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Abstract 

Ferrocolloids – stable dispersions of magnetic nanoparticles – possess notable magnetic 

properties, which become apparent in consequence of the application of the external magnetic 

fields and magnetic ordering of the nanoparticles. Non-isothermal colloidal systems in turn 

exhibit close coupling between the gradients of temperature and concentration of the 

dispersed phase – Soret effect - owing to the size difference between the components of the 

binary mixture. The interactions of the gradients of concentration and demagnetizing field in 

magnetizable medium contribute to the appearance of the magnetic forces affecting the 

regimes of heat and mass transfer. 

The subject of this theoretical investigation is the emergence and evolution of the 

photoabsorptive convective-diffusive microstructures in ferrocolloid layers under the 

influence of the applied magnetic field. For this purpose a series of model problems is 

formulated in order to elucidate the principal mechanisms of the formation of magnetosolutal 

microconvection within the concentration microstructures induced by the absorption of the 

incident optical intensity and the consequent appearance of the thermal gradients. The 

magnetoadvective contributions to the effective mass transport coefficients are obtained by 

theoretical and numerical methods. 

The secondary stability of the extended photoabsorptive microstructures is considered with 

respect to the variation of the control parameters. The destabilization of the extended gratings 

and the subsequent breaking of the translational symmetry are observed in numerical 

simulations. In turn, the loss of stability of the bidirectional grids is followed by the reduction 

of the order of the rotational symmetry. 

The obtained theoretical results permit interpreting or reinterpreting some peculiarities of the 

real observations of the formation and evolution of the photoabsorptive concentration 

microstructures in the framework of magnetoadvective transport. The consideration of the 

influence of magnetosolutal microconvection in observable parameters has allowed describing 

the underlying microscopic mechanisms of some previously unexplained effects. In principle, 

the formation of the parasitic magnetic microconvection within the photoabsorptive 

microstructures under the action of the applied magnetic field is confirmed. 

 



 
 

 
 

Preface 

This investigation was conducted in the Laboratory of Heat and Mass Transfer of the Institute 

of Physics, University of Latvia between 2008 and 2012 under the supervision of Dr. habil. 

phys. Elmars Blums. I am deeply thankful to prof. Blums for suggesting a novel and 

interesting topic for research and for his valuable guidance of my work. 

I am grateful to Dr. Ansis Mezulis for acquainting with the forced Rayleigh scattering 

technique and the peculiarities of formation and observation of photoabsorptive 

microstructures in magnetic dispersions. 

I want to thank Mikhail Maiorov for sharing his knowledge and extensive experience on the 

magnetic effects and development of transport processes in ferrofluids. 

The financial support of the European Social Fund within the project «Support for Doctoral 

Studies at University of Latvia» is gratefully acknowledged. 

 

  



 
 

 
 

Contents 

Introduction ................................................................................................................................ 7 

Ferrofluids .............................................................................................................................. 7 

Convective effects .................................................................................................................. 9 

Photoabsorptive transport ..................................................................................................... 10 

Overview .............................................................................................................................. 13 

1. Physical model ...................................................................................................................... 15 

1.1. Governing equations ...................................................................................................... 15 

1.1.1. Colloidal dispersions .............................................................................................. 15 

1.1.2. Magnetic force ........................................................................................................ 18 

1.1.3. Drift of ferroparticles .............................................................................................. 21 

1.2. Dimensional analysis ..................................................................................................... 22 

1.2.1. Dimensionless form of equations ........................................................................... 22 

1.2.2. Relationship between the scales ............................................................................. 24 

2. Photoabsorptive gratings ...................................................................................................... 29 

2.1. Definition of the problem .............................................................................................. 29 

2.2. Thin ferrofluid layers ..................................................................................................... 33 

2.2.1. Base state ................................................................................................................ 35 

2.2.2. Linear stability problem ......................................................................................... 38 

2.2.3. Nonlinear regime .................................................................................................... 44 

2.2.4. Enhancement of mass transport .............................................................................. 50 

3. Extended microstructures ..................................................................................................... 53 

3.1. Formation ...................................................................................................................... 53 

3.1.1. Transversal boundary ............................................................................................. 54 

3.1.2. Stationary diffusive state ........................................................................................ 56 

3.1.3. Secondary photoabsorption .................................................................................... 62 



 
 

 
 

3.1.4. Diffusive relaxation ................................................................................................ 65 

3.1.5. Photoabsorptive microconvection .......................................................................... 72 

3.1.6. Normal field ............................................................................................................ 83 

3.1.7. Determination of transport coefficients .................................................................. 87 

3.2. Stability .......................................................................................................................... 93 

3.2.1. Definition of the problem ....................................................................................... 93 

3.2.2. Instability in ∥ field ................................................................................................. 99 

3.2.3. Instability in ٣ field .............................................................................................. 103 

3.2.4. Nonlinear regime .................................................................................................. 105 

4. Microstructure grids ........................................................................................................... 110 

5. Localized structures ............................................................................................................ 120 

5.1. Diffusive state .............................................................................................................. 121 

5.2. Stationary microconvection ......................................................................................... 125 

5.3. Azimuthal instability ................................................................................................... 127 

Discussion ............................................................................................................................... 131 

Final remarks .......................................................................................................................... 141 

Bibliography ........................................................................................................................... 145 

 

 



 
 

7 
 

Introduction 

Ferrofluids 

The special properties of the magnetic liquids are determined by their structure. By 

composition ferrofluids are stabilized colloidal dispersions of ferromagnetic nanoparticles in 

liquid carrier - binary mixtures with magnetic properties introduced by the solid phase [1]. 

Depending on the circumstances and the amount of the necessary information, ferrofluids may 

be considered as single phase magnetizable fluids [2] or a multiphase medium [3]. Both 

approaches have been successfully employed and validated under different conditions. In fact, 

it seems appropriate to use the term ferrofluid, introduced by Rosensweig [4] for this purpose, 

when the continuum properties of these materials are under discussion. On the other hand, 

when the structure of the magnetic dispersion is emphasized they are more conveniently 

referred to as ferrocolloids. Still, the terms ferrofluids, magnetic fluids [5], ferrocolloids, 

magnetic nanocolloids, magnetic nanosuspensions or magnetic dispersions and other 

combinations are used more or less interchangeably in the literature. 

The characteristic size of the dispersed phase in ferrofluids is in the nanometer range; 

consequently, the Brownian forces are normally sufficiently strong to prevent the 

sedimentation of the nanoparticles. In this respect ferrofluids are distinguished from the 

unstable magnetorheological fluids containing microsized magnetic particles. 

For the purpose of protecting the dispersed phase from coagulation due to Vaan der Waals or 

magnetic interactions, the solvation layer is formed on the surface of the nanoparticles during 

the preparation process. The particular choice of the surfactant depends on the composition of 

the ferrofluid, but two types of stabilization are usually employed: the steric repulsion in 

organic solvents and ionic stabilization in polar solutions. Additionally, the chemical 

adsorption of the stabilizing agent may in a manner degrade the magnetic properties of the 

surface of the ferroparticle. In fact, the complex structure of the solvation shell and the 

solvent-particle interface has fundamental impact on the mass transport processes in non-

isothermal ferrocolloids [6].  

In the absence of the external magnetic fields the magnetic fluids behave in the similar 

manner as conventional colloidal dispersions. Naturally, the scope of applications of the 

ferrofluids is defined by their interactions with the applied field. The single-domain structure 
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of the ultrafine ferroparticles ensures the pronounced magnetic properties of the ferrocolloid. 

The application of the external magnetic field introduces a preferred direction to the 

suspended ensemble of the otherwise chaotically oriented magnetic nanoparticles. 

Macroscopically, ferrofluids behave as paramagnetic medium; the dispersed phase returns to 

the disordered state with no remanent magnetization upon the elimination of the applied field 

through a process known as rotary diffusion. Still, ferrofluids are distinguished from other 

typical paramagnetic materials by considerably greater magnetic susceptibility, frequently 

described in terms of superparamagnetism [7]. 

The complexity of the transport processes in magnetic dispersions ensues from their coupled 

and often nonlinear nature. The asymmetric size difference between the dispersed 

nanoparticles and the molecules of the solvent are the reason for the pronounced Soret effect 

in nonisothermal colloidal solutions [8]. Both normal [11] and anomalous [6] thermodiffusion 

have been observed in ferrofluids with different structure and stabilization. On the other hand, 

the reciprocal process – Dufour effect – is generally weak except in gas mixtures [9]-[10].  

The spatial nonhomogeneity of the internal demagnetizing fields induced by the 

nonhomogeneity of the magnetic dispersion with respect to the concentration of the dispersed 

phase promotes the redistribution of the ferroparticles due to magnetophoresis in the self 

magnetic field upon the application of the external magnetic field. The magnetic particles are 

attracted to the regions of higher magnetic field strengths, but in turn, the accumulation of the 

ferroparticles weakens the external field through demagnetization. This self consistent 

interaction is conveniently described in terms of magnetic diffusion [53]. 

In nonisothermal ferrocolloids the thermal dependence of the magnetic susceptibility 

combines several factors of different nature. The thermal expansion of the ferrofluid and the 

thermal dependence of the saturation magnetization of the ferroparticles are in the essence of 

the thermomagnetic effect [1]. The consequent depletion of the magnetic nanoparticles from 

the regions of higher temperature can be interpreted in terms of the magnetic thermophoresis 

[12]-[15]. 

The existing and emerging applications of the magnetic fluids in engineering and technology 

require the complete understanding of the heat and mass transport processes occurring within 

the ferrofluid and actualize the problem of stability of the transport regimes under different 

operating conditions, in different environments and ranges of parameters.   
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Convective effects 

It is generally regarded that the first systematic research into the buoyancy driven convection 

is due to Benard (1900) [16], who observed the formation of steady hexagonal convective 

cells above some critical threshold in a layer of liquid heated from below. Somewhat later, 

Strutt (1916) [17] obtained a theoretical solution for the model problem of convective stability 

in a layer with free boundaries. While a principal success of the hydrodynamic stability 

theory, it is now established that although the driving mechanism of convection due to 

Rayleigh and Benard are the same – thermal buoyancy, the convective patterns are different 

due to the influence of the thermocapillary forces in Benard’s experiment [18].  

The fundamental research by Benard and Rayleigh was not only the cornerstone of the theory 

of convective stability, but also one of the first scientific evidences of pattern formation and 

self-organization in nonequilibrium dissipative systems. The Rayleigh-Benard system has 

proven to be a convenient model problem for the investigation of the hydrodynamic stability 

and convective effects in spatially extended systems [19]. In fact, the mechanisms of structure 

formation and evolution in Rayleigh-Benard configuration share many common aspects with 

other nonlinear systems, even with different physical nature [20]. 

At present the theory of the hydrodynamic stability of the single component fluid is well 

established and the principal convective patterns and bifurcation scenarios in the Rayleigh-

Bernard and other classical configurations have been the focal point of more than a century of 

intensive research. In turn, the Soret coupling in molecular binary mixtures has yielded a 

surprisingly rich pattern forming behavior of the thermogravitational convection [20]-[21]. 

The thermophoretic fluxes can have a stabilizing or destabilizing effect on the diffusive base 

state or the established convective state, depending on the orientation of the thermal gradient 

and the sign of the Soret effect [22]. The difference between the thermal and mass 

diffusivities in binary mixtures can lead to interesting dynamic effects in double diffusive 

convection. Apart from Bernard rolls, spatiotemporal structures like convective squares and 

crossrolls [23]-[24] as well as oscillatory [25] and wave-like regimes have been discovered 

[26]-[29]. 

In turn, strong asymmetry in size and mass between the constituents of colloidal dispersions 

as opposed to the molecular mixtures makes for large solutal buoyancy and low diffusive 

mobility of the dispersed phase [30]-[32]. The interplay between the thermal and solutal 

forces is weakened and the wave regimes become suppressed [37]. Sharp boundary layers and 

slow advancement of the concentration fronts complicate both the theoretical and 
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experimental analysis of the instabilities and bifurcation scenarios [30]-[36].  Still, to a large 

extent just the dynamics of the concentration field determine the mechanical equilibrium of 

the dispersion and the long-term stability of the convective regimes [30]. 

Apart from the thermogravitational buoyancy, the magnetic mechanism of destabilization 

occurs in non-isothermal ferrocolloids upon the application of the external magnetic field 

[38]-[39]. The internal gradients of the induced demagnetizing field can destroy the 

mechanical equilibrium of the conductive state of the ferrofluid layer even in uniform applied 

fields. In this respect, the influence of the thermomagnetic effect is perhaps described most 

thoroughly both from the theoretical point of view and experimentally, the scientific interest 

being guided by the potential in the prospective applications [41]. 

In turn, the magnetosolutal buoyancy appears in magnetizable dispersions due to the 

stratification by magnetophoretic [42]-[43] and thermophoretic forces [44]-[45] or 

gravitational sedimentation [46]-[48] in magnetic field. While the magnitude of the solutal 

effects is large in comparison with the thermoconvective destabilization, their dynamics is 

constrained by the slow diffusion timescale. The principal successes were achieved with 

account to the magnetoconvective instability in the magnetodiffusive evolution of the 

concentration fronts [49]-[51]. 

Still, it is clear that the convective-diffusive transport in non-isothermal and inhomogeneous 

magnetic dispersions is a complex process defined by the complicated and simultaneous 

coupled interactions of the gradients of temperature, concentration and the demagnetizing 

field. Only recently has emerged the understanding of the substantial influence of the 

concentration field on thermal and magnetic convection in magnetic dispersions. 

Photoabsorptive transport 

The discovery of the powerful sources of coherent radiation and the advances of the laser 

physics in the 60s and 70s necessitated the deeper understanding of the mechanisms of 

interaction of the electromagnetic radiation with matter. It has long been established that the 

propagation of the sufficiently powerful laser beams always causes the appearance of the 

thermogravitational convection in liquids or gasses [52]. Naturally, the investigation of the 

photoabsorptive transport processes and reciprocal effects between the beam and the medium 

of propagation was crucial for the design and application of lasers. 

One of the most common and best studied effects is the formation of the thermal lens along 

the path of the laser beam. Based on the thermal dependence of the refractive index is the 
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Forced Rayleigh Scattering technique, developed for the purpose of studying the heat and 

mass transport processes in the medium. If a photoabsorptive thermal perturbation has a 

regular structure, such as, for example, formed by the focused interference pattern of two laser 

beams, than the regularity of the corresponding refractive index grating possesses the 

properties of a diffraction grating. The character of the relaxation dynamics of the secondary 

signal diffracted from the refractive index modulation gives valuable information about the 

evolution of the transport processes in the medium. 

In binary mixtures with pronounced Soret effect the formation of the thermal gradient due to 

photoabsorption will inevitably initiate the emergence of the corresponding concentration 

gradient. In asymmetric mixtures such as colloidal dispersions or, in particular, ferrocolloids, 

even small temperature inhomogeneities create significant microscale variations of the 

concentration of the dispersed phase. Very low diffusive mobility of the dispersed phase in 

relation to the thermal diffusivity allows for the separation of the timescales and the thermal 

and concentration contributions to the modulation of the refractive index, so that the dynamics 

of the mass transport can be observed. 

The theoretical description of the Soret effect estimates little influence of the external 

magnetic field on the transport process. In ferrocolloids, dispersions possessing magnetic 

properties, the magnetophoretic and dipolar interactions introduce notable contributions to the 

gradient diffusion [53]-[54] and thermophoresis [55] in the applied field. This result was 

effectively interpreted in terms of magnetodiffusion and magnetic thermodiffusion. An 

alternative hypothesis was expressed [56]-[57] that the observed peculiarities of the 

concentration dynamics in the FRS procedure are the consequence of the loss of stability of 

the advancing concentration front and the development of magnetoconvection. Independent 

measurements of the Soret effect in the thermodiffusion columns also point to a strong 

influence of the magnetic field [13]-[15].  

By now extensive experimental investigations have been carried out with attempt to expose 

the role of the microconvective transport [58]-[62]. While it is possible to interpret the 

accumulated results in the framework of a phenomenological theory [63], no definite 

conclusion can be made with regard to the microscopic physical nature of the transport 

process.  

The peculiarities in the evolution of the photoabsorptive microstructures due to the 

simultaneous action of the gradients of temperature, concentration and demagnetizing field 
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were also noted in [64]-[65]. The authors described dynamic oscillations of the thermal lens 

upon the application of the external magnetic field. A phoretic model [66]-[67] has been 

proposed to describe these effects. While the influence of the magnetic microconvection was 

not accommodated, its presence cannot be ruled out. 

Perhaps for the first time the formation of the photoabsorptive magnetoconvection in 

ferrofluid layer within the beam spot of a laser was recognized in [68]-[69]. The authors 

report the observations of a novel magnetoconvective instability driven by the interactions of 

the thermophoretic and diffusive fluxes in the applied magnetic field. Interestingly, the 

observed deformation of the concentration microstructure allows for an alternative 

explanation in the framework of the phoretic effects alone [70]-[71]. The attempt to describe 

the driving force of the convective instability sparked a curious but controversial discussion 

on the form and range of validity of the magnetic force [72]-[75]. In fact, this issue is crucial 

to the present investigation and will be discussed in more detail in the appropriate section. 

From the above, one may conclude that there exists an actual need of additional theoretical 

investigations of the complex microscale interactions between the gradients of temperature, 

concentration and the demagnetizing field in ferrodispersions to gain understanding of their 

role in the formation of the magnetic microconvection. The mechanisms of the emergence of 

microscale magnetoconvection are not clear at the moment and its presence or significance in 

the formation of the photoabsorptive microstructures is not yet apparent. 

The ferrofluids, ferrodispersions attract considerable scientific interest by the possibility of 

magnetic control over the transport processes. Along with the traditional applications of the 

magnetic colloids essentially new ones are being put forward. Photoabsorptive 

microconvection is a prospective direction in biotechnology for the purpose of confining and 

manipulating macromolecules [76]-[77], efficient replication of DNA [77]-[79], growth of 

protein or colloidal crystals [80]. The photoabsorptive methods are most convenient for the 

formation of the concentration microstructures with the desired shape. The absorption of 

incident intensity by the ferroparticles allows transmitting the thermal energy to the whole 

volume of the ferrofluid layer within the penetration depth of the beam. The focusing of the 

optical radiation enables the creation of considerable thermal gradients and the corresponding 

concentration gradients even at moderate beam intensities and temperature differences. The 

possibility of forming localized or extended microstructures within the ferrofluid layer was 

demonstrated by different experimental arrangements. The combination of localized 

photoabsorption, thermophoretic depletion and magnetic effects in ferrocolloids allows great 
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degree of control over the processes in microscale systems. In this regard and in connection 

with the widening area of applications of the magnetic fluids in engineering and modern 

technology deep understanding of the fundamental transport processes is required; increases 

the level of significance of the problem of stability of the regimes of heat and mass transfer in 

ferrocolloids in different environments, operating conditions and ranges of parameters. 

The aim of the current theoretical investigation is to elucidate through a series of model 

problems the role of the magnetoconvection in the formation and evolution of the 

photoabsorptive concentration microstructures in ferrocolloids in the presence of the applied 

magnetic field, consider the stability of these structures to the variation of parameters and to 

interpret some peculiar results of the available experimental measurements with account for 

the microconvective effects, to gain evidence of the presence of photoabsorptive 

magnetoconvection in real systems. 

Overview 

Structurally this dissertation consists of an introduction, five main sections describing the 

methodology and the obtained results, discussion and conclusions. In the first section the 

physical model governing the transport processes in non-isothermal and inhomogeneous 

magnetic dispersions, which will be used throughout the investigation, is developed on the 

basis of the mixture model approach and the principal approximations are introduced. The 

shape of the concentration microstructures is determined by the equilibrium of fluxes due to 

the gradient diffusion, thermophoresis, magnetophoresis and advection. The creeping 

microconvection driven by the magnetic ponderomotive forces is described in the Stokes 

approximation. The dimensionless form of the equations and the dimensionless parameters 

characterizing the problem are then obtained after the introduction of the characteristic scales. 

In the second section the stability of a flat periodic concentration profile is considered in the 

presence of the applied magnetic field. This problem bears qualitative similarity to the 

formation and relaxation stages of the FRS procedure in thin ferrofluid layers. The linear 

analysis follows the approach of [56]-[57] and the determined parameters of the critical 

perturbation allow the subsequent considering of the nonlinear evolution of the concentration 

front above the threshold of the instability. 

In the third section the transversal parasitic microconvection emerging within the 

photoabsorptive concentration microstructures is described as a possible mechanism of the 

development of convective currents. The consideration of the transversal direction reveals two 
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principal reasons for the formation of this type of magnetoconvection – the bulk contributions 

due to the interaction of the gradients of concentration and demagnetizing field and the 

boundary effects due to the discontinuity of the magnetization on the sidewalls of the layer. 

The influence of the convective fluxes is then considered as a perturbation of the diffusive 

base state. The calculation of the effective transport coefficients reveals the considerable role 

of advection in the mass transport processes within the photoabsorptive microstructures. 

This section also deals with the problem of hydrodynamic stability of the extended 

convective-diffuse microstructures formed by photoabsorption. The instability due to the 

breaking of the translational symmetry and the resulting undulatory bending or peristaltic 

stratification of the concentration front is observed in numerical simulations. The 

corresponding linear stability problem is formulated and solved for the purpose of 

determining the threshold of the corresponding instabilities. The similarity and important 

distinction between this type of destabilization and the convective instability of a flat 

concentration front, considered in the previous section, is noted as well. 

The fourth section describes the formation of the bidirectional periodic microstructures, 

concentration grids, with account for the magnetic microconvection. The evolution and 

eventual shape of the photoabsorptive grids is determined by numerical integration of the 

governing equations in real variables in the finite volume method formulation. The convective 

patterns forming within these microstructures resemble systems of toroidal vortices oriented 

along the external field. The destabilization of the array of convective-diffusive 

microstructures is observed at some parameters. 

In the fifth section the problem of formation of localized microstructures embedded within the 

ferrofluid layer is considered on the example of the photoabsorption within the spot of a 

Gaussian beam. The role of the microconvective transport and the stability of the localized 

formations with respect to azimuthal perturbations of higher order are briefly discussed. 

The discussion of the most significant results is offered in the corresponding section. Some 

experimental observations of photoabsorptive magnetic microstructures – gratings and 

bidirectional grids - available in the literature and otherwise are interpreted in the framework 

of the microconvective effects. Substantial evidence of the existence of invisible [70] 

magnetosolutal microconvection within the concentration microstructures is presented by 

comparison of the calculations and the results of real measurements.  
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1. Physical model 

1.1. Governing equations 

1.1.1. Colloidal dispersions 

Depending on the circumstances and the ammount of the necessary information ferrofluids 

can be modeled either as homogeneous fluids with magnetic properties or colloidal 

dispersions of ferromagnetic nanoparticles in liquid carrier [4]. The dynamics of the solid 

constituent is usually not considered on conventional lengthscales due to the low mobility of 

the nanoparticles and as a consequence – extremely long diffusion timescales, so that the 

former approach is sufficient for the adequate description of the ferrofluid as a whole. On 

microscale the relative motion of the solid phase caused by thermal or magnetic forces 

becomes significant in many heat and mass transfer processes.  

The postulate approaches [81] to the formulation of the dynamic models of the ferrocolloid 

are based on augmenting the classical single fluid equations by an additional balance equation 

and the appropriate constitutive relations. The form of the additional equations can frequently 

be based on the single fluid approximation and although the construction of such models 

possesses sound reasoning, it is in part guided by intuition. 

It is clear that the mathematical formulation of the physical model governing the dynamics of 

the ferrocolloid has to be based on the fundamental conservation laws of mass, momentum 

and energy. The continuum approach to physical modeling requires the introduction of the 

formal spatial fields correlating with the physical quantities measurable in experiments. In the 

case of multiphase mixtures it is possible to initially formulate the balance and constituitive 

equations separately for each phase and complement them by the appropriate jump and 

boundary conditions. The general form of the balance equation for a mass-weighted quantity 

߰௞ for phase k in local instant formulation [82] 

 
߲
ݐ߲
ሺߩ௞߰௞ሻ ൅ સ ∙ ሺߩ௞߰௞࢛࢑ሻ ൌ െસ ∙ ௞ܬ ൅ ௞߶௞ (1.1)ߩ

with interface efflux ܬ௞, volume source ߶௞ is the basis of continuum mechanics. 

In order to formally bring the separate continua of the phases into a “mixture of continua” or a 

single quasi-continuum the local field equations are subjected to spatial or time averaging. 
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The general averaged continuity and momentum balance equations have been formulated 

[81]-[82] 

߲
ݐ߲
ሺߩ௞߮௞ሻ ൅ સ ∙ ሺߩ௞߮௞࢛࢑ሻ ൌ Γ୩ (1.2)

߲
ݐ߲
ሺߩ௞߮௞࢛࢑ሻ ൅ સ ∙ ሺߩ௞߮௞࢛࢑࢛⨂࢑ሻ ൌ െ߮௞સ݌௞ ൅ સ ∙ ሺ߮௞࣎࢑ሻ ൅ ߮௞(1.3) ࢑ࢌ

with ߮௞ - either a void-fraction or volume fraction depending on the form of averaging, Γ୩ is 

the mass source of individual phases, ݌௞ - partial pressure, ࣎࢑ is the stress tensor and ࢑ࢌ – the 

momentum sources.  

The averaged system of balance equations for a binary system consists of six balance 

equations complemented by the jump conditions describing the interaction of the phases. The 

separate description of the phase dynamics is excessively complicated. Alternatively, it is 

possible to consider the dynamics of the mixture as a whole. 

The continuity equation for the mixture is obtained by summing over the continuity equations 

of the individual phases (1.2) 

௠ߩ߲
ݐ߲

൅ સ ∙ ሺߩ௠࢛࢓ሻ ൌ 0 (1.4)

with ߩ௠ ൌ ∑ ߮௞ߩ௞
ୱ,୮
୩  and center-of-mass velocity ࢛࢓ ൌ ଵ

ఘ೘
∑ ߮௞ߩ௞࢛࢑
ୱ,୮
୩ . The quantities 

related to the solvent phase and the suspended particle phase are referred to by the 

corresponding indices ௦ and ௣. 

The momentum balance equation for the mixture results similarly from summing over the 

separate momentum equations for the individual phases 

߲
ݐ߲
ሺߩ௠࢛࢓ሻ ൅ સ ∙ ሺߩ௠࢛࢓࢛⨂࢓ሻ ൌ െસ݌௠ ൅ સ ∙ ࢓࣎ ൅ ࡹࢌ െ સ ∙ ෍ ߮௞ߩ௞࢑࢓ࢁ⨂࢑࢓ࢁ

௞ୀ௦,௣

 (1.5)

with ݌௠ ൌ ∑ ߮௞݌௞
ୱ,୮
୩ ࢓࣎ , ൌ ∑ ߮௞࣎࢑

ୱ,୮
୩ ࢑࢓ࢁ , ൌ ࢛࢑ െ ࡹࢌ ,࢓࢛ ൌ ߮௣࢖ࢌ – magnetic force, 

acting on the mixture.  

The motion of the solid phase is described by equation (1.2) taking into account that the 

amount of the nanoparticles is conserved 

߲
ݐ߲
൫ߩ௣߮௣൯ ൅ સ ∙ ൫ߩ௣߮௣࢛࢓൯ ൌ െસ ∙ ൫ߩ௣߮௣࢖࢓ࢁ൯ (1.6)
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Assuming that the mass of the ferroparticles is many times larger than the mass of the 

corresponding volume of the carrier phase, it is more convenient to rewrite equations (1.4)-

(1.6) in terms of the mass fraction ܿ ൌ
ఝ೛ఘ೛
ఘ೘

 of the dispersed phase rather than the volume 

fraction. In fact, the expression for the volume fraction flow ࣐ࡶ ൌ ߮௣࢖࢓ࢁ, which is 

sometimes used, is accurate only in very dilute dispersions. 

Introducing the slip velocity relative to the continuous phase as ࢖࢙ࢁ ൌ ࢖࢛ െ ࢛࢙ and assuming 

that the densities of the phase materials are constant except in the magnetic force term ࡹࢌ 

(which is in essence the analogy of the Oberbeck-Boussinesq approximation) the system of 

equations is obtained 

સ ∙ ࢓࢛ ൌ
௣ߩ െ ௦ߩ
௦ߩ௣ߩ

સ ∙ ௖ (1.7)ࡶ

௠ߩ ൤
߲ܿ
ݐ߲
൅ ࢓࢛ ∙ સܿ൨ ൌ െસ ∙ ௖ (1.8)ࡶ

௠ߩ ൤
࢓࢛߲
ݐ߲

൅ ሺ࢛࢓ ∙ સሻ࢛࢓൨ ൌ െસ݌௠ ൅ સ ∙ ࢓࣎ ൅ ࡹࢌ െ સ ∙ ൧ (1.9)࢖࢙ࢁ⨂ࢉࡶൣ

The set of balance equations (1.7)-(1.9) for the mixture and the dispersed phase is usually 

referred to in the literature as the drift-flux model, the mixture model or the algebraic slip 

model depending on the author. The flux ࡶ௖ ൌ ௠ܿሺ1ߩ െ ܿሻ࢖࢙ࢁ is therefore correspondingly 

referred to as the drift flux of the ferroparticles relative to the continuous phase and must be 

expressed through the constitutive relations.  

In the case when the dispersed phase is solid it is reasonable to assume the existence of a 

common pressure field ݌ ൌ ௠݌ ൌ  ௞. In turn, determining the contributions of the dispersed݌

phase to the viscous shear stress tensor of the mixture ࣎࢓ is a more complicated problem; the 

form of these contributions obviously depends on the structure of the dispersion and the 

operating conditions. Most commonly the carrier fluid is a Newtonian fluid, then in the 

absence of the external magnetic field and at moderate concentrations of the solid phase the 

non-Newtonian effects in ferrofluids are generally not significant. In the limit of infinite 

dilution the theoretical Einstein’s relation is available for the viscosity of a suspension of 

spherical particles  

ηఝ ൌ ൫1ߟ ൅ 2.5߮௣൯ (1.10)

At larger concentrations of the solid phase the collective hydrodynamic interactions of the 

ensemble of the particles become significant and higher terms in ߮௣ should be taken into 
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account. In most situations the empirical approach is adopted for this purpose. In this regard, 

the reader is referred to the pioneering works of Batchelor [83]-[84] on microhydrodynamics 

of dispersions.  

In consequence of the application of the external magnetic field to a magnetic colloid several 

factors of different nature may contribute to the form of the shear stress tensor. The restriction 

of the internal degree of freedom – the internal rotations – and the consequent competition of 

the magnetic and hydrodynamic torque lie in the basis of the magnetoviscous effect [1]. While 

most considerable in oscillating fields, the mechanism of magnetic viscosity can become 

apparent in the interactions of the hydrodynamic vortices with stationary homogeneous fields. 

In turn, the considerable magnetic interactions of the ferroparticles can alter the internal 

structure of the ensemble and induce the formation of aggregates in concentrated 

ferrodispersions, leading to the appearance of non-Newtonian effects. 

Still, the problem of structural evolution and rheology of the magnetic fluids is outside the 

scope of this investigation. The magnetic systems under consideration possess moderate 

concentrations of ferroparticles and are subjected to stationary homogeneous magnetic fields. 

The thermal variations are also not sufficient to induce substantial changes of viscosity and 

the intensity of convective motion is comparable with the diffusive mobility of the 

ferroparticles. In this regard, it is convenient to adopt the conventional form of the Newtonian 

viscous stress tensor corresponding to that of the isotropic and incompressible fluid with 

constant viscosity. 

1.1.2. Magnetic force 

In constant or slowly varying applied magnetic fields the system of Maxwell’s equations 

reduces to those of magnetostatics. Disregarding the electric currents as ferrofluids are 

typically non-conducting, the configuration of the magnetic field within the magnetizable 

media is determined by the system 

સ ∙ ࡮ ൌ ૙ (1.11)

સ ൈࡴ ൌ ૙ (1.12)

with auxiliary field ࡴ and magnetic induction ࡮ ൌ ࡴ଴ሺߤ ൅ࡹሻ. 

In the presence of the external field the magnetic dispersions acquire magnetization ࡹ, which 

is in principle a dynamic quantity requiring an additional dynamic equation. Still, its 

relaxation to the equilibrium state occurs mainly through the Brownian mechanism [5] and is 

characterized by the Brownian relaxation time, which is very small in comparison with the 
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diffusion time scale that is adopted throughout this investigation. It can then be assumed that 

the induced magnetization does not depend on time. The dynamic effects associated with the 

spontaneous reversals of the magnetic moments of the ferroparticles (Néel relaxation 

mechanism) will be omitted as well. 

