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Abstract: In 2012, there were exceptional blooms of D. acuminata in early spring in what 

appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The 

objective of this work was to identify common climatic patterns to explain the observed 

anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain)  

and Arcachon Bay (SW France). Here, we examine climate variability through  

physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of 

initiation of the upwelling season and its intensity over several decades. In 2012, the 

mesoscale features common to the two sites were positive anomalies in SST and unusual 

wind patterns. These led to an atypical predominance of upwelling in winter in the Galician 

Rías, and increased haline stratification associated with a southward advection of the 
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Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth 

season and increased stability that enhanced D. acuminata growth. Therefore, a common 

climate anomaly caused exceptional blooms of D. acuminata in two distant regions 

through different triggering mechanisms. These results increase our capability to predict 

intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the 

preceding winter. 

Keywords: Dinophysis acuminata; climate variability; upwelling patterns; river plumes; 

exceptional algal blooms; predictive models 

 

1. Introduction 

Endemic occurrence of Dinophysis species producers of lipophilic shellfish toxins (okadaic acid, 

dinophysistoxins, pectenotoxins) are the main cause of shellfish harvesting closures in Western 

Europe, in particular on the Atlantic coasts of Iberia [1,2], France [3,4], SW Ireland [5],  

Skagerrak-Kattegat [6], and Norway [7]. The areas under study are Arcachon Bay (SE Bay of Biscay), 

an important area for production of commercial oysters (Crassostrea angulata/gigas) and their seeds, 

and Ría de Pontevedra, one of the four Galician Rías Baixas (NW Spain), and a site of intensive raft 

mussel (Mytilus galloprovincialis) aquaculture. 

Arcachon Bay is a shallow mesotidal lagoon with a maximal depth of 10 m and high exchange rates 

with the adjacent shelf waters [8]. Scattered cells of D. acuminata can be detected all year round in 

Arcachon Bay, but earlier studies have shown that dense populations of Dinophysis build up offshore 

and are advected into the bay before Diarrhetic Shellfish Poisoning (DSP) outbreaks occur [9]. Spring 

phytoplankton blooms in continental shelf waters close to Arcachon Bay usually start in March but 

earlier winter blooms have been observed under favourable conditions [10,11]. Bloom timing is 

associated with stratification which is usually thermal due to a northward advection of the Gironde 

River plume during the winter [12] and the absence of any other significant river. Typically, low 

thermal stratification appears by the end of April and local upwelling processes start in April and May. 

Dinophysis densities along the coast are usually low (<10
3
 cells L

−1
) and, as noted by Delmas et al. [13], 

are mainly associated with the persistence of stratification for a long period (>one month) and nutrient 

depletion. The usual timing for the first Dinophysis maximum in Arcachon Bay is late March. 

Dinophysis distribution from 2005 to 2008 along the shelf of Les Landes [9], a representative area for 

the south-western Bay of Biscay, showed large vertical heterogeneities. Observations of a maximum at 

depth suggest inoculum populations are located in the bottom layers. Because of the bathymetry of this 

open area (in contrast to the Galician Rías), local upwelling processes are only able to effectively 

introduce plankton populations in the coastal areas if stratification in the open waters and a  

double-layered circulation pattern are established. 

The hydrodynamics of Ría de Pontevedra, located at the northern limit of the Canary Current 

Upwelling System, is mainly influenced by seasonal upwelling (spring to early autumn)—when 

prevailing northerly winds promote coastal upwelling of cold, saltier and nutrient-rich Eastern North 

Atlantic Central Water (ENACW)—and by coastal downwelling and freshwater inputs from October 
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to March [14,15]. In the upwelling season, wind reversals lead to rapid changes in the hydrodynamics 

of the Rías and in plankton distributions [16,17]. In the Galician Rías Baixas, D. acuminata 

populations may occur throughout the upwelling season and the first maxima (>10
3
 cells L

−1
) appear in 

June [18]. In a conceptual model proposed earlier, the onset of the upwelling season and availability of 

Mesodinium prey are essential conditions for the initiation of D. acuminata blooms in the Galician 

Rías Baixas [18]. Thanks to monitoring inputs and previous research projects, considerable knowledge 

has been gained concerning seasonality and short-term response of Dinophysis spp. to environmental 

conditions. However, very little is known about the causes of their inter-annual variability.  

