Theme A. Science to underpin sustainable fisheries A.1. Climate change impact on fisheries

Climatic variability and decline of Atlantic Iberian *Nephrops* fisheries

González Herraiz, I.; Fariña, A.C.; Ruiz, M.; Sampedro, P. & Cañás, L.

INTRODUCTION

Norway lobster (Nephrops norvegicus)

- Burrowing decapod
- Fishing pressure (and F) higher in males
- 6-8 weeks pelagic larval phase (January/February)
- Negligible discard (CPUE=LPUE)

Atlantic Iberian Nephrops stocks

Landings have declined by 84% over the last 25 years!

A Recovery Plan has been implemented since 2006

LPUE

Why environmental factors could be involved?

Because different stocks from different areas have:

- Similar decreasing trends (landings, CPUE)
- With decreasing F (fishing mortality)
- Mean sizes increasing (recruitment failure?)

OBJECTIVES

 Analyse and model the catch-per-unit-effort (CPUE) from a stock representative of the Atlantic Iberian Nephrops stocks under time series approach

 To identify environmental and population variables that show similar temporal patterns to Nephrops CPUE's

MATERIAL AND METHODS

Data used (monthly basis):

• FU 25 *Nephrops* males CPUE (nº/[fd*BHP]) (1982-2008)

Previous works:

- upwelling index/Ekman transport
- temperature (SST & 70 m deph)
- chlorophil
- nitrates
- salinity

- Now: Teleconnexion patterns:
 - NAO

• EA

• EA-WR

• SCA

- POL
- AMO

Climatic variability and decline of Atlantic Iberian Nephrops fisheries

Environmental variables:

North Atlantic Oscillation index (NAO)

- Pressure difference between Iceland (low pressures) and Azores (high pressures)
- Negative correlation with precipitation in the NW Spain, positive with up-welling

Eastern Atlantic index (EA)

- Relation between the pressure in West of British Isles (low p.) and in NW Africa (high p.)
- Positive correlation with precipitation, temperature and negative with up-welling in the NW of Spain

Eastern Atlantic / Western Russia index (EA/WR)

- Describes the system of high pressures in Central Europe and low pressures in West of Russia and NE Atlantic
- Related to winter anticyclones in Central Europe

Scandinavia index (SCA)

- Measures the anomaly of very high pressures in Scandinavia and low pressures in Western Europe and Eastern Russia
- Positive correlation with precipitation in NW Spain, negative with temperature

Polar index (SCA)

- Quantifies the system of low pressures in polar region and high pressures in Eurasia
- Related to circumpolar circulation

Atlantic Multidecadal Oscillation index (AMO)

- AMO = SST anomalies
- In North Atlantic is the main multidecadal oceanographic variability pattern
- Related to precipitation (Enfield et al., 2001)

Climatic variability and decline of Atlantic Iberian Nephrops fisheries

Population variables:

RPUE

% OVIGEROUS FEMALES

% MALES

7–11 May 2012

A.1. Climate change impact on fisheries

Time series analysis:

- Seasonal decomposition of CPUE series
- Modelling CPUE time series

Identification, estimation and diagnosis

• Introduction of different factors in the model, with different lags

(various trials i.e. t = 0 months, 12 months, 24 months, etc.)

RESULTS

Climatic variability and decline of Atlantic Iberian *Nephrops* fisheries

Seasonal decomposition of the CPUE

Trend-cycle component

Seasonal component

Seasonal decomposition of the CPUE

Irregular component

FU 25 males *Nephrops* CPUE ARIMA model

$$Y_t = \phi Y_{t-1} + a_t + \Theta a_{t-12} + b$$

$$Y_t = 0.76 Y_{t-1} + a_t - 0.26 a_{t-12} + 1.2$$

(Model standard error = 0.60; P[b] < 0.001)

FU 25 Nephrops males density today = 0.76 * Density 1 month ago + Error today - 0.26 * Error 1 year ago + 1.2

Environmental variables that individually outperform ARIMA model of FU 25 males *Nephrops* CPUE (SINGLE INPUT REGRESSIONS)

Variable	Lag	Coefficient	p value	Confidence level
				(%)
POL	1.9 years	-0.08	0.002	99.8
EA-WR	0 months	0.08	0.003	99.7
EA-WR	7 years	0.07	0.011	98.9
AMO	10 years	-0.97	0.013	98.7
POL	2 years	0.06	0.024	97.6
NAO	3 years	0.06	0.026	97.4
SCA	10 years	0.06	0.03	97.0
SCA	5.9 years	-0.05	0.05	95.0

i.e.
$$Y_t = 0.77 Y_{t-1} + a_t - 0.26 a_{t-12} - 0.08 POL_{t-23} + 1.2$$

(Model standard error = 0.59; $P[\phi, \Theta, b, POL coefficient] \le 0.002$)

Population variables that individually outperform ARIMA model of FU 25 males *Nephrops* CPUE (SINGLE INPUT REGRESSIONS)

Variable	Lag	Coefficient	p value	Confidence level
				(%)
RPUE	0 months	0.007	0.000	100.0
RPUE	8 years	0.005	0.000	100.0
RPUE	10 years	0.002	0.002	99.8
RPUE	4 years	0.003	0.003	99.7
%MALES	6 years	-0.01	0.008	99.2
%MALES	1 year	-0.008	0.013	98.7
%OVIGE	6 years	-0.01	0.025	97.5
%OVIGE	6 months	-0.008	0.043	95.7

i.e. $Y_t = 0.71 Y_{t-1} + a_t - 0.21 a_{t-12} + 0.005 RPUE_{t-96} + 0.7$

(Model standard error = 0.51; $P[\phi, \Theta, b, RPUE coefficient] \le 0.000$)

FU 25 males *Nephrops* CPUE Multivariate ARIMA model

$$Y_{t} = 0.70 \ Y_{t-1\,m} + a_{t} - 0.18 \ a_{t-1\,y} + 0.003 \ RPUE_{t-10\,y}$$

$$- 0.08 \ POL_{t-1.9\,y} + 0.003 \ RPUE_{t-8\,y} + 0.07 \ EAWR$$

$$- 0.8 \ AMO_{t-10\,y} - 0.007 \ % \ MALES_{t-6\,y} + 1$$

(Model standard error = 0.44; $P[\phi, \Theta, b, variables coefficients] < 0.028)$

CONCLUSIONS

Climatic variability and decline of Atlantic Iberian Nephrops fisheries

- Both population related factors and environmental factors (specially Polar index) could have influence in the decrease of Atlantic Iberian *Nephrops* stocks
- Time series approach is a useful tool to study these relationships

Climatic variability and decline of Atlantic Iberian *Nephrops* fisheries

THANK YOU