The form of the expression for the magnetic force (1.5) ࡹࢌ acting on a polarizable medium 

has been a matter of debate recently. The partial reason for this controversy is that while the 

expression for the microscopic ponderomotive force acting in the external field ࡴ on an 

infinitesimal dipole ࢓ is well known and given by the Lorentz force ߤ଴ሺ࢓સሻࡴ, the 

macroscopic averaged expression is not easily obtained.  

The first consistent derivation based on the thermodynamic principles is attributed to 

Korteweg (1880) and Helmholtz (1882) [2] 

ࡹࢌ ൌ સ ቈ
ଶܪ

2
ߩ ൬
ߤ߲
ߩ߲
൰
்
቉ െ

ଶܪ

2
સ(1.13) ߤ

where ߤ is the magnetic permeability. 

The method was generalized by Cowley and Rosensweig [85] to account for the nonlinear 

dependence of the magnetization of ferrofluids 

ࡹࢌ ൌ െસ ቈߤ଴ න ൬
ݒܯ߲
ݒ߲

൰
ு,்

ܪ݀
ு

଴
቉ ൅ (1.14) ࡴસሻࡹ଴ሺߤ

and ݒ is the specific volume. 

If the magnetic susceptibility does not depend on the applied field, i.e. for linearly 

magnetizable media, the expression due to Korteweg and Helmholtz is recovered after some 

transformations. 

Owing to low compressibility of the solid phase the magnetostriction of the nanoparticles can 

be neglected [2] and the product ݒܯ does not depend on ݒ for dilute ferrocolloid. 

Alternatively, the approximation of incompressibility can be invoked once and the term 

containing the integral introduced into the pressure term of the momentum equation (1.9). 

Then the first term in (1.14) vanishes and the expression for the Kelvin-Helmholtz force is 

obtained 

ࡹࢌ ൌ (1.15) ࡴસሻࡹ଴ሺߤ

The similarity of this result to the expression for the Lorentz force on a tiny dipole in a non-

uniform field is quite remarkable. 
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The validity of relations (1.13)-(1.15) is not immediately recognized in stratified ferrocolloid 

with inhomogeneous distribution of ferroparticle concentration. In fact, an expression similar 

to (1.14) was obtained for a ferrosuspension [86] with the magnetostrictive term ቀ
డெ௩

డ௩
ቁ
ு,்

ൌ

ܯ െ ߩ ቀ
డெ

డఘ
ቁ
ு,்

 replaced by a similar but not identical relation ܯ െ ݊௠ ቀ
డெ

డ௡೘
ቁ
ு,்

. Considering 

a more detailed mixture model [87] it appears that ߩ ቀ
డெ

డఘ
ቁ
௖
ൌ ݊௠ ቀ

డெ

డ௡೘
ቁ
ு,்

 and the two 

formulations are equivalent. If the dipolar interactions can be neglected and the susceptibility 

of the magnetic dispersion is proportional to the number of the ferroparticles than the 

expression for the Kelvin-Helmholtz force (1.15) is again obtained. 

The range of validity of the Kelvin-Helmholtz force was disputed again somewhat later [72] 

in a discussion following the observation of a novel microconvective instability induced in a 

layer of ferrofluid by photoabsorption under the action of the applied magnetic field [68]. The 

results of the experimental investigation by Luo, Du and Huang are of direct relevance to this 

work (see Discussion) so it is appropriate to consider the subject of the matter more closely.  

It was pointed out that the alternative choice of the constitutive expression for the magnetic 

susceptibility ࡹ ൌ ෤߯࡮ in terms of the macroscopic field ࡮ rather than the conventional 

definition ࡹ ൌ  through the microscopic field results in a different formulation for the ࡴ߯

magnetic force. Making use of the expression due to Korteweg and Helmholtz (1.13) 

ࡹ෨ࢌ ൌ સ ቈ
ଶܤ

2
ߩ ൬
߲ ෤߯
ߩ߲
൰
்
቉ െ

ଶܤ

2
સ ෤߯ (1.16)

the relations (1.13) and (1.16) are physically equivalent. However, the expression for the 

Kelvin-Helmholtz force has been obtained on the grounds of the proportionality of the 

magnetic susceptibility to the density of the ferrofluid, which constitutes a dilute limit of non-

interacting ferroparticles. Invoking the same assumption ෤߯~ߩ for (1.16) a similar but 

evidently distinct relation was given 

ࡹ෨ࢌ ൌ (1.17) ࡮સሻࡹ଴ሺߤ

The two formulations (1.15) and (1.17) for the Kelvin-Helmholtz force are in apparent 

contradiction. For the sake of consistency it was required that ෤߯ ൎ ߯ and then ࢌ෨ࡹ ൎ  ,ࡹࢌ

which limits the expression (1.15) to very dilute ferrofluids. 
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The issue was seemingly resolved by experimental measurements of the total magnetic force 

acting on a magnetizable body [74] invalidating (1.15) and confirming that (1.17) is the valid 

form of the Kelvin-Helmholtz force. The situation is not so certain, however. 

It was pointed out [73] that while the approximations ߯~ߩ and ෤߯~ߩ define the range of 

validity of the corresponding expressions (1.15) and (1.17), it is not necessary that both are 

correct at the same time. In fact, the region of validity of (1.17) is much smaller than the one 

for (1.15) and the analysis of the pendulum experiment [74] employs the alternative 

formulation (1.17) outside its limited scope, but is nevertheless surprisingly accurate, while 

(1.15) is not. This contradiction was finally resolved by Engel [75], showing that the analysis 

of the pendulum experiment omits important contributions. Most importantly, the 

measurements of the total force cannot actually distinguish between the different formulations 

of the magnetic force density as the integral expression defining the macroscopic magnetic 

force on the container filled with ferrofluid can be decomposed in different ways. 

The notable distinction between (1.15) and (1.17) is in the configurations of ࡮ and ࡴ. If the 

external field is perpendicular to the ferrofluid layer, the magnetization and consequently the 

magnetic field experience a discontinuity on the layer boundary, while the magnetic induction 

is continuous. In the situation of induced nonuniformity of the magnetic susceptibility, the 

magnetic force defined by (1.17) is a bulk force, while (1.15) possesses important 

contributions concentrated in a narrow boundary layer. This causes peculiarities of the 

transport processes, which will be discussed later. Throughout this work the classical 

formulation (1.15) for the magnetic force density is assumed. 

1.1.3. Drift of ferroparticles 

In the absence of convection the phoretic transport of the magnetic nanoparticles in non-

isothermal inhomogeneous ferrocolloids occurs due the presence of the gradients of 

concentration, temperature and the magnetically induced gradients of the demagnetizing field. 

The slip-flux ࢉࡶ of the concentration of the solid constituent relative to the continuous phase is 

then comprised of the three principal components 

ࢉࡶ ൌ ࡰࡶ ൅ ࢀࡶ ൅ (1.18) ࡹࡶ

i.e. the corresponding diffusive, thermophoretic and the magnetophoretic contributions. 

The diffusive mass flux driven by the gradient of concentration is expressed by Fick’s first 

law of diffusion ࡰࡶ ൌ െܿ׏ܦ, which also introduces the mass diffusivity ܦ. 
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The convenient expression for the thermophoretic mass flux establishing the gradient of 

concentration in response to the thermal non-homogeneity is ࢀࡶ ൌ ܿሺ1 െ ܿሻܶ׏்ܵܦ, which at 

same time defines the Soret coefficient ்ܵ. 

The magnetophoretic flux due to the non-uniform field can be obtained microscopically by 

considering the equilibrium of the Stokes’ drag 6࢖࢙ࢁݎߟߨ experienced by the spherical 

ferroparticle and the Kelvin’s force ሺ࢓સሻࡴ on a point dipole, which is associated with it. In 

strongly asymmetric solutions such as the colloidal dispersions the hydrodynamic argument is 

usually valid. Alternatively, a more general approach based on the thermodynamic principles 

can be employed [1]. Both give similar result ࡹࡶ ൌ
௠೒

௙ഌ
ሺ1 െ ܿሻࡹࢌ, where ݉௚ is the mass of 

the particle and ఔ݂ ൌ  .the hydrodynamic drag coefficient - ݎߟߨ6

1.2. Dimensional analysis 

1.2.1. Dimensionless form of equations 

The estimation of the relative importance of different terms in the balance equations can be 

carried out by the dimensional analysis. The following basic characteristic scales for the 

variables are introduced: ܮ as the characteristic length scale - ࢘ ൌ ෤࢘ܮ , diffusion time 
௅మ

஽
, with 

ݐ the diffusivity of the suspended nanoparticles, as the characteristic time scale – ܦ ൌ ௅మ

஽
 ;ݐ̃

characteristic temperature difference ∆ܶതതതത, concentration difference ∆ܿതതത and magnetic field 

difference ∆ܪതതതത. The rest of the scales follow from these definitions: velocity ࢛ ൌ ஽

௅
෥࢛, mass 

flux of the suspended phase ࡶ௖ ൌ ଴∆ܿതതതߩ
஽

௅
 ,଴ – reference density of the ferrocolloidߩ with ࢉ෨ࡶ

pressure ݌ ൌ ଴ߩ
஽మ

௅మ
݂ ෤ and the measure for the force density݌ ൌ

ఎ஽

௅య
ሚ݂. 

The set of equations (1.7)-(1.9) after the normalization becomes  

સ ∙ ෥࢛ ൌ
௣ߩ െ ௦ߩ
௣ߩ

∆ܿതതതસ ∙ ෨௖ (1.19)ࡶ

൤
߲
ݐ߲
൅ ሺ෥࢛ ∙ સሻ൨ ܿ̃ ൌ െસ ∙ ෨௖ (1.20)ࡶ

1
ܵܿ
൤
߲
ݐ߲
൅ ሺ෥࢛ ∙ સሻ൨ ෥࢛ ൌ െસ ෨ܲ ൅ ∆෥࢛ ൅ ࡹ෨ࢌ െ

1
ܵܿ
∆ܿതതത׏ ∙ ൫ࡶ෨௖⨂ࢁ෩࢙࢖൯ (1.21)

where the Schmidt number ܵܿ ൌ
ఎ

ఘబ஽
 characterizes the ratio of momentum and mass 

diffusivities and prefactor Sc-1 was absorbed into the pressure term in (1.21). 
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In the dilute limit, when the characteristic concentration difference ∆ܿതതത is small, the system 

(1.19)-(1.21) allows making use of the pseudohomogeneous approximation for the description 

of the ferrocolloid [42]. The term on the right hand side of (1.19) disappears and the 

conventional form of the condition of divergence free velocity field for incompressible flow is 

recovered. The last term on the RHS of (1.21) vanishes as well. The set of mixture equations 

then indeed reduces to the equations of motion of a single component fluid with the Kelvin 

body force term, complemented by the concentration balance equation. 

In turn, if the induced nonhomogeneities of the temperature, concentration and the 

demagnetizing field are not large, the magnetic susceptibility of the ferrocolloid can be 

linearized with respect to the deviations from the reference state ሺ ଴ܶ, ܿ଴,  ଴ሻܪ

߯ ൌ ߯଴ሾ1 ൅ ்߯ሺܶ െ ଴ܶሻ ൅ ߯௖ሺܿ െ ܿ଴ሻ ൅ ߯ுሺࢎ ∙ ࡴ െ ଴ሻሿ (1.22)ܪ

with the expansion coefficients ܻ߯ ൌ
ଵ

߯0

߲߯
߲ܻ

, ߯଴ – reference susceptibility and ࢎ – unit vector in 

the direction of the applied magnetic field. 

The normalized expression for the magnetic force density is then accordingly obtained after 

some transformations  

ࡹ෨ࢌ ൌ ൛ܽܩ௠ ൅ ܴܽ௠ ෨ܶ ൅ ௠ܿ̃ݏܴ ൅ ࢎ௠൫ݎܣ ∙ ࢎ෩൯ൟસൣ൫ࡴ ൅ ෩൯ࡴுݎ ∙ ෩൧ (1.23)ࡴ

where ݎு ൌ
ு

ଶுబ
. 

The introduced dimensionless numbers characterize the relative strength of the magnetic 

buoyancy contributions due to thermal or solutal non-homogeneities or the consequent 

perturbations of the internal demagnetizing field: ܴܽ௠ ൌ ்߯∆ܶതതതതܽܩ௠ is the magnetic thermal 

Rayleigh number, ܴݏ௠ ൌ ߯௖∆ܿതതതܽܩ௠ - magnetosolutal Rayleigh number, ݎܣ௠ ൌ ߯ு∆ܪതതതതܽܩ௠ - 

magnetic Archimedes number and ܽܩ௠ ൌ ଴ܪ଴߯଴ߤ
௅య

ఎ஽

∆ுതതതത

௅
 – magnetic Galilei number. 

Assuming that the characteristic concentration scale ∆ܿതതത can be expressed in relation to the 

temperature perturbation ∆ܶതതതത as ∆ܿതതത ൌ ܿ଴ሺ1 െ ܿ଴ሻܵெ்∆ܶതതതത (here ܵெ் is the magnetic Soret 

coefficient, which will be formally introduced below) the drift flux (1.18) can then be 

expressed in normalized form 

෨௖ࡶ ൌ െસܿ̃ െ ௠સݏ ෨ܶ ൅ ௣ࣧ௛સൣ൫ࢎ ൅ ෩൯ࡴுݎ ∙ ෩൧ (1.24)ࡴ
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with dimensionless magnetic Soret coefficient defined as ݏ௠ ൌ ௌ೅
ௌಾ೅

 and the magnetophoretic 

number ௣ࣧ௛ ൌ
ఎ

ఘబ஽
ሺ1 െ ܿ଴ሻ

௠೒

ఎ௙ഌ
଴ܪ଴χ଴ߤ

∆ுതതതത

∆௖തതതത
, which determines the relative mobility of the 

ferroparticles due to the magnetophoresis in the self-magnetic field. 

The equations (1.11)-(1.12) permit to introduce the scalar potential of the self-magnetic field 

૙ࡴെࡴ ൌ െસ߰, which allows for a more convenient treatment of the configuration of the 

induced demagnetizing field. The characteristic scale for this quantity follows from its 

definition ∆߰തതതത ൌ തതതതܪ∆ ∙  and the governing equation can be obtained without difficulty in ܮ

dimensionless form 

∆ ෨߰ ൌ સ ∙ ෩ࡹ  (1.25)

In turn, the deviation of magnetization can be expressed omitting second order contributions 

૙ࡹെࡹ ൎ ሺ߯ െ ߯଴ሻࡴ૙ ൅ ߯଴ሺࡴ െ ૙ሻ (1.26)ࡴ

and its proper characteristic scale is  ∆ܪതതതത. In normalized form 

෩ࡹ ൌ ߯଴ࡴ෩ ൅ ்ߙൣ ෨ܶ ൅ ௖ܿ̃ߙ ൅ ࢎு൫ߙ ∙ (1.27) ࢎ෩൯൧ࡴ

with dimensionless coefficients ߙ௒ ൌ ߯௒߯଴ܪ଴
୼௒തതതത

୼ுതതതത
. 

1.2.2. Relationship between the scales 

In order to complete the proper normalization of the governing equations and find out the 

relative role of the contributing terms, it is necessary to determine the relationship between 

the thermal, concentration and magnetic scales ∆ܶതതതത, ∆ܿതതത, ∆ܪതതതത. For this purpose it is appropriate 

to consider the drift flux ࢉࡶ given by (1.18). 

Given that a flat lateral temperature gradient સܶ is induced in a layer of ferrocolloid in the 

presence of the similarly directed uniform applied magnetic field ࡴ૙. After the establishing of 

the steady concentration profile the fluxes in the direction of the field obey the zero balance 

condition: 

െߩ଴ܦ
݀ܿ
ݔ݀

െ ଴ܿሺ1ߩ െ ܿሻ்ܵܦ
݀ܶ
ݔ݀

൅ ሺ1 െ ܿሻ
݉௚

ఔ݂
଴ܯ଴ߤ

ܪ݀
ݔ݀

ൌ 0 (1.28)

From (1.11) ݀ܪ
ݔ݀
ൌ െ

ܯ݀
ݔ݀

 and the expansions (1.22) and (1.26) yield the stationary gradient of 

the magnetic field perturbation 

ܪ݀
ݔ݀

ൌ െ
߯଴ܪ଴

1 ൅ ߯଴ሺ1 ൅ ߯ுܪ଴ሻ
൤்߯

݀ܶ
ݔ݀

൅ ߯௖
݀ܿ
ݔ݀
൨ (1.29)
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Comparing the relations (1.28) and (1.29) allows determining the magnitude of the 

concentration perturbation 

݀ܿ
ݔ݀

ൌ െ
்ܵ ൅ ்߯݉ு

1 ൅ ܿ଴ሺ1 െ ܿ଴ሻ߯௖݉ு
ܿ଴ሺ1 െ ܿ଴ሻ

݀ܶ
ݔ݀

 (1.30)

The expression ∆ܿതതത ൌ ܿ଴ሺ1 െ ܿ଴ሻܵெ்∆ܶതതതത can then be recovered introducing the magnetic Soret 

coefficient [88]  

ܵெ் ൌ െ
்ܵ ൅ ்߯݉ு

1 ൅ ܿ଴ሺ1 െ ܿ଴ሻ߯௖݉ு
, with ݉ு ൌ

݉௚

ఔ݂ܿܦ଴ߩ଴

଴ܯ଴ߤ
ଶ

1 ൅ ߯଴ሺ1 ൅ ߯ுܪ଴ሻ
 (1.31)

where according to the Stokes-Einstein relation ఔ݂ܦ ൌ ݇஻ ଴ܶ. 

In turn, similarly considering the dimensionless form of the drift flux (1.24) it is possible to 

obtain the relationship between the gradients 

൤1 ൅
෤௖ߙ ௣ࣧ௛

1 ൅ ෤ுߙ
൨
݀
ݔ݀

ܿ̃ ൌ െ ൤ݏ௠ ൅
෤்ߙ ௣ࣧ௛

1 ൅ ෤ுߙ
൨
݀
ݔ݀

෨ܶ  (1.32)

Because the gradients have been normalized, the coefficients on the right-hand side and on the 

left-hand side are equal. Clearly, the prefactor on the LHS is the effective diffusion coefficient 

݀௠ with the included contribution of magnetophoresis in the self-magnetic field. The 

coefficient on the RHS consists of two parts – first there is the magnetic Soret coefficient ݏ௠, 

which has been similarly normalized to account for the presence of magnetophoresis. The 

second part follows from the thermomagnetic effect and the degradation of the ferrofluid 

magnetization in regions with higher temperature. The magnetic field thus contributes to the 

appearance of magnetic thermophoresis. 

Table 1.1. Typical parameters of the ferrocolloid 

Parameter Value  

solvent density ߩ௦ 1000 kg m-3 

viscosity 0.001 ߟ Pa s 

thermal conductivity 0.1 ߣ W (m K)-1 

specific heat capacity ܿ௣ 2000 J (kg K)-1 

particle density ߩ௣ 5000 kg m-3 

diffusivity 11-10·3 ܦ m2 s-1 

Soret coefficient ்ܵ -0.16 K-1 

magnetic radius ݎ௠ 5 nm 

spontaneous magnetization ܯ௦ 5·105 A m-1 
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The introduced dimensionless group is composed of the magnetic coefficients ߙ௒, mass 

transport coefficients - ௣ࣧ௛, ݏ௠ and the dimensionless numbers governing the strength of the 

magnetic buoyancy contributions – ܴܽ௠, ܴݏ௠, ݎܣ௠. The characteristic physical parameters 

for a typical ferrofluid based on organic solvent or water are summarized in Table 1.1. 

The value of the phenomenological pyromagnetic coefficient ்߯ can be experimentally 

measured by the method of magnetic granulometry and rarely exceeds 0.005 K-1 even for 

thermally sensistive ferrofluids. Consequently, the influence of the termomagnetic effect is 

rather weak and can be completely disregarded. In turn, the coefficient ߯ு can also be 

obtained by magnetic measurements in real ferrofluid samples, but if the concentration of the 

ferrocolloid is not too great the characteristic value of ߯ு can be estimated from the Langevin 

approximation of the ferrofluid magnetic susceptibility: 

߯௅ሺܪሻ ൌ
௦௔௧ܯ

ܪ
ሻሿ (1.33)ܪሺߦሾܮ

with the Langevin function ܮሺݔሻ ൌ cothሺݔሻ െ 1
ݔ
 and ߦሺܪሻ ൌ ଴ߤ

௠ு

௞ಳ బ்
 - the Langevin parameter, 

describing the ratio of the magnetic and thermal energy of the ferroparticle with magnetic 

dipole moment ݉. 

Then the expression for ߯ு ൌ
1

ఞబ

డఞಽ
డு

 is obtained after some transformations 

߯ுሺܪሻ ൌ െ
଴ߦ
଴ܪ

൤ܮሺߦ଴ሻ ൅
3
଴ߦ
െ

1
଴ሻߦሺܮ

൨ (1.34)

with ߦ଴ ൌ  .଴ሻܪሺߦ

In the assumed dilute limit the interactions of the ferroparticles are neglected and the 

magnetic susceptibility of the ferrocolloid is proportional to the concentration of the dispersed 

phase ߯௖ ൌ ܿ଴
ିଵ.  

In the definition of the dimensionless susceptibilities more convenient is to use the modified 

coefficients ߙ෤௒ ൌ ߳ ௒߳ିଵ withߙ ൌ 1 ൅ ߯଴ - the nonlinearity of magnetization. With the 

characteristic ferrofluid parameters ߙ෤௖ ൎ 1 and depends little on the applied field. The 

magnitude of ߙ෤ு is generally considerably smaller than ߙ෤௖ and can be disregarded. The 

corresponding contribution to the magnetic buoyancy is omitted as well. 

Considering a typical ferrofluid sample with the volume fraction of the solid particles ߮௣ at 

5%, the dimensionless parameters governing the relative intensity of the mass transport 



 
 

27 
 

processes can be calculated. Due to the nonlinearity of the ferrofluid magnetization they 

depend on the magnitude of the imposed field (Figure 1.1), but are independent of the applied 

thermal difference, which influences only the strength of the buoyant forces. 

   

Figure 1.1. Dependence of the selected dimensionless parameters on the applied magnetic 

field 

In turn, the magnetosolutal Rayleigh number is the principal control parameter describing the 

magnetic driving force of the microconvective transport. Even rather small thermal 

differences ∆ܶതതതത ൎ  can produce sufficient temperature gradients so that the magnitude of ܭ1°

ܮ ௠ can reach significant values in the conditions of microscale transportݏܴ ൎ  The .݉ߤ50

value of the magnetic Rayleigh number implies a second order dependence on ∆ܶതതതത and grows 

rapidly with the increase of the imposed thermal gradient (the estimations of the 

magnetosolutal Rayleigh numbers for some experimental investigations are available in [56]-

[57]). This fact permits to expect the eventual formation of the magnetosolutal 

microconvection affecting the processes of mass transport.  

From (1.32) and the presented arguments on the relative strength of the transport effects 

follows the definition of the bulk coefficient of magnetodiffusion in the direction of the 

applied field 

݀௠ ൌ 1 ൅ ෤௖ߙ ௣ࣧ௛ (1.35)

The second term describes the magnetic contributions due to the magnetophoresis in the self-

magnetic field of the stratified ferrocolloid. A more detailed calculation based on the 

thermodynamic arguments was performed [54] with account for the dipole-dipole interactions 

of the dispersed magnetic phase in the framework of the mean field model. The consideration 

of the second order terms shows that the magnetic action between the ferroparticles causes 

slight decrease of the effective diffusion coefficient both in the direction of the field ݀∥ and in 
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the perpendicular direction ݀ୄ (Figure 1.1). Still, the nonlinear magnetic diffusion is not the 

focus of this investigation and these effects are not considered. 

In turn, it is evident that the Schmidt number ܵܿ defined as a ratio of momentum and mass 

diffusivities 
ఎ

ఘబ஽
 is very large in ferrodispersions due to the relatively low diffusive mobility of 

the suspended nanoparticles. For the selected characteristic parameters (Table 1.1) ܵܿ is of the 

order approximately 10ସ …10ହ. Consequently, the term divided by ܵܿ vanishes from the rhs 

of (1.21) and so does the inertial term on the lhs. The microconvective flows are Stokes’ 

flows. 

Making use of the described simplifications the final form of the governing equations is 

obtained, omitting the accents over the normalized quantities 

સ ∙ ࢛ ൌ 0 (1.36)

൬
߲
ݐ߲
൅ ࢛ ∙ સ൰ ܿ ൌ ∆൫ܿ ൅ ௠ܶݏ െ ௣ࣧ௛ܪ൯ (1.37)

െસܲ ൅ ∆࢛ ൅ ܪ௠ܿસݏܴ ൌ ૙ (1.38)

∆߰ ൌ સܿ (1.39)ࢎ෤௖ߙ

where ܪ ൌ ࢎ ∙  .is the component of the self magnetic field along the external field ࡴ

The following characteristic dimensionless parameters are used throughout this investigation 

if not explicitly mentioned otherwise: ߙ෤௖ ൌ ௠ݏ ,1 ൌ െ2, ௣ࣧ௛ ൌ 1. 

The direction of the thermophoretic flux determined by the sign of the Soret coefficient ݏ௠ 

corresponds to that of the imposed thermal gradient. In that regard the dispersed ferroparticles 

migrate into the regions of higher temperature, the process known as anomalous 

thermodiffusion. While the mechanisms of the Soret effect in colloidal dispersions are not 

completely clear at the moment, the ferrocolloids stabilized by electrorepulsive forces 

generally exhibit negative Soret coefficients, as opposed to those with steric stabilization and 

consequently positive Soret effect. Still, considering the form of the equations (1.36)-(1.39) 

the change of sign of the concentration deviation formed by the imposed temperature gradient 

simply leads to the corresponding reversal of the demagnetizing field deviation and the 

product of the concentration deviation and the gradient of the demagnetizing field, which 

constitutes the magnetic force in (1.38), remains the same. Then the results of the 

investigation are equally applicable to both the situation of the normal and anomalous 

thermodiffusion and the sign of the Soret coefficient is a matter of convenience. 
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2. Photoabsorptive gratings 

2.1. Definition of the problem 

The experimental investigation of the microscale transport processes in real magnetic 

dispersions requires the controlled creation and observation of the concentration 

microstructures. Such task is most conveniently accomplished by optical methods. The forced 

Rayleigh scattering technique in the application to ferrocolloids implies the creation of a 

photoabsorptive thermal modulation within the ferrofluid layer leading to the emergence of 

the corresponding ferroparticle concentration grating due to the strong Soret effect. The 

induced regular perturbation of the refractive index possesses the properties of a diffraction 

grating and can be probed by the scanning laser. The intensity of the diffracted signal carries 

information about the shape of the photoabsorptive microstructure and the dynamics of its 

evolution.  

To proceed with the description, it is first necessary to define the coordinates. For this purpose 

the notation of [53] is adopted. The y- axis is pointed in the direction of the imposed 

modulation and the direction corresponding to this axis will be called the parallel direction. In 

turn, the x- axis will be oriented in the perpendicular direction, but still within the plane of the 

layer, along the extent of the grating and is called the longitudinal direction. Finally, the z- 

axis pointed across the gap of the layer is the transversal or also perpendicular direction. 

Given that a layer of ferrocolloid with thickness Δݖ ൌ  is (where ݈ - arbitrary constant) ݈ܮ2

illuminated by a light source with intensity ܫ଴. The intensity of the incident light is not 

uniform but is instead modulated in the parallel direction ~cos൫݇௬ݕ൯ with wave-vector 

݇௬ ൌ
గ

௅
. The carrier fluid is transparent and the absorption of the incident radiation takes place 

on the suspended nanoparticles. In turn, according to the Bouguer–Lambert–Beer law for the 

optical absorption by an ensemble of independent absorption centers the intensity of the 

illumination diminishes exponentially with the penetration depth 

,ݕሺܫ  ሻݖ ൌ ଵ

ଶ
଴݁ିఌ௖௭ܫ ቂ1 ൅ cos ቀ

గ

௅
ቁቃݕ  with ݖ ∈ ሾ0; 2݈ሿ (2.1)

where ߝ is the appropriate extinction coefficient and 2ܮ – the interfringe of the grating. 

Assuming that only negligible part of the attenuation is due to scattering and the whole 

absorbed optical intensity is converted to the thermal energy of the ferroparticles, the 
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generation of heat within the layer due to the absorption of radiation is proportional to െ డூ

డ௭
. 

More heat is generated near the upper surface of the layer than near the lower one due to the 

weakening of the beam and the average heat generation along the depth of the layer can be 

expressed as 

ሻݕതሺݍ ൌ
1
2
തതത଴ܫ∆ ൬1 ൅ ௖݂

ܿ െ ܿ଴
ܿ଴

൰ ቂ1 ൅ cos ቀ
ߨ
ܮ
ቁቃ (2.2)ݕ

with ∆ܫതതത଴ ൌ ଴ܫ
ଵ

୼௭
ሺ1 െ ݁ିఌ௖బ୼௭ሻ and ௖݂ ൌ

ఌ௖బ୼௭

௘ഄ೎బ౴೥ିଵ
, ܿ଴ is the reference concentration of the 

ferroparticles. 

In turn, the distribution of temperature within the layer of ferrocolloid can be described by 

introducing the modulated heat source (2.1) into the normalized temperature equation, 

employing the characteristic scales (section 1.2.1, taking the half-period of the modulation as 

the characteristic length ܮ) 

݁ܮ ൬
߲
ݐ߲
൅ ࢛ ∙ સ൰ܶ ൌ ∆ܶ ൅

1
2
ଶܮ

ߣ
തതത଴ܫ∆
Δܶതതതത

ሺ1 ൅ ௖ܿሻሾ1ݎ ൅ cosሺݕߨሻሿ (2.3)

The prefactor ݁ܮ ൌ ஽

఑
 is the Lewis number defined as the ratio of mass and thermal 

diffusivities. In dispersions of nanoparticles the diffusion coefficient is by several orders of 

magnitude smaller than the thermal diffusivity ߢ ൌ ఒ

ఘబ௖೛
. For the adopted characteristic 

parameters of a ferrocolloid (Table 1.1) the Lewis number can be estimated and is of the order 

of 10-3. Consequently, the terms on the lhs of (2.3) can be disregarded – the microscale solutal 

convection is not sufficiently strong to deform the thermal field and the establishing of the 

temperature distribution occurs almost instantly on the diffusive timescale. 

In turn, the introduced coefficient ݎ௖ ൌ ௖݂
∆௖തതതത

௖బ
 is tentatively dubbed the coefficient of secondary 

photoabsorption and describes the enhanced absorption of the optical intensity due to the 

influx of the ferroparticles into the heated region (or similarly – weakened absorption due to 

the depletion of the ferroparticles in the case of the positive Soret coefficient). It ensures the 

coupling of the temperature equation with the concentration balance equation. The role of this 

coefficient in the photoabsorptive mass transport will be determined later and for now the 

temperature field is decoupled from concentration (ݎ௖ ൌ 0). 

In order to solve the temperature equation for the layer, the formulation of the appropriate 

boundary conditions on the sidewalls is required.  Still, at first it would be useful to consider 
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the adiabatically insulated layer. For this purpose the stationary solution of (2.3) in the 

absence of convection can be decomposed into the constant and the periodic component. The 

zero-order part of the solution is not defined for the adiabatic boundary conditions, but the 

first parallel mode yields the characteristic temperature difference 

∆ܶതതതത଴ ൌ
1
ଶߨ

ଶܮ

ߣ
തതത଴ (2.4)ܫ∆

The thermal deviation ∆ܶതതതത଴ was obtained under the assumption of the negligible heat diffusion 

through the transversal boundary. The validity of this approximation is not immediately 

apparent. Still, the expression (2.4) is useful for completing the proper normalization of the 

temperature equation (2.3) 

∆ܶ ൌ െ
1
2
ଶሺ1ߨ ൅ ௖ܿሻሾ1ݎ ൅ cosሺݕߨሻሿ (2.5)

If the successful comparison with the experimental measurements is desired, the formulation of 

the necessary boundary conditions should accommodate the method of thermal stabilization of 

the photoabsorptive microstructure if such stabilization is employed. For the purpose of this 

investigation a general form of the Newton’s law of cooling is convenient, which yields a 

boundary condition of the third type on the sidewall of the layer. In dimensionless form 

સܶ࢔ ൅ ݅ܤ ∙ ܶ ൌ 0 (2.6)

where ࢔ – the boundary normal vector and the dimensionless thermal Biot number has been 

introduced ݅ܤ ൌ ఈ௅

ఒ
 characterizing the intensity of heat dissipation through the transversal boundary 

of the layer, with ߙ - the heat transfer coefficient. For convenience, the value ݅ܤ ൌ 1 is used for 

numerical calculations throughout this investigation, corresponding to conductive heat transfer. 