Single-species predictive models require a sound knowledge of the biology of the target organism. 

For example, in cyst-forming dinoflagellates, sexual cyst density in the top sediment layer is a very 

important parameter—the potential inoculum—used in forecast models [19]. Observations of 

planozygote division—with no need of sexual cyst maturation—and the rare occurrence of “putative 

cysts” (that turned out to be asexual cysts of Fragilidium recently fed on Dinophysis [1]) during 

exceptional blooms support the view that Dinophysis spp. do not rely on resting cysts germination as a 

seeding strategy [20]. Identification of the “pelagic seed beds” [21] and the factors controlling their 

introduction into the aquaculture sites in Galicia and SW France are therefore needed.  

In 2012, there was an exceptionally early bloom of D. acuminata in terms of early initiation and 

high cell densities in the Galician Rías, and in terms of intensity in the southeast corner of the Bay of 

Biscay. These two distant areas have very different coastal morphology (Figure 1) and hydrodynamics 

but both have intensive aquaculture exploitations subject to recurrent DSP outbreaks caused by blooms 

of Dinophysis. This paper examines winter meteorological conditions and timing of initiation of  

D. acuminata blooms in a time series over several decades. The main objective was to identify 

common large scale meteorological conditions and environmental triggers explaining the exceptional 

bloom of D. acuminata in 2012. 

Figure 1. (a) Map of SW Europe showing the two study areas (rectangles); (b) Arcachon 

Bay and SE Bay of Biscay; (c) Ría de Pontevedra (NW Spain). 
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2. Results 

2.1. Meteorological and Hydrodynamic Conditions in the Two Study Areas in 2012 

Unusual winds patterns in northwest Spain in early 2012 led to anomalous positive Ekman transport 

in winter in the Galician Rías. Likewise, in the Cantabrian Sea (southern Bay of Biscay) coast an 

unusual dominance of easterly winds was observed during this period (Figure 2). Usually, winters in 

the Rías are characterized by a predominance of southerly winds and negative Ekman transport 

followed by an upwelling-season from April to October, as shown by the 28-year means for the region 

(Figure 3a). Nevertheless, an atypical pattern of positive Ekman transport characterized by  

upwelling-dominance during the winter of 2012 was observed (Figure 3g). Similar anomalies, with a 

predominance of northerly winds in late winter, were also observed in south-western France, where 

southerly and westerly winds are dominant in this season (Figure 4).  

Figure 2. Comparison between wind conditions during winter-spring 2012 (left) and the 

climatology 1998–2012 (right) on the northwest and north Iberian Peninsula (winds 

directions are plotted following the oceanographic convention). 
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Figure 3. (a) Monthly average (1967–2011) Ekman transport (m
3
 s

−1
 km

−1
) estimated from 

the FNMOC-model; (b–g) Monthly Ekman transport of selected years with normal  

(1995, 2002 and 2010) and anomalous (2000, 2005 and 2012) upwelling patterns in 

relation to the historical monthly average in the Galician Rías Baixas. 

 

Figure 4. Comparison between wind conditions (a, c, e) during winter-spring 2012 and  

(b, d, f) the climatology in Arcachon Bay. Location of the Pointe de Socoa Meteorological 

Station is marked with a red dot (wind directions are plotted following the  

meteorological convention).  
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Northerlies caused a deflection of the Gironde River plume to the southern part of Biscay, where 

strong negative salinity anomalies were inferred, according to simulations of the MARS-3D 

hydrodynamic model (Figure 5), in spite of lower freshwater inputs than in previous years. 

At the mesoscale, positive SST anomalies were observed between the English Channel and western 

Iberia in winter (Figure 6), but negative anomalies appeared at a smaller scale near the coast due to 

positive Ekman transport in Galicia and deflected river plumes in the southeast Bay of Biscay. 

Figure 5. Sea surface salinity (SSS2012–SSSRef) anomalies simulated in February 2012 by 

the French operational model (MARS-3D, Ifremer) over shelf waters of the eastern Bay of 

Biscay and the English Channel region. The reference field was estimated  

from 2010 to 2011. 

