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ABSTRACT  14 

 15 

Two methods are currently available for age estimation in octopus beaks. They have 16 

been applied to the same specimen from a sample of 30 individuals of Octopus vulgaris 17 

caught in central-eastern Atlantic waters. These techniques aim at revealing growth 18 

increments in the Rostrum Sagittal Sections (RSS) and Lateral Wall Surfaces (LWS) of 19 

octopus upper and lower beaks. Both methods were improved to reduce the time of 20 

sample preparation and to enhance the appearance of the increments. For each 21 

individual, two independent readings were done for upper and lower beak sections, as 22 

well as for the lateral wall surfaces. Vertical reflected light (epifluorescence) and Image 23 

Analysis System were shown to be useful in the observation and analysis of the 24 

sequence of increments. Precision of the ageing, increment counts obtained by both 25 

techniques, and increment widths were discussed. Using upper beak RSS led to more 26 

precise age estimates, whereas preparing LWS was quicker and simpler, and revealed a 27 

higher number of increments. Therefore, our study recommends counting growth 28 

increments in LWS of beaks to age adult common octopus.  29 

 30 
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 32 
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1. Introduction  34 

 35 

Determination of age and growth is critical to understand the life history of 36 

harvested species and to model the dynamics of their populations. Sound knowledge on 37 

life history and population dynamics is essential for assessment and management 38 

purposes. Identifying and interpreting growth increments in calcified structures (otoliths 39 

and scales of fish, statoliths of cephalopods, among other structures) produce reliable 40 

estimations of the absolute age of wild marine animals (Boyle and Rodhouse,  2005). In 41 

spite of the difficulties raised by the age determination in cephalopods, those ageing 42 

methods based on the study of incremental growth structures (Bettencourt and Guerra,  43 

2000; Lipinski and Durholtz, 1994) are considered the most appropriate for exploited 44 

species of this group. Other available methods (Caddy, 1991) such as length frequencies 45 

are not suitable for cephalopods, since this group has high and variable growth rates, 46 

short life cycles and massive mortalities after spawning (Jereb et al., 1991; Perales-47 

Raya, 2001; Semmens et al., 2004).  48 

The common octopus Octopus vulgaris Cuvier, 1797 is one of the most important 49 

target species in the world, with catches of about 42 420 t/year for the period 2003-2007 50 

(FAO, 2009). However, there is still not a validated and standardized age determination 51 

method for using on O. vulgaris, mainly due to the uselessness of statoliths for ageing 52 

species from the Octopodidae family. Recently, Doubleday et al. (2006) and Leporati et 53 

al. (2008) validated the daily deposition of increments in stylets of adults Octopus 54 

pallidus Hoyle, 1885 of known age. The high mortality of the paralarvae in captivity of 55 

O. vulgaris has not yet allowed the obtaining of known-age adults for validation 56 

purposes. However, preliminary results using chemical marking in stylets (Hermosilla 57 

et al., 2010) and beaks (Oostuizen, 2003; Perales-Raya, unpublished results) have 58 
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shown a daily deposition of increments in adults of this species, although definitive 59 

validation is still necessary for ageing common octopus. 60 

As beaks are present in all cephalopod species (Mangold and Bidder, 1989), any 61 

improvement in their preparation technique for ageing purposes should be useful to 62 

many commercially exploited species of this group. Beaks are composed of a chitin-63 

protein complex (Hunt and Nixon, 1981) and secreted by a single layer of tall columnar 64 

cells, known as beccublasts that are responsible for their growth (Dilly and Nixon, 65 

1976). The chitinization and hence growth process related to lateral walls and rostrum 66 

takes place from the rostrum tip to the wing edges (Cherel and Hobson, 2005; Miserez 67 

et al., 2008).  68 

The beaks are structures easy to extract and manipulate. The previous freezing of the 69 

animal (samples from industrial fisheries are obtained frozen) has no effect on the 70 

visualization of the growth increments. Another advantage is that microstructures are 71 

preserved in the beak sections after being prepared according to our method. However, 72 

the possible erosion of the rostral tip during the life of the animal may bias age 73 

determination and has to be taken into account. Sections of other hard structures, such 74 

as stylets, have been recently used for octopus ageing with good results. Nevertheless, 75 

microstructure disintegration has been reported within several minutes after preparation 76 