The solution of (2.5) with account for (2.6) for the stationary state with negligible advection is 

straightforward. Up to the leading parallel mode 

ܶሺݕ, ሻݖ ൌ ଴ܶሺݖሻ ൅ ଵܶሺݖሻ cosሺݕߨሻ (2.7)

with the corresponding expressions for the mode amplitudes in dimensionless form  

଴ܶሺݖሻ ൌ
1
4
ଶߨ ൬݈ଶ ൅ 2

݈
݅ܤ
െ ଶ൰ (2.8)ݖ

ଵܶሺݖሻ ൌ
1
2
ቈ1 െ

݅ܤ coshሺݖߨሻ

ߨ sinhሺ݈ߨሻ ൅ ݅ܤ coshሺ݈ߨሻ
቉ (2.9)

and the value of ݈ corresponds to the aspect ratio of the element of the photoabsorptive 

thermal grating. 
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The characteristic temperature scale is then obtained by averaging of the temperature profile 

across the gap of the layer and is slightly different from (2.4) 

∆ܶതതതത ൌ ∆ܶതതതത଴்݂  	with 	 ்݂ ൌ 1 െ
1

ߨ ൅ ݅ܤ cothሺ݈ߨሻ
݅ܤ
݈ߨ

 (2.10)

In principle, the measures (2.10) and (2.4) are sufficiently close if the thickness of the layer is 

not too small in comparison with the period of the induced grating. The diffusion of heat in 

the transversal direction then has little influence on the induced temperature difference, which 

is determined mainly by the parallel heat fluxes within the layer. Then the expression (2.4) is 

more convenient and will be used for the normalization of the thermal perturbation. 

Making use of the adopted characteristic parameters of the ferrofluid (Table 1.1), it becomes 

possible to evaluate the coefficient ݎ௖. For typical temperature difference in FRS experiments 

on the order of not more than ∆ܶതതതത ൎ  the induced concentration differences are moderate ܭ1°

and the secondary absorption is negligible ݎ௖~5%…10%. Still, the coefficient ݎ௖ implies a 

linear dependence on ∆ܶതതതത and at higher optical intensities this effect should be taken into 

account. 

The creation of the spatially extended thermal modulation within the layer of the ferrocolloid 

unavoidably initiates the formation of the corresponding grating of ferroparticle concentration 

by thermophoretic forces. The characteristic photoabsorptive temperature gradient in the 

parallel direction 
∆்തതതത

௅
 is quite sufficient to induce measurable stratification of the ferrocolloid in 

the conditions of microscale transport. In turn, the application of external magnetic fields to 

such photoabsorptive formations leads to the appearance of demagnetizing effects – in the 

regions with enhanced ferroparticle concentration the external field is weakened, otherwise, it 

is enhanced where the ferroparticles are depleted by thermodiffusive fluxes. Apart from 

magnetodiffusive redistribution of the ferroparticles, the self-consistent interactions of the 

concentration and magnetic field perturbations may macroscopically entrain the carrier fluid 

and excite magnetoadvective fluxes. 

It is apparent from (2.4) that the induced characteristic temperature difference scales as a 

square of the characteristic length ܮ. In turn, the expression for the magnetosolutal Rayleigh 

number ܴݏ௠ implies a square dependence on ∆ܶതതതത and ܮ. Considering all factors the Rayleigh 

number scales as a sixth degree dependence on the characteristic length and can rapidly reach 

considerable values in the conditions of the FRS experiment upon the application of the 

external magnetic field.  
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2.2. Thin ferrofluid layers 

The formation and observation of photoabsorptive microstructures generally takes place in 

thin layers with thickness ranging from approximately 10 to 100 micrometers. Rather than 

actual thickness, however, more important is the aspect ratio of the induced concentration 

variation. It seems reasonable to suppose that if the interfringe of the induced grating is much 

larger than the thickness of the layer ݈ ≪ 1 then the nonhomogeneity of the concentration 

profile across the gap of the layer would not play as significant a role in the lateral mass 

transport as the imposed parallel modulation. The transversal dimension of the convective-

diffusive problem (1.36)-(1.39) can then be disregarded assuming the flat concentration 

profiles across the gap of the ferrofluid layer. For the detailed description of this situation the 

approach of [56]-[57] is adopted. 

 

Figure 2.1. Definition of the problem: photoabsorptive concentration grating is induced 

within a thin ferrofluid layer under the action of the applied parallel magnetic 

field. The convective currents connect within the plane of the layer. 

It is thus assumed that in thin ferrofluid layers the convective circulation can only be 

connected within the plane of the layer (Figure 2.1) and the possibility of the transversal 

currents is ignored for now. Still, the reduction of the transversal profile should be performed 

in a meaningful way. In this regard, the Stokes’s equation (1.38) allows an important 

simplification for the plane parallel flow. If the velocity within the layer is parallel to the 

sidewalls, the parabolic profile such as that of the Poiseuille’s law allows identically 
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satisfying the no-slip hydrodynamic boundary conditions on the sidewalls of the layer. 

Separating the coordinates in the following form 

࢛ ൌ
3
2
൤1 െ ቀ

ݖ
݈
ቁ
ଶ
൨ (2.11) ࢠ〈࢛〉

where 〈࢛〉ࢠ is the velocity averaged along the gap of the layer, the dimensionless Stokes 

equation (1.38) becomes 

െܲ׏ ൅
3
2
൤1 െ ቀ

ݖ
݈
ቁ
ଶ
൨ ࢠ〈࢛〉ୄ∆ െ ࢠ〈࢛〉ߚ ൅ ࡹࢌ ൌ 0 (2.12)

with ∆ୄൌ ߲௫ଶ ൅ ߲௬ଶ – the transverse Laplacian and ߚ ൌ ଷ

௟మ
 is the dimensionless friction factor. 

Assuming that the flow is irrotational સୄ ൈ ࢠ〈࢛〉 ൌ 0 (meaning also that the magnetic force is 

potential ࡹࢌ ൌ െસୄ ெܲ) and incompressible સୄ ∙ ࢠ〈࢛〉 ൌ 0 at least within the midplane of the 

layer, the second term in (2.12) vanishes and the form of the Darcy’s law is obtained 

െસୄܲ െ ࢠ〈࢛〉ߚ ൅ ࡹࢌ ൌ 0 (2.13)

The potential of the magnetic force – the magnetic pressure ெܲ - can then be introduced into 

the total pressure gradient. Similar equation was used for the purpose of determining the 

stability and character of evolution of the magnetic formations in ferrofluid Hele-Shaw layers 

[96]-[99]. 

The limits of validity of the Darcy’s law are not immediately apparent and the mechanisms of 

the momentum transport in thin layers were recognized only recently [100]-[101]. The 

equation (2.13) contains a single friction term െࢠ〈࢛〉ߚ pertaining to the diffusion of 

momentum in the transversal direction, which describes the viscous interactions of the flow 

with the sidewalls of the layer on the length scale of the layer thickness ݈ܮ. In turn, the 

expected emergence of the lateral convective circulation would involve the appearance of the 

viscous shear stresses in the parallel and longitudinal directions due to the regular reversals of 

the flow. In that regard the viscous interactions within the convective pattern operate 

correspondingly on the length scales ܮ and ܮ ఒೣ
ଶ

 with ߣ௫ – dominant longitudinal wavelength. 

Consequently, the two main regimes of momentum transport have been recognized: in the 

Darcy’s limit of long wavelengths the lateral viscous friction is less pronounced than the 

corresponding transversal stresses and the equation (2.13) is quite accurate. In the opposite 

situation, the flow regime characterized mainly by the viscous stresses within the convective 

structure rather than the interactions with the sidewalls constitutes the short wavelength 

Stokes’s regime. There are no terms in (2.13) accounting for the diffusion of momentum 
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within the plane of the ferrofluid layer and so the Darcy’s law cannot correctly describe the 

character of the hydrodynamic motions in the latter situation. 

In this regard, even if the interfringe of the grating considerably exceeds the thickness of the 

layer, it is not reasonable to assume that the scales of the convective motions would do so as 

well. The longitudinal wavelengths ߣ௫ in general considerably depend on the magnitude of 

the buoyant forces [100] and the increase of the Rayleigh number would lead to the decrease 

of the scale of elementary hydrodynamic circulations and the eventual transition into the 

Stokes’s regime. Nevertheless, the reduction of the transversal dimension is still possible in 

the Stokes’s regime if a corresponding contribution accounting for the lateral diffusion of 

momentum could be added to (2.13). In fact the addition of the Brinkman’s term ∆ୄ〈࢛〉ࢠ to 

account for the lateral viscous interactions yields the Darcy-Stokes equation 

െસୄܲ ൅ ሺ∆ୄ െ ࢠ〈࢛〉ሻߚ ൅ ࡹࢌ ൌ 0 (2.14)

and permits successful qualitative predictions of the character of scaling of the resulting 

convective motions with regard to the thickness of the layer and the magnitude of the buoyant 

forces across both the Darcy’s and Stokes’s regimes of the flow [100]-[101].  

Consequent numerical investigations with account to the full Stokes’s equation and the 

transversal fluxes have also shown the existence of the “gap” regime at high magnitudes of 

the buoyant effects, characterized by the growth of the convective modes across the gap of the 

layer and the destruction of the parabolic profile [101]-[102]. For the time being the 

transversal currents will be disregarded and the existence of the parabolic profile (2.11) is 

assumed for the purpose of this investigation, the Brinkman’s model (2.14) is adopted to 

account for the transport of momentum within the Hele-Shaw cell. 

2.2.1. Base state 

The phoretic evolution of the photoabsorptive grating in thin ferrofluid layer during the 

formation process or the relaxation stage of the FRS procedure after the switching off of the 

optical stimulation is described by the diffusion equation with changeable source 

߲ܿ଴
ݐ߲

ൌ ݀଴
߲ଶ

ଶݕ߲
ܿ଴ ൅ ௠ݏ

߲ଶ

ଶݕ߲
〈ܶ〉௭

ᇩᇭᇭᇭᇪᇭᇭᇭᇫ
௢௣௧௜௖௔௟ ௣௨௠௣௜௡௚

 (2.15)

and the corresponding initial conditions. 
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The exact shape of the concentration profile depends only on the reference point. It is 

convenient to choose the origin in such manner so that the grating would be symmetric and 

the transient base state can be written as 

ܿ଴ሺݕ, ሻݐ ൌ
1
2
൫݁௜గ௬ ൅ ݁ି௜గ௬൯ܿሺݐሻ (2.16)

with ܿሺݐሻ expressed correspondingly either as ܥ଴൫1 െ ݁ିௗబగ
మ௧൯ or ܥ଴݁ିௗబగ

మ௧ for the 

formation or relaxation process or just as ܥ଴ for the stationary state, satisfying (2.15). 

The corresponding configuration of the internal demagnetizing field induced within the layer 

by the application of external homogeneous magnetic field is determined by the equation 

(1.39). It can be put in the following form 

,ݕ଴ሺܪ ሻݐ ൌ െߙ෤௖ܿ଴ሺݕ, ሻݐ ଴݂ (2.17)

In the expression for the demagnetizing field (2.17) the contribution െߙ෤௖ܿ଴ comes from the 

lateral part ∆ୄ of the Laplacian in the equation (1.39) and accurately describes the distribution 

of the self magnetic field under the assumption of an infinitely thick layer. However, this 

assumption is in apparent contradiction with considering the thin layers and retaining just this 

contribution is not completely satisfactory because the transversal boundary effects (Section 

3.1.1) can become substantial as the thickness of the layer is reduced. More detailed 

calculations performed in Section 3.1.2 (or similarly by the method of Green’s function in 

[96]) demonstrate that for a concentration mode characterized by the wavenumbers ݇௬ in the 

parallel direction and ݇௫ in the longitudinal direction the corresponding gap averaged mode of 

the demagnetizing field should be multiplied by the factor ு݂൫݇௫, ݇௬൯, which is expressed 

either as 

∥݂൫݇௫, ݇௬൯ ൌ
݇௬ଶ

݇ଶ
ൣ1 െ ݂ୄ ൫݇௫, ݇௬൯൧ or ݂ୄ ൫݇௫, ݇௬൯ ൌ ݁ି௞௟

sinhሺ݈݇ሻ

݈݇
 (2.18)

correspondingly for the parallel and perpendicular configurations of the external magnetic 

field, with ݇ ൌ ඥ݇௫ଶ ൅ ݇௬ଶ.  

Considering (2.18), it is clear that the concentration modes possessing no variation in the 

parallel direction, i.e. ݇௬ ൌ 0, do not contribute to the formation of the demagnetizing field 

distribution in the parallel configuration of the external field. In turn, all concentration modes 

possess corresponding modes of the demagnetizing field in the perpendicular configuration of 

the applied field. In this regard, there is reason to expect that the behavior of the concentration 

microstructures would be considerably different in both these configurations. 
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In the limit of infinitely thick layer the factor ∥݂ is determined only by the lateral variation of 

the concentration within the ferrofluid layer, on the other hand, in the opposite situation in 

layers with vanishing thickness ∥݂ approaches zero. In turn, the factor ݂ୄ  for the perpendicular 

configuration of the external field vanishes in the former case and approaches unity in the 

latter, in very thin layers. The diverging behavior of the magnetic factors follows from the 

different mechanisms contributing to the formation of the configuration of the demagnetizing 

field and will be discussed in later sections (Section 3.1.2 and further). Still, at this point it is 

convenient to retain the generality with respect to the configuration of the external field and 

denote the corresponding factor as ு݂. Consequently, for the single mode of the base state this 

factor is denoted as ଴݂ ൌ ு݂ሺ0,  .ሻ in (2.17)ߨ

The photoabsorptive formation of a modulated concentration profile eventually results in a 

stationary state, which is described by the equilibrium of diffusive, thermophoretic and 

magnetophoretic fluxes સ ∙ ࢉࡶ ൌ 0. The gap averaged dimensionless temperature profile (2.7) 

is expressed from (2.10) 

〈ܶ〉௭ሺݕሻ ൌ 0.5்݂ cosሺݕߨሻ (2.19)

In turn, the corresponding primary mode of the stationary photoabsorptive concentration 

distribution is described by a simple expression: ܿ଴ሺݕሻ ൌ ଴ܥ cosሺݕߨሻ and with the employed 

normalization the equation (2.19) yields the required amplitude of the induced concentration 

grating ܥ଴ ൌ െ ଵ

ଶ
்݂ ௦೘

ௗబ
, where ݀଴ – is the coefficient of magnetic diffusion in thin layers, 

which is slightly different from its bulk value (1.35)  

݀଴ ൌ 1 ൅ ෤௖ߙ ௣ࣧ௛ ଴݂ (2.20)

In contrast with the definition (1.35) accounting for only the bulk contributions, the 

expression (2.20) accommodates the influence of the transversal boundary by means of the 

coefficient ଴݂ dependent on the configuration of the applied magnetic field and the thickness 

of the layer. From the previous discussions on the form of ு݂ it is apparent that ݀଴ approaches 

݀௠ in the limit of infinitely thick layers. 

The base state (2.16)-(2.17) yields a potential magnetic force ܿ଴સୄܪ଴ and then the convective 

currents can only be induced through the mechanism of hydrodynamic destabilization of the 

concentration grating by laterally connecting circulation. Examining the linear stability of the 

miscible interfaces and arrays of concentration stripes it was ascertained that in fact both 

stages of the forced Rayleigh scattering procedure can be destabilized by the application of 

the external magnetic field [56]-[57]. In the present section the problem of linear stability and 
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the non-linear evolution of the regular photoabsorptive concentration microstructures in thin 

ferrofluid layers will be sequentially considered. 

2.2.2. Linear stability problem 

The system of equations (1.36)-(1.39) with the appropriate base state (2.16)-(2.17) and cyclic 

boundary conditions would describe the evolution of the concentration and hydrodynamic 

perturbations during the formation and relaxation stage of the FRS procedure. In thin layer 

approximation the equation (1.38) is replaced by (2.14) and assuming the flat profiles of 

concentration and demagnetizing field across the gap of the layer the magnetic force is 

accordingly expressed as ࡹࢌ ൌ  The critical parameters of the hydrodynamic .ܪ௠ܿસୄݏܴ

instability of the stationary state can be obtained by performing the linear stability analysis of 

the problem (1.37) and (2.14). For that purpose the equations are linearized in the vicinity of 

the appropriate base state (2.16)-(2.17) 

െસୄܲ ൅ ሺ∆ୄ െ ሻ࢛ߚ ൅ ܪߜ௠ሺܿ଴સୄݏܴ ൅ ଴ሻܪસୄܿߜ ൌ 0 (2.21)
ܿߜ߲
ݐ߲

൅ ࢛સୄܿ଴ ൌ ∆ୄ൫ܿߜ െ ௣ࣧ௛ܪߜ൯ (2.22)

with ࢛ ൌ ܿߜ ,In turn .ࢠ〈࢛〉 ൌ ܿ െ ܿ଴ and ܪߜ ൌ ܪ െ  ଴ are defined as the small perturbationsܪ

of ܿ଴ and ܪ଴. A similar problem was considered for the sharp interface [56] and the periodic 

array of sharp stripes [57]. 

Expanding the perturbations ࢛, ܿߜ and ܪߜ into normal modes in the longitudinal direction in 

the regime of exponential amplification as ܺߜ ൌ ܺሺݕሻ݁௜௞ೣ௫ାఠ௧, where ݇௫ is the longitudinal 

wave number of the perturbation and ߱ is the growth increment, the pressure term from 

equation (2.21) can be removed by applying the curl operator. The transversal component of 

the vorticity vector follows from the continuity condition – the divergence free velocity field 

ሼસ ൈ ࢛ሽ୸ ൌ െ
݅
݇௫
ቆ
߲ଶ

ଶݕ߲
െ ݇௫ଶቇܸሺݕሻ݁௜௞ೣ௫ାఠ௧ (2.23)

with ܸሺݕሻ - the amplitude of the parallel velocity component ݑ௬. 

In turn, the parallel profiles ܺሺݕሻ of velocity, concentration and demagnetizing field 

perturbation amplitudes can also be expanded in Fourier modes 

ܺሺݕሻ ൌ ෍ ௡ݔ

ାஶ

௡ୀିஶ

݁௜௤೙௬ (2.24)

with ݊ݍ ൌ
݊ߨ
ݍ

, where each mode is denoted by an expansion index ݊ and a parameter ݍ.  
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The additional parameter describes the periodicity of the imposed perturbation. It has been 

introduced because the shape of the perturbations is not clear a priori due to the absence of 

the boundaries in the parallel direction and formal unboundedness of the flow. The 

dimensionless period 2ݍ of the critical perturbation must then be determined from the 

eventually obtained dispersion relation. The employed expansion of the fields ~݁௜ሺ௞ೣ௫ା௤೙௬ሻ 

essentially corresponds to a periodic system of coordinated convective vortices with the 

rotation axes oriented along the transversal direction and different aspect ratios determined by 

wavenumbers ݇௫ and ݍ௡. 

Making use of the expansion (2.24) with account for the factors (2.18) the Fourier coefficients 

of the demagnetizing field perturbation are expressed 

݄௡ ൌ െߙ෤௖ܿ௡ መ݂௡݁௜௤೙௬ (2.25)

with መ݂௡ ൌ ு݂ሺ݇௫,  ௡ሻ and the equations (2.21)-(2.22) are projected accordinglyݍ

௡ݒ ൌ െ
଴݇௫ଶܥ௠ݏ෤௖ܴߙ

ሺݍ௡ଶ ൅ ݇௫ଶሻሺݍ௡ଶ ൅ ݇௫ଶ ൅ ሻߚ
ߨ݅
2
ൣ൫ ଴݂ െ መ݂

௡ି௤൯ܿ௡ି௤ െ ൫ ଴݂ െ መ݂
௡ା௤൯ܿ௡ା௤൧ (2.26)

ܿ௡ ൌ െ
଴ܥ

መ݀
௡ሺݍ௡ଶ ൅ ݇௫ଶሻ ൅ ߱

ߨ݅
2
൫ݒ௡ି௤ െ ௡ା௤൯ (2.27)ݒ

where ܿ௡ and ݒ௡ are the corresponding Fourier modes (2.24) of concentration perturbation 

and parallel velocity. The introduced spectral coefficients መ݀௡ ൌ ݀ுሺ݇௫,  ௡ሻ have the form of aݍ

coefficient of magnetic diffusion 

݀ுሺ݇௫, ௡ሻݍ ൌ 1 ൅ ෤௖ߙ ௣ࣧ௛ ு݂ሺ݇௫, ௡ሻ (2.28)ݍ

The projected equations (2.26)-(2.27) allow obtaining the dispersion relation for the instability 
of the periodic grating 

4 ௣ࣧ௛݇௡ଶሺ݇௡ଶ ൅ ሻߚ

݇௫ଶߨଶܥ଴
ଶܴݏ௠

௡ݒ െ
൫݀଴ െ መ݀

௡ି௤൯൫ݒ௡ െ ௡ିଶ௤൯ݒ
መ݀
௡ି௤݇௡ି௤ଶ ൅ ߱

െ
൫݀଴ െ መ݀

௡ା௤൯൫ݒ௡ െ ௡ାଶ௤൯ݒ
መ݀
௡ା௤݇௡ା௤

ଶ ൅ ߱
ൌ 0 (2.29)

with ݇௡ଶ ൌ ௡ଶݍ ൅ ݇௫ଶ. 

The necessary condition for the existence of the solution to (2.29) is the requirement that the 

coefficients ݒ௡ should form an infinite chained system of linear equations, which determines 

the stability of the problem. Also, the indices of the coefficients must be positive or negative 

integers. Taking this into account the coefficients can form a chain only if the condition 

ݍ  ൌ ௝

ଶ
, with ݆ ൌ 1,2… (2.30)

is fulfilled. This is a necessary requirement for the existence of a periodic solution. 
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The condition (2.30) is necessary but not sufficient for the existence of a nontrivial solution to 

the linearized stability problem (2.29). For this purpose, it is required that the determinant of 

the linear system (2.29) is equal to zero. This yields the desired dispersion relation for the 

determination of the critical parameters. 

Also, it is clear that the system (2.29) can be decomposed. In fact, it consists of only 2ݍ 

unique chains, each of the chains consisting of unique coefficients ݒ௡, which do not contribute 

to other chains. Assuming that the stability of the system is determined by the stability of the 

leading mode, it makes sense to examine just the chain, which includes the coefficient ݒଵ. The 

exact stability problem is thus reduced to the evaluation of the determinant of a tridiagonal 

matrix (2.29). 

On the other hand, the coefficients on the main diagonal grow rapidly with ݊, especially at 

larger values of ݍ. In this case, it is reasonable to attempt the first approximation of the 

dispersion relation 

4 ௣ࣧ௛݇௡ଶሺ݇௡ଶ ൅ ሻߚ

݇௫ଶߨଶܥ଴
ଶܴݏ௠

െ ቆ
݀଴ െ መ݀

௡ି௤

መ݀
௡ି௤݇௡ି௤ଶ ൅ ߱

൅
݀଴ െ መ݀

௡ା௤

መ݀
௡ା௤݇௡ା௤

ଶ ൅ ߱
ቇ ൌ 0 (2.31)

The primary instability is stationary and the critical parameters can be found by setting the 

growth increment of the hydrodynamic mode to zero ߱ ൌ 0. The critical solutal Rayleigh can 

then be expressed 

௠௖௥௜௧ݏܴ ൌ
4 ௣ࣧ௛

଴ܥଶ݇௫ଶߨ
ଶ

መ݀
௡ି௤

መ݀
௡ା௤݇௡ି௤ଶ ݇௡ା௤ଶ ݇௡ଶሺ݇௡ଶ ൅ ሻߚ

൫݀଴ െ መ݀
௡ି௤൯ መ݀௡ା௤݇௡ା௤

ଶ ൅ ൫݀଴ െ መ݀
௡ା௤൯ መ݀௡ି௤݇௡ି௤ଶ

 (2.32)

The relation (2.32) gives a good approximation of the critical parameters but loses an 

important aspect of the stability problem. To expose this drawback it is appropriate to 

consider the case ݍ ൌ 1, for which the expression (2.32) is not actually valid. Returning to 

(2.29) for ݊ ൌ 1, after truncating higher modes in fact two critical Rayleigh numbers are 

obtained 

ଵ,௣ݏܴ
௖௥௜௧ ൌ

4 ௣ࣧ௛

଴ܥଶߨ
ଶ

መ݀
଴
መ݀
ଶሺ4ߨଶ ൅ ݇௫ଶሻሺߨଶ ൅ ݇௫ଶሻሺߨଶ ൅ ݇௫ଶ ൅ ሻߚ

2൫݀଴ െ መ݀
଴൯ መ݀ଶሺ4ߨଶ ൅ ݇௫ଶሻ ൅ ൫݀଴ െ መ݀

ଶ൯ መ݀଴݇௫ଶ
 (2.33)

and 

ଵ,௨ݏܴ
௖௥௜௧ ൌ

4 ௣ࣧ௛

଴ܥଶߨ
ଶ

መ݀
ଶሺ4ߨଶ ൅ ݇௫ଶሻሺߨଶ ൅ ݇௫ଶሻሺߨଶ ൅ ݇௫ଶ ൅ ሻߚ

൫݀଴ െ መ݀
ଶ൯݇௫ଶ

 (2.34)

under the assumption that ݒଵ ൌ െିݒଵ and ݒଵ ൌ  ଵ. These two cases correspond accordinglyିݒ

to the perturbation modes referred to as the peristaltic mode and undulation mode [56]-[57]. 



 
 

41 
 

The peristaltic ݍ ൌ 1 mode alternately stretches or compresses the initial concentration profile 

in the parallel direction. The undulation mode, on the other hand, attempts to bend the 

concentration “stripes”. With larger parallel periodicities 2ݍ the situation does not allow such 

simple interpretation anymore. It can be hypothesized that the endpoints of a p-mode must be 

located on the minima/maxima of the concentration profile, at the same time the endpoints of 

a hydrodynamic mode from the u- group are positioned on the fronts of the concentration 

field, implying a phase shift by 
ଵ

ଶ
 in the parallel direction. This assumption is substantiated by 

the mode ݍ ൌ ଵ

ଶ
, which belongs to the “u” group, but for which the coefficients ݒ௡ with 

positive and negative indices are decoupled. 

 

Figure 2.2. Critical parameters of the hydrodynamic instability at ߚ ൌ 12 - neutral curves 

for the parallel (left) and perpendicular (middle) orientations of the applied field: 

p-modes (a) ݍ ൌ 1, (b) ݍ → ∞ and u-mode (c) ݍ ൌ 1; right – dependence of the 

optimal longitudinal wave-number on the magnetosolutal Rayleigh number for 

different perturbations: (a) peristaltic mode (b) undulatory mode in parallel and 

(c)-(d) perpendicular configurations of the applied magnetic field. 

In this regard, the calculations with respect to (2.33), (2.34) and the full system (2.29) for 

different values of the number ݍ show that the p-modes are the least stable ones (Figure 2.2), 

so the u-modes will be disregarded. Comparing different p-modes it becomes apparent that in 

the parallel configuration of the applied field the critical hydrodynamic perturbation is 

periodic with the period of the induced concentration grating and corresponds to a coordinated 

system of convective vortices located on the fronts of the concentration profile, while 

convective currents spanning multiple grating periods are less likely.  
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From (2.33) with ݇௫ → 0 the exchange of stabilities takes place at the threshold given by  

∥ݏܴ
௖௥௜௧ ൌ

2
଴ܥ
ଶ

௣ࣧ௛

݀଴ െ 1
ሺߨଶ ൅ ሻ (2.35)ߚ

In contrast, it is exactly the formation of larger vortices that is promoted by the applying of 

the external field in the perpendicular direction. The critical perturbation corresponds to 

narrow circulations strongly elongated along the parallel direction, essentially cross grating 

flows in the form of alternating shear currents. For larger parallel wavelengths ݍ → ∞, the 

critical threshold can then be expressed in simple form 

ஶ௖௥௜௧ݏܴ ൌ 2 ௣ࣧ௛

଴ܥ
ଶ

݀ுሺ݇௫, ሻߨ
݀଴ െ ݀ுሺ݇௫, ሻߨ

ሺߚ ൅ ݇௫ଶሻ ቆ1 ൅
݇௫ଶ

ଶߨ
ቇ (2.36)

The advective shear currents spanning the whole unbounded grating in fact would lead to the 

undulatory bending of the concentration stripes. To avoid confusion this single mode will be 

denoted as the undulatory mode, while the critical mode ݍ ൌ 1 of the parallel configuration of 

the applied field will be denoted as the peristaltic mode, because it leads to the peristaltic 

deformation of the grating. These are the two most unstable modes in the appropriate 

configurations of the external field. 

In all cases the critical Rayleigh number grows with the dimensionless friction factor ߚ and 

decreasing the thickness of the ferrofluid layer obviously increases the magnetoconvective 

stability of the photoabsorptive formations. In the situation with the applying of the external 

field perpendicularly to the ferrofluid layer, the increasing of ߚ eventually leads to the 

replacement of the critical perturbation – at aspect ratios slightly lower than ݈ ൌ 0.1 the 

peristaltic perturbation with ݍ ൌ 1 becomes the most unstable just as in the case of the field 

applied in the parallel direction. Still, such narrow layers are rarely considered. 

The longitudinal wavenumbers of the appropriate critical perturbations are determined by the 

condition 

௠௖௥௜௧ݏܴ߲

߲݇௫
ൌ 0 (2.37)

In this regard the parameters of the peristaltic (ݍ ൌ 1) and undulatory (ݍ → ∞) modes of 

instability are most interesting with the corresponding longitudinal wavelengths denoted 

accordingly by ݇௖,௣ or ݇௖,௨ at threshold in both the parallel (∥) and perpendicular (٣) 

configurations of the applied magnetic field. Clearly, the form of the critical peristaltic 

perturbation cannot be obtained from the shape of the neutral curve in the parallel 



 
 

43 
 

configuration of the applied field (Figure 2.2), because the whole band of such perturbations 

with sufficiently large longitudinal wavelengths becomes unstable at the threshold (2.35) and 

݇௖,௣∥ → 0. In turn, if the magnetosolutal Rayleigh number ܴݏ௠ exceeds the appropriate critical 

one ܴݏ௠௖௥௜௧, the fastest growing hydrodynamic mode is determined by the condition of the 

maximum growth increment 

߲߱
߲݇௫

ൌ 0 (2.38)

The growth increments ߱ of the modes can be obtained from the relation (2.29), which yields 

a quadratic equation for the evaluation of the hydrodynamic growth rates for the peristaltic 

mode ݍ ൌ 1 

൬
߱

݀଴ߨଶ
൰
ଶ

൅ ቈܳଶ ൅ ܳ଴ െ ቆ3 െ 2
መ݀
଴ െ መ݀

ଶ

݀଴ െ መ݀
ଶ
ቇܳଶ

௠ݏܴ
ܴଵ,௨
௖௥௜௧቉

߱
݀଴ߨଶ

൅ ቆ1 െ
௠ݏܴ
ܴଵ,௣
௖௥௜௧ቇܳ଴ܳଶ ൌ 0 (2.39)

with ܳ௡ ൌ
ௗ෠೙௞೙మ

ௗబగమ
. 

Also, for the critical undulatory perturbation ݍ → ∞ of the perpendicular configuration of the 

applied field the growth increments can be expressed in explicit form 

߱ஶ
݀଴ߨଶ

ൌ
݀ுሺ݇௫, ሻߨ

݀଴
൬
௠ݏܴ
ஶ௖௥௜௧ݏܴ

െ 1൰ ቆ1 ൅
݇௫ଶ

ଶߨ
ቇ (2.40)

The optimal longitudinal wave numbers of the fastest growing perturbations above the 

threshold of the instability considerably depend on ܴݏ௠ (Figure 2.2), especially in thin 

ferrofluid layers, which can also lead to interesting transient phenomena in systems with time-

dependent base state. Considering, for example, the relaxation process of the grating, in the 

leading parallel mode approximation the shape of the base state (2.16) remains unchanged and 

the dynamics of the concentration amplitude can thus be interpreted as the corresponding 

time-dependent evolution of the magnetic Rayleigh number ܴݏ௠ሺݐሻ. If the initially uniform 

concentration grating was somehow formed above the critical threshold of the convective 

instability, its relaxation can also be convectively unstable. As the amplitude of the 

concentration modulation is decreased, the magnitude of the Rayleigh number also deceases 

and a cascade of perturbation modes with higher and higher longitudinal wavelengths 

becomes progressively excited according to Figure 2.2. This effect was particularly noted in 

[50] and is characteristic for transient base states. 
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2.2.3. Nonlinear regime 

The previously considered linear stability problem may be useful for ascertaining the 

possibility of destabilization of the photoabsorptive concentration grating by the external 

magnetic field and determining the threshold of the instability as well as the approximate 

shape of the emerging convective currents. Still, in the supercritical regime above the 

threshold the exponential amplification of the mode amplitudes is quickly saturated by the 

non-linear terms and the linear analysis does not yield any information on the eventual 

convective deformation of the photoabsorptive grating and cannot be used to quantitatively 

characterize the convective-diffusive stationary state. 