 

Figure 6. Monthly average Sea Surface Temperature (SST) anomalies observed in the 

North Atlantic region from January to April 2012. 
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2.2. Distribution of D. acuminata Populations in 2012 

During 2012, an extraordinary bloom of D. acuminata, in terms of early initiation and intensity, was 

observed in the Galician Rías Baixas. A maximum of 5.3 × 10
4
 cells L

−1
 in integrated (0–5 m) hose 

samples was found at the innermost station of Ría de Pontevedra during the last week of March (see 

Figure 7c and section 2.3.1). Very intense blooms of D. acuminata were also observed the first week 

of April in the southern Bay of Biscay (SW France); a maximum monthly average of 3.6 × 10
4
 cells L

−1
 

was found at the outermost station (Bouée) in Arcachon Bay (data not shown but included in the mean 

density estimates for the whole bay). These densities represent large positive anomalies compared with 

the 20-year means in both regions (Figure 8). 

Figure 7. Weekly distribution of D. acuminata (black line), upwelling index (7-day 

running mean) (red line) and vertical distribution of temperature at station P2 in Ría de 

Pontevedra during (a,b) years of late (2010) and (c,d) early (2012) initiation of  

D. acuminata blooms. 
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Figure 8. Monthly average D. acuminata densities during 2012 (red line) and mean (+SD) 

of the last 19-year (1993–2011 gray bar) in (a) Ría de Pontevedra (NW Spain) and  

(b) Arcachon Bay (southern Bay of Biscay). 

 

2.3. Interannual Variability of D. acuminata 

2.3.1. Ría de Pontevedra (NW Spain)  

D. acuminata exhibited record densities (cell L
−1

) in 2010 and 2012 (7.4 SD), and minima in 1996 

and 1997 over the 28-year time series (Figure 9). Analysis of the time-series provides evidence that 

years with early (March-April) bloom initiation—e.g., 2000, 2005 and 2012—coincided with 

anomalous patterns of Ekman transport the previous winter, i.e., dominance of upwelling at a time of 

the year normally characterized by predominance of southerly winds and negative Ekman transport [22]. 

In contrast, a later (June–July) initiation of D. acuminata blooms—e.g., 2002 and 2010—coincided 

with years with normal upwelling patterns, i.e., dominance of downwelling in the winter months 

(Figures 2 and 3). Another important observation is that, in addition to the anomalous winter upwelling 

conditions, years of early blooms of D. acuminata in Ría de Pontevedra showed persistence of 

scattered populations of this species inside the rías during the winter months (overwintering cells) 

(Figure 10). Further, the first peak of Dinophysis required the establishment of a slight thermal 

stratification following relaxation or downwelling after moderate upwelling pulses (Figure 7).  
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Figure 9. Interannual variability of (a) upwelling index, (b) monthly rainfall in Vigo and 

(c) monthly average of D. acuminata cells density in Ría de Pontevedra (NW Spain)  

from 1985 to 2012. Years with normal (blue) and anomalous (red) patterns are highlighted. 

 

Figure 10. Average cell density of D. acuminata within the Ría de Pontevedra  

from 1993 to 2012. Dashed-line contours indicate 40 (detection level in the monitoring 

counts) and 1000 cells L
−1

 (bloom level). Note that 0 indicates no detection of 

overwintering cells even in the weekly vertical net-hauls  
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2.3.2. Arcachon Bay (SW France) 

Highest average density found at one station in 2012 inside Arcachon Bay was 3.6 × 10
4
 cells L

−1
, 

which is 100 fold the average cell density of D. acuminata in the area at this time of the year. Maximal 

weekly densities of D. acuminata cells in Arcachon Bay (5 × 10
5
 cells L

−1
 in 2012) were always 

observed at station 7 located at the entrance of the Bay, a pattern that supports the view that these 

events originate in the open coastal waters. Samples taken 100 km south of Arcachon Bay showed 

already high D. acuminata densities on April 2 and 3, 2012 (from 5 × 10
2
 to 16 × 10

3
 cells L

−1
). 

Although the D. acuminata bloom in 2012 occurred at its regular time of the year (end March–April), 

cell densities were exceptionally high in Arcachon Bay and outside. 

The dominance of anomalous northerly winds observed in February and March 2012 led to 

favourable upwelling conditions and thermohaline stratification due to the southward deflection of the 

Gironde plume. Comparison between a regular year, such as 2010 and 2012, showed that thermal 

stratification does not usually occur until late May, but was however established since early April  

in 2012 (Figure 11). 