(Doubleday et al., 2006) and the sections showed significant cracks when the animal 77 

had previously been frozen (Sousa Reis and Fernandes, 2002).  78 

Octopus beaks have been used for ageing by Raya and Hernández-González (1998) 79 

who developed a method using sagittal sections of the rostral area. Later, Hernández-80 

López et al. (2001) proposed a technique using the inner surfaces of lateral walls, as 81 

previously done by Clarke (1965) for Moroteuthis ingens.  82 
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The aims of this study were: (1) to improve and simplify the present techniques for 83 

revealing growth increments in the beaks of the common octopus; (2) to estimate the 84 

precision of the increment counts in upper and lower beak sections and lateral wall inner 85 

surfaces; (3) to compare, for each sampled animal, the number of increments counted in 86 

the upper and lower beak sections, and in the lateral wall inner surfaces; and (4) to 87 

establish the best method for counting growth increments in the beaks of the common 88 

octopus. 89 

 90 

 91 

2. Material and Methods 92 

 93 

The study was carried out with a sample of 30 frozen animals from both sexes, 94 

ranging in total body weight from 90 to 5361 g (Table 1). These individuals were 95 

caught during 2007 in central east Atlantic waters (off Mauritania) by the Spanish 96 

industrial freezer trawler fleet. Once thawed, specimens were weighed and their beaks 97 

removed, cleaned and preserved in 70% ethanol. Before preparation, the beaks were 98 

rehydrated in distilled water for several days. The upper and lower beaks were weighed 99 

(mg) and the main lengths (as defined by Clarke, 1986) were obtained (mm): Hood 100 

Length (HL), Height (H), Crest Length (CL) and Rostral Length (RL).  101 

Rostrum sagittal sections (RSS) were prepared following an improved technique 102 

based on the method developed by Raya and Hernández-González (1998) for upper and 103 

lower beaks. The rostrum area was cut with scissors and mounted in polyester resin with 104 

the lateral side facing up. After hardening of the applied resin cover, the piece was 105 

ground down with 1200 grit carborundum sandpaper. After reaching the central plane 106 

we polished with 1 µm diamond paste to obtain a smooth surface of the sagittal section. 107 



Page 6 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

 6

This section revealed a banding pattern from the rostral tip to the joining point of the 108 

hood and the crest (Fig. 1). Since the increments were visible under vertical reflected 109 

light (ultraviolet epi-illumination, if possible), it was not necessary to sand down both 110 

sides like other cephalopod hard structures such as statoliths and stylets. 111 

Lateral wall surfaces (LWS) were prepared based on the method described by 112 

Hernández-López et al. (2001) for the upper beaks. We sagittally sectioned them with 113 

scissors to obtain two symmetrical half beaks which were cleaned by hand with water to 114 

remove any mucus attached to the inner surfaces of lateral walls. The LWS were also 115 

epi-illuminated, but here the violet light led to better results than ultraviolet one, due to 116 

the darkness of this beak zone. 117 

The magnification chosen for RSS ranged between 200X and 400X, and we used 118 

50X for viewing the LWS. Increments were identified and marked under the live camera 119 

mode (which allows for multi focal imagery), and several photos were taken to cover 120 

the whole studied area. We measured the distances between growth marks (increment 121 

width) and performed the increment count with an image analysis system (IAS, 122 

software Age&Shape). When extrapolation was necessary because increment visibility 123 

was poor (i.e. first and last portions of the anterior and posterior borders of the LWS), 124 

the IAS carried it out by using the average width of the nearest and most visible 125 

increments. To avoid tip erosion effects, the first increments located at the rostral tip of 126 

the RSS were counted in the dorsal area.  127 

Precision is defined as the reproducibility of repeated measurements (age readings) 128 

on a given structure, whether or not those measurements are accurate (Kalish et al., 129 

1995). The same trained reader made two repeated counts. Coefficients of Variation 130 

(CV) of the age estimates were calculated to assess precision. This method is favoured 131 

for microstructure studies as it is statistically more rigorous and thus more flexible than 132 
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the use of average percent error (APE) because of the absence of an assumed 133 

proportionality between the standard deviation and the mean (Campana, 2001). For each 134 

sampled individual, we calculated the CV for the six readings: two for the upper beak, 135 

two for the lower beak, and two for the lateral walls. We obtained a total of 180 136 

readings. For this study, CV was calculated as the ratio of the standard deviation over 137 

the mean: 138 

 139 

( )
R

RRRRCV
22 )2(1%100 −+−

×=  140 

 141 

where R1 and R2 were the number of increments from the first and the second reading 142 

respectively; R was the mean number of increments for both readings.  143 

The normal distribution of the data was checked with the one-sample Kolmogorov-144 