In turn, the nonlinear regime of the development of the microconvective instability within the 

photoabsorptive formations in thin ferrofluid layers can be described by a suitable nonlinear 

model. The equations for the nonlinear convective-diffusive problem are summarized from 

(1.37) and (2.14) as previously, but retaining the nonlinear terms 

െ݌ୄ׏ ൅ ሺ∆ୄ െ ሻ࢛ߚ ൅ ܪ௠ܿસୄݏܴ ൌ 0 (2.41)
߲ܿ
ݐ߲
൅ ࢛સୄܿ ൌ ∆ୄ൫ܿ െ ௣ࣧ௛ܪ൯ (2.42)

and complemented by the base-state (2.16)-(2.17) and periodic boundary conditions in 

parallel and longitudinal directions. 

The solution of (2.41)-(2.42) can be obtained without difficulty by making use of the Galerkin 

method and expanding the fields in series of periodic functions in parallel and longitudinal 

direction, taking advantage of the cyclic boundary conditions. The time-dependence of the 

coefficients of the expansion can be resolved with the desired accuracy through numerical 

integration in time by, for example, Runge-Kutta method.  

It is clear that for the purpose of numerical integration the expansions have to be truncated at 

some point. The truncation is usually performed increasing the number of contributing modes 

until the residual of the solution is localized in the desired interval, i.e. the solution has 

converged. There exists, however, a related family of nonlinear models distinguished by the 

assumption that not all contributing modes are equally useful in the expansion. The truncation 

of the field expansions is then performed by picking out the most significant modes. The 

nonlinear models thus obtained are generally weakly-nonlinear, because the problem of 

picking out the most significant modes loses relevance for fully-nonlinear models and the 

approaches to selecting these modes are not evidently generalized. The determination of the 

most significant modes is usually a postulate process based on general considerations, 
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intuition and experience. Good results have been obtained by considering the nonlinear term 

in the scalar transport equation ࢛સୄܿ, which is one of the main sources of nonlinearity. 

The performed linear stability analysis of the stationary diffusive base state of the 

photoabsorptive concentration grating evidences that in the parallel field configuration the 

critical perturbation mode is periodic with the period of the induced grating along the 

direction of the applied magnetic field and it belongs to the group of peristaltic perturbations. 

The primary hydrodynamic mode is then expressed as 

௬ݑ ൌ ሻݐොଵଵሺݑ sinሺݕߨሻ sinሺ݇௫ݔሻ (2.43)

and it is the sole hydrodynamic mode retained from the expansion of the parallel component 

of velocity. The expression for the longitudinal component of velocity corresponding to this 

mode is obtained from the condition of the divergence free velocity field 

௫ݑ ൌ
ߨ
݇௫
ሻݐොଵଵሺݑ cosሺݕߨሻ cosሺ݇௫ݔሻ (2.44)

In turn, the critical hydrodynamic mode of the perpendicular configuration of the applied 

magnetic field corresponds to cross grating shear currents of alternating direction 

௬ݑ ൌ ሻݐොଵ଴ሺݑ sinሺ݇௫ݔሻ (2.45)

To be more precise, in very narrow layers (݈ ൏ 0.1 at the assumed parameters) (2.43) once 

again becomes the critical perturbation also in perpendicular configuration of the external 

field, but this case is not very interesting and the analysis is similar, so this situation will not 

be considered here. For (2.45) the longitudinal component vanishes ݑ௫ → 0 ensuring the 

continuity of the convective flow. 

The different configurations of the flow ensue from the different mechanisms of the formation 

of the internal demagnetizing field in consequence of the application of external magnetic 

field to the regular microstructures of ferroparticle concentration. Due to these considerable 

differences, it is more convenient and evident to consider the two situations separately. 

The linear stability analysis of the stationary state has yielded the two Fourier modes 

~sinሺ݇௫ݔሻ and ~cosሺ2ݕߨሻ sinሺ݇௫ݔሻ, which compose the critical mode of the concentration 

perturbation ܿߜ in parallel applied field as a weighed sum. The coefficients are determined by 

the equations of the linear problem and are not relevant in the following. In the expansion of 

concentration only the leading longitudinally ݇௫-periodic modes, which are generated by the 

nonlinear term ࢛સୄܿ, will be retained. The expression for the concentration perturbation is 

then obtained 
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ܿሺݔ, ,ݕ ሻݐ ൌ ܿ̂ଵ଴ሺݐሻ sinሺ݇௫ݔሻ ൅ ሾܿሺݐሻ ൅ ܿ̂଴ଵሺݐሻሿ cosሺݕߨሻ ൅ ܿ̂ଵଶሺݐሻ cosሺ2ݕߨሻ sinሺ݇௫ݔሻ (2.46)

where ܿሺݐሻ is defined from (2.16). 

The corresponding demagnetizing field perturbation is determined from (2.25), taking into 

account that the factors ு݂ vanish in the parallel field for modes varying just in the 

longitudinal direction 

,ݔሺܪ ,ݕ ሻݐ ൌ െߙ෤௖ሼሾܿሺݐሻ ൅ ܿ̂଴ଵሺݐሻሿ ଴݂ cosሺݕߨሻ ൅ ܿ̂ଵଶሺݐሻ ு݂ሺ݇௫, ሻߨ2 cosሺ2ݕߨሻ sinሺ݇௫ݔሻሽ (2.47)

Projecting the governing equations (2.41) and (2.42) onto the selected ansatz (2.43) and (2.46) 

and making use of (2.44) and (2.47) the system of dynamic equations for the mode amplitudes 

is obtained. For the hydrodynamic mode 

ሻݐොଵଵሺݑ ൌ
ሺ݀଴ െ 1ሻ݇ߨ௫ଶ

ሺߨଶ ൅ ݇௫ଶሻሺߨଶ ൅ ݇௫ଶ ൅ ሻߚ
௠ݏܴ

௣ࣧ௛
ሾܿሺݐሻ ൅ ܿ̂଴ଵሿ ቈܿ̂ଵ଴ െ

1
2
݀଴ െ ݀ுሺ݇௫, ሻߨ2

݀଴ െ 1
ܿ̂ଵଶ቉ (2.48)

and the concentration modes 

ܿ̂ଵ଴
ᇱ ൌ

ߨ
2
ሻݐሻሾܿሺݐොଵଵሺݑ ൅ ܿ̂଴ଵሿ െ ݇௫ଶܿ̂ଵ଴ሺݐሻ (2.49)

ܿ̂଴ଵ
ᇱ ൌ െ

ߨ
2
ሻݐොଵଵሺݑ ൬ܿ̂ଵ଴ െ

1
2
ܿ̂ଵଶ൰ െ ݀଴ߨଶܿ̂଴ଵሺݐሻ (2.50)

ܿ̂ଵଶ
ᇱ ൌ െ

ߨ
2
ሻݐሻሾܿሺݐොଵଵሺݑ ൅ ܿ̂଴ଵሿ െ ሺ4ߨଶ ൅ ݇௫ଶሻ݀ுሺ݇௫, ሻ (2.51)ݐሻܿ̂ଵଶሺߨ2

Where the primes denote time derivatives and ܿሺݐሻ is the time-dependent amplitude of the 

selected base state (2.16).  

The obtained 4-mode Lorenz-type system of equations can be integrated numerically. The 

imposed longitudinal wave-number ݇௫ is determined for the given value of the magnetic 

Rayleigh number ܴݏ௠ from the linear analysis by the relations (2.38) and (2.39) as ݇௫ఠ for the 

fastest growing perturbation. Any possible time evolution of this wave number is then 

disregarded.  

The calculated time-dependence of the amplitudes of the selected perturbation modes from 

the initial arbitrary fluctuation ܿ̂ଵ଴ ൌ 0.01 to the stationary state is plotted on Figure 2.3. 

These applied initial conditions can only influence the dynamics of the amplitudes but not the 

stationary values, which will be subsequently used in the determination of the relaxation 

behaviour, and are not important in the following. The obtained quantitative dynamics of the 

mode amplitudes (Figure 2.3) also evidence that the contribution of the mode ܿ̂ଵଶ to the 

stationary state is not very significant.  
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Figure 2.3. Evolution of the mode amplitudes ܿ̂଴ଵ, ܿ̂ଵ଴, ܿ̂ଵଶ and ݑොଵଵሺݐሻ from initial 

fluctuation to the stationary state at ߚ ൌ 12 and (a) ܴݏ௠ ൌ 1000, (b) ܴݏ௠ ൌ

2000, (c) ܴݏ௠ ൌ 5000, (d) ܴݏ௠ ൌ 10	000. 

The equations (2.48)-(2.51) can be solved for the eventual stationary regime and the 

stationary mode amplitudes ܥመଵ଴, ܥመ଴ଵ, ܥመଵଶ and ෡ܷଵଵ are obtained without difficulty in analytical 

form. For that purpose, the hydrodynamic perturbation (2.48) yields 

෡ܷଵଵ ൌ
ሺ݀଴ െ 1ሻ݇ߨ௫ଶ

ሺߨଶ ൅ ݇௫ଶሻሺߨଶ ൅ ݇௫ଶ ൅ ሻߚ
௠ݏܴ

௣ࣧ௛
଴ܥൣ ൅ መ଴ଵ൧ܥ ቈܥመଵ଴ െ

1
2
݀଴ െ ݀ுሺ݇௫, ሻߨ2

݀଴ െ 1
መଵଶ቉ (2.52)ܥ

In turn, from the solution of (2.49)-(2.51) the stationary concentration mode amplitudes are 

obtained 

መଵ଴ܥ ൌ
ߨ
݇௫
ඩെ݀଴ሺ1 ൅ ଴ඨܥመ଴ଵܥଵଶሻିଵߝ0.5

ଵ,௣ݏܴ
௖௥௜௧

௠ݏܴ
መ଴ଵܥ     ,  ൌ െܥ଴ ቌ1 െ ඨ

ଵ,௣ݏܴ
௖௥௜௧

௠ݏܴ
ቍ (2.53)

መଵଶܥ ൌ െߝଵଶܥመଵ଴ (2.54)

The introduced factor ߝଵଶ ൌ
௞ೣమ

ௗಹሺ௞ೣ,ଶగሻ൫ସగమା௞ೣ
మ൯

 is rather small, reflecting the small influence of 

the mode amplitude ܥመଵଶ on the stationary state. In principle, this mode can be neglected 

without notable consequences. 
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In turn, the shape of the emerging convective flow in the perpendicular configuration of the 

applied magnetic field corresponds to cross grating shear currents (2.45) and the associated 

critical concentration mode ~sinሺݕߨሻ sinሺ݇௫ݔሻ. Retaining in addition only the leading 

longitudinally ݇௫-periodic modes generated by the nonlinear term ࢛સୄܿ in the expansion of 

concentration 

ܿሺݔ, ,ݕ ሻݐ ൌ ሾܿሺݐሻ ൅ ܿ̂଴ଵሺݐሻሿ cosሺݕߨሻ ൅ ܿ̂ଵଵሺݐሻ sinሺݕߨሻ sinሺ݇௫ݔሻ (2.55)

the corresponding demagnetizing field perturbation is determined from (2.25) 

,ݔሺܪ ,ݕ ሻݐ ൌ െߙ෤௖ሼሾܿሺݐሻ ൅ ܿ̂଴ଵሺݐሻሿ ଴݂ cosሺݕߨሻ ൅ ܿ̂ଵଵሺݐሻ ு݂ሺ݇௫, ሻߨ sinሺݕߨሻ sinሺ݇௫ݔሻሽ (2.56)

Projecting the governing equations (2.41) and (2.42) onto the selected modes again yields the 

equations for the mode amplitudes. For the hydrodynamic mode 

ሻݐොଵ଴ሺݑ ൌ
ߨ
2

ሾ݀଴ െ ݀ுሺ݇௫, ሻሿߨ

݇௫ଶ ൅ ߚ
௠ݏܴ

௣ࣧ௛
ሾܿሺݐሻ ൅ ܿ̂଴ଵሿܿ̂ଵଵ (2.57)

and the concentration modes 

ܿ̂଴ଵ
ᇱ ൌ െ

ߨ
2
ሻܿ̂ଵଵݐොଵ଴ሺݑ െ ݀଴ߨଶܿ̂଴ଵሺݐሻ (2.58)

ܿ̂ଵଵ
ᇱ ൌ ሻݐሻሾܿሺݐොଵ଴ሺݑߨ ൅ ܿ̂଴ଵሿ െ ሺߨଶ ൅ ݇௫ଶሻ݀ுሺ݇௫, ሻ (2.59)ݐሻܿ̂ଵଵሺߨ

where primes denote time derivatives and ܿሺݐሻ is the time-dependent amplitude of the 

selected base state (2.16).  

 

Figure 2.4. Evolution of the mode amplitudes ܿ̂଴ଵ, ܿ̂ଵଵ and ݑොଵ଴ሺݐሻ from initial fluctuation to 

the stationary state at ߚ ൌ 12 and (a) ܴݏ௠ ൌ 5000, (b) ܴݏ௠ ൌ 10	000, (c) ܴݏ௠ ൌ 20	000. 
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The calculated time-dependent evolution of the selected mode amplitudes from the arbitrary 

fluctuation ܿ̂ଵଵ ൌ 0.01 eventually result in a stationary state, although some initial oscillations 

are possible at higher magnetosolutal Rayleigh numbers (Figure 2.4). The system (2.57)-

(2.59) can also be easily solved for the stationary values of the concentration amplitudes 

መଵଵܥ ൌ
ߨ
݇
ඩെ݀଴ߝଵଵ

ିଵܥመ଴ଵܥ଴ඨ
ஶ௖௥௜௧ݏܴ

௠ݏܴ
መ଴ଵܥ     ,  ൌ െܥ଴ ቌ1 െ ඨ

ஶ௖௥௜௧ݏܴ

௠ݏܴ
ቍ (2.60)

with ݇ ൌ ඥߨଶ ൅ ݇௫ଶ and the factor ߝଵଵ ൌ 0.5݀ுሺ݇௫,  .ሻߨ

The calculations of the eventual stationary convective motions and the corresponding 

advective deformations of a single period of the photoabsorptive concentration grating are 

shown in Figure 2.5. The alternating peristaltic narrowing and stretching of the concentration 

profile along the direction of the parallel field can be observed above the threshold of the 

magnetoconvective instability. It results in the gradual formation of a secondary grating 

perpendicular to the original one.  

 

Figure 2.5. Stationary convective deformation of the initially uniform concentration front at 

ߚ ൌ 12: left – in parallel applied magnetic field and ܴݏ௠ ൌ ௠ݏܴ ,1000 ൌ 2000, 

௠ݏܴ ൌ 5000 (from top to bottom); right - in perpendicular magnetic field and 

௠ݏܴ ൌ ௠ݏܴ ,5000 ൌ ௠ݏܴ ,000	10 ൌ 20	000 (from top to bottom); 

concentration contours and convective streamlines. 

In turn, the calculated stationary convective currents and the associated perturbations of the 

photoabsorptive grating correspond to the progressive undulatory bending of the 

concentration stripes in the configuration of the perpendicular applied field. In both cases the 
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decrease of the longitudinal period of the perturbations, i.e. the interfringe of the emerging 

secondary grating, and the scale of the convective motions, becomes noticeable with the 

increase of the magnetic Rayleigh number. 

Making use of the obtained stationary amplitudes of the perturbation modes (2.53)-(2.54) and 

(2.60) as the initial conditions and substituting the stationary diffusive base state by the 

appropriate transient base state (2.16), the models (2.48)-(2.51) and (2.57)-(2.59) also 

describe the relaxation of the periodic photoabsorptive microstructure in the corresponding 

configuration of the external magnetic field (Figure 2.6). 

 

Figure 2.6. Convective-diffusive relaxation of the element of photoabsorptive grating: top – 

in parallel applied magnetic field with ܴݏ௠ ൌ 1000, bottom – in perpendicular 

magnetic field with ܴݏ௠ ൌ 5000 at ݐ ൌ 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2 

(from left to right); concentration contours and convective streamlines. 

In parallel field the primary grating rapidly vanishes in the course of the relaxation process, 

followed by the gradual disappearance of the remaining secondary grating formed by the 

advective phenomena. The relaxation rate of the concentration modes possessing variations in 

parallel direction is enhanced by the magnetic interactions through the process of 

magnetodiffusion [53]. Consequently, by comparing the expressions (2.46) and (2.47), it 

becomes apparent that the mode ܿ̂ଵ଴ is the single perturbation mode not affected by the 

magnetic effects and it determines the regular regime of the relaxation process but solely in 

the longitudinal direction. In turn, the anisotropy of the magnetic diffusion disappears in the 

perpendicular configuration of the external field and the induced grating retains its 

approximate shape in the course of the relaxation stage. 

2.2.4. Enhancement of mass transport 

Both stages of the FRS process – the formation and relaxation of the extended 

photoabsorptive microstructures – serve the purpose of determining the effective transport 
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coefficients. The intensification of the total mass transfer along the direction of the induced 

photoabsorptive modulation can be described by an effective coefficient of magnetodiffusion 

defined as the relaxation rate of the first parallel mode of the concentration grating, which 

determines the regular regime of the relaxation process in the parallel direction 

ሻݐ௘௙௙ሺߜ ൌ െ
1

ሻݐሺܬଶߨ
ܬ߲
ݐ߲
, ሻݐሺܬ ൌ |ܿሺݐሻ ൅ ܿ̂଴ଵሺݐሻ| (2.61)

In turn, the magnetic Soret coefficient is determined by the stationary state and can be defined 

in the following form 

௘௙௙ߪ ൌ
ܬ
଴ܬ
, (2.62)

where ܬ଴ is calculated without the account for magnetoadvection and is equal to ܥ଴.  

 

Figure 2.7. Influence of the symmetry-breaking microconvection on the calculated mass 

transport coefficients: magnetic Soret coefficient - (a), (b) and initial magnetic 

diffusion coefficient - (d), (c) in parallel and perpendicular configuration of 

applied magnetic field, ߚ ൌ 12. 

Both the quantities (2.61) and (2.62) can be calculated from the 4-mode model (2.48)-(2.51) 

(Figure 2.7). The value of the magnetic Soret coefficient can also be obtained from the 

analytical expressions (2.53)-(2.54) and (2.60) without difficulty. From (2.53) and (2.60) it 

follows that both ܥመଵ଴ and ܥመଵଵ have to be positive, while ܥመ଴ଵ is negative in either situation and 

so is ܥመଵଶ in the parallel configuration of the external magnetic field. Consequently, the 

emergence of symmetry breaking magnetic microconvection leads to the decrease of the 

effective coefficient of magnetic thermodiffusion in both configurations of the applied 
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magnetic field. In turn, the magnetoconvective intensification of the mass transport along the 

direction of the optical modulation enhances the effective coefficient of magnetodiffusion. 

From the expressions (2.53), (2.60), (2.61) and (2.62) it is apparent that above the threshold of 

instability there exists an obvious limit on the advective attenuation of the magnetic Soret 

coefficient  0 ൏ ௘௙௙ߪ ൏ 1, with 0 corresponding to the perfect mixing of the non-

homogeneities of ferroparticle concentration and 1 – to the vanishing of convective currents. 

The increase of the effective coefficient of magnetodiffusion ߜ௘௙௙ and the corresponding 

decrease of the coefficient of magnetic thermodiffusion ߪ௘௙௙ with the increasing of the 

magnetosolutal Rayleigh number is consistent with the character of the dependence of these 

quantities on the intensity of the applied magnetic field in parallel configuration (Figure 1.1) 

although the underlying mechanisms of these phenomena are considerably different – the 

magnetophoretic mass transport in the former situation and magnetoadvective in the latter. 

The distinctive feature of the emergence of magnetoconvection through symmetry breaking is 

the presence of the threshold, which becomes more apparent in narrow layers. The critical 

thresholds (2.35) and (2.36) of the corresponding perturbations depend on the friction factor ߚ 

and thus on the inverse square of the thickness of the ferrofluid layer. The reducing of the gap 

of the layer generally leads to higher magnetoconvective stability of the photoabsorptive 

grating. In turn, the intensity of magnetoconvection is lower and the subsequent dependence 

of the calculated mass transport coefficients on the magnetic Rayleigh number is much 

weaker in thin layers. Consequently, it may be difficult to isolate the threshold and thus 

ascertain the convective symmetry breaking in experimental observations of the formation 

and relaxation of photoabsorptive microstructures. Thus far, the presence of the threshold has 

not been affirmed by systematic experimental research. 
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3. Extended microstructures 

3.1. Formation 

In the previous section the microconvective instability in thin ferrofluid layers under the 

action of the applied lateral magnetic field was considered. The thickness of the layer is 

defined only in terms of the aspect ratio ݈ of the element of photoabsorptive microstructure 

and if ݈ is small (i.e. the thickness of the layer is much smaller than the interfringe of the 

photoabsorptive grating) then the 2D microconvection may emerge through the development 

of the convective instability.  

 

Figure 3.1. Definition of the problem: the concentration maxima of the optically induced 

concentration grating within the ferrofluid layer under the action of the applied 

uniform magnetic field. The transversal convective currents are incited by the 

magnetic forces. 

The discarding of the transversal direction destroys important aspects of the method of 

creation of the photoabsorptive concentration microstructures. The formation of the stationary 

thermal grating inevitably involves the appearance of the transversal gradients as a 

consequence of dissipation of thermal energy through the transversal boundary and the 

formation of the corresponding concentration gradients - due to the thermophoresis. The two-
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dimensional approximation is than an abstraction, which may arguably be the closer to reality 

the smaller is ݈ → 0 and, correspondingly, the larger is the dimensionless factor ߚ → ∞. This 

is not always quite accurate, though.  

There is possible, however, a completely different type of microconvection in such system 

(Figure 3.1), which may be referred to as the parasitic microconvection and is distinguished 

from the previously described microconvective instability by the absence of a distinct 

threshold. The use of the term parasitic in reference to this kind of microconvection implies 

that it is something unwanted or may even be a nuisance, but it has appeared historically in 

the course of the discussions concerning the unexpected results of the FRS experiments and 

the considerable influence of the magnetic field on the mass transport in photoabsorptive 

microstructures. This type of the magnetic microconvection is driven exactly by the 

interactions of the transversal gradients of the concentration and demagnetizing field and will 

be described in the subsequent sections. 

3.1.1. Transversal boundary 

For the proper description of the transversal boundary and its influence of the transport 

processes within the photoabsorptive microstructures the formulation of the corresponding 

physical and mathematical boundary conditions is necessary for all involved fields. The 

condition for the temperature field has to account for the diffusion of heat through the 

sidewall and the convenient form has been previously discussed (2.6). 

In turn, the boundary condition for the concentration field is imposed on the drift flux of the 

ferroparticles ࡶ௖ (1.24) and the appropriate form is the impermeability condition  

࢔ ∙ ௖ࡶ ൌ 0 (3.1)

which restricts the penetration of the solid phase through the boundary; ࢔ in this case is the 

surface normal vector 

In some situations the deposition of the dispersed phase has been observed on the solid 

surfaces. This process usually takes place in high gradient magnetic fields and its intensity is 

described by the concentration Biot number ݅ܤ௖ [1]. In fact, the non-vanishing slip flux on the 

boundary can create significant buoyant force in the boundary layer near the solid wall and by 

itself induce convective motion [89]. Here it is assumed that the near-wall gradients of the 

demagnetizing field are not large and there is no need to consider the deposition of the 

ferroparticles. The condition (3.1) is then reasonable. 
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The conditions for the demagnetizing field perturbation are not intuitive and require 

additional treatment to formulate the magnetic open boundary condition for the layer. 

Considering the interface between the ferrofluid and some non-magnetic medium the 

continuity conditions are obtained from the Maxwell’s equations (1.11)-(1.12) in integral 

form 

࢔ൣ ∙ ௜௡࡮ ൌ ࢔ ∙ ௢௨௧൧࡮
డௌ

 (3.2)

The scalar potential ߰ describing the magnetic field (1.25) within the layer should be 

modified to account for the presence of the interface. This can be done by introducing an 

additional auxiliary potential ߮, which is decomposed into the purely internal ߮௜௡௧ and 

external parts ߮௘௫௧. Then the boundary condition (3.2) is written in the equivalent potential 

formulation 

൤
߲
࢔߲

߰ ൌ ࢔ ∙ ൨ࡹ
డௌ

  	and 		  ൤
߲
࢔߲

߮௜௡௧ ൌ
߲
࢔߲

߮௘௫௧൨
డௌ

 (3.3)

with ࡹ – the magnetization vector (1.27). 

The continuity of the total scalar potential requires an additional condition on the interface 

ሾ߰ ൅ ߮௜௡௧ ൌ ߮௘௫௧ሿడௌ (3.4)

In fact, it is more convenient to absorb the internal auxiliary potential ߮௜௡௧ into ߰. 

The external auxiliary potential ߮௘௫௧ is defined only in the free space outside the ferrofluid 

layer and then is a harmonic function, because the magnetization is negligible there. From 

(1.39)  

∆߰ ൌ  and	 સܿࢎ෤௖ߙ 	  ∆߮௘௫௧ ൌ 0 (3.5)

with boundary conditions on the surface of the layer 

൤
∂
࢔∂

߰ ൌ ࢔෤௖ሺߙ ∙ ሻܿࢎ ൅
∂
࢔∂

߮௘௫௧൨
డௌ

,   ሾ߰ ൌ ߮௘௫௧ሿడௌ (3.6)

It should also be required that ߮௘௫௧ vanishes at infinite distance from the surface of the layer. 

The treatment presented above is sufficient if only one boundary is present, but in fact the 

layer is bounded by two sidewalls and two corresponding interfaces. The mutual influence of 

the opposite boundaries can be accounted for, but estimations show that it is rather small for 

reasonable thickness of the ferrofluid layer. 
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3.1.2. Stationary diffusive state 

In the previous sections the processes of the formation and relaxation of the flat periodic 

microstructures in thin ferrofluid layers have been considered under the influence of the 

applied homogeneous magnetic field in the parallel and perpendicular configurations (Section 

2.2). Clearly, such orientations of the external field are not the only possible ones. In fact, 

there are many possible orientations of the external magnetic field, which can be decomposed 

into the three main components perpendicular among themselves. Making use of the notation 

adopted in [53], the first is the parallel field, which causes the direct increase of the effective 

magnetic diffusion coefficient due to the magnetophoretic contributions. This situation has 

been studied most extensively in the conditions of the experiment [53]-[62].  

The other possible orientation is the longitudinal field, in which case the magnetic field and 

the exciting thermal gradient are orthogonal but still lie within the plane of the ferrofluid 

layer. In fact, no additional treatment is necessary for this situation and the distributions of the 

field perturbations are simply obtained from the ones described for the parallel field by setting 

the magnetophoretic number ௣ࣧ௛ ൌ 0, because the magnetic force vanishes in the 

approximation of non-interacting ferroparticles (see also [53] for details).  

The third is the perpendicular orientation of the magnetic field with the field lines 

perpendicular to the sidewalls of the layer. Apart from interparticle interactions, which are 

most significant in very concentrated ferrocolloids, the model based on the equilibrium of the 

slip-fluxes predicts that the process of diffusion in the parallel direction is uninfluenced by the 

magnetic field in the perpendicular and longitudinal orientations. On the other hand, in thick 

ferrofluid layers the assumption of transversal homogeneity of the concentration field does 

not hold. In fact the jump of the ferrofluid magnetization on the transversal sidewalls of the 

layer can cause significant transversal magnetic field gradients and the corresponding 

magnetic force.  

The stationary diffusive state of the induced photoabsorptive microstructure is determined by 

the equilibrium of the concentration flux ࡶ௖ ൌ સܿ െ ௣ࣧ௛સܪ ൅  ௠સܶ driven by the opticallyݏ

induced thermal gradient 

 સ ∙ ௖ࡶ ൌ 0 (3.7)

For the moment the secondary photoabsorption will be neglected ݎ௖ → 0 and the temperature 

field described by equation (2.5) then decouples from the concentration distribution. The 

solution to the temperature equation under these circumstances is already known (2.7)-(2.9). 
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The profiles of the demagnetizing field are in turn described by the equations (3.5) within and 

outside the ferrofluid layer. 

The boundary conditions on the sidewalls of the layer follow from their impermeability to the 

flux of the ferroparticles (3.1) and the continuity of the normal and tangential components of 

the magnetic field (3.6). 

Under the assumption of the linear dependence of the ferrofluid magnetization on the 

concentration of the magnetic phase (in the limit of dilute ferrocolloid and non-interacting 

magnetic particles) the longitudinal projection of the imposed field does not influence the 

phoretic motion of the ferroparticles due to the translational symmetry of the concentration 

perturbation. For the arbitrary orientation of the external field this direction can be neglected. 

Then the normal vector in the direction of the applied magnetic field can be decomposed 

discarding the longitudinal coordinate - ࢎ ൌ ൫0; ݄௬; ݄௭൯. The component of the demagnetizing 

field along the direction of the external field can be expressed making use of the scalar 

potential formulation 

ܪ ൌ െ൬݄௬
߲
ݕ߲

൅ ݄௭
߲
ݖ߲
൰߰ (3.8)

The distributions of all fields (ܿ, ܶ, ߰) in the parallel direction are considered up to the first 

Fourier mode 

ܺ ൌ ܺ଴ ൅ ܺା݁௜గ௬ ൅ ܺି݁ି௜గ௬ (3.9)

and it is convenient to introduce auxiliary expressions for the components of the fields 

ܺ೛
೘
ൌ ܺା േ ܺି (3.10)

The equation for the external potential ߮௘௫௧ is solved in the free space outside the ferrofluid 

layer and the solution is a suitable harmonic function according to (3.5). Additional conditions 

for the proper external potential require for it to vanish at infinite distance from the surface of 

the ferrofluid layer, so it is readily expressed under the adopted decomposition 

߮௘௫௧ ൌ ൫Φା݁௜గ௬ ൅ Φି݁ି௜గ௬൯ ൜
݁ିగ௭, ݖ ൒ 0
݁ାగ௭, ݖ ൏ 0

 (3.11)

with unknown coefficients Φേ, which are unimportant, and can be excluded from the set of 

equations and boundary conditions. 

The equations (3.7) and (3.5) are projected onto the selected ansatz (3.9)-(3.10) and are more 

compactly written in matrix form 
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ቆ݀௭۳
߲ଶ

ଶݖ߲
െ ૚܀ଶ݀௬ߨ ൅ ૛܀௬௭݀ߨ2݅

߲
ݖ߲
ቇ۱ ൌ

1
2
(3.12) ܁௠ݏଶߨ

ቆ۳
߲ଶ

ଶݖ߲
െ ૚ቇશ܀ଶߨ ൌ ෤௖ߙ ൬݄௭۳

߲
ݖ߲

൅ ૛൰܀௬݄ߨ݅ ۱ (3.13)

with the transversal boundary conditions (3.1) and (3.6) 

߲
ݖ߲
൤۳۱ ൅ ܂܁௠ݏ ൅ ௣ࣧ௛ ൬݄௭۳

߲
ݖ߲

൅ ૛൰શ൨܀௬݄ߨ ൌ 0 (3.14)

൬
߲
ݖ߲

൅ ૚൰શ܀ߨ ൌ ෤௖݄௭۱ (3.15)ߙ

Some auxiliary coefficients have been introduced for convenience 

૚܀ ൌ ൥
1 0 0
0 0 0
0 0 1

൩, ܀૛ ൌ ൥
0 0 1
0 0 0
1 0 0

൩, ܆ ൌ ቎
ܺ௣
ܺ଴	
ܺ௠

቏, ܁ ൌ ൥
1
1
0
൩, ܂ ൌ ൥

ܶ1
ܶ0
0
൩ 

with ܆ – the vectors of expansion coefficients for concentration, temperature and magnetic 

potential, and 

݀௬ ൌ 1 ൅ ෤௖ߙ ௣ࣧ௛݄௬ଶ ݀௭ ൌ 1 ൅ ෤௖ߙ ௣ࣧ௛݄௭ଶ ݀௬௭ ൌ ෤௖ߙ ௣ࣧ௛݄௬݄௭ (3.16)

The expressions for ݀௬ and ݀௭ have the form of the dimensionless coefficients of 

magnetodiffusion (1.35) along the corresponding direction. Clearly, the application of the 

external magnetic field introduces the anisotropy of the gradient diffusion within the layer of 

the ferrocolloid. 

