed by ANOVA (P<0.1) and Waller-Duncan post-hoc test.  

Our results showed that most of the activities of the humoral innate response had 

a temperature independent pattern or no statistically significant changes. Though 

protease activity showed the lowest level in December, however, the variations are very 

little in value and probably not biologically significant (Fig. 1a). The antiprotease 

activity showed a decrease from December to April when temperature range from 15ºC 

to 20ºC. Similarly, the hemolytic activity of complement showed seasonal variation, but 

not subjected to temperature changes as lowest activity was marked during early autumn 

(September and October) when temperature was around 20 ºC as also occurred in early 

spring, when the highest levels of hemolytic activity were recorded (Fig. 1c). This 

pattern of variation is similar to the pattern observed in Asian catfish (Clarias 

batrachus), but contrary to the one observed in gilthead seabream (Sparus aurata), 

where a seasonal pattern related to temperature was found with the lowest values 

recorded in winter, however, big differences were also observed between the different 

sampling points during this period [5, 6]. Bactericidal and peroxidase activities were not 

clearly related with temperature. Thus, bactericidal activity reached the highest levels at 

different time point throughout the time analyzed (Fig. 1d). Similar situation was found 

in the peroxidase activity, which the minimum level occurred in early autumn (October) 
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and the maximum levels were recorded in December, but also in April when the water 

temperatures were very similar to the temperature recorded in October (Fig. 1e). These 

variations not related with the temperature could be explained due to daylight changes 

which have been demonstrated to affect leukocyte distribution and numbers, serum 

lysozyme activity or specific antibody levels in several fish species (see review [4]). 

Furthermore, in a day-night cycle, sea bass showed variations in the complement 

activity but not in the peroxidase or lysozyme activities [19]. However further studies 

will be needed to clearly determine the role of photoperiod in the innate immune 

responses of European sea bass. Otherwise, lysozyme activity showed no changes 

through the sampling time (Fig. 1f). Interestingly, previous studies showed that serum 

lysozyme activity in the European sea bass decreases when temperatures drop to 5 ºC 

[12], however our data showed no changes of lysozyme activity as the lowest 

temperatures were around 15 ºC. All these data together suggest that lysozyme activity 

in European sea bass have a temperature dependent pattern whenever winter is more 

accused.  

In conclusion, our data indicate that some innate immune parameters are more 

dependent than others to the season and both temperature and photoperiod are operating 

together. Moreover, it is worthy to note that not all the parameters are decreased in cold 

months indicating that the immune system is not seriously depressed at this season. This 

knowledge could be interesting for research and aquaculture purposes. 
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Figure 1: European sea bass humoral immune parameters and temperature at the 

indicated months. Protease (a), antiprotease (b), haemolytic (c), bactericidal (d), 

peroxidase (e) and lysozyme (f) activities. Data represent means ± standard error (n = 

10). Different letters denote statistically significant differences between the groups 

according to ANOVA and a Waller-Duncan post-hoc test (P≤0.1).  
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