Figure 11. (a) Monthly average of D. acuminata distribution in SW France for 2010  

and 2012; (b,c) temporal variation of temperature profiles inferred from MARS 3D 

simulations at the entrance of Arcachon Bay (1.44°W 44.67°N). 
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3. Discussion 

3.1. Biological Conditions Preceding Dinophysis Blooms 

Success in recent years to establish Dinophysis in culture led to understanding of its feeding 

behaviour. It is now well established that D. acuminata and other Dinophysis species are obligate 

mixotrophs which require live ciliate prey (Mesodinium species) and light for sustained growth [23–25]. 

Culture experiments have also shown the relationship between an ample supply of prey and high division 

rates in Dinophysis [24,26]. In field populations, Dinophysis may be subject to prey limitation most of 

the time and peak densities are preceded by or co-occur with high densities of Mesodinium [18,27]. 

Furthermore, D. acuminata and Mesodinium rubrum were observed exhibiting similar diurnal vertical 

migrations in a 24-h study under stratified conditions in Ría de Vigo [28], and thin layers of the 

dinoflagellate and the ciliate co-occurred in time, but not always in space, in a coastal inlet in the 

northern Baltic Sea [29]. 

In addition, the photosynthetic ciliate Mesodinium also depends on ingestion of live prey, 

cryptophytes of the genera Teleaulax and Geminigera, to sustain growth [30]. Koike et al. [31] 

monitored for three years the presence of cryptophytes with plastids that bound to oligonucleotide 

probes specifically designed against the Dinophysis plastidic ribosomal RNA. These authors found that 

in Okkirai Bay (NW Japan), high densities of probe-bound cryptophytes always occurred before 

seasonal peaks of Dinophysis fortii. 

Mesodinium spp. are detected all year round off Ría de Vigo in low densities (Reguera, unpubl. 

data). Like Dinophysis, Mesodinium can survive without prey for months, but the population 

exponential growth will not take place under prey limitation [25]. Increased numbers of Mesodinium 

are not observed until May–June, following increased densities of Teleaulax-like cryptophytes. Red 

patches of the ciliate are frequent in July–August in the Galician Rías, but in 2012, red patches of 

Mesodinium were observed as early as March [32]. Unfortunately, quantification of Mesodinium spp. 

is not included in routine harmful algae monitoring programmes. Likewise, in the shelf waters off 

Arcachon Bay, D. acuminata growth will be controlled by the time-window of its prey growth and its 

availability to Dinophysis cells. The spring phytoplankton bloom in this region develops regularly 

from mid March to the beginning of May, with peak chlorophyll concentrations ranging  

from 2 to 4 µg L
−1

 [33]. This spring bloom is short-lived (less than one month) due to nutrient 

limitation in an area with no significant river inputs. In regular years, local upwelling processes and the 

spring bloom precede D. acuminata blooms in Arcachon Bay, which are restricted to the spring 

(April–May) and only in exceptional cases have been observed at other times of the year [34]. 

3.2. Anomalous Hydrodynamic Conditions Favouring Initiation/Intensification of D. acuminata 

Blooms in 2012 

Increased stability and deepening of the photic zone along with initiation of thermal stratification 

off Arcachon Bay is synchronous with the spring (March) phytoplankton bloom. Local  

upwelling-promoting winds are south to south-westerly (Figure 4), and the advection of planktonic 

populations through upwelling, including Dinophysis populations, requires the previous establishment 

of stratification and a two-layered circulation pattern. Earlier studies have shown that even if thermal 
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stratification is low at this time of the year, the Gironde plume can reach in a significant way the shelf 

break in the southern (<46°N) Bay of Biscay [35,36], including the shelf off Arcachon Bay. However,  

in 2012, anomalous winter patterns with dominance of northerly winds caused a deflection of the 

Gironde plume to the south and exceptionally long-lasting haline stratification. We can thus propose 

that during 2012, the unusual haline stratification in the southern Bay of Biscay between February and 

April permitted several upwelling processes leading to a sustained growth of Dinophysis off Arcachon 

Bay. Thus, although it is not unusual in this Bay to have a peak of D. acuminata in April, such 

exceptionally high densities of Dinophysis have never previously been observed in this area. We can 

speculate that these high cell numbers may have been the result of a successful recruitment of 

Dinophysis, further advected into Arcachon Bay, due to enhanced biological conditions (i.e., prey 

abundance) on the adjacent shelf during the preceding winter in 2012. 