By the form of the equations (3.12)-(3.13) the distributions of the concentration and 

demagnetizing field perturbations are decoupled and the magnetic contributions are 

introduced into the coefficients. The coupling remains only in the transversal boundary 

conditions (3.14). In consequence, the influence of the transversal boundary is crucial for the 

correct description of the photoabsorptive processes in ferrofluid layers and the models 

accounting only for the bulk interactions have very limited applicability. 

Keeping in mind that the imposed temperature field is symmetric across the mid-plane of the 

layer, it follows from the equation (3.12) and the symmetry of the boundary conditions that 

the profiles ݌ܥ and Ψ௠ also possess the same symmetry, but ܥ௠ and Ψ௣ are antisymmetric. 

Eliminating the cross-terms from (3.12) a characteristic equation for the determination of the 

roots and formation of the general solution is obtained 
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݂ସ െ ଶߨ2
݀௬݀௭ െ 2݀௬௭

݀௭ଶ
݂ଶ ൅ ସߨ

݀௬ଶ

݀௭ଶ
ൌ 0 (3.17)

The solution to this biquadratic equation yields the required roots 1݂,2 ൌ േ1ݎ and 3݂,4 ൌ േ2ݎ 

భݎ
మ
ൌ
ߨ
݀௭
ට݀௬݀௭ െ 2݀௬௭ േ (3.18) ܦ√2

with the corresponding discriminant 

ܦ ൌ ݀௬௭ଶ െ ݀௬݀௭݀௬௭ (3.19)
Taking into account the symmetry of the fields the expressions for the auxiliary mode 

amplitudes are obtained for the concentration field 

ሻݖ௠ሺܥ ൌ ௬௭෍݀ߨ2݅ ௜ܻ
௜ݎ sinhሺݎ௜ݖሻ

ଶߨ െ ݀௭ݎ௜
ଶ

௜

 (3.20)

ሻݖ௣ሺܥ ൌ෍ ௜ܻ coshሺݎ௜ݖሻ
௜

െ
1
2
௠ݏ
݀௬

 (3.21)

and the internal scalar potential 

Ψ௠ሺݖሻ ൌ ௠ܻ coshሺݖߨሻ

൅ ߨ෤௖݅ߙ ൥෍ ௜ܻ
coshሺݎ௜ݖሻ

௜ݎ
ଶ െ ଶߨ

௜

ቆ݄௬ ൅ 2
௜ݎ
ଶ݀௬௭

ଶߨ െ ݀௭ݎ௜
ଶ ݄௭ቇ ൅

1
2
௠ݏ
݀௬

݄௬
ଶߨ
൩ (3.22)

Ψ௣ሺݖሻ ൌ ௣ܻ sinhሺݖߨሻ ൅ ෤௖෍ߙ ௜ܻ
௜ݎ sinhሺݎ௜ݖሻ

௜ݎ
ଶ െ ଶߨ

௜

ቆ݄௭ െ 2
ଶ݀௬௭ߨ

ଶߨ െ ݀௭ݎ௜
ଶ ݄௬ቇ (3.23)

and zero order contributions 

ሻݖ଴ሺܥ ൌ
1
4
ଶߨ

௠ݏ
݀௭
൬ݖଶ െ

1
3
݈ଶ൰ (3.24)

ሻݖ଴ሺߖ ൌ
1
12

ଶ݄௭ߨ෤௖ߙ
௠ݏ
݀௭
ሺݖଷ െ ݈ଶݖሻ (3.25)

with ݅ ൌ 1, 2. 

The unknown coefficients ௜ܻ,௠,௣ must be determined from the boundary conditions (3.14)-

(3.15) and are not given here for the general case. The proper modes ܺേ can in turn be 

obtained from the auxiliary ones by simple relations ܺേ ൌ
ଵ

ଶ
൫ܺ௣ േ ܺ௠൯. The solution within a 

single period of the grating is plotted in Figure 3.2 for some arbitrary orientations of the 

external field. 

Evidently, the antisymmetric terms appear in the profiles of the concentration and the 

demagnetizing field perturbations if the imposed external field possesses both parallel and 
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perpendicular components. While such situations are sometimes studied experimentally [68], 

the parallel and the perpendicular orientations of the external field are the ones more 

frequently considered [53]-[62]. These are the two main configurations, which are symmetric 

across the mid-plain of the layer and are also more illustrative of the general case. 

 

Figure 3.2. Distributions of the concentration (top) and the demagnetizing field (bottom) 

perturbations within the element of the photoabsorptive grating at different 

orientations of the external field (0° - parallel configuration, 90° - perpendicular 

configuration). 

The solution and coefficients of (3.20)-(3.25) for the symmetric configurations of the external 

magnetic field can be expressed up to the leading mode of the thermal grating, bearing in 

mind the symmetry of the fields 

ܿሺݕ, ሻݖ ൌ ሻݖ଴ሺܥ ൅ ሻݖଵሺܥ cosሺݕߨሻ (3.26)

,ݕሺܪ ሻݖ ൌ ሻݖ଴ሺܪ ൅ ሻݖଵሺܪ cosሺݕߨሻ (3.27)

with corresponding mode amplitudes 

ሻݖ଴ሺܥ ൌ
1
4
ଶߨ

݀௭
௠ݏ ൬ݖଶ െ

1
3
݈ଶ൰ (3.28)

ሻݖଵሺܥ ൌ
௠ݏ
2
ቈ
1

݀௭݃௥
ቆ݅ܤ

݃଴
଴݂
െ
݀௬ െ ݀௭
݀௬

ቇߨ coshሺݎ଴ݖሻ െ
1
݀௬
቉ (3.29)

ሻݖଵሺܪ ൌ
1

௣ࣧ௛
൜ܥଵሺݖሻ ൅

௠ݏ
2
൤1 െ

݅ܤ

଴݂
coshሺݖߨሻ൨ൠ (3.30)

where only the single exponent 0ݎ ൌ ටߨ
ݕ݀
ݖ݀

 is retained from (3.18) and 

݃బ
ೝ
ൌ
ߨ
଴ݎ
sinhሺ݈ߨሻ ൅ ߨ coshሺ݈ߨሻ ,     ଴݂ ൌ ߨ sinhሺ݈ߨሻ ൅ ݅ܤ ∙ coshሺ݈ߨሻ 
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In turn, the mode ܪ଴ሺݖሻ ൌ െߙ෤௖ܥ଴ሺݖሻ is present in (3.27) only in the case of the perpendicular 

orientation of the external field, otherwise it vanishes for the parallel configuration. 

Noting that the relation ܿ െ ௣ࣧ௛ܪ ൅ ௠ܶݏ ൌ  holds true, however, it is more ݐݏ݊݋ܿ

appropriate to express (3.30) explicitly to avoid the ambiguity associated with relating the 

magnetic field to temperature, because ܪ should depend only on the concentration 

distribution. 

 

Figure 3.3. Photoabsorptive distributions of temperature, concentration, primary component 

of demagnetizing field and magnetic force perturbations (from left to right) in 

the parallel configuration of the external field. 

 

Figure 3.4. Photoabsorptive distributions of temperature, concentration, primary component 

of demagnetizing field and magnetic force perturbations (from left to right) in 

the perpendicular configuration of the external field. 

In the parallel configuration of the applied field (Figure 3.3) the photoabsorptive 

concentration profile is slightly elongated in the direction of the applied field comparing to 

the profile of the temperature field due to the magnetophoretic contributions and the effective 

anisotropy of the magnetic diffusion coefficient. The perturbation of the magnetic field is 

rather uniform across the thickness of the layer, but the induced magnetic force, created by the 

combination of the gradient of the demagnetizing field and the irregularity of concentration, is 
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not. In fact, it is clear that the configuration of the magnetic force promotes transversal 

circulation composed of four convective rolls for each period of the grating. 

For the perpendicular orientation of the external field (Figure 3.4) the distribution of 

concentration is once again extended in the direction of the applied field, which now 

corresponds to the transversal coordinate. While the configuration of the magnetic field seems 

similar to the case of the laterally applied external field (Figure 3.3), in the former situation it 

is mainly determined by the discontinuity of the magnetization on the transversal boundaries 

in contrast to the bulk contributions in the latter case. The jump in magnetization on the 

sidewalls of the layer causes the appearance of strong magnetic field gradients in the vicinity 

of the boundary and the corresponding considerable magnetic forces. 

Increasing the aspect ratio of the induced grating, i.e., under the adopted normalization, 

decreasing the thickness of the layer, the main features of the magnetic force configuration 

remain relatively unchanged. The magnetic force is so irregular that it is doubtful that the 

reduction of dimension by means of averaging employed in the previous section can give 

meaningful results if the aspect ratio is not extreme, which it rarely is in the conditions of the 

experiment. This substantiates the necessity to consider the third dimension in the 

investigation of the photoinduced microstructures in order to obtain even qualitative 

correspondence with the experimental results. 

3.1.3. Secondary photoabsorption 

The absorption of the incident optical intensity within the ferrofluid layer consists of two 

parts. The first is the initial absorption by the unperturbed distribution of the ferroparticles, 

the second contribution comes from the accumulation of the nanoparticles due to the 

established temperature gradient and Soret effect. If the photoinduced concentration 

perturbation ∆ܿ becomes comparable with the initial concentration ܿ଴ then the absorption of 

incident intensity is increased and the temperature equation becomes coupled to the 

concentration equation through the coupling parameter ݎ௖ (2.5). If the parameter ݎ௖ becomes 

significant, the temperature equation cannot be decoupled and must be solve in conjunction 

with the concentration balance equation (3.7). The method of solution is similar as in the 

previous section and will not be discussed in detail. 

With the allowance for the secondary photoabsorption the problem (3.7), (3.5) and (2.5) 

yields the solution to the characteristic equation after the separation of the spatial variables 

(3.26)-(3.27) 
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భݎ
మ
ൌ
଴ݎ
√2

ඨ1 ൅
௖ݎ௠ݏ
݀௬

േ ,ܦ√ ܦ ൌ 1 ൅
1
2 ൬
௖ݎ௠ݏ
݀௬

൰
ଶ
 (3.31)

Taking into account the symmetry of the fields across the midplane of the layer and the 

boundary conditions (2.6), (3.1), (3.6) the modes of the concentration distribution for the 

symmetric configurations can be expressed  

ሻݖ଴ሺܥ ൌ෍
ܽ௜
௜௜݌

coshሺݎ௜ݖሻ െ
1
௖ݎ
, ሻݖଵሺܥ ൌ 2෍ܽ௜

௜

coshሺݎ௜ݖሻ (3.32)

The coefficients are determined from the appropriate boundary conditions 

ܽ௜ ൌ േ
௟

௥೎

ଵ

௕೔

ଵ
భ

್భ೛భ

౩౟౤౞ሺೝభ೗ሻ
ೝభ

ି భ
್మ೛మ

౩౟౤౞ሺೝమ೗ሻ
ೝమ

,   ܾ௜ ൌ ݃௜ሺ݀௭ െ ݀௜ሻ ൅
௚బ
௙బ

௜݂݀௜,   ݌௜ ൌ
ଶௗ೥
௦೘௥೎

௥೔
మ

గమ
െ 1,   ݀௜ ൌ ݀௭

௥೔
మି௥బ

మ

௥೔
మିగమ

  

with ݅ ൌ 1, 2 and 

௜݂ ൌ ݅ݎ sinhሺ݈݅ݎሻ ൅ ݅ܤ ∙ coshሺ݈݅ݎሻ  and  ݃௜ ൌ ݅ݎ sinhሺ݈݅ݎሻ ൅  ሻ݈݅ݎcoshሺߨ

The temperature modes can then be expressed 

଴ܶሺݖሻ ൌ
݀௭
௠ݏ

෍
ܽ௜
௜௜݌

൤ ௜݂

݅ܤ
െ coshሺݎ௜ݖሻ൨ (3.33)

ଵܶሺݖሻ ൌ
2
௠ݏ

෍ܽ௜݀௜
௜

൤ ௜݂

଴݂
ሻݖߨሺ݄ݏ݋ܿ െ coshሺݎ௜ݖሻ൨ (3.34)

and the demagnetizing field 

ሻݖଵሺܪ ൌ
1

௣ࣧ௛
൝ܥଵሺݖሻ ൅ 2෍ܽ௜

௜

݀௜ ൤
௜݂

଴݂
ሻݖߨሺ݄ݏ݋ܿ െ coshሺݎ௜ݖሻ൨ൡ (3.35)

As previously, the mode ܪ଴ሺݖሻ ൌ െߙ෤௖ܥ଴ሺݖሻ is present in (3.27) only in the case of the 

perpendicular orientation of the external field and vanishes for the parallel configuration. 

Increasing the value of the coupling parameter ݎ௖ the concentration grating becomes sharper 

(Figure 3.5). The intensity of the demagnetizing field increases within the layer and is 

attenuated outside. From the physical point of view higher values of the coupling parameter 

 mean enhanced absorption of incident intensity due to the migration of the nanoparticles	௖ݎ

into the heated region, which in turn further increases the production of heat and the mass flux 

until countered by the diffusion and the magnetophoresis. The temperature distribution then 

becomes slightly elongated in the direction of the applied field due to the secondary 

photoabsorption.  
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Figure 3.5. Secondary photoabsorption: distributions of temperature (top), concentration 

(middle), demagnetizing field (bottom) in the parallel configuration of the 

external field at ݎ௖ ൌ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 (from left to right). 

 

Figure 3.6. Secondary photoabsorption: distributions of temperature (top), concentration 

(middle), demagnetizing field (bottom) in the perpendicular configuration of the 

external field at ݎ௖ ൌ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 (from left to right). 

Still, at reasonable values of the coupling parameter ݎ௖ the influence of the secondary 
absorption on the stationary state is rather small. 
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3.1.4. Diffusive relaxation 

In the absence of microconvection the relaxation of the photoabsorptive structures upon the 

switching off of the optical pumping is governed by the diffusion and the magnetophoresis in 

the self magnetic field of the ferrocolloid. The characteristic time of the relaxation of the 

induced concentration structures is estimated by the diffusion timescale 
௅మ

஽
, while the 

characteristic thermal scale is expressed through the thermal diffusivity of the colloid 
௅మ

఑
. The 

dimensionless Lewis number is expressed as the ratio of these scales ݁ܮ ൌ ஽

఑
. It is generally 

very small in typical ferrocolloids, so the relaxation of temperature after the turning off of the 

pumping beams is almost instantaneous in comparison with the characteristic time for the 

relaxation of concentration structures. Bearing in mind the different timescales for 

temperature and concentration, it is possible to formulate the set of equations describing the 

process of diffusive relaxation of the photoabsorptive concentration microstructures. From 

(1.37)  

߲
ݐ߲
ܿ ൌ ∆൫ܿ െ ௣ࣧ௛ܪ൯ (3.36)

with the boundary conditions for concentration and demagnetizing field on the upper sidewall 

of the layer expressed by (3.1) and (3.6) 

൤
߲
ݖ߲
൫ܿ െ ௣ࣧ௛ܪ൯ ൌ 0൨

௭ୀ௟
 (3.37)

ቂ
డ

డ௭
߰ ൌ ෤௖݄௭ܿߙ ൅

డ

డ௭
߮௘௫௧ቃ

௭ୀ௟
, ሾ߰ ൌ ߮௘௫௧ሿ௭ୀ௟ (3.38)

and the initial conditions are determined either by (3.28)-(3.29) or (3.32). 

The solution of the system (3.36)-(3.38) can be carried out by the method of Laplace 

transformation, which is generally most suitable for the solving of the initial value problems 

of this kind. Separating the spatial variables in the following way 

ܿሺݕ, ,ݖ ሻݐ ൌ ,ݖ଴ሺܥ ሻݐ ൅ ,ݖଵሺܥ ሻݐ cosሺݕߨሻ (3.39)

the set of dynamic equations for the mode amplitudes is obtained. The relaxation problem for 

the zero-order concentration mode becomes 

଴ܥ߲
ݐ߲

ൌ ݀௭
߲ଶܥ଴
ଶݖ߲

 (3.40)

making use of the relation ܪ଴ሺݖ, ሻݐ ൌ െߙ෤௖ܥ଴ሺݖ,  ሻ, which is valid in the perpendicularݐ

configuration of the applied field. Otherwise, in the case of the parallel orientation of the 
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external field, the zero parallel mode of the demagnetizing field vanishes owing to the initial 

conditions. On the sidewall of the layer ܥ଴ሺݖ,  ሻ obeys the homogeneous Neumann boundaryݐ

condition ቂ
డ஼బ
డ௭

ൌ 0ቃ
௭ୀ௟

 at all times and the temporal and spatial variables can be separated in a 

simple manner yielding the eigenvalue problem. The solution is then obtained without 

difficulty as decomposition into Fourier modes 

,ݖ଴ሺܥ ሻݐ ൌ ෍ܿ௡ cos ቀ
ݖ݊ߨ
݈
ቁ ݁ିௗ೥ቀ

గ௡
௟ ቁ

మ
௧

ஶ

௡ୀଵ

 (3.41)

with the coefficients ܿ݊ determined from the zero-order parallel mode of the initial 

concentration profile ܥ଴
௜௡௜௧ሺݖሻ. 

ܿ݊ ൌ
1
݈
න 0ܥ

ሻݖሺݐ݅݊݅
௟

ି௟
cos ൬

ݖ݊ߨ
݈
൰ (3.42) ݖ݀

At the same time the coefficient ܿ଴ disappears due to the conservation of the ferroparticles. 

For the initial distribution (3.32) the coefficients of the series (3.41) become 

ܿ݊ ൌ 2
ሺെ1ሻ݊

݈
෍
ܽ݅
݅݅݌

݅ݎ
sinhሺ݈݅ݎሻ

2݅ݎ ൅ ቀ݈݊ߨ ቁ
2 

(3.43)

with the appropriate values of the coefficients. 

In the decoupled case of negligible secondary photoabsorption ݎ௖ → 0 the coefficients are 

expressed from the relation (3.28) and have simple form 

ܿ݊ ൌ ሺെ1ሻ݊
݉ݏ2ߨ

ݖ݀ ቀ
݊ߨ
݈ ቁ

2 
(3.44)

The projected equations for the first parallel modes are in turn expressed 

ଵܥ߲
ݐ߲

ൌ ቈ݀௭
߲ଶ

ଶݖ߲
െ ݀௬ߨଶ቉ ,ݖଵሺܥ ሻ (3.45)ݐ

ቈ
߲ଶ

ଶݖ߲
െ ,ݖଶ቉Ψଵሺߨ ሻݐ ൌ ෤௖ߙ ൬݄௭

߲
ݖ߲

െ ,ݖଵሺܥ௬൰݄ߨ ሻ (3.46)ݐ

where Ψଵ is the corresponding mode of the internal scalar potential ߰. The boundary 

conditions after excluding the external potential ߮௘௫௧ 

ቂ
డ

డ௭
ቄܥଵ ൅ ௣ࣧ௛ ቀ݄௭

డ

డ௭
൅ ௬ቁΨଵቅ݄ߨ ൌ 0ቃ

௭ୀ௟
, ቂቀ

డ

డ௭
൅ ቁΨଵߨ ൌ ଵቃܥ෤௖݄௭ߙ

௭ୀ௟
 (3.47)
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For the purpose of obtaining the solution a one-way Laplace transformation 

መ݂ሺݖ, ሻݏ ൌ ࣦሼ݂ሺݖ, ሻሽݐ ൌ න ݁ି௦௧
ஶ

଴
݂ሺݖ, (3.48) ݐሻ݀ݐ

is applied to the problem (3.45)-(3.47). Equation (3.45) becomes 

ቈ݀௭
߲ଶ

ଶݖ߲
െ ݀௬ߨଶ቉ ,ݖመଵሺܥ ሻݏ െ ,ݖመଵሺܥݏ ሻݏ ൅ ଵܥ

௜௡௜௧ሺݖሻ ൌ 0 (3.49)

where the time derivative has been transformed by making use of the integration by parts and 

ଵܥ
௜௡௜௧ሺݖሻ is the initial profile of the first parallel concentration mode. The form of the equation 

(3.46) remains unchanged in the s-domain and the same applies to the boundary conditions 

(3.47). 

The transformed equations are linear with constant coefficients and can be solved without 

difficulty, taking into account the symmetry of the fields. For concentration 

,ݖመଵሺܥ ሻݏ ൌ ଵܺሺݏሻ coshሺݎ௦ݖሻ ൅
1
௦ݎ
൬ݔଵ නܥଵ

௜௡௜௧ݔଶ݀ݖ െ ଶݔ නܥଵ
௜௡௜௧ݔଵ݀ݖ൰ (3.50)

with the fundamental set of solutions 1ݔሺݖ, ሻݏ ൌ coshሺݖݏݎሻ and ݔଶሺݖ, ሻݏ ൌ sinhሺݖݏݎሻ and the 

exponent ݎ௦ሺݏሻ ൌ ට
ௗ೤గమା௦

ௗ೥
. 

The following form of the first initial parallel mode is assumed (3.32) 

ଵܥ
௜௡௜௧ሺݖሻ ൌ 2෍ܽ௜

௜

coshሺݎ௜ݖሻ (3.51)

Then the first parallel mode of the perturbation in the s-domain becomes 

,ݖመଵሺܥ ሻݏ ൌ ଵܺሺݏሻ coshሺݎ௦ݖሻ െ
2
݀௭
෍

ܽ௜
௜ݎ
ଶ െ ௦ଶ௜ݎ

coshሺݎ௜ݖሻ (3.52)

Satisfying the boundary conditions (3.47) the s-dependant coefficient ଵܺ is expressed 

ଵܺ ൌ
Φሺݏሻ
Ψሺݏሻ

 (3.53)

with  

Φሺݏሻ ൌ 2ሺݎ௦ଶ െ ଶሻ෍ߨ
ܽ௜ ൤̃ݏ௜ݎ௜ sinhሺݎ௜݈ሻ ൅

݀௬ െ ݀௭
݀௭

ଷߨ sinhሺ݈ߨሻ ௜݃
݃଴
൨

ሺݎ௜
ଶ െ ௜ݎଶሻሺߨ

ଶ െ ௦ଶሻ௜ݎ

 (3.54)

Ψሺݏሻ ൌ ௦ݎݏ sinhሺݎ௦݈ሻ ൅ ൫݀௬ െ ݀௭൯ߨଷ sinhሺ݈ߨሻ
݃௦
݃଴

 (3.55)

with ݃௦ ൌ ௦ݎ sinhሺݎ௦݈ሻ ൅ ߨ coshሺݎ௦݈ሻ and ݏ෤݅ ൌ ݅ݎ
2 െ 0ݎ

2. 
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Once obtained, the solution in the s-domain must be converted to the time domain. For that 

purpose the inverse problem of finding the function 	݂ሺݖ, ,ݖሻ by its image መ݂ሺݐ  ሻ must beݏ

solved. The inverse transformation is expressed in general form by the integral 

݂ሺݖ, ሻݐ ൌ ࣦିଵ൛ መ݂ሺݖ, ሻൟݏ ൌ
1
݅ߨ2

න ݁௦௧
ఙା௜ஶ

ఙି௜ஶ

መ݂ሺݖ, (3.56) ݏሻ݀ݏ

which is known as the Bromwich integral, the Riemann-Mellin formula or the Fourier-Mellin 

integral. The integration is performed along the vertical line in complex space from ߪ െ ݅∞ to  

ߪ ൅ ݅∞ in such a way so that all the singularities of መ݂ሺݖ,  ሻ are on the left side of theݏ

integration path ensuring the convergence of the improper integral (3.56). 

It was shown that if the image function መ݂ሺݖ, ,ݖሻ can be represented as a ratio መ݂ሺݏ ሻݏ ൌ ஍ሺ௦ሻ

ஏሺ௦ሻ
	of 

two integral functions (i.e. functions, which are analytic over the whole complex plane) Φሺݏሻ 

and Ψሺݏሻ, then the inverse transformation can be expressed as a functional series 

݂ሺݖ, ሻݐ ൌ ෍
Φሺݏ௡ሻ

Ψ′ሺݏ௡ሻ
݁௦೙௧

ஶ

௡ୀଵ

 (3.57)

The summation is performed over the roots ݊ݏ of the denominator Ψሺݏሻ. The series (3.57) is 

known in the literature as the Vaschenko-Zakharchenko or Heaviside expansion. It is assumed 

that the roots ݊ݏ are simple and Ψሺݏሻ	does not have a trivial root s ൌ 0. 

The expansion (3.57) is used to obtain the inverse transformation of (3.52). Formally the numerator 

(3.54) is not integral and has two simple poles at ݏ ൌ ݀௭̃ݏ௜ so the expansion is not applicable. On 

the other hand, it is more convenient to use the form (3.54) rather than introduce the denominator of 

Φሺݏሻ into Ψሺݏሻ (thus obtaining Φ෩ሺݏሻ and Ψ෩ሺݏሻ). Indeed taking into account that  

Φ෩ሺ̃ݏ௜ሻ

Ψ෩′ሺ̃ݏ௜ሻ
ൌ െ2ܽ௜ (3.58)

so that the second term in (3.52) cancels out from the resulting expansion. The terms 

corresponding to the poles ݏ ൌ  ଵ of theܪ ௜ also vanish from the expansion of the modeݏ̃

demagnetizing field. 

It is now necessary to analyze the other roots of Ψሺݏሻ. A special case is the pole ݏ ൌ

൫݀௭ െ ݀௬൯ߨଶ, which can be either positive or negative depending on the configuration of the 

external field. Still, the term contributing to this pole cancels from the resulting expansion 

because it is at the same time the root of Φሺݏሻ and the ambiguity with regard to its sign is thus 

resolved. 
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The rest of the poles are obtained from the transcendental relation 

cothሺݎ௦݈ሻ ൅
௦ݎ
ߨ
ቈ1 ൅

଴݃ݏ
൫݀௬ െ ݀௭൯ߨଷ sinhሺ݈ߨሻ

቉ ൌ 0 (3.59)

This expression yields another pole ݏ ൌ ൫݀௭ െ ݀௬൯ߨଶ, which is simultaneously the root of 

Φሺݏሻ and so this term is cancelled from the resulting decomposition. For the parallel 

configuration of the applied field the expression (3.59) possesses additional root ݏ଴, for which 

 .଴ can be determined numericallyݏ ௦ is real. The poleݎ

The rest of the poles can be obtained under the condition ݏ ൏ െ݀௬ߨଶ and then ݎ௦ lies on the 

imaginary axis. For this case it is convenient to introduce the imaginary part ݔ ൌ Աሼݎ௦ሽ, then 

௡ݏ ൌ െ൫݀௭ݔ௡ଶ ൅ ݀௬ߨଶ൯ and the relation (3.59) becomes 

cotሺ݈ݔሻ െ
ݔ
ߨ
ቈ1 െ

൫݀௭ݔ௡ଶ ൅ ݀௬ߨଶ൯݃଴
൫݀௬ െ ݀௭൯ߨଷ sinhሺ݈ߨሻ

቉ ൌ 0 (3.60)

which has infinite number of roots ݊ݔ with ݊ ൌ 1,2… 

The transcendental relations (3.59) and (3.60) can be solved numerically for the purpose of 

obtaining the necessary poles. All roots are real and negative ensuring the monotonous 

relaxation. The first parallel modes of the concentration perturbation can then be transformed 

back to the time domain 

,ݖଵሺܥ ሻݐ ൌ ෍
Φሺݏ௡ሻ
Ψ′ሺݏ௡ሻ

coshሾݎ௦ሺݏ௡ሻݖሿ ݁௦೙௧
ஶ

௡ୀ଴

 (3.61)

For the decoupled case ݎ௖ → 0 the initial shape of first lateral mode ܥଵ
௜௡௜௧ሺݖሻ corresponds to 

the assumed form (3.51) with ݎଵ ൌ ଶݎ ଴ andݎ ൌ 0. The poles remain in place and are still 

determined from the relations (3.59) and (3.60) since the denominator Ψሺݏሻ does not depend 

on the coefficient of secondary absorption. The nominator Φሺݏሻ in turn becomes 

Φሺݏሻ ൌ
௠ݏߨ
2݀௭

sinhሺ݈ߨሻ ቈ
൫݀௬ െ ݀௭൯ߨଷ

൫݀௬ߨଶ ൅ ൯݃଴ݏ
െ
݅ܤ

଴݂
቉ ቈ1 ൅

൫݀௬ െ ݀௭൯ߨଶ

ݏ
቉ (3.62)

The form of the relation for the concentration mode in the time domain also remains the same 

(3.61). 

The relaxation stage of the FRS experiment is a dynamic process governed by the complex 

interaction of the concentration and the demagnetizing field perturbations. The 

magnetophoretic contributions in the self magnetic field of the ferrocolloid determine the 
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intensification of the relaxation process in the direction along the applied field so that the 

advancement of the concentration profile is faster in that direction. 

 

Figure 3.7. Relaxation progress of concentration microstructures: distributions of 

concentration at ݐ ൌ 0.0, 0.02, 0.05, 0.1, 0.15, 0.2 (from left to right) in the 

parallel (top) and perpendicular (bottom) configurations of the applied field. 

The spatial distributions of the involved fields ensure the nonhomogeneity of the effective 

transport coefficients and their anisotropy everywhere within the ferrofluid layer. On the other 

hand, the effective concentration diffusion coefficient is deduced from the rate of relaxation 

of the diffraction signal of a probing laser beam from the photoinduced grating in the 

conditions of the experiment. It was determined that the intensity of the first diffraction 

maximum depends solely on the periodic variation of the concentration field [93] rather than 

the zero order contribution ܥ଴ሺݖ,  ሻ. It should depend, however, on the transversal profile ofݐ

the parallel modes. So, some form of averaging in the transversal direction has to be 

employed for the purpose of obtaining the effective transport coefficients characterizing the 

diffusion in the self magnetic field, which would correlate with the parameters calculated 

from the measurable quantities. Without partaking in the discussion on the most suitable form 

of averaging for comparison with the experimental measurements, the effective lateral 

relaxation rate is introduced in the following form, consistent with (2.61) 

ሻݐ௘௙௙ሺߜ  ൌ െ
1

ሻݐሺܬଶߨ
ܬ߲
ݐ߲
, ሻݐሺܬ ൌ ඨන ଵܥ

ଶሺݖ, ݖሻ݀ݐ
௟

ି௟
 (3.63)

with the calculated signal ܬሺݐሻ expressed as an ܮଶ-norm of the first parallel mode of the 

concentration field perturbation. 



 
 

71 
 

    

Figure 3.8. Diffusive relaxation of the concentration microstructures in parallel applied 

field: left - dependence of the effective parallel diffusion coefficient ߜ௘௙௙ on 

time (symbols – numerical simulations, lines – model (3.63)); middle – influence 

of the secondary absorption on the initial relaxation rate (symbols – numerical 

simulations, lines – model (3.63)); right – dependence of the initial diffusion 

coefficient on the thickness of the layer (symbols – model (3.63), lines – thin 

layer approximation). 

   

Figure 3.9. Diffusive relaxation of the concentration microstructures in perpendicular 

applied field: left - dependence of the effective lateral diffusion coefficient ߜ௘௙௙ 

on time (symbols – numerical simulations, lines – model (3.63)); middle – 

influence of the secondary absorption on the initial relaxation rate (symbols – 

numerical simulations, lines – model (3.63)); right – dependence of the initial 

diffusion coefficient on the thickness of the layer (symbols – model (3.63), lines 

– thin layer approximation). 

The calculations of the effective relaxation rates show its initial dependence on the coupling 

between the thermal and concentration perturbations for both parallel (Figure 3.8) and 

perpendicular (Figure 3.9) configurations of the applied field. The value of ߜ௘௙௙ increases with 
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the increasing of the coupling parameter ݎ௖, so this effect is significant at higher intensities of the 

optical pumping and larger induced concentration differences. The dependence is stronger in the 

parallel orientation of the applied magnetic field and the increase of ߜ௘௙௙ is more significant for 

this configuration. As the relaxation process progresses the effective relaxation rate approaches its 

value in the uncoupled case evidencing that the account of the secondary absorption appreciably 

influences exactly the transversal profile of the concentration distribution, leading to enhanced 

depletion of the ferroparticles from near the boundary regions.  

In turn, the presence of the transversal boundary of the layer, which is impermeable to the 

flux of the ferroparticles, also influences the course of the relaxation process in the parallel 

direction. Decreasing the thickness of the ferrofluid layer the effective relaxation rate can be 

decreased or increased accordingly in the parallel or perpendicular configuration of the 

external magnetic field due to the influence of the magnetic interactions. The experimentally 

measured diffusion coefficient can then be considerably different from its physical value if the 

measurement is performed in a very narrow layer and the appropriate correction is not 

applied. 