Smirnov test. Homogeneity of the variances was assessed with the Levene’s test. 145 

Differences in both readings (R1 and R2) for each preparation (upper and lower RSS, 146 

LWS) were compared by performing a one-way analysis of variances (ANOVA) [Zar, 147 

1984], a Tukey’s honestly significant difference (HSD) test and a Bonferroni´s multiple 148 

range post hoc test. When a normal distribution and/or homogeneity of the variances 149 

were not achieved, data were subjected to a non-parametric Kruskall-Wallis test and a 150 

Games-Howell post hoc test. For all the statistical tests performed, significance level 151 

(statistically different readings) was chosen to be P < 0.05. The statistical analysis was 152 

performed using the SPSS package (version 9.0) from SPSS Inc. 153 

The relationships between the number of increments and the beak measurements 154 

(HL, H, CL and RL) were calculated, as well as the relationships between the increment 155 

counts and the total body weight. Relationships calculated using the second readings 156 

(R2) showed the highest regression values when plotted against beak measurements. 157 
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Besides, the second reading is supposed more reliable because of greater experience and 158 

practice.  159 

 160 

 161 

3. Results 162 

 163 

3.1. Methodological improvements 164 

 165 

Although 70% ethanol was used for the preservation of the beaks during the 166 

biological sampling, our laboratory observations recommend preserving them in 167 

distilled water at a cold temperature (around 5 ºC) (Perales-Raya, unpublished results). 168 

The beaks preserved in ethanol for long time periods showed the poorest visibility of 169 

the increments, probably because ethanol dehydrates the beaks. Instead of using 170 

sections of beaks, as described by Raya and Hernández-González (1998), our cutting 171 

technique allowed the embedding of only the rostrum area, thus reducing time for 172 

grinding and polishing. Etching the section surfaces was not necessary as the ultraviolet 173 

light allowed the obtaining of more information from the deeper planes.  174 

Vertical reflected light (ultraviolet for the sections and violet for the lateral walls) 175 

gave good results for observation of increments. Fig. 2 shows the sequence of 176 

increments in the inner surface of the lateral walls, from the anterior to the posterior 177 

edge of these structures. 178 

In the upper and lower RSS, patterns of increments were observed from the rostrum 179 

tip to the joining point of the hood and the crest (Fig. 3A). The increments located at the 180 

rostrum tip were lost, probably due to the erosion of the rostrum during the feeding 181 

process. To avoid the tip erosion effects we usually counted the first increments in the 182 
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dorsal area of the rostral sections, where defining a transect for counting a sequence of 183 

thin increments until the dorsal border of the hood was possible (Fig. 3B). 184 

Unfortunately, the lateral walls had no alternative reading zones, but it appeared that 185 

feeding erosion (if it exists) did not affect in the same way the readings performed in the 186 

anterior region of the lateral wall area as it did in the rostral tip of the sections. 187 

 188 

3.2. Ageing precision, reading comparisons and growth curves 189 

 190 

Table 1 shows the second reading values (R2) and Table 2 shows the results of mean 191 

CV for the three preparations of each sampled individual (upper beak RSS, lower beak 192 

RSS and LWS). RSS of the upper beak showed to be the most precise technique. 193 

Although the CV obtained were quite similar, the results showed that the less precise 194 

readings were performed in the lateral walls. 195 

Significant differences were found in the number of increments between readings of 196 

LWS and upper beak RSS both in repeated readings R1 (df = 89, F = 7.37, P = 0.001) 197 

and R2 (df = 89, F = 6.91, P = 0.002), according to ANOVA and HSD Tukey post-hoc 198 

test, with a mean difference of 38 increments more in the LWS with respect to upper 199 

RSS. However, HSD Tukey test did not show significant differences between lower and 200 

upper RSS (P = 0.055 for R1, and P = 0.123 for R2). Even if HSD Tukey test did not 201 

find significant differences between lower RSS and LWS (P = 0.315 for R1, and P = 202 

0.198 for R2), a mean difference of 16 increments more was observed in the LWS. 203 

Fig. 4 shows the relationship between the total body weight of the sampled 204 

individual and the number of increments counted in RSS and LWS. For the same 205 

weight, a higher number of increments was counted in LWS (formula in the figure). 206 