In the Galician Rías, results here confirm the close coupling between initiation of the upwelling 

season and the onset of the D. acuminata growth season. Increased densities of cryptophyte 

populations and Mesodinium following upwelling-promoted nutrient enrichment and thermohaline 

stratification would establish the conditions for Dinophysis growth within the Rías. Upwelling pulses 

have been proposed in an earlier conceptual model [18] as a requisite to inoculate Dinophysis 

populations into the rías in years (such as 2007) when cells went undetected in the winter. Here, we 

show that the persistence of winter populations of D. acuminata within the rías is another factor that 

accompanies early blooms of this species in the Galician Rías. Therefore, the co-occurrence of 

persistence of overwintering population, anomalous predominance of upwelling in winter and the 

availability of suitable densities of ciliate prey appear as the suite of optimal conditions leading to 

high-density early blooms of D. acuminata in this area.  

3.3. Implications for Predictive Capabilities 

Increased predictive capabilities of toxic microalgae outbreaks is a major objective of harmful algae 

experts from any region subject to their detrimental effects on aquaculture exploitations. In this context, 

one of the objectives of the ongoing European project ASIMUTH (“Applied Simulations and 

Integrated Modelling for the Understanding of Toxic and Harmful Algae Blooms”) is the identification 

of key past events which will be re-analysed and used for training the modelling system. One of the 

main gaps in our knowledge of the population dynamics of D. acuminata is to determine the causes of 

its interannual variability and in particular, the factors triggering early bloom initiation. 

Results here provide important clues to the climatic anomalies leading to environmental conditions 

that promote the initiation of D. acuminata growth. Observations on the Galician time series support 

the conceptual model proposed by Velo-Suárez et al. [18]. In addition, the scattered winter populations 

observed in years when early blooms occurred is a third factor that combined with the anomalous 

winter upwelling patterns and suitable prey densities would lead to exceptional early spring blooms  

of D. acuminata. 

Anomalous winter wind patterns with predominance of northerly winds must, therefore, be taken as 

a risk factor favouring early/intensified blooms of D. acuminata in both aquaculture sites of SW 

Europe, the Galician Rías and Arcachon Bay. Unfortunately, there are no regular weekly HAB 

monitoring programmes on the Spanish Basque and Cantabrian Sea coasts. Presumably, spring 
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phytoplankton blooms in all northern Spain, and subsequently, the onset of D. acuminata populations, 

were influenced by the same mesoscale anomalies. High densities of D. acuminata in the ballast water 

of ships from the Spanish Basque coasts arriving to La Rochelle (located to the north of the Gironde 

estuary) in the spring of 2012 [37] support this view.  

Another risk factor preceding Dinophysis blooms that should be included in the observations of 

monitoring programmes is increased densities of Teleaulax-like cryptophytes and Mesodinium. 

Nevertheless, we have to bear in mind that the accurate identification of suitable cryptophyte preys for 

Mesodinium would require the use of molecular probes, and that there are several species of 

Mesodinium in field populations and only one of them (M. rubrum) has been tested as a suitable prey 

in Dinophysis cultures. Interestingly, early blooms of D. acuminata in the Galician Rías seem to 

“crash” early too and then, we may expect that anomalous winter-upwelling events will lead to early 

initiation and early decline of D. acuminata blooms and DSP outbreaks in Galicia and to 

intensification of spring DSP outbreaks in Arcachon Bay. The reasons for the early decline need to be 

explored but we can not discard an endogenous clock determining a maximum length of population 

growth per season. 

Here, we present preliminary results that contribute to a better prediction of D. acuminata blooms in 

SW Europe, but further work is necessary. The response of Dinophysis populations to climate 

anomalies will not appear as a simple linear relationship but as an indicator of windows of opportunity 

as already described for pelagic fish populations in upwelling systems [38,39]. Our next steps will 

include: (i) Parameterization of the effect of these anomalies (intensity and persistence of winter wind 

anomalies) on the development of exceptional early spring blooms of D. acuminata; (ii) Analyses of 

time series to identify climate signals underlying the observed wind circulation anomalies.  