It is interesting to compare this coefficient (3.63) calculated with full account for the 

transversal phoretic mass transport and the corresponding diffusion coefficient ݀଴ (2.20) 

introduced in the framework of the thin layer approximation. The comparison shows almost 

perfect correspondence for both the parallel (Figure 3.8, right) and perpendicular (Figure 3.9, 

right) configurations of the applied field even for layers, which can no longer be considered 

“thin”, i.e. the thickness 2݈ is comparable with the interfringe of the grating. In compliance 

with the discussed properties of the factors ு݂ (2.18), in the parallel field configuration the 

effective lateral diffusion coefficient ߜ௘௙௙ approaches its bulk value ݀௠ in infinitely thick 

layers and tends to unity in narrow layers. In turn, in perpendicular field the corresponding 

limits are exactly reversed. In this regard – the gap averaged amplitude of the concentration 

grating and its relaxation dynamics can be accurately predicted by the simplified model if the 

formation of the grating is accomplished by just the phoretic effects, but this assumption may 

not always be correct. 

3.1.5. Photoabsorptive microconvection 

The considering of the transversal direction and the calculations of the diffusive base state 

evidence that the phoretic effects may not be the sole contributing factor to the formation of 

the stationary photoabsorptive microstructures. Usually, the description of the convective 

motions involves some intuitive assumptions about its general configuration. This ansatz 
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generally permits to reduce the symmetry of the problem and simplify its solution. The 

photoabsorptive gratings possess many symmetries and the most obvious choice is to 

primarily consider the motions within the plane of the layer. Nevertheless, the previously 

discussed two-dimensional flows belonging to this type of convective motion in fact violate 

the longitudinal symmetry of the photoabsorptive gratings and so can only emerge through the 

mechanism of the convective instability.  

Alternatively, considering of the transversal direction reveals that the complex interactions of 

the gradients of concentration and demagnetizing field induced in a thick layer of ferrofluid 

through photoabsorption and thermodiffucion cause the appearance of the non-potential 

configuration of the magnetic force and may promote parasitic transversal microconvection. 

This configuration of convective motion is contained within the profile plane of the grating 

and obeys all of its symmetries. Thus, it is not the consequence of the exchange of stabilities 

but is rather the inherent property of the interactions of the photoabsorptive microstructures 

with the applied magnetic field. The determination of the role of the transversal convective 

flows in the formation of the photoabsorptive gratings requires the solution of the nonlinear 

convective-diffusive problem in the profile plane of the grating and will be carried out in this 

section. 

The set of governing equations describing the stationary microconvection possesses non-

linearity both in the concentration and the momentum balance equation. For the parallel 

configuration of the applied magnetic field, from (1.36)-(1.39) 

െસܲ ൅ ࢁ∆ ൅ ܪસܥ௠ݏܴ ൌ 0 (3.64)

∆൫ܥ െ ௣ࣧ௛ܪ ൅ ௠ܶ൯ݏ െ ܥસࢁ ൌ 0 (3.65)

∆Ψ ൌ ෤௖ߙ
ܥ߲
ݕ߲

 (3.66)

The equation (3.5) for the perturbation of the external potential Φ௘௫௧ is also added to the 

system and should be solved in the free space outside of the layer 

∆Φ௘௫௧ ൌ 0 (3.67)

The boundary conditions on the transversal sidewalls of the layer consist of the 

impermeability condition (3.1) for the concentration field 

൤
∂
࢔∂

൫ܥ െ ௣ࣧ௛ܪ ൅ ௠ܶ൯ݏ ൌ 0൨
డௌ

 (3.68)
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and the continuity condition (3.6) for the distributions of the internal and the external 

magnetic scalar potentials 

൤
∂
࢔∂

Ψ ൌ
∂
࢔∂

Φ௘௫௧൨
డௌ

,   ሾΨ ൌ Φ௘௫௧ሿడௌ (3.69)

The hydrodynamic no-slip boundary condition for the velocity field is also imposed on the 

sidewall of the layer  

ሾࢁ ൌ 0ሿడௌ (3.70)

All fields are also assumed periodic in the parallel direction with the imposed period of the 

photoabsorptive grating. 

The solution will be considered up to the first mode in the parallel direction, the 

approximation which may be valid only in the regime of weak nonlinearity at low values of 

the magnetic Rayleigh number 

,ݕሺܥ ሻݖ ൌ ሻݖ଴ሺܥ ൅ ሻݖଵሺܥ cosሺݕߨሻ and ,ݕሺܪ ሻݖ ൌ ሻݖଵሺܪ cosሺݕߨሻ (3.71)

where the mode ܪ଴ሺݖሻ of the demagnetizing field vanishes owing to the equation (3.66). 

With ࢁ ൌ ܡ܍ܸ ൅ܹܢ܍ the parallel and perpendicular velocity components are similarly 

decomposed 

ܸሺݕ, ሻݖ ൌ ܸሺݖሻ sinሺݕߨሻ, ܹሺݕ, ሻݖ ൌ ܹሺݖሻ cosሺݕߨሻ (3.72)

In the following analysis it is assumed that the convective flows possess all the symmetries of 

the diffusive base state, which creates them. It is then convenient to express the influence of 

the stationary convective fluxes on the profiles of the concentration and demagnetizing field 

as perturbations ܥሚ and ܪ෩ of the diffusive distributions of the corresponding fields calculated 

without the account for microconvection (3.28)-(3.30) 

଴,ଵܥ ൌ ଴,ଵܥ
ௗ௜௙ሺݖሻ ൅ ሻݖሚ଴,ଵሺܥ and ଵܪ ൌ ଵܪ

ௗ௜௙ሺݖሻ ൅ ሻ (3.73)ݖ෩ଵሺܪ

where ܪௗ௜௙ is the configuration of the demagnetizing field corresponding to the diffusive 

distribution of concentration ܥௗ௜௙ (3.28)-(3.29). 

The temperature distribution is decoupled from the concentration field assuming negligible 

secondary photoabsorption. In turn, taking into account that the intensity of convective 

motions is comparable to the characteristic diffusive mobility of the ferroparticles, the vast 

difference between the thermal and concentration diffusivities characterized by the Lewis 

number ݁ܮ, which is rather small in ferrofluids, assures that the temperature field remains 
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unperturbed by the magnetically induced microconvective currents. The established 

distribution of temperature has been expressed under these circumstances (2.7)-(2.9). 

From the continuity condition સ ∙ ࢁ ൌ 0 the relation between the hydrodynamic modes is 

obtained  

ܸሺݖሻ ൌ െ
1
ߨ
߲ܹ
ݖ߲

 (3.74)

Taking into account that the pressure for incompressible flows is not an independent dynamic 

variable, but is rather a kinematic constraint necessary for ensuring the condition of the 

divergence-free velocity field, it can be excluded by taking the curl of the Stokes equation 

(3.64) 

∆࣓ ൅ ௠સݏܴ ൈ ሾܥસܪሿ ൌ 0 (3.75)

and making use of the vorticity vector as ࣓ ൌ સ ൈ -which has only the longitudinal x ,ࢁ

component and is perpendicular to the profile plane y-z of the grating. The amplitude ߱ଵ of 

the first parallel mode of the vorticity is then expressed 

߱ଵሺݖሻ ൌ
1
ߨ
ቆ
߲ଶ

ଶݖ߲
െ ሻ (3.76)ݖଶቇܹሺߨ

The projected equations for the mode amplitudes are obtained from the set of governing 

equations (3.65)-(3.66) and (3.75) after some transformations 

߲ଶ

ଶݖ߲
ሚ଴ܥ ൌ

1
2
߲
ݖ߲
ൣܹሺݖሻ൫ܥଵ

ௗ௜௙ ൅ ሚଵ൯൧ (3.77)ܥ

ቆ
߲ଶ

ଶݖ߲
െ ݀௠ߨଶቇܥሚଵ െܹሺݖሻ

߲
ݖ߲
൫ܥ଴

ௗ௜௙ ൅ ሚ଴൯ܥ ൌ 0 (3.78)

ቆ
߲ଶ

ଶݖ߲
െ ෩ଵܪଶቇߨ ൌ ሻ (3.79)ݖሚଵሺܥଶߨ෤௖ߙ

and the equation for the hydrodynamic mode 

൤
߲ଶ

ଶݖ߲
െ ଶ൨ߨ

ଶ

ܹ ൌ െߨଶܴݏ௠ൣܪଵ
ௗ௜௙ሺݖሻ ൅ ሻ൧ݖ෩ଵሺܪ

߲
ݖ߲
൫ܥ଴

ௗ௜௙ ൅ ሚ଴൯ (3.80)ܥ

Due to its large thermal diffusivity the temperature field is unperturbed by the 

microconvection on the diffusive scale and vanishes from the equations for the perturbation 

mode amplitudes owing to the employed form of the field perturbations (3.73). 

From the relation (3.80) it becomes apparent that the microconvective structures in the 

parallel configuration of the applied magnetic field are formed by the interaction of the first 
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parallel mode of the induced demagnetizing field and the transversal gradient of the zero-

order concentration mode. The first mode of the internal magnetic field is determined 

exclusively by the first concentration mode, so it can be said that the magnetically driven 

convection emerging within the concentration microstructures under this orientation of the 

external field is the result of the interaction between the two concentration modes. Still, this is 

a matter of interpretation of the mass transport process. 

In order to proceed with the solution it is mathematically convenient to introduce the auxiliary 

field ߦ ൌ ܥ െ ௣ࣧ௛ܪ with the expressions for the perturbation modes following from the 

definition 

ሻݖ଴ሺߦ ൌ ሻݖଵሺߦ  ሻ  andݖሚ଴ሺܥ ൌ ሻݖሚଵሺܥ െ ௣ࣧ௛ܪ෩ଵሺݖሻ (3.81)

The equations for the mode amplitudes then become  

߲ଶ

ଶݖ߲
଴ߦ ൌ

1
2
߲
ݖ߲
ൣܹሺݖሻ൫ܥଵ

ௗ௜௙ ൅ ௣ࣧ௛ܪ෩ଵ ൅ ଵ൯൧ (3.82)ߦ

ቆ
߲ଶ

ଶݖ߲
െ ଶቇߨ ଵߦ െܹሺݖሻ

߲
ݖ߲
൫ܥ଴

ௗ௜௙ ൅ ଴൯ߦ ൌ 0 (3.83)

ቆ
߲ଶ

ଶݖ߲
െ ݀௠ߨଶቇܪ෩ଵ ൌ ሻ (3.84)ݖଵሺߦଶߨ෤௖ߙ

ቆ
߲ଶ

ଶݖ߲
െ ଶቇߨ

ଶ

ܹ ൌ െߨଶܴݏ௠ൣܪଵ
ௗ௜௙ሺݖሻ ൅ ሻ൧ݖ෩ଵሺܪ

߲
ݖ߲
൫ܥ଴

ௗ௜௙ ൅ ଴൯ (3.85)ߦ

and the concentration boundary conditions (3.68) are greatly simplified taking the form of the 

homogeneous Neumann type condition 

ቂ
ப

ப௭
଴ߦ ൌ 0ቃ

௭ୀ௟
,   ቂ

ப

ப௭
ଵߦ ൌ 0ቃ

௭ୀ௟
 (3.86)

The hydrodynamic boundary condition (3.70) in turn yields the boundary condition for the 

hydrodynamic mode amplitude 

൤
∂ܹ
ݖ∂

ൌ ܹ ൌ 0൨
௭ୀ௟

 (3.87)

The external potential Φ௘௫௧ is solved for in the free space according to the equation (3.67) and 

excluded from the continuity conditions (3.69) for the magnetic scalar potential under the 

condition of the attenuation at infinity Φ௘௫௧~݁ିగ௭ on the upper half-plane yielding the 

boundary condition for the demagnetizing field amplitude 
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൤
∂
ݖ∂
෩ଵܪ ൅ ሻݖ෩ଵሺܪߨ ൌ 0൨

௭ୀ௟
 (3.88)

The equation (3.84) is linear with constant coefficients and can be solved without difficulty 

obtaining the solution for arbitrary function 1ߦሺݖሻ 

ሻݖ෩ଵሺܪ ൌ ܺ ଵ݂ሺݖሻ െ
ଶߨ෤௖ߙ

଴ݎ
ቈ ଵ݂ሺݖሻන ଵߦ ଶ݂݀ݖ

௭

଴
െ ଶ݂ሺݖሻන ଵߦ ଵ݂݀ݖ

௭

଴
቉ (3.89)

where the fundamental solutions are ݂1ሺݖሻ ൌ coshሺݖ0ݎሻ and ݂2ሺݖሻ ൌ sinhሺݖ0ݎሻ and only the 

term, which is symmetric across the midplane of the layer, has been retained. The lower limit 

of integration in (3.89) has also been chosen from the symmetry considerations. The exponent 

is ݎ଴ ൌ   .ඥ݀௠ߨ

After satisfying the boundary condition (3.88) the constant ܺ is expressed as 

ܺ ൌ
ଶߨ෤௖ߙ

଴ݎ
න ሻݖଵሺߦ ቈ ଶ݂ሺݖሻ െ

଴ݎ ଵ݂ሺ݈ሻ ൅ ߨ ଶ݂ሺ݈ሻ
଴ݎ ଶ݂ሺ݈ሻ ൅ ߨ ଵ݂ሺ݈ሻ

ଵ݂ሺݖሻ቉ ݖ݀
௟

଴
 (3.90)

Considering the boundary condition (3.86) the first parallel mode of the auxiliary field 1ߦሺݖሻ 

can be expanded in symmetric Fourier series across the transversal direction 

ሻݖଵሺߦ ൌ ෍ߦመଵ,௡ cos ቀ
ݖ݊ߨ
݈
ቁ

ஶ

௡ୀ଴

 (3.91)

The expansion obviously by definition satisfies the imposed homogeneous Neumann 

boundary condition on the sidewall of the layer. 

Expressing the coefficient (3.90) and the first parallel mode of the magnetic field (3.89) in 

terms of the coefficients of the expansion (3.91) yields 

ሻݖ෩ଵሺܪ ൌ െߙ෤௖෍ߦመଵ,௡

ஶ

௡ୀ଴

௡݂ሺݖሻ (3.92)

with the set of functions ௡݂ 

௡݂ሺݖሻ ൌ
ଶߨ

଴ݎ
ଶ ൅ ቀ

݊ߨ
݈ ቁ

ଶ ൤ሺെ1ሻ
௡ାଵ ߨ

݃଴
coshሺݎ଴ݖሻ ൅ cos ቀ

ݖ݊ߨ
݈
ቁ൨ 

(3.93)

The expression (3.92) has the form of an expansion in an infinite series in terms of functions 

݂݊ሺݖሻ, which are obviously non-orthogonal and are not normalized. Obtaining the coefficients 

of such expansions is the basis of the employed Galerkin method. 

Now ߦ଴ሺݖሻ can be expressed from the equation (3.82) by twice repeated integration 
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ሻݖ଴ሺߦ ൌ
1
2
න ܹሺݖሻ൫ܥଵ

ௗ௜௙ ൅ ଵߦ ൅ ௣ࣧ௛ܪ෩ଵ൯݀ݖ
௭

଴
െ ܻ (3.94)

taking into account that the constant of integration after performing the first integration is zero 

due to the symmetry of ߦ଴ሺݖሻ across the midplane of the layer. The second constant is 

expressed as 

ܻ ൌ
1
2݈
න ݖሻ݀ݖ଴ሺߦ
ା௟

ି௟
 (3.95)

which conveys the condition of the conservation of the amount of ferroparticles within the 

layer and formally along with (3.94) constitutes a double integral, but can be reduced to a 

single integral through integration by parts 

ܻ ൌ
1
2݈
න ሺ݈ െ ଵܥሻ൫ݖሻܹሺݖ

ௗ௜௙ ൅ ଵߦ ൅ ௣ࣧ௛ܪ෩ଵ൯݀ݖ
௟

଴
 (3.96)

Considering the homogeneous boundary condition (3.86) it is possible to expand ߦ଴ሺݖሻ into 

the even Fourier series 

ሻݖ଴ሺߦ ൌ ෍ߦመ଴,௡ cos ቀ
ݖ݊ߨ
݈
ቁ

ஶ

௡ୀଵ

 (3.97)

The expansion (3.97) does not possess a zero-order term since it is expressed by the relation 

(3.95) and cancels out. 

To obtain the solution of the convective problem it is necessary to express the velocity mode 

ܹሺݖሻ in some way. Formally, the equation (3.85) is linear with constant coefficients and its 

solution can be obtained by standard method. For example, bearing in mind the symmetry of 

the fields 

ܹሺݖሻ ൌ ଶܹ wଶሺݖሻ ൅ ସܹ wସሺݖሻ ൅
1
2
ሻݖ௠෍w୧ሺݏܴ

௜

න Fሺ߬ሻ x୧ሺ߬ሻ ݀߬
௭

଴
 (3.98)

where wiሺݖሻ ൌ ሼcoshሺݖߨሻ , ݖ coshሺݖߨሻ , sinhሺݖߨሻ , ݖ sinhሺݖߨሻሽ is a vector of fundamental 

solutions, Fሺݖሻ ൌ ଵܪൣ
ௗ௜௙ሺݖሻ ൅ ሻ൧ݖ෩ଵሺܪ

డ

డ௭
൫ܥ଴

ௗ௜௙ ൅  ଴൯ is the distribution of the magnetic forceߦ

density and xiሺݖሻ is expressed as 

xiሺݖሻ ൌ ൜w2ሺݖሻ െ
1
ߨ
w3ሺݖሻ െw1ሺݖሻ െw4ሺݖሻ ൅

1
ߨ
w1ሺݖሻ w3ሺݖሻൠ 

Making use of the expansions (3.92) and (3.97) it is not difficult to express (3.98) in terms of 

the expansion coefficients, however it presents a non-trivial task to actually satisfy the 
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boundary conditions (3.87) in this manner, because both coefficients of integration would 

depend on all the coefficients of the expansions. Additionally, the expression itself is too 

cumbersome and complicated to use. Instead, it is more convenient expand the hydrodynamic 

mode into a series of orthonormal antisymmetric functions ܵ௡ሺݖሻ 

ܹሺݖሻ ൌ ෍ݓෝ௡ܵ௡ሺݖሻ
ஶ

௡ୀଵ

 (3.99)

These antisymmetric Chandrasekhar functions ܵ௡ሺݖሻ [95] form a complete set for 

antisymmetric functions on the interval under consideration and are defined by the expression 

ܵ௡ሺݖሻ ൌ
1

√2
቎
sinh ቀ

ݖ௡ߤ
݈ ቁ

sinhሺߤ௡ሻ
െ
sin ቀ

ݖ௡ߤ
݈ ቁ

sinሺߤ௡ሻ
቏ (3.100)

where all characteristic values ݊ߤ are obtained from the transcendental relation 

cothሺߤሻ െ cotሺߤሻ ൌ 0 (3.101)

The convenient property of the Chandrasekhar functions is that they satisfy the hydrodynamic 

boundary conditions (3.87) and promote rapid convergence of the series (3.99) for typical 

flows. 

Using the expansions (3.91), (3.92), (3.97) and (3.99) the equation for the coefficients ߦመ଴,௡ is 

obtained from (3.94) 

መ଴,௡ߦ ൌ
1
2
൥෍෍ߦመଵ,௟ݓෝ௞൫Κ௞,௟

௡ െ ෤௖Λ௞,௟ߙ
௡ ൯

ஶ

௟ୀ଴

ஶ

௞ୀଵ

൅෍ݓෝ௞ܮ௡,௞

ஶ

௞ୀଵ

൩ (3.102)

with the coefficients in matrix form 

Κ௞,௠
௡ ൌ ࣠௞

௡ ቄcos ቀ
ݖ݉ߨ
݈
ቁቅ, Λ௞,௠

௡ ൌ ࣠௞
௡ሼ ௠݂ሺݖሻሽ, ௡,௞ܮ ൌ ࣠௞

௡ሼܥଵሺݖሻሽ (3.103)

The functional ࣠݇
݊ሼ݂ሺݖሻሽ is defined as a double integral 

࣠௞
௡ሼ݂ሺݖሻሽ ൌ

1
݈
න න ܵ௞ሺ߬ሻ

௭

଴
݂ሺ߬ሻ cos ቀ

ݖ݊ߨ
݈
ቁ ݀߬

ା௟

ି௟
(3.104) ݖ݀

The expression (3.104) is not convenient because the evaluation of multiple integrals is 

numerically complicated. It can be simplified by the integration by parts, so after some 

transformations it becomes 

࣠௞
௡ሼ݂ሺݖሻሽ ൌ 2න ܵ௞ሺݖሻ݂ሺݖሻ ቂߜ௡,଴ െ

ݖ
݈
sinc ቀ

ݖ݊ߨ
݈
ቁቃ

௟

଴
(3.105) ݖ݀
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where the sinc function has been used for the purpose of preserving the general form (3.105) 

for the zero-order coefficients as well and ߜ௡,଴ is the Kronecker’s delta. 

Projecting the equation (3.83) by making use of the expansions (3.91), (3.97) and (3.99) the 

equation for the first parallel mode of the auxiliary field is obtained 

መଵ,௡ߦ௡,௡ܦ െ෍ ෍ ෝ௞G௞,௠ݓመ଴,௠ߦ
௡

ஶ

௠ୀଵ

ஶ

௞ୀଵ

൅෍ݓෝ௞ܯ௡,௞

ஶ

௞ୀଵ

ൌ 0 (3.106)

with the diagonal coefficients 

௡,௡ܦ ൌ ൣ1 ൅ ௡,଴൧ߜ ൤ቀ
݊ߨ
݈
ቁ
ଶ
൅ ଶ൨ (3.107)ߨ

and the cross-coefficients 

G௞,௠
௡ ൌ

2
݈
݉ߨ
݈
න ܵ௞ሺݖሻ
௟

଴
sin ቀ

ݖ݉ߨ
݈
ቁ cos ቀ

ݖ݊ߨ
݈
ቁ (3.108) ݖ݀

௡,௞ܯ ൌ
2
݈
න ܵ௞ሺݖሻ
௟

଴

଴ܥ߲
ௗ௜௙

ݖ߲
cos ቀ

ݖ݊ߨ
݈
ቁ (3.109) ݖ݀

Finally, from (3.85) 

ෝ௡ܺ௡,௡ݓ െ ෝ௞ݓଶ෍ߨ2 ௡ܰ,௞
௪

ஶ

௞ୀଵ

െ ௠ݏଶܴߨ ൥ߙ෤௖ ൭෍ߦመଵ,௡ ௡ܰ,௞
ଵ

ஶ

௞ୀ଴

െ෍ ෍ መ଴,௠Ω௞,௠ߦመଵ,௞ߦ
௡ 	

ஶ

௠ୀଵ

ஶ

௞ୀ଴

൱ ൅෍ߦመ଴,௞ ௡ܰ,௞
଴

ஶ

௞ୀଵ

൩

ൌ െߨଶܴݏ௠ܨ௡ 

(3.110)

with the coefficients  

ܺ௡,௡ ൌ ቀ
௡ߤ
݈
ቁ
ସ
൅ ସ (3.111)ߨ

௡ܰ,௞
௪ ൌ

2
݈
න ܵ௞

ᇱᇱሺݖሻ
௟

଴
ܵ௡ሺݖሻ݀(3.112) ݖ

௡ܰ,௞
଴ ൌ

2
݈
݇ߨ
݈
න ଵܪ

ௗ௜௙ሺݖሻܵ௡ሺݖሻ
௟

଴
sin ൬

ݖ݇ߨ
݈
൰ (3.113) ݖ݀

௡ܰ,௞
ଵ ൌ

2
݈
න

଴ܥ߲
ௗ௜௙

ݖ߲ ௞݂ሺݖሻ
௟

଴
ܵ௡ሺݖሻ݀(3.114) ݖ

Ω௞,௠
௡ ൌ

2
݈
݉ߨ
݈
න ௞݂ሺݖሻ
௟

଴
sin ቀ

ݖ݉ߨ
݈
ቁ ܵ௡ሺݖሻ݀(3.115) ݖ

௡ܨ ൌ
2
݈
න ଵܪ

ௗ௜௙ሺݖሻ
଴ܥ߲

ௗ௜௙

ݖ߲

௟

଴
ܵ௡ሺݖሻ݀(3.116) ݖ
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It is convenient to rewrite the equations (3.102), (3.106) and (3.110) in matrix form, making 

use of the properties of the quadratic forms, since that is the order of the nonlinearity in the 

equations 

መ଴ߦ െ
1
2
෍ൣݓෝ்ሺΚ௡ െ ෤௖Λ௡ሻߙ መଵ൧ߦ

ஶ

௡ୀଵ

〈௡〉ܧ െ
1
2
ෝݓܮ ൌ 0 (3.117)

መଵߦܦ െ෍൫ݓෝ்G௡ መ଴൯ߦ

ஶ

௡ୀ଴

〈௡〉ܧ ൅ ෝݓܯ ൌ 0 (3.118)

ሺܺ െ ෝݓଶܰ௪ሻߨ2 െ ௠ݏଶܴߨ ൝ߙ෤௖ ൥ܰଵߦመଵ െ෍൫ߦመଵ
்Ω௡ መ଴൯ߦ

ஶ

௡ୀଵ

൩〈௡〉ܧ ൅ ܰ଴ߦመ଴ ൅ ൡܨ ൌ 0 (3.119)

where ܧ is the identity matrix and 〈௡〉 denotes the n-th column of the matrix. 

 

Figure 3.10 Solution of the stationary convection problem in parallel external field: from top 

to bottom – streamlines of the velocity field (color denotes magnitude of 

velocity), distributions of the concentration and demagnetizing field for the 

selected values of the magnetic Rayleigh number ܴݏ௠ ൌ 100, 200, 500 , 1000, 

2000, 5000 (left to right). 

The set of nonlinear matrix equations (3.117)-(3.119) can be solved by a number of numerical 

methods, for example the multidimensional Newton-Raphson method, with the desired 

number of the contributing modes and the required precision. Some obtained solutions are 

plotted on Figure 3.10 for the selected values of the magnetosolutal Rayleigh number ܴݏ௠. 
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The configuration of the calculated microconvective motions consists of a coordinated system 

of four convective rolls forming around each element of the grating, with the axes of the rolls 

oriented along the extent of the grating in the longitudinal direction. The transversal 

microconvective currents are sufficiently intense to cause significant deformation of the 

stationary distribution of the concentration field. The direction of the advective flux 

corresponds to that of the magnetodiffusive effect, stretching the photoabsorptive 

concentration microstructure in the direction of the external field. The corresponding decrease 

of the amplitude of the regular concentration perturbation would cause the considerable 

attenuation of the visibility of the photoabsorptive grating in the conditions of the experiment. 

In turn, increasing the value of the magnetosolutal Rayleigh number, the convective rolls 

undergo deformation along the transversal direction and the regions of most intensive 

convective motion are localized in the midplane of the layer on the edges of the grating 

element. 

While the intensity of the magnetic microconvection does indeed depend on the thickness of 

the layer, i.e. the aspect ratio of the photoabsorptive concentration microstructures, the 

magnetic force in the case of the parallel orientation of the externally applied magnetic field is 

mainly directed along the same coordinate. It is then possible to conclude that the 

normalization of the dimensional quantities by the half-period of the layer rather than its 

thickness seems more suitable under this configuration of the external field. In fact, the proper 

definition of the solutal Rayleigh number in photoabsorptive gratings has been a matter of 

debate. 

Consequently, in the parallel configuration of the applied magnetic field the parasitic 

microconvection affects primarily the parallel variation of the ferroparticle concentration and 

demagnetizing field and not the transversal gradients. This supposition allows obtaining 

interesting results with some further simplifications. Returning once again to the set of 

equations (3.117)-(3.119), the solution is considered only up to the first transversal mode. 

Assuming that the zero-order parallel mode ߦመ଴ of the auxiliary field constituting purely 

transversal variation has negligible role in the driving of the convective motion it is decoupled 

and the resulting system of algebraic equations is thus linearized. After some transformations 

the amplitude of a single hydrodynamic mode can then be expressed in explicit form 

ෝଵݓ ൌ
െߨଶܴݏ௠ܨଵ

ଵܺଵ െ ଶߨ2 ଵܰଵ
௪ ൅ ௠ݏଶܴߨ෤௖ߙ ቂ ଵܰ଴

ଵ ଴ଵܯ
଴଴ܦ

൅ ଵܰଵ
ଵ ଵଵܯ
ଵଵܦ

ቃ
 

(3.120)
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The integral coefficients in (3.120) depend only on the stationary diffusive state of the 

photoabsorptive grating, determined by the equilibrium of thermophoretic and 

magnetodiffusive fluxes, and can be calculated without difficulty according to the relations 

(3.107), (3.109), (3.111)-(3.116).  

In turn, the amplitudes of the first parallel mode of the auxiliary field ߦመଵ are obtained in 

simple form 

መଵ,଴ߦ ൌ െ
଴ଵܯ

଴଴ܦ
,ෝଵݓ መଵ,ଵߦ ൌ െ

ଵଵܯ

ଵଵܦ
ෝଵ (3.121)ݓ

The expression (3.120) characterizes the intensity of the convective motions and it is 

compared to the solution of the full spectral model. The calculated amplitudes of the 

transversal velocity ܹሺݖሻ (3.99) are plotted on Figure 3.11. 

 

Figure 3.11 Calculated amplitude of the transversal velocity, results of the spectral model 

(3.117)-(3.119) (symbols) and simplified expression (3.120) (lines) for ferrofluid 

layers with different thickness: (a) ݈ ൌ 0.25, (b) ݈ ൌ 0.5, (c) ݈ ൌ 1.0. 

Reasonable correspondence of the simplified analytical expression (3.120) with the numerical 

calculations has been obtained across an important range of the magnetosolutal Rayleigh 

numbers, which justifies the adopted assumptions about the mechanisms of the 

photoabsorptive magnetoconvection.  

3.1.6. Normal field 

The comparison with the numerical simulations by finite volume method integration of the 

full system of equations (3.64)-(3.66) demonstrates that the spectral model based on the 

leading mode approximation is quite sufficient in the important range of the magnetic 

Rayleigh numbers for the parallel configuration of the applied field, since the internal 

microconvection is driven by the bulk forces induced within the volume of the ferrofluid 

layer. It, however, would not present acceptable correspondence for the perpendicular 
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orientation of the external field, as in this case the discontinuity of the concentration field on 

the transversal sidewalls of the layer causes the corresponding jump of the magnetization and 

the appearance of strong gradients of the demagnetizing field perturbation in the vicinity of 

the boundary. The magnetic force then includes significant, in some cases defining, boundary 

contributions, which affect the corresponding configuration of the stationary microconvective 

flow. So, it is necessary to take into accounts additional lateral modes and construct a full 

spectral model for the purpose of solving the stationary convective-diffusive problem and 

determining the distributions of the perturbations of concentration, velocity and the magnetic 

field. 

The approach, which has been used for constructing the truncated model (3.117)-(3.119) can 

be generalized in a straightforward way. The expansion of the auxiliary field now includes 

additional contributions along the parallel direction 

,ݕሺߦ ሻݖ ൌ ෍ ෍ መ௠௡ߦ cos ቀ
ݖ݉ߨ
݈
ቁ cosሺݕ݊ߨሻ

ஶ

௠ୀ଴

ஶ

௡ୀ଴

 (3.122)

where the coefficient ߦመ଴଴ should be omitted due to the imposed condition of the conservation 

of the ferroparticles in the bulk of the layer. 

The perturbation ܪ෩ of the demagnetizing field is in turn determined exclusively by the 

advective perturbation of the concentration field and is formally expanded in a functional 

series 

,ݕ෩ሺܪ ሻݖ ൌ െߙ෤௖෍ ෍ መ௠௡ߦ ௠݂௡ሺݖሻ cosሺݕ݊ߨሻ
ஶ

௠ୀ଴

ஶ

௡ୀ଴

 (3.123)

where the contribution of the leading parallel mode is now preserved. The form of the 

functions ௠݂௡ሺݖሻ is not important at the moment - it depends on the configuration of the 

externally applied field and will be determined later. 

Finally, the single longitudinal component of the vorticity vector can be expressed similarly to 

(3.76) from its definition and the continuity condition of the divergence-free velocity field 

߱ሺݕ, ሻݖ ൌ ෍
1
݊ߨ

ቈ
߲ଶ

ଶݖ߲
െ ሺ݊ߨሻଶ቉ ௡ܹሺݖሻ sinሺݕ݊ߨሻ

ஶ

௡ୀଵ

 (3.124)

with the amplitudes of the parallel modes expressed through the Chandrasekhar functions 

with appropriate transversal symmetry 
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௡ܹሺݖሻ ൌ ෍ ሻݖෝ௠௡ܵ௠ሺݓ
ஶ

௠ୀଵ

 (3.125)

Projecting the governing equations onto the expansions and making use of the matrix 

formulation yields the system of nonlinear algebraic equations in the form 

ݎܶ ቄܺ௠௡
క መߦ ൅ ௠௡ܮ

క ෝቅݓ ൅෍෍ቂ൫ݓෝ〈௞〉൯
்
G௞௟
௠௡ መ〈௟〉ቃߦ

ஶ

௟ୀ଴

ஶ

௞ୀ଴

ൌ 0 (3.126)

ሼܺ௠௡ݎܶ
௪ ෝሽݓ ൅ ௠ݏܴ ൝ܨ௠௡ െ ௠௡ܮ൛ݎܶ

௪ መൟߦ ൅ መ〈௞〉൯ߦ෤௖෍෍ቂ൫ߙ
்
Ω௞௟
௠௡ መ〈௟〉ቃߦ

ஶ

௟ୀ଴

ஶ

௞ୀ଴

ൡ ൌ 0 (3.127)

with ܶݎ – matrix trace operator. 