Upper beak RSS produced the lowest counts. Regression values were: Y = 27.978X0.249 207 
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(r2 = 0.75) for the LWS; Y = 26.277X0.241 (r2 = 0.49) for the lower beak RSS; Y = 208 

31.395X0.200 (r2 = 0.54) for the upper beak RSS. Poor relationships were observed 209 

between the number of increments in lower beak RSS and the total body weight for 210 

animals over 2 000 g, and between upper beak RSS and total body weight for animals 211 

over 3 000 g. 212 

Fig. 5A shows the results of the beak growth. The best regression (power model; R2 213 

= 0.76) was obtained plotting the weight of the upper beak versus the number of 214 

increments (R2) in the LWS. Concerning beak measurements (Fig. 5B), the best 215 

regression fit (power model; R2 = 0.75) was obtained for the hood length (HL) of upper 216 

beak versus the number of increments (R2) in the LWS. 217 

Mean widths were calculated for each increment counted in the second reading (R2) 218 

of the upper beak RSS, where the highest reading precision was achieved (Fig. 6A). 219 

Mean widths were also calculated for each increment counted in the second reading 220 

(R2) of the LWS, where the highest number of rings were counted (Fig. 6B). Figure 6A 221 

shows that the approximately first 50 increments (counted in the dorsal area of the RSS) 222 

were much thinner than rest of the growth marks (counted along the main axis of the 223 

RSS). This figure also shows a constant decreasing trend until approximately increment 224 

number 180, being highly scattered afterwards. Figure 6B showed a more constant trend 225 

in the mean distances of each increment in the LWS, the values being mostly comprised 226 

between 75 and 100 microns. Also here, dispersion increased from increment 180 227 

onwards. 228 

 229 

 230 

4. Discussion and conclusions 231 

 232 
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Upper and lower beak RSS produced similar readings in terms of increment 233 

numbers, although the upper beak showed to give more precise age estimates. Readings 234 

performed in the LWS produced higher increment numbers than the readings in RSS 235 

(average of 38 increments more). In spite of the lower precision of the age readings in 236 

the LWS, this technique showed to be the simplest and quickest one. Those differences 237 

could be due to the fact that there were more increments to count in the LWS than in the 238 

upper and lower RSS. 239 

Preliminary laboratory results of validation obtained so far indicate that increments 240 

seem to be laid down on a daily basis (Oosthuizen, 2003; Perales-Raya, unpublished 241 

results) in both of the studied octopus beak zones. For octopus paralarvae, increments 242 

have been shown to deposit daily on the lateral walls (Hernández-López et al., 2001).  243 

Two hypothesis are suggested to explain the viewing of more increments in the 244 

LWS of the beak: (i) feeding erosion of the rostral tip, and even in the dorsal-posterior 245 

area of the hood (where first increments were counted), could have biased increment 246 

count toward underestimation; or (ii) increment number is underestimated in the RSS 247 

because growth marks start depositing in the rostrum several weeks after hatching. As 248 

the feeding erosion is greater in the anterior region of the beak and we performed the 249 

increment counts in the dorsal edge of the hood (where growth marks were identifiable 250 

until the posterior end), the underestimation would be negligible. At hatching, the 251 

buccal mass is fully formed and functional (Nixon and Mangold, 1996), but maybe at 252 

this stage, when the beaks are transparent and oral denticles are present in both upper 253 

and lower jaws of the paralarvae (Villanueva and Norman, 2008), the formation of 254 

internal increments inside the rostrum has not yet started.  255 

When looking at the average widhts of the increments, upper beak RSS showed a 256 

general decreasing trend for the increments counted along the central axis of the RSS 257 
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starting at approximately increment 90. As for this value the increment width is the 258 

widest, we can think that the fastest growth corresponds to the age of about 90 days. 259 

The thin increments counted in the dorsal area of the RSS showed an increasing trend 260 

from the edge to approximately increment 50, even if this increasing trend was not 261 

comparable to those of the increments counted along the central axis. From about 262 

increment 180, the points were highly scattered. This fact could be due to the lower 263 

number of available samples with more than 180 increments for calculating the average 264 

widths, and to the higher variability of widths observed in the posterior edge of the 265 

counting area. The trend of the average increment width observed in the LWS 266 

preparations seems to reflect the probable more constant growth of those beak surfaces. 267 