4. Experimental Section  

4.1. Meteorological Data 

Data on wind speed and direction on the northwest and north Iberian slope were obtained from 

Seawatch buoys operated by the Deep Water Network (Silleiro, Vilano, Bares, Peñas and Bilbao 

buoys) of Puertos del Estado [40] and by the IEO-operated AGL buoy at Santander [41]. The average 

wind rose diagrams were constructed with data from the whole period since each buoy was moored: 

Bilbao in 1990, Bares in 1996, Silleiro, Vilano and Peñas in 1998 and AGL in 2007. 

Time series of six-hourly Ekman transport (upwelling indexes) data over the last 28 years  

(1985–2012) were estimated using model data from the U.S. Navy’s Fleet Numerical Meteorology and 

Oceanography Centre (FNMOC) derived from Sea Level Pressure (www.indicedeafloramiento.ieo.es) 

on a grid of approximately 1° × 1° centred at 42.5°N 9.5°W, a data acquisition point representative for 

the Galician Rías. Monthly rainfall data from a meteorological station at Vigo airport (Peinador) 

(42°13.89′N, 8°37.29′W) were provided by the Spanish Meteorological Agency (www.aemet.es). 

Outflow of the Adour River and wind measurements (Pointe de Socoa, 43.4°N–1.69°W) were 

provided by Meteo France. Daily SST anomalies over SW Europe, between the English Channel and 

western Iberia, from January to April 2012 were taken from NOAA [42]. These data were used to 

estimate the monthly SST anomaly. 
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4.2. Phytoplankton Data 

Weekly reports of phytoplankton distribution in Ría de Pontevedra from 1985 to 2012 were obtained 

from the IEO-Vigo HAB monitoring (1985–1991, data from three stations, June to December) and 

from the Galician Monitoring Program at INTECMAR (1992–2012, data from 10 stations, all year 

round). Plankton samples for quantitative analyses have been collected in the same way, since 1986 

with a dividable hose sampler (recommended by the ICES Working Group on Exceptional Algal 

Blooms) [43] that samples the whole water column from 0 to 15–20 m (0–5, 5–10, 10–15, 15–20 m), 

and immediately fixed on board with acidic Lugol’s iodine solution [44]. In addition, vertical net-hauls 

(0–20 m) were performed and the samples transported alive to the laboratory for qualitative 

identification of species and detection of low-density harmful species that might go undetected with 

conventional counting methods. Phytoplankton data for Arcachon Bay (1988–2012) were obtained 

from the French HAB monitoring programme (REPHY, IFREMER) database [45]. Hydrobios bottle 

samples were collected at 5 m depth biweekly at 14 different stations between the south of the Gironde 

Estuary and the Spanish coast.  

Quantitative phytoplankton analyses in both countries were carried out according to the  

Utermöhl [46] method. Samples were counted after sedimentation (4–24 h) of 10–25 mL columns 

under an inverted light microscope fitted with 100×, 200× and 400× objectives and phase-contrast 

optics. To enumerate large species, such as Dinophysis spp., the whole surface of the chamber is 

scanned at a magnification of 100 × (detection level of 100–40 cell L
−1

). 

Average cell densities of D. acuminata were used for the time series in the two study areas to 

smooth variability associated with tidal changes and local wind forcing. 

4.3. Numerical  

The MARS3D hydrodynamical model [47] was used to simulate the hydrodynamics in the southern 

Bay of Biscay. Model simulations extended from the French coast to 8°W and from the northern 

Spanish coast to Southern England. The horizontal mesh size used had a resolution of 4 km, and  

30 vertical levels were considered with a finer resolution near the surface. The simulation was forced 

by real conditions of tide, river runoff, heat fluxes and wind using data from the Arpège model of the 

French Met Office. The model was spun up for one year prior to simulation of the observation period. 

It reproduced the main structures detected by remote sensing and in situ measurements of the Bay of 

Biscay during the study time-window. 

5. Conclusions 

Initiation of the growth season of D. acuminata in the Galician Rías is strongly linked to the 

upwelling season. Early initiation of the blooms, as was the case in 2012, is associated with anomalous 

predominance of upwelling the previous winter. In Arcachon Bay, model simulations showed 

increased haline stratification associated with southward advection of the Gironde plume that year. 

Anomalous wind patterns, with predominance of northerly winds during the preceding (2011–2012) 

winter appear as the common mesoscale meteorological driver that explains the exceptional blooms of 
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D. acuminata and DSP outbreaks that hit aquaculture sites in Galicia and the southern Bay of Biscay in 

the early spring of 2012. 
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