The diagonal coefficients are determined according to the relations 

ܺ௠௡,௜௝
క ൌ ௝,௠൫1ߜ௜,௡ߜ ൅ ଴,௡൯൫1ߜ ൅ ଴,௠൯ߜ ൤ቀ

గ௠

௟
ቁ
ଶ
൅ ሺ݊ߨሻଶ൨  (3.128)

ܺ௠௡,௜௝
௪ ൌ ൫1 െ ௜,௡ߜ଴,௡൯ߜ

ଵ

గ௡
൜൤ቀ

ఓ೘
௟
ቁ
ସ
൅ ሺ݊ߨሻସ൨ ௝,௠ߜ െ 2ሺ݊ߨሻଶ ଵ

௟
׬ ܵ௠ሺݖሻ ௝ܵ

ᇱᇱሺݖሻ݀ݖ
ା௟
ି௟ ൠ  (3.129)

For convenience, making use of the functionals 

௠࣠௡
క ሼ݂ሺݖሻሽ ൌ ଵ

௟
׬ ׬ ݂ሺݖሻ cos ቀ

గ௠௭

௟
ቁ cosሺݕ݊ߨሻ ݖ݀

ା௟
ି௟ ݕ݀

ାଵ
ିଵ   (3.130)

௠࣠௡
௪ ሼ݂ሺݖሻሽ ൌ ଵ

௟
׬ ׬ ݂ሺݖሻܵ௠ሺݖሻ sinሺݕ݊ߨሻ ݖ݀

ା௟
ି௟ ݕ݀

ାଵ
ିଵ   (3.131)

The rest of the coefficients are defined as 

௠௡,௜௝ܮ
క ൌ Λ	௠௡,௜௝

క,ଵ െ Λ	௠௡,௜௝
క,ଶ  (3.132)

௠௡,௜௝ܮ
௪ ൌ Λ	௠௡,௜௝

௪,ଵ ൅ Λ	௠௡,௜௝
௪,ଶ ൅ ෤௖ൣΚߙ ௠௡,௜௝

௪,ଵ ൅ Κ ௠௡,௜௝
௪,ଶ ൧ (3.133)

and the quadratic forms 

G௞௟,௜௝
௠௡ ൌ Α௞௟,௜௝

௠௡ ൅ Β௞௟,௜௝
௠௡ ,     Ω௞௟,௜௝

௠௡ ൌ Μ௞௟,௜௝
௠௡ െ Ν௞௟,௜௝

௠௡  (3.134)

with 

Λ	௠௡,௜௝
క,ଵ ൌ ௠࣠௡

క ቄ
డ஼೏೔೑

డ௭ ௝ܵሺݖሻ cosሺݕ݅ߨሻቅ , Λ ௠௡,௜௝
క,ଶ ൌ ௠࣠௡

క ቄ
ଵ

గ௜

డ஼೏೔೑

డ௬

డௌೕ
డ௭
sinሺݕ݅ߨሻቅ (3.135)

Λ	௠௡,௜௝
௪,ଵ ൌ ௠࣠௡

௪ ቄሺ݅ߨሻ݌௝௜ሺݖሻ
డு೏೔೑

డ௭
sinሺݕ݅ߨሻቅ ,  Λ ௠௡,௜௝

௪,ଶ ൌ ௠࣠௡
௪ ቄ

డ௣ೕ೔
డ௭

డு೏೔೑

డ௬
cosሺݕ݅ߨሻቅ (3.136)

Κ	௠௡,௜௝
௪,ଵ ൌ ௠࣠௡

௪ ቄሺ݅ߨሻ ௝݂௜ሺݖሻ
డ஼೏೔೑

డ௭
sinሺݕ݅ߨሻቅ , Κ ௠௡,௜௝

௪,ଶ ൌ ௠࣠௡
௪ ቄ

డ௙ೕ೔
డ௭

డ஼೏೔೑

డ௬
cosሺݕ݅ߨሻቅ (3.137)

Α௞௟,௜௝
௠௡ ൌ ௠࣠௡

క ൜
௝௟݌߲
ݖ߲ ௜ܵሺݖሻ cosሺݕ݇ߨሻ cosሺݕ݈ߨሻൠ (3.138)
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Β௞௟,௜௝
௠௡ ൌ ௠࣠௡

క ቄ
గ௟

గ௞
ሻݖ௝௟ሺ݌

డௌ೔
డ௭
sinሺݕ݇ߨሻ sinሺݕ݈ߨሻቅ  (3.139)

Μ௞௟,௜௝
௠௡ ൌ ௠࣠௡

௪ ቄሺ݇ߨሻ݌௜௞ሺݖሻ
డ௙ೕ೗
డ௭

sinሺݕ݇ߨሻ cosሺݕ݈ߨሻቅ  (3.140)

Ν௞௟,௜௝
௠௡ ൌ ௠࣠௡

௪ ቄሺ݈ߨሻ
డ௣೔ೖ
డ௭ ௝݂௟ሺݖሻ cosሺݕ݇ߨሻ sinሺݕ݈ߨሻቅ  (3.141)

Finally, the unperturbed magnetic force 

௠௡ܨ ൌ ௠࣠௡
௪ ሼܨ଴ሺݕ, ,ݕ଴ሺܨ ሻሽ   withݖ ሻݖ ൌ

డ஼೏೔೑

డ௬

డு೏೔೑

డ௭
െ డ஼೏೔೑

డ௭

డு೏೔೑

డ௬
 (3.142)

The calculated convective patterns (Figure 3.12) are generally similar to the ones found for 

the parallel configuration of the applied magnetic field (Figure 3.10), taking into account that 

the direction of the convective currents is reversed. 

 

Figure 3.12 Solution of the stationary convection problem in perpendicular external field: 

from top to bottom – streamlines of the velocity field (color denotes magnitude 

of velocity), distributions of the concentration and demagnetizing field for the 

selected values of the magnetic Rayleigh number ܴݏ௠ ൌ 100, 200, 500 , 1000, 

2000, 5000 (left to right). 

In this configuration the induced advective fluxes also enhance the mass transport within the 

element of the grating along the direction of the applied field (this time the transversal 

direction), the effect, which can be interpreted phenomenologically in terms of the effective 

magnetodiffusion as the increase of the magnetic diffusion coefficient or correspondingly as 

the decrease of the effective magnetic Soret coefficient. In turn, within the plane of the layer, 
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i.e. the only plane, which can be observed in real measurements, the direction of the advective 

mass transport is actually opposite to that of the magnetodiffusive fluxes and the effective 

Soret coefficient should increase along the parallel direction. Consequently, the visibility of 

the photoabsorptive grating would be improved by the presence of magnetoconvection as 

compared with the diffusive base state.  

At higher values of the magnetosolutal Rayleigh number the convective rolls experience 

deformation and the most intensive convective motions are concentrated primarily near the 

boundaries of the layer in between the elements of the concentration grating. In turn, a region 

of stagnation develops within the core of the grating element and the intensification of mass 

transport begins to saturate. In this regard the difference in the resulting convective patterns 

reflects the distinction in the origin of the magnetic force as compared with the parallel 

orientation of the applied field. 

3.1.7. Determination of transport coefficients 

Magnetically driven microconvection emerging within the photoabsorptive concentration 

microstructures under the action of the external magnetic field can significantly influence the 

stationary shape of the concentration gratings under certain conditions, but can as well affect 

their relaxation behavior. In contrast to the laterally connecting circulation which would take 

place within the plane of the ferrofluid layer as a consequence of the microconvective 

instability of the flat periodic concentration front (Section 2.2), the transversal parasitic 

microconvection emerges subtly without a threshold and does not break the mirror or 

translational symmetry of the grating as the undulation and peristaltic modes may do in the 

supercritical regime above the threshold of the instability. Consequently, it is technically 

complicated to distinguish the principal manifestation of this type of microconvection in the 

concentration gratings under the action of the magnetic field as opposed to regular 

magnetodiffusion or magnetic thermodiffusion by the qualitative differences of the transport 

processes. In this respect, the hydrodynamic microstructures can be considered integral 

constituents of the photoabsorptive convective-diffusive magnetic microstructures. Thus, 

there remains the possibility to draw the quantitative distinction in the stationary regime or the 

dynamics of the relaxation process. For this purpose, a suitable simplified relaxation model 

can be formulated along the lines of Section 2.2.3 for the parallel configuration of the 

externally applied field, considering the principal mechanisms of the convective-diffusive 

relaxation of concentration. 
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The relaxation of the induced photoabsorptive concentration perturbation driven by the 

magnetodiffusion and magnetoconvection after the switching off of the pumping laser beams 

and the consequent immediate relaxation of the thermal modulation is described by the 

dynamic equation (1.37) 

ܥ߲
ݐ߲

ൌ ∆൫ܥ െ ௣ࣧ௛ܪ൯ െ (3.143) ܥસࢁ

From the general considerations it is apparent that the microconvective fluxes attempt to 

destroy the perturbation that drives them. From (3.98) and the stationary profiles (Figure 3.10) 

it becomes clear that the zero order lateral concentration mode remains virtually unchanged 

and the principal parallel mode is significantly attenuated by the advective transport in the 

stationary regime. It is then convenient to consider only the magnetoconvective relaxation of 

the first parallel modes and assume that the zero-order modes are subjected exclusively to the 

diffusive relaxation. For this purpose the time-dependent concentration field and 

demagnetizing field are expressed as the perturbations ܥሚ and ܪ෩ of the diffusive base state 

(3.39) 

,ݕሺܥ ,ݖ ሻݐ ൌ ଴ܥ
ௗ௜௙ሺݖ, ሻݐ ൅ ଵܥൣ

ௗ௜௙ሺݖ, ሻݐ ൅ ,ݖሚభሺܥ ሻ൧ݐ cosሺݕߨሻ (3.144)

,ݕሺܪ ,ݖ ሻݐ ൌ ଵܪൣ
ௗ௜௙ሺݖ, ሻݐ ൅ ,ݖ෩భሺܪ ሻ൧ݐ cosሺݕߨሻ (3.145)

where ܪଵ
ௗ௜௙ – is the first parallel mode of the demagnetizing field, corresponding to (3.39) 

In turn, a single parallel mode is retained from the time dependent velocity field ࢁ with 

components 

ܷ௬ሺݕ, ,ݖ ሻݐ ൌ ܸሺݖ, ሻݐ sinሺݕߨሻ (3.146)

௭ܷሺݕ, ,ݖ ሻݐ ൌ ܹሺݖ, ሻݐ cosሺݕߨሻ (3.147)

The transversal profile of the parallel component ܷݕ of velocity is expressed from the 

continuity condition in accordance with (3.74) and the no-slip boundary conditions (3.87) 

remain on the sidewall of the layer. The transversal velocity mode ܹሺݖ,  ሻ is approximated byݐ

the first term of the expansion (3.99) in antisymmetric Chandrasekhar functions and the 

spatial and temporal variables are separated in the form 

ܹሺݖ, ሻݐ ൌ ሻݐෝଵሺݓ ଵܵሺݖሻ (3.148)

Considering the nonlinear term of (3.143) in the same way as previously in Section 2.2.3, it is 

reasonable to retain only the most significant transversal modes of the principal parallel mode 
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of the auxiliary field ߦభሺݖ, ሻݐ ൌ ሚభܥ െ ௣ࣧ௛ܪ෩భ perturbation, which are the zero-order and the 

second-order modes 

,ݖభሺߦ ሻݐ ൌ ሻݐመଵ,଴ሺߦ ൅ ሻݐመଵ,ଶሺߦ cos ൬
ݖߨ2
݈
൰ (3.149)

with the corresponding time-dependent amplitudes ߦመଵ,଴ and ߦመଵ,ଶ. 

From the employed expansions for the transversal profiles of the first parallel modes of the 

auxiliary field (3.149) and the demagnetizing field perturbations (3.92), the definition of the 

auxiliary field allows obtaining the periodic part of the concentration perturbation with 

account for the adopted truncation of the modes 

,ݖሚభሺܥ ሻݐ ൌ ሻݖ଴ሺ݌ሻݐመଵ,଴ሺߦ ൅ ሻ (3.150)ݖଶሺ݌ሻݐመଵ,ଶሺߦ

where the form of the expansion functions ݌௡ሺݖሻ	is expressed as 

ሻݖ௡ሺ݌ ൌ cos ቀ
ݖ݊ߨ
݈
ቁ െ ሺ݀௠ െ 1ሻ ௡݂ሺݖሻ (3.151)

with ௡݂ሺݖሻ defined by (3.93) 

Making use of the chosen ansatz (3.148)-(3.150), the concentration balance equation (3.143) 

is projected onto the selected modes. Taking into account that the contribution of the non-

diagonal elements on the LHS is much less than that of the diagonal elements and can be 

neglected in comparison 

଴ܤ
መଵ,଴ߦ߲
ݐ߲

ൌ െߨଶߦመଵ,଴ሺݐሻ െ ሻ (3.152)ݐ଴ሺܩሻݐෝଵሺݓ

ଶܤ
መଵ,ଶߦ߲
ݐ߲

ൌ െ ቈ൬
ߨ2
݈
൰
ଶ

൅ ଶ቉ߨ ሻݐመଵ,ଶሺߦ െ ሻ (3.153)ݐଶሺܩሻݐෝଵሺݓ

with the coefficients 

௡ܤ ൌ
1

൫1 ൅ ௡,଴൯ߜ

1
݈
න ሻݖ௡ሺ݌ cos ቀ

ݖ݊ߨ
݈
ቁ

ା௟

ି௟
(3.154) ݖ݀

ሻݐ௡ሺܩ ൌ
1

൫1 ൅ ௡,଴൯ߜ

1
݈
න

߲
ݖ߲
଴ܥൣ

ௗ௜௙ሺݖ, ሻ൧ݐ ଵܵሺݖሻ cos ቀ
ݖ݊ߨ
݈
ቁ

ା௟

ି௟
(3.155) ݖ݀

and the expression for the hydrodynamic mode is obtained from (3.119) after some 

simplifications 

ሻݐෝଵሺݓ ൌ െ
௠ݏଶܴߨ

ଵܺଵ െ ଶߨ2 ଵܰଵ
௪ ൛ܨଵሺݐሻ െ ሻݐመଵ,଴ሺߦ෤௖ൣߙ ଵܰ଴

ଵ ሺݐሻ ൅ ሻݐመଵ,ଶሺߦ ଵܰଶ
ଵ ሺݐሻ൧ൟ (3.156)



 
 

90 
 

The coefficients of (3.156) are determined from the relations (3.111)-(3.116) but are now 

time-dependent since the base state is diffusively relaxing. 

The Lorenz-type system (3.152)-(3.156) can be integrated numerically after applying the 

appropriate initial conditions for the selected modes. The values of ߦመଵ,଴ and ߦመଵ,ଶ at the initial 

time are obtained from the solution of the stationary system (3.117)-(3.119). In turn, the 

hydrodynamic mode ݓଵଵ does not possess a dynamic equation and so does not require an 

initial condition. 

The effective transport coefficients can be introduced phenomenologically to account for the 

influence of the magnetic microconvection on the photoabsorptive phoretic transport.  

The effective coefficient of magnetic diffusion can be defined as the relaxation rate of the 

primary parallel concentration mode 

ሻݐ௘௙௙ሺߜ ൌ െ
1

ሻݐሺܬଶߨ
ܬ߲
ݐ߲
, ሻݐሺܬ ൌ ඨන ቈන ,ݕሺܥ ,ݖ ሻݐ cosሺݕߨሻ ݕ݀

ଵ

ିଵ
቉
ଶ

ݖ݀
௟

ି௟
 (3.157)

and is consistent with the similar definitions (2.61) and (3.63). 

The dynamics of the calculated signals ܬሺݐሻ can be determined from the simplified model 

(3.152)-(3.156) by appropriate time stepping and from numerical simulations by finite volume 

integration of the full system of equations.  

In turn, the effective Soret coefficient can be determined from the stationary state of the 

grating as 

௘௙௙ߪ ൌ
ܬ
଴ܬ

 (3.158)

where the calculated signals 0ܬ and ܬ - are the L2-norms (3.157) of the primary parallel 

concentration mode determined accordingly for the purely diffusive (3.26) and convective-

diffusive formation of the grating.  

The convective stationary state is obtained from numerical calculations according to the 

spectral model (3.117)-(3.119) for the parallel and (3.126)-(3.127) for the perpendicular 

configuration of the applied magnetic field. In the case of the parallel orientation of the 

external field a good estimate of the effective Soret coefficient can be obtained making use of 

the analytical expression (3.121). 
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The calculated values of the effective transport coefficients are plotted in Figure 3.13. The 

effective parallel relaxation rate is plotted in relation to the corresponding coefficient of 

magnetodiffusion ݀଴ (2.20) calculated in the framework of thin layer approximation under the 

conditions of purely phoretic formation and relaxation of the grating. For parallel orientation 

of the applied magnetic field ݀଴ is close to ݀௠ (Figure 3.8), otherwise it approaches 1 for the 

perpendicular configuration (Figure 3.9). 

 

Figure 3.13 Influence of microconvection on the effective transport coefficients: dependence 

of the Soret coefficient (left) and relaxation rate (right) on the magnetosolutal 

Rayleigh number for different orientations of the applied field: symbols – 

numerical calculations, bold lines – corresponding simplified models (3.121) and 

(3.152)-(3.156). 

The decrease of the effective Soret coefficient in the parallel field configuration and the 

increase for the perpendicular orientation of the external field is the direct consequence of the 

magnetoconvective fluxes attempting to erase the concentration grating in the former case and 

accentuate it in the latter one. The same conclusion applies to the effective diffusion 

coefficient. Unfortunately the simplified Lorenz-type model predicts the saturation of the 

relaxation rate, which does not take place according to the more detailed numerical 

simulations. Otherwise, it gives an acceptable approximation for the effective diffusion 

coefficient in the parallel configuration of the external field within an important range of the 

values of the magnetic Rayleigh number. 

The intensification of magnetodiffusion in the parallel direction and a slight decrease of the 

effective diffusion coefficient in the perpendicular configuration conform to the predictions of 

the phoretic theory with account for the interparticle interactions (Figure 1.1, right). In this 

regard the influence of microconvection is also very similar, which makes the separation of 
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the two effects in real observations a complicated task. Further increasing the magnetosolutal 

Rayleigh number, the effective diffusion coefficient exceeds the coefficient of 

magnetodiffusion many times while the effective Soret coefficient determined from the 

calculated convective-diffusive stationary state experiences saturation with respect to the 

control parameter rather quickly. 
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3.2. Stability 

3.2.1. Definition of the problem 

The formation of magnetic microconvection within the photoabsorptive microstructures in 

ferrofluid layers and the shape of the emerging convective microstructures is still a matter of 

debate. In fact, some observed effects attributed to the influence of the magnetoconvection 

can under some circumstances be explained by complex magnetic interactions within the 

ferrocolloid [68]-[71]. There is then an obvious necessity for any prospective model of the 

photoabsorptive magnetoconvection to discern the peculiarities of the microconvective 

transport and suggest the possibility to qualitatively identify its presence in real observations.  

The form of the transversal parasitic microconvection suggested in the previous section 

allows neither to ascertain its influence on the photoabsorptive concentration grating nor even 

to determine its existence in the conditions of the experiment. The influence of the advective 

fluxes partially coincides with the expected direction of the phoretic transport, complicating 

the unambiguous identification of the source of the quantitative discrepancies. Also, the 

convective microstructure consisting of a coordinated system of convective rolls with axes 

parallel to the axis of translational symmetry of the grating possesses the same symmetry in 

the parallel and longitudinal directions, impeding direct observation. The consequent inability 

of the proposed model to suggest an acceptable criterion for the identification of the magnetic 

microconvection in extended systems is not satisfactory; the convective motion is in all senses 

“invisible” [70].  

Recognizing that the formation of the magnetoconvection is an inherent feature of the 

photoabsorptive ferroparticle concentration microstructures rather than the property of their 

convective stability, the notion of the convective-diffusive microstructures appears in a 

natural way. Unavoidably, the issue of the hydrodynamic stability of these formations is 

brought up as well. Clearly, the compliance with the formulated system of hydrodynamic 

equations does not necessarily imply the physical realisability of the convective regime unless 

it is stable to perturbations [90].  

The establishing of the hydrodynamic instability inevitably leads to the breaking of the spatial 

or temporal symmetries of the convective pattern. If the destabilization of the photoabsorptive 

microstructure can be detected in real conditions, the parameters of the critical perturbation 

may yield important information on its internal structure and the current transport regime. The 

consideration of the stability of the convective-diffusive microstructures is then essential both 
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to determine the feasibility of the existence of the magnetic microconvection and to identify 

its presence in real observations. 

The secondary stability and evolution of the photoabsorptive convective-diffusive 

microstructures is governed by the system of equations (1.36)-(1.39). At the present for the 

sake of generality it is convenient to refrain from discussing the configuration of the external 

field and the exact form of the corresponding distribution of the induced demagnetizing field. 

The consideration of the linear stability problem of the extended stationary microstructure 

will be carried out for the purpose of determining the critical parameters of the threshold. 

Applying infinitesimal perturbations ෤ܿ, ෩݄ and ෥࢛ to the stationary profiles ܪ ,ܥ and ࢁ 

ܿ ൌ ,ݕሺܥ ሻݖ ൅ ܿ̃ሺݔ, ,ݕ ሻ (3.159)ݖ

ܪ ൌ ,ݕሺܪ ሻݖ ൅ ෨݄ሺݔ, ,ݕ ሻ (3.160)ݖ

࢛ ൌ ,ݕሺࢁ ሻݖ ൅ ෥࢛ሺݔ, ,ݕ ሻ (3.161)ݖ

a set of linearized equations is obtained 

െસ݌ ൅ ∆෥࢛ ൅ ܪ௠൫ܿ̃સݏܴ ൅ સ෨݄൯ܥ ൌ 0 (3.162)

સ ∙ ෥࢛ ൌ 0 (3.163)
߲ܿ̃
ݐ߲
൅ સܿ̃ࢁ ൅ ෥࢛સܥ ൌ ∆൫ܿ̃ െ ௣ࣧ௛

෨݄൯ (3.164)

The most general form of ෥࢛, which satisfies the continuity condition (3.163) is  

෥࢛ ൌ સ ൈ સ ൈ ሺΦܢ܍ሻ ൅ સ ൈ ሺΨܢ܍ሻ (3.165)

The three vector components of ෥࢛ have been replaced by two scalar potentials Ψ and Φ. The 

relation (3.165) is usually referred to as the plane poloidal-toroidal decomposition and is 

frequently used for the analysis of three-dimensional problems. The form (3.165) is valid only 

assuming that no integral cross-flow is present in the system. If such flow exists, the 

expression must be modified to include the mean flow as well. This is not necessary for the 

present case. 

Making use of the hydrodynamic scalar potentials Ψ and Φ the components of the 

hydrodynamic perturbation ෥࢛ ൌ ܠ܍௫ݑ ൅ ܡ܍௬ݑ ൅  of the velocity field can be expressed ܢ܍௭ݑ

௫ݑ ൌ
∂Ψ
ݕ∂

൅
∂ଶΦ
ݖ∂ ݔ∂

௬ݑ     , ൌ െ
∂Ψ
ݔ∂

൅
∂ଶΦ
ݖ∂ ݕ∂

 (3.166)

௭ݑ ൌ െ∆ୄΦ (3.167)

where ∆٣ൌ
∂2

2ݔ∂
൅ ∂2

2ݕ∂
 is the transverse Laplacian. 
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The equations for the potentials Ψ and Φ are obtained correspondingly by taking the single 

and double curl of (3.162) and projecting the result on the transversal axis ܢ܍. After some 

transformations 

∆∆ୄΨ െ ׏௠ൣݏܴ ൈ ൫ܿ̃સܪ ൅ સ෨݄൯൧ܥ
௭
ൌ 0 (3.168)

∆∆∆ୄΦ ൅ ׏௠ൣݏܴ ൈ ׏ ൈ ൫ܿ̃સܪ ൅ સ෨݄൯൧ܥ
௭
ൌ 0 (3.169)

with 

׏ൣ ൈ ൫ܿ̃સܪ ൅ સ෨݄൯൧ܥ
௭
ൌ
ܪ߲
ݕ߲

߲ܿ̃
ݔ߲

െ
ܥ߲
ݕ߲

߲ ෨݄

ݔ߲
 (3.170)

׏ൣ ൈ ׏ ൈ ൫ܿ̃સܪ ൅ સ෨݄൯൧ܥ
௭
ൌ 

ቈ
ܥ߲
ݖ߲

∆ୄ ൅
∂ଶܥ
ݖ∂ ݕ∂

∂
ݕ∂

െ
∂
ݕ∂

൬
ܥ∂
ݕ∂

∂
ݖ∂
൰቉ ෨݄ െ ቈ

ܪ߲
ݖ߲

∆ୄ ൅
∂ଶܪ
ݖ∂ ݕ∂

∂
ݕ∂

െ
∂
ݕ∂

൬
ܪ∂
ݕ∂

∂
ݖ∂
൰቉ ܿ̃ 

(3.171)

Subsequently, in the linear regime of exponential amplification of the infinitesimal 

perturbations ܿ̃, ෨݄ and ෥࢛ the time dependence of their amplitudes is separated as ~݁ఠ௧ with ߱ 

- the growth increment. Assuming that the exchange of stabilities takes place at the threshold 

߱ ൌ 0 and introducing the auxiliary field ߦሚ ൌ ܿ̃ െ ௣ࣧ௛
෨݄, the equation (3.164) becomes 

ሚߦ∆ െ ሚߦસ൫ࢁ ൅ ௣ࣧ௛
෨݄൯ െ ෥࢛સܥ ൌ 0 (3.172)

The boundary conditions for the hydrodynamic potentials on the sidewall of the layer follow 

from the imposed no-slip condition ሾ෥࢛ ൌ 0ሿേ௟ on the velocity perturbation. Bearing this in 

mind, the required boundary conditions are obtained from (3.166)-(3.167) 

ሾΦ ൌ 0ሿേ௟,   ൤
∂Φ
∂z

ൌ 0൨
േ௟

 (3.173)

ሾΨ ൌ 0ሿേ௟ (3.174)

In turn, the boundary condition for the perturbation of the auxiliary field ߦሚ is the 

homogeneous Neumann condition 

ቈ
ሚߦ∂

∂z
ൌ 0቉

േ௟

 (3.175)

The set of linear equations (3.168)-(3.169) and (3.172) with the boundary conditions (3.173)-

(3.175) will yield the dispersion relation and eventually the critical parameters of the 

threshold of the instability. For the purpose of obtaining the critical threshold the Galerkin 

method can be applied and the fields are expanded in appropriate functional series with 

account for their symmetry.  
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In the following it is assumed that the most dangerous direction is the longitudinal direction 

and the symmetry breaking may take place exclusively along the extent of the grating, 

destroying the longitudinal translational symmetry, while the symmetry across the midplane 

of the layer and the periodicity in the parallel direction is preserved. This assumption is in 

agreement with the corresponding numerical simulations of the evolution of the grating. In 

that case the auxiliary field is expressed with account to the boundary condition (3.175) as 

,ݔሚሺߦ ,ݕ ሻݖ ൌ ෍ ෍ መ௠௡ߦ cos ቀ
ݖ݉ߨ
݈
ቁ cosሺݕ݊ߨሻ sinሺ݇௫ݔሻ

ஶ

௠ୀ଴

ஶ

௡ୀ଴

 (3.176)

with ݇௫ - the longitudinal wave number of the emerging unstable perturbation. 

The perturbation of the demagnetizing field is in turn expressed in series of arbitrary functions 

݂݉݊ሺݖሻ along the transversal directions 

෨݄ሺݔ, ,ݕ ሻݖ ൌ െߙ෤௖෍ ෍ መ௠௡ߦ ௠݂௡ሺݖሻ cosሺݕ݊ߨሻ sinሺ݇௫ݔሻ
ஶ

௠ୀ଴

ஶ

௡ୀ଴

 (3.177)

The necessary form of ݂݉݊ሺݖሻ depends on the configuration of the external field and will be 

discussed separately. 

For convenience, the perturbation of concentration is also formally expanded in series of 

 ሻݖ௠௡ሺ݌

ܿ̃ሺݔ, ,ݕ ሻݖ ൌ ሚߦ ൅ ௣ࣧ௛
෨݄ ൌ ෍ ෍ ሻݖ௠௡ሺ݌መ௠௡ߦ cosሺݕ݊ߨሻ cosሺ݇௫ݔሻ

ஶ

௠ୀ଴

ஶ

௡ୀ଴

 (3.178)

with ݌௠௡ሺݖሻ expressed as 

ሻݖ௠௡ሺ݌ ൌ cos ቀ
ݖ݉ߨ
݈
ቁ െ ሺ݀௠ െ 1ሻ ௠݂௡ሺݖሻ (3.179)

The hydrodynamic potential Φ is expanded in antisymmetric Chandrasekhar functions ܵ௠ሺݖሻ 

Φሺݔ, ,ݕ ሻݖ ൌ ෍ ෍ ߶෠௠௡ܵ௠ሺݖሻ cosሺݕ݊ߨሻ sinሺ݇௫ݔሻ
ஶ

௠ୀଵ

ஶ

௡ୀ଴

 (3.180)

In turn, the potential Ψ retains the symmetry across the midplane of the layer. Considering the 

boundary condition (3.174) it is expressed in the following form   

Ψሺݔ, ,ݕ ሻݖ ൌ ෍ ෍ ෠߰௠௡ cos ቈ
ሺ2݉ߨ ൅ 1ሻݖ

2݈
቉ sinሺݕ݊ߨሻ cosሺ݇௫ݔሻ

ஶ

௠ୀ଴

ஶ

௡ୀଵ

 (3.181)
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Making use of the expansions (3.176)-(3.181) and projecting the set of equations (3.168)-

(3.169) and (3.172) a system of linear equations is obtained in matrix form 

߶෠௠௡ܦ௠௡
థ െ෍߶෠௞௡Α௞

௠௡

ஶ

௞ୀଵ

െ መ௜௝Μ௜௝ߦ௠෍෍ݏܴ
௠௡

ஶ

௝ୀ଴

ஶ

௜ୀ଴

ൌ 0 (3.182)

෠߰௠௡ܦ௠௡
ట െ መ௜௝Ν௜௝ߦ௠෍෍ݏܴ

௠௡

ஶ

௝ୀ଴

ஶ

௜ୀ଴

ൌ 0 (3.183)

௠௡ܦመ௠௡ߦ
క ൅෍෍൫ߦመ௜௝Β௜௝

௠௡ ൅ ߶෠௜௝P௜௝
௠௡ ൅ ෠߰௜௝Q௜௝

௠௡൯

ஶ

௝ୀ଴

ஶ

௜ୀ଴

ൌ 0 (3.184)

with diagonal elements ܦ௠௡
థ ௠௡ܦ ,

ట ௠௡ܦ ,
క , non-diagonal elements Α௞

௠௡, Β௜௝
௠௡ and cross-elements 

Μ௜௝
௠௡, Ν௜௝

௠௡, P௜௝
௠௡, Q௜௝

௠௡: 

௠௡ܦ
థ ൌ ሺ1 ൅ ሻଶ݊ߨ௡଴ሻሾሺߜ ൅ ݇௫ଶሿ ൜ቀ

௠ߤ
݈
ቁ
ସ
൅ ሾሺ݊ߨሻଶ ൅ ݇௫ଶሿଶൠ (3.185)

௠௡ܦ
ట ൌ ሺ1 െ ሻଶ݊ߨ௡଴ሻሾሺߜ ൅ ݇௫ଶሿ ൝ቈ

ሺ2݉ߨ ൅ 1ሻ
2݈

቉
ଶ

൅ ሺ݊ߨሻଶ ൅ ݇௫ଶൡ (3.186)

௠௡ܦ
క ൌ ሺ1 ൅ ௠଴ሻሺ1ߜ ൅ ௡଴ሻߜ ൤ቀ

݉ߨ
݈
ቁ
ଶ
൅ ሺ݊ߨሻଶ ൅ ݇௫ଶ൨ (3.187)

non-diagonal elements 

Α௞
௠௡ ൌ ሺ1 ൅ ሻଶ݊ߨ௡଴ሻሾሺߜ ൅ ݇௫ଶሿଶ

2
݈
න ܵ௠ሺݖሻܵ௞

ᇱᇱሺݖሻ݀ݖ
ା௟

ି௟
 (3.188)

Β௜௝
௠௡ ൌ

1
݈
න න ൤ܹ

௜௝݌∂
ݖ∂

cosሺݕ݆ߨሻ െ ሺ݆ߨሻܸ݌௜௝ sinሺݕ݆ߨሻ൨ cos ቀ
ݖ݉ߨ
݈
ቁ cosሺݕ݊ߨሻ ݖ݀ݕ݀

ାଵ

ିଵ

ା௟

ି௟

 (3.189)

and cross-elements 

௠௡ܯ ൌ ൥ሾሺ݊ߨሻଶ ൅ ݇௫ଶሿ ൬݌௠௡
ܪ∂
ݖ∂

൅ ෤௖ߙ ௠݂௡
ܥ∂
ݖ∂
൰ ൅

߲ଶܪ
ଶݕ߲

௠௡݌∂

ݖ∂

൅ ෤௖ߙ
߲ଶܥ
ଶݕ߲

∂ ௠݂௡

ݖ∂
൩ cosሺݕ݊ߨሻ ൅ 

൅ሺ݊ߨሻ
∂
ݕ∂

൤൬݌௠௡
ܪ߲
ݖ∂

െ ܪ
௠௡݌∂

ݖ∂
൰ ൅ ෤௖ߙ ൬ ௠݂௡

ܥ߲
ݖ∂

െ ܥ
∂ ௠݂௡

ݖ∂
൰൨ sinሺݕ݊ߨሻ 

(3.190)

Μ௜௝
௠௡ ൌ

1
݈
න න ,ݕ௜௝ሺܯ ሻݖሻܵ௠ሺݖ cosሺݕ݊ߨሻ ݖ݀ݕ݀

ାଵ

ିଵ

ା௟

ି௟
 (3.191)



 
 

98 
 

Ν௜௝
௠௡ ൌ

݇௫
݈
න න ൬݌௜௝

ܪ∂
ݕ∂

൅ ෤௖ߙ ௜݂௝
ܥ∂
ݕ∂
൰ cosሺݕ݆ߨሻ cos ቈ

ሺ2݉ߨ ൅ 1ሻݖ
2݈

቉ sinሺݕ݊ߨሻ ݖ݀ݕ݀

ାଵ

ିଵ

ା௟

ି௟

 (3.192)

P௜௝
௠௡ ൌ

1
݈
න න ൜ሾሺ݆ߨሻଶ ൅ ݇௫ଶሿ

ܥ∂
ݖ∂ ௜ܵ cosሺݕ݆ߨሻ

ାଵ

ିଵ

ା௟

ି௟

െ ሺ݆ߨሻ
ܥ∂
ݕ∂

߲ ௜ܵ

ݖ߲
sinሺݕ݆ߨሻൠ cos ቀ

ݖ݉ߨ
݈
ቁ cosሺݕ݊ߨሻ  ݖ݀ݕ݀

(3.193)

Q௜௝
௠௡ ൌ

݇௫
݈
න න ቊ

ܥ∂
ݕ∂

cos ቈ
ሺ2݅ߨ ൅ 1ሻݖ

2݈
቉ sinሺݕ݆ߨሻቋ cos ቀ

ݖ݉ߨ
݈
ቁ cosሺݕ݊ߨሻ ݖ݀ݕ݀

ାଵ

ିଵ

ା௟

ି௟

 (3.194)

The corresponding integrals (3.188)-(3.194) can be evaluated numerically without principal 

difficulties. The threshold of the instability and the parameters of the critical perturbation are 

determined from the dispersion relation, which is obtained by the requirement that the 

determinant of the linear system (3.182)-(3.184) is equal to zero, permitting the existence of 

non-trivial solutions.  