Values were also more scattered from increment 180 onwards.  268 

Considering all the facts presented and discussed in this study, we recommend using 269 

the LWS to perform growth increment counts in the beaks of common octopus. Even if 270 

the readings were less precise than those performed in the RSS, the method is simpler 271 

and quicker. In addition, LWS are less eroded during the life of the octopus, thus 272 

avoiding the eventual underestimation problems. When daily deposition of those 273 

increments will definitively be validated for common octopus beaks, counting the 274 

growth marks of the lateral walls appears as the most suitable ageing technique for 275 

Octopus vulgaris.  276 

 277 
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Fig. 1. Drawing of upper beak sagittal section. Reading area inside the left circle, where it is 365 
shown the rostral section and the increments.  366 
 367 
Fig. 2. Increments in the inner surface of lateral walls (50X): (A) anterior region with the first 368 
increments showing with an arrow the extrapolated area; (B) medium region with increments; 369 
(C) posterior region with last increments where arrow shows the extrapolated area of the edge. 370 
 371 
Fig. 3. (A) Appearance of increments in the central area of the beak sections (200X). (B) Dorsal 372 
region of the beak sections, where it was possible to count thin increments until the dorsal 373 
border of the hood (at the top of the image, magnification 300X) 374 
 375 
Fig. 4. Relationship between total weight (g) and number of increments of the octopus beaks 376 
(Octopus vulgaris). Square: lower section, circle: lateral wall, cone: upper section. Black curve: 377 
regression for lateral walls, equation above. 378 
 379 
Fig. 5. (A) Relationship between number of increments in the lateral wall and upper beak 380 
weight (mg) of the octopus beaks (Octopus vulgaris). (B) Relationship between number of 381 
increments in lateral wall and main beak measurements of upper beak. x: height, square: rostral 382 
length, cone: hood length, circle: crest length. The best regression values were obtained for the 383 
hood length and its regression line is displayed in the graph. 384 
 385 
Fig. 6. (A) Trend of increment width in the upper sections, and (B) trend of increment width in 386 
the lateral walls of the octopus beaks (Octopus vulgaris). 387 
 388 
 389 
 390 
 391 

Table 1  392 
Sampling details for the octopus Octopus vulgaris 393 
beaks used in the present study. R2: Number of 394 
increments of the second reading. 395 

Total weight  
(g) 

R2  
Upper Beak 

R2  
Lower Beak 

R2  
Lateral Wall 

91 78 78 74 
532 125 120 131 
537 101 92 138 
605 85 107 135 
647 130 101 155 
708 139 167 165 
724 114 143 147 
900 105 108 127 
925 129 160 221 
1 074 159 177 168 
1 106 107 117 138 
1 277 112 175 176 
1 315 112 127 162 
1 416 128 127 202 
1 526 137 172 153 
1 569 149 157 173 
1 741 148 205 171 
1 868 140 162 196 
1 879 157 173 163 
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2 000 151 158 187 
2 176 128 167 194 
2 211 156 193 198 
2 485 146 143 194 
3 065 167 218 156 
3 217 243 298 235 
3 431 192 227 207 

3 765 160 229 237 
4 522 126 131 211 
5 156 136 166 227 
5 361 181 152 243 

  396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 

Table 2 415 
Precision of the two counts for Section Upper Beak, Section 416 
Lower Beak and Lateral Wall in the common octopus (Octopus 417 
vulgaris). CV (Coefficient of variation), N (number of samples). 418 

 419 

 Mean
CV 

Confidence interval 
(+/- 95%) 

N 

Rostrum Sagittal Section 
(Upper Beak) 

3.93 1.29 30 

Rostrum Sagittal Section 
(Lower Beak) 

4.49 1.46 30 

Latera Wall  
(Upper Beak) 

4.84 1.47 30 
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Figure 1.tif

http://ees.elsevier.com/fish/download.aspx?id=93289&guid=9e6ae802-6023-408c-bd5a-6020ff7ccecb&scheme=1
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Figure 2A.tif

http://ees.elsevier.com/fish/download.aspx?id=93290&guid=99642aab-1d3d-447a-bab4-525026b9cb3f&scheme=1
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Figure 2C.tif

http://ees.elsevier.com/fish/download.aspx?id=93291&guid=cd135b74-9fde-4644-bb08-1abd5f1fc55c&scheme=1
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Figure 3A.tif
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Figure 3B.tif
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