What remains now is the determination of the form of the expansion functions ௠݂௡ሺݖሻ, which 

depends on the configuration of the applied external field. The equations for the scalar 

potential of the demagnetizing field perturbation have the form (3.5) with the boundary 

condition on the transversal sidewalls of the layer (3.6). The external potential ෤߮௘௫௧ in the free 

space outside the layer is a harmonic function.  

Considering the expansion (3.177) and taking into account that the potential ෤߮௘௫௧ vanishes at 

infinity it is similarly expanded on the upper half-plane 

෤߮௘௫௧ሺݔ, ,ݕ ሻݖ ൌ ෍ ො߮௡݁ି௦೙௭݁௜
ሺగ௡௬ା௞ೣ௫ሻ

ஶ

௡ୀିஶ

 (3.195)

with ݏ௡ ൌ ඥሺ݊ߨሻଶ ൅ ݇௫ଶ. 

The equations for the expansion functions ௠݂௡ሺݖሻ of the demagnetizing field are then 

obtained from (3.5) making use of the expansions (3.176) and (3.177). The solution of the 

resulting system of linear differential equations with constant coefficients can be found 

without difficulty for either of the two principal configurations of the external field and 

expressed in the form 

௠݂௡ሺݖሻ ൌ
1
݀௭
൤ሺെ1ሻ௠ାଵߚ௠௡

௡ݏ
݃௡

coshሺݎ௡ݖሻ ൅ ௠௡ߢ cos ቀ
ݖ݉ߨ
݈
ቁ൨ (3.196)
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with ݎ௡ ൌ ට
ௗ೤ሺగ௡ሻమା௞ೣ

మ

ௗݖ
 and ݃௡ ൌ ௡ݎ sinhሺݎ௡݈ሻ ൅ ௡ݏ coshሺݎ௡݈ሻ, the factor ݊݉ߢ is 

ሺగ௡ሻమ

௥೙
మାቀഏ೘

೗
ቁ
మ for 

the parallel configuration of the external field and 
ቀ
ഏ೘
೗
ቁ
మ

௥೙
మାቀഏ೘

೗
ቁ
మ for the perpendicular one. The 

multiplier ݊݉ߚ equals to ݊݉ߢ in the former case and ݊݉ߢ െ 1 in the latter. 

Making use of the set of functions (3.196) and forming the determinant of the linear system 

(3.182)-(3.184) yields the dispersion relation and the critical parameters of the instability can 

be subsequently determined. Considering the linear magnetoconvective stability of the 

photoabsorptive formations some terminology of Section 2.2.2 will be used throughout the 

rest of this section.  

3.2.2. Instability in ∥ field 

The previous analysis of the linear stability of photoabsorptive gratings induced in thin 

ferrofluid layers has demonstrated that in the parallel configuration of the external field the 

most dangerous perturbation corresponds to the peristaltic deformation of the concentration 

front. The associated convective currents are a coordinated system of vortices located on the 

fronts of the concentration profile of the grating (Figure 2.5). 

In turn, the considering of the transversal profile in ferrofluid layers of finite thickness 

contributes additional dimension to the shape of the critical perturbation, which was 

previously reduced by gap averaging. The form of the emerging convective flow now 

includes transversal currents as well. Still, the calculations show that the critical perturbation 

of the photoabsorptive grating still retains the symmetries and parallel periodicity of the 

peristaltic perturbation also in thick layers. 

For the case of the parallel field good results have been obtained with expansions up to the 

leading mode of the initial grating 

,ݔሚሺߦ ,ݕ ሻݖ ൌ ሻݖ஼ோሺߦ sinሺ݇௫ݔሻ ൅ ሻݖௌொሺߦ cosሺݕߨሻ sinሺ݇௫ݔሻ (3.197)

Φሺݔ, ,ݕ ሻݖ ൌ ߶஼ோሺݖሻ sinሺ݇௫ݔሻ ൅ ߶ௌொሺݖሻ cosሺݕߨሻ sinሺ݇௫ݔሻ (3.198)

Ψሺݔ, ,ݕ ሻݖ ൌ ߰ௌொሺݖሻ sinሺݕߨሻ cosሺ݇௫ݔሻ (3.199)

The applied perturbation then consists of two parts – zero order parallel contribution with the 

index ஼ோ and first order periodic term ௌொ. The ஼ோ is the periodic crossroll type 

perturbation corresponding to an emerging longitudinal system of crossrolls with axes 

perpendicular to the primary system of stationary convective rolls. The infinitesimal 
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amplitude of the ௌொ perturbation is related to the amplitude of the crossroll perturbation by 

the equations (3.182)-(3.184). The second term is then the perturbation of the stationary state 

by the crossroll perturbation. 

For a grating with unit aspect ratio ݈ ൌ 1, i.e. the interfringe of the grating is equal to the 

thickness of the layer, the critical wavenumber of the crossroll perturbation is determined 

from the calculated neutral curves as ݇௖,௣∥ ൎ  This corresponds to the threshold value of .ߨ0.5

the solutal Rayleigh number ܴݏ௠௖௥௜௧ ൌ 1.3 ∙ 10ହ at which this type of perturbation can begin to 

grow.  

For the same system the previously considered simplified model (Section 2.2.2), which is 

based on the reduction of the transversal direction by means of gap averaging without the 

account for the influence of parasitic microconvection, yields the threshold value (2.35) 

∥ݏܴ
௖௥௜௧ ൌ 121.7, i.e. lower by three orders of magnitude. The corresponding longitudinal 

wavenumber of the critical perturbation then approaches zero ݇௖,௣∥ → 0  – the limit of long 

wavelengths.  

In order to explore the influence of the parasitic microconvection on the stability of the 

induced concentration gratings in parallel magnetic field and expose the range of applicability 

of the simplified model, the calculated critical threshold and the longitudinal wavelength of 

the critical peristaltic perturbation are plotted in Figure 3.14 with respect to the thickness of 

the ferrofluid layer. 

 

Figure 3.14. Dependence of the calculated critical parameters of the peristaltic perturbation of 

the photoabsorptive grating in parallel configuration of the applied magnetic 

field on the thickness of the ferrofluid layer: left - critical threshold ܴݏ௠௖௥௜௧: (a) 

simplified 2D model (Section 2.2.2), (b) 3D model; right - critical longitudinal 

wavenumber ݇௖,௣∥ . 
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The comparison between the simplified plane model of Section 2.2.2 and the present model 

with account for the transversal direction shows that the former is quite accurate for layers 

with thickness up to a half of the grating interfringe. Further increasing the thickness of the 

layer the latter model predicts considerably higher values of the threshold of instability. 

Consequently, it is apparent that the presence of transversal parasitic microconvection can 

drastically enhance the stability of the photoabsorptive formations in parallel configuration of 

the applied magnetic field. 

The discontinuous character of the dependence of the critical magnetic Rayleigh number on 

the thickness of the layer evidences the existence of the regime of efficient mixing. The 

intensity of stationary magnetic microconvection within the photoabsorptive grating is 

determined by the equilibrium of the magnetic forces and the shear stresses. Figure 3.14 

shows that in narrow layers the parasitic microconvection is completely suppressed by 

viscous forces. As the thickness of the ferrofluid layer is increased, the latter are decreased 

and the stationary magnetoadvective currents can begin to homogenize the bulk non-

homogeneities of concentration within the photoabsorptive grating to some degree also 

weakening its contrast. The subsequent decrease of the amplitude of the concentration grating 

increases the critical threshold (2.35) resulting in enhanced stability.  

Further increasing the nominal Rayleigh number and approaching the threshold of the 

instability (2.35), the threshold rises as well in consequence of the intensification of the 

advective mixing. Adopting this interpretation, the presence of the discontinuity can be 

comprehensibly explained – at some well-defined thickness of the ferrofluid layer 

progressively increasing the value of the nominal Rayleigh number to the threshold of 

instability results in efficient magnetoadvective mixing causing greater reduction of the 

amplitude of the concentration grating and thus also elevating the threshold, so that it is 

always above the nominal Rayleigh number. From some point of view this curious situation 

resembles one of the famous Zeno’s paradoxes. 

The thickness of the layer, at which the increasing of the Rayleigh number in this 

interpreation no longer allows reaching the sequentially elevating threshold of the instability, 

can be estimated without difficulty. The convectively attenuated amplitude 〈ܥଵ〉௭ of the 

concentration grating can be expressed as 

௠ሻݏ௭ሺܴ〈ଵܥ〉 ൌ
1
2݈
න ଵܥൣ

ௗ௜௙ሺݖሻ ൅ ݖሻ൧݀ݖሚଵሺܥ
ା௟

ି௟
 (3.200)

with ܥሚଵሺݖሻ obtained from (3.121) as 
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ሻݖሚଵሺܥ ൌ ൣ1 െ ෤௖ߙ ௣ࣧ௛ ଴݂ሺݖሻ൧ߦመଵ,଴ ൅ ቂcos ቀ
ݖߨ
݈
ቁ െ ෤௖ߙ ௣ࣧ௛ ଵ݂ሺݖሻቃ መଵ,ଵ (3.201)ߦ

where the factors ௡݂ሺݖሻ are defined by (3.93) and the amplitudes of the auxiliary field ߦመଵ,଴ and 

 .ሚଵܥ ௠ and then so does alsoݏܴ መଵ,ଵ depend onߦ

Now, introducing 〈ܥଵ〉௭ into (2.35) instead of ܥ଴ the new threshold ܴݏ∥
~ elevated by the 

magnetoadvective mixing is expressed 

∥ݏܴ
~ ൌ

଴ܥ
ଶ

௭ଶ〈ଵܥ〉
∥ݏܴ

௖௥௜௧ (3.202)

The definition (3.202) along with expression (3.200) permits to formulate the equation for the 

determination of the new threshold  

ܲሺݔሻ ൌ ሻݔ௭ሺ〈ଵܥ〉 െ ଴ඨܥ
1
ݔ
∥ݏܴ

௖௥௜௧ ൌ 0 (3.203)

Assuming that at certain thickness of the layer ݈ the magnetoadvective mixing is so efficient 

that the threshold of instability cannot be reached anymore means that the physically relevant 

solution of (3.203) cannot be obtained. Also, at this point the infinitesimal variation of the 

nominal Rayleigh number would cause the corresponding infinitesimal change of ܴݏ∥
~ 

meaning that the threshold “runs away” from the increasing ܴݏ௠, imposing an additional 

condition on the rate of attenuation of the amplitude of the grating 

߲
ݔ߲

ܲሺݔሻ ൌ 0 (3.204)

The thickness of the layer at which both conditions (3.203) and (3.204) are fulfilled 

constitutes the jump discontinuity and the corresponding calculations give the value ݈଴ ൌ 0.66 

as the location of the discontinuity. The comparison of this result obtained on the grounds of 

some very simple physical assumptions with the results of the more complicated linear 

stability analysis presented in Figure 3.14 shows almost perfect correspondence.  

The model (3.203) accounting for some influence of parasitic magnetoconvection improves 

the accuracy of the previous diffusive model (2.35) and well describes the behaviour of the 

threshold of instability up to the critical aspect ratio ݈଴. In turn, the dispersion relation based 

on the spectral model (3.182)-(3.184) should be used for determining the stability of the 

photoabsorptive gratings in the regime of efficient mixing. 
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3.2.3. Instability in ٣ field 

The calculations of the perpendicular configuration of the applied magnetic field show that 

the presence of the transversal parasitic magnetoconvection does not change the character of 

the convective destabilization of the grating – as predicted by the simplified plane model of 

Section 2.2.2 the most dangerous perturbation leads to the undulatory deformation of the 

concentration grating with the associated hydrodynamic perturbation corresponding to shear 

parallel convective currents of alternating direction (Figure 2.5) and the appropriate 

symmetries of the critical perturbation are retained with account for the transversal profiles of 

the fields as well. The calculated neutral curves of the undulatory instability are plotted in 

Figure 3.15 for some thicknesses of the ferrofluid layer. 

 

Figure 3.15. Neutral curves of the stability of the photoabsorptive grating in perpendicular 

magnetic field to undulatory perturbation (left) for layer thickness (a) ݈ ൌ 0.2, 

(a) ݈ ൌ 0.4, (a) ݈ ൌ 1, (a) ݈ ൌ 2; middle – dependence of the instability threshold 

 ௠௖௥௜௧ on the thickness of the layer for peristaltic (a), (b) and undulatory (c), (d)ݏܴ

perturbations: thin lines (a), (c) – simplified 2D model (Section 2.2.2) , thick 

lines (b), (d) – 3D model. Right – corresponding critical longitudinal 

wavenumbers of the perturbations. 

For ݈ ൌ 1 the calculated critical threshold of the undulatory instability is ܴݏ௠௖௥௜௧ ൌ 683.1 and 

the corresponding critical wavenumber of the longitudinal undulations ݇௖,௨ୄ ൎ  ,In turn .ߨ0.65

the stability of the grating with respect to the peristaltic perturbation is slightly higher with 

threshold at ܴݏ௠ ൎ 3	000 and corresponding wavenumber is twice as large ݇௖,௣ୄ ൎ  For .ߨ1.4

the same situation the plane model of linear stability (Section 2.2.2) slightly overestimates the 

threshold for the corresponding perturbation - ܴݏ௠௖௥௜௧ ൌ 1420.1 for the undulatory 

perturbation and ܴݏ௠ ൎ 5	450 for the peristaltic one.  
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Figure 3.15 shows the calculated dependence of the threshold of instability for peristaltic and 

undulatory perturbations on the thickness ݈ of the ferrofluid layer. The undulatory instability 

is indeed the most dangerous across the whole considered range of aspect ratios ݈. The 

simplified plane model generally overestimates the stability of the grating for both 

perturbations. In thin layers the correspondence is significantly improved through thus 

suppressing the influence of the parasitic microconvection. In layers with thickness 

approximately equal up to half of the interfringe ݈ ൎ 0.5 the influence of the parasitic 

microconvection on the stability of the grating is insignificant. The same conclusion seems to 

apply to the parallel configuration of the external field (Figure 3.14). 

Increasing the thickness of the layer the plane model eventually predicts the saturation or even 

slight elevation (in the case of peristaltic perturbation) of the threshold. In turn, more detailed 

analysis with account for the transversal direction demonstrates the monotonous decrease of 

the stability of the grating with the increasing of the layer thickness. On the other hand, the 

plane model adequately captures the longitudinal wavenumber of the perturbations over the 

whole range of ݈ and it also decreases monotonically. 

From Figure 3.15 becomes apparent that the presence of transversal microconvection reduces 

the stability of the photoabsorptive gratings in perpendicular configuration of the external 

field, although this effect is not as substantial as in the previously considered situation of 

parallel applied field, which showed significant increase of the stability of the grating in the 

region of efficient mixing. The results of Sections 3.1.5 and 3.1.6 showed that the direction of 

the parasitic currents is opposite in both situations and, consequently, the region of efficient 

mixing does not exist in perpendicular field. In thick layers the stability of the grating in 

perpendicular field is drastically lower than in the case of the parallel field. 
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3.2.4. Nonlinear regime 

The shape of the photoabsorptive grating above the threshold of the instability is obtained by 

numerical simulations of the equations (1.36)-(1.39) with boundary conditions (3.1), (3.6) and 

(3.70) in real variables and finite volume formulation. The evolution of the concentration, 

demagnetizing field and velocity of magnetic microconvection is calculated from the 

homogeneous initial state, imposing the predetermined stationary distribution of temperature 

(2.7)-(2.9).  

The numerical simulations of the nonlinear regime in real variables and especially the 

calculations of the bifurcation curves are connected with some difficulties near the point of 

exchange of stabilities. Clearly, at the onset of the instability the growth rates of the critical 

perturbations are very low, so in this case the obtaining of the exact stationary state by 

advancing the dynamic system of equations in time is associated with numerical problems. 

For this purpose the transient numerical solution is perturbed by the addition of spatially 

random perturbation to the concentration field with small amplitude ~10ିଷ at each global 

time step. 

 

Figure 3.16. Deformation of the convective rolls and bending of the concentration front 

caused by the development of the undulatory instability in the perpendicular 

configuration of the external magnetic field at ܴݏ௠ ൌ 1	000. 

The previous stability analysis has demonstrated that the photoabsorptive gratings are 

relatively stable in the parallel configuration of the applied magnetic field. In turn, outside the 

regime of efficient mixing, meaning that the thickness of the ferrofluid layer is smaller than 



 
 

106 
 

approximately half of the interfringe, the transversal fluxes are effectively suppressed and the 

simplified twodimensional model for the gap-averaged quantities well describes the stability 

of the grating and the course of the convective destabilization. In this regard, it only makes 

sense to consider the perpendicular configuration of the applied magnetic field. 

In perpendicular field the critical perturbation corresponds to the undulatory bending of the 

concentration front caused by the emerging cross-grating flows of alternating direction 

(Figure 3.16). The shape of the grating and its progressive deformation in the super-critical 

regime above the threshold of the instability is characterized by Fourier modes of 

concentration ܥ଴ଵሺݐሻ, ܥଵଵሺݐሻ and the intensity of convective motions is described by the 

hydrodynamic mode ଵܷ଴ሺݐሻ, extracted from the concentration and velocity fields ܥሺݔ, ,ݕ ,ݖ  ሻݐ

and ࢁሺݔ, ,ݕ ,ݖ  ሻ calculated in the course of the simulations. The transversal profile of theݐ

modes across the gap of the layer is reduced by the RMS averaging in the case of the 

concentration modes and the gap-averaging for the hydrodynamic mode 

ሻݐ௠௡ሺܥ ൌ ඨ
1
2݈
න ሾܥ௠௡ሺݖ, ሻሿଶݐ
௟

ି௟
, 				 ܷ௠௡ሺݐሻ ൌ

1
2݈
න ܷ௠௡ሺݐሻ
௟

ି௟
 (3.205)

with 

,ݖ଴ଵሺܥ ሻݐ ൌ
݇௫
ߨ2

න න ,ݔሺܥ ,ݕ ,ݖ ሻݐ cosሺݕߨሻ ݔ݀
ା గ
௞ೣ

ି గ
௞ೣ

ݕ݀
ଵ

ିଵ
 (3.206)

,ݖଵଵሺܥ ሻݐ ൌ
݇௫
ߨ
න න ,ݔሺܥ ,ݕ ,ݖ ሻݐ sinሺ݇௫ݔሻ sinሺݕߨሻ ݔ݀

ା గ
௞ೣ

ି గ
௞ೣ

ݕ݀
ଵ

ିଵ
 (3.207)

ଵܷ଴ሺݖ, ሻݐ ൌ
݇௫
ߨ2

න න ܷ௬ሺݔ, ,ݕ ,ݖ ሻݐ sinሺ݇௫ݔሻ ݔ݀
ା గ
௞ೣ

ି గ
௞ೣ

ݕ݀
ଵ

ିଵ
 (3.208)

The selected modes correspond to the primary modes of instability (2.55) and (2.45) in thin 

layers and such choice of parameters permits convenient comparison of the two situations. 

The calculated dynamics of the concentration mode amplitudes and the average velocity 

magnitude ഥܷ during the formation of the grating at some arbitrary values of the 

magnetosolutal Rayleigh number above the threshold of the undulatory instability are plotted 

in Figure 3.17. The destabilization of the photoabsorptive grating is evidenced by the 

spontaneous decrease of the primary mode amplitude ܥ଴ଵ, corresponding to the attenuation of 

the grating contrast, and the simultaneous emergence of the mode ܥଵଵ in the course of the 

transient numerical simulation after the reaching of the quasi-stationary state. 
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Figure 3.17. Calculated time evolution of the mode amplitudes ܥ଴ଵ, ܥଵଵ (top) and average 

velocity magnitude ഥܷ (bottom) in the course of the numerical simulation of the 

photoabsorptive grating in perpendicular magnetic field: ܥ଴ଵ, ഥܷ at (a) ܴݏ௠ ൌ

1	000, (b) ܴݏ௠ ൌ 1	500, (c) ܴݏ௠ ൌ 5	000; (d), (e), (f) – corresponding 

dynamics of ܥଵଵ. 

The eventual stationary values of the mode amplitudes ܥ଴ଵ, ܥଵଵ and ଵܷ଴ are plotted in Figure 

3.19 in relation to the control parameter, defined with respect to the appropriate critical 

threshold ܴݏ௠௖௥௜௧ as 

ݎ ൌ
௠ݏܴ
௠௖௥௜௧ݏܴ

െ 1 (3.209)

  

Figure 3.18. Bifurcation curves of the undulatory instability of photoabsorptive grating in the 

perpendicular configuration of the external field: calculated stationary 

amplitudes ܥ଴ଵ, ܥଵଵ and ଵܷ଴ – (a) numerical simulations, (b) – simplified model 

(2.57)-(2.60). 

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

5

10

15

-1 0 1 2 3 4 5 6
0

0.4

0.8

1.2

-1 0 1 2 3 4 5 6
0

0.4

0.8

1.2

-1 0 1 2 3 4 5 6



 
 

108 
 

The bifurcation curves obtained from full numerical simulations are compared with the results 

of the two-dimensional model based on gap averaging and corresponding mode amplitudes 

calculated according to the relations (2.60) and (2.57). Both models predict typical 

supercritical pitchfork-type bifurcations. According to the 2D model the amplitude of the 

emerging mode ܥଵଵ scales as ~ሾሺݎ ൅ 1ሻି଴.ହ െ ሺݎ ൅ 1ሻିଵሿ଴.ହ with respect to the control 

parameter ݎ, in turn, the scaling predicted by the simulations is somewhat closer to the normal 

form ~√ݎ  in the vicinity of the threshold.  

The comparison of both models demonstrates that in the perpendicular configuration of the 

applied magnetic field the presence of the parasitic microconvection can be successfully 

compensated by gap averaging – the amplitude of the mode ଵܷ଴ is almost identical in both 

cases, although rather intensive convective motion takes place within the elements of the 

photoabsorptive grating both below and above the threshold of the instability, as evidenced by 

the results of the numerical simulations and the average velocity magnitude ഥܷ. In turn, the 

influence of the parasitic advective fluxes does not significantly alter the bifurcation behavior 

as well. 

 

Figure 3.19. Deformation of the convective rolls and the formation of the secondary 

concentration grating caused by the development of the peristaltic instability in 

the perpendicular configuration of the external magnetic field at ܴݏ௠ ൌ 3	750. 

The appearance of the peristaltic stratification of the concentration grating was also observed 

by numerical simulations of the nonlinear regime. The calculated concentration profiles 

within a single element of the photoabsorptive grating are plotted in Figure 3.19 for some 
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arbitrary value of the magnetic Rayleigh numbers reasonably exceeding the threshold of the 

peristaltic instability. 

Further increasing the value of the control parameter above the threshold the convective rolls 

become considerably deformed and eventually form hydrodynamic structures similar to 

toroidal convective vortices. 

 

Figure 3.20. Bifurcation curves of the peristaltic instability of photoabsorptive grating in the 

perpendicular configuration of the external field: calculated stationary 

amplitudes ܥ଴ଵ, ܥଵ଴, ܥଵଶ and ଵܷଵ – (a) numerical simulations, (b) – simplified 

model (2.52)-(2.54). 

The deformation of the grating is characterized with the set of primary modes (2.43)-(2.46) 

and the bifurcation curves are plotted in Figure 3.20 along with the results of the simplified 

model (2.52)-(2.54) based on gap-averaging for the same parameters, showing acceptable 

correspondence. The character of destabilization is generally similar to the case of the 

undulatory instability and the same principle conclusions apply here as well. 

  

0

5

10

15

-1 0 1 2
0

0.4

0.8

1.2

-1 0 1 2
0

0.4

0.8

1.2

-1 0 1 2
-0.2

-0.1

0

-1 0 1 2



 
 

110 
 

4. Microstructure grids 
The spontaneous symmetry breaking of the photoabsorptive convective-diffusive gratings in 

the external magnetic field naturally and logically leads to the question of the formation and 

the stationary form of the non-degenerated bidirectional gratings – microgrids. Such periodic 

structures can be formed by illuminating a ferrofluid layer through a non-transparent mask 

with periodically spaced square openings [58] or similarly by simultaneous formation of 

crossed photoabsorptive gratings [94].  

  

Figure 4.1. Photoabsorptive grids: simulated convective-diffusive microstructures in 

bidirectional grids under laterally applied magnetic field. 

If the opening, through which the ferrofluid layer is illuminated, is perfectly square and the 

intensity of the incident illumination ܫ଴ is uniform then the transmitted optical intensity is 

described making use of the rectangular function Πሺݔሻ: ~ሾ1 ൅ Πሺݔሻሿሾ1 ൅ Πሺݕሻሿ. The process 

of the formation and relaxation of the concentration grids due to the rectangular heat source in 

dispersions with anisotropic diffusion has been described [92]. However, the large thermal 

diffusivity of the temperature field smears the sharp edges of the temperature perturbations 

and the small diffusivity of the nanoparticles does the same with the induced concentration 

differences. It seems reasonable, therefore, for the principal description of the basic form of 

the photoabsorptive magnetoconvection to consider just the primary mode of the heat source: 
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గమ

ସ
ሾ1 ൅ cosሺݔߨሻሿሾ1 ൅ cosሺݕߨሻሿ, where the coefficient of proportionality, as previously, is 

obtained from the normalization.  

Substituting the assumed form of the heat source into the dimensionless temperature equation 

(2.5) the temperature distribution within the layer can be determined analytically or 

numerically. The base state of the bidirectional grid due to the diffusion, Soret effect and 

magnetophoresis can be obtained without principal difficulties along the same lines as 

previously for the case of the monodirectional grating, and the role of the microconvection 

can be described in the spectral approach. It is clear, however, that the magnetic force now 

possesses all three spatial components, the longitudinal direction is non-degenerated and the 

flow is fully three-dimensional. The spectral approach then does not offer clear advantages 

over the numerical methods based on finite volume formulation, which will be employed.  

 

 

Figure 4.2. Perturbation of the demagnetizing field (top) and the stationary photoabsorptive 

microstructures (bottom) in bidirectional grids under laterally applied magnetic 

field (concentration isosurfaces and convective streamlines): (a) ܴݏ௠ ൌ 100, (b) 

௠ݏܴ ൌ 500, (c) ܴݏ௠ ൌ 1000, (d) ܴݏ௠ ൌ 5000. 

Making use of the calculated temperature distributions the solution of the convective problem 

can be obtained for different orientations of the applied magnetic field. The direction of the 

magnetophoretic and magnetoconvective fluxes is determined by the interactions of the 

photoabsorptive nonhomogeneities of the ferroparticle concentration with the gradients of the 

primary component of the corresponding demagnetizing field perturbation. If the external 
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field is applied along the parallel direction, the situation is straightforward – the self magnetic 

field is weakened within the concentration microstructures due to the influx of the 

ferroparticles and its maximums are located in-between the neighboring grid elements. The 

magnetic forces then form a pair of coaxial toroidal vortices around the element with their 

axes of rotation oriented along the parallel direction (Figure 4.2). 

When the external field is perpendicular to the sidewall of the layer the principal component 

of the demagnetizing field experiences a discontinuity on the sidewall of the layer due to the 

corresponding jump of magnetization. The magnetic microconvection is then driven by the 

corresponding near-wall gradients of the demagnetizing field. Still, the resulting 

magnetoconvective pattern is again a pair of coaxial toroidal vortices with the axis of rotation 

oriented along the vertical field (Figure 4.3). 

  

 

Figure 4.3. Perturbation of the demagnetizing field (top) and the stationary photoabsorptive 

microstructures (bottom) in bidirectional grids under perpendicularly applied 

magnetic field (concentration isosurfaces and convective streamlines): (a) 

௠ݏܴ ൌ 100, (b) ܴݏ௠ ൌ 500, (c) ܴݏ௠ ൌ 1000, (d) ܴݏ௠ ൌ 5000. 

In real conditions the formation of the magnetic microconvection and its structure cannot be 

observed directly - typical ferrofluids are not transparent and so the internal motions are thus 

concealed. The role of magnetoconvective transport on the microscale can only be identified 

by the observations of the peculiarities of evolution of the concentration field, which can be 

detected by various methods. In turn, in the numerical simulations detailed microscopical 

information is available about the dynamics and distributions of all fields. This necessitates 
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the formulation of the observable parameters in order to determine the accordance of the 

measurements and theoretical predictions.  

The integral characteristic (3.157) – the L2-norm of the first parallel concentration mode - 

describes the general shape of the extended photoabsorptive concentration microstructure and 

can be measured in the experiment. Instead, the bidirectional concentration grids in fact 

possess two preferred orientations – the parallel direction and the longitudinal, so it is 

reasonable to observe both coordinates 

∥ܬ ൌ ඨන ,ݔሺܥ௬ሼܨ ,ݕ ,ݖ ݖሻሽଶ݀ݐ
௟

ି௟
  and  ܬ∟ ൌ ඨන ,ݔሺܥ௫ሼܨ ,ݕ ,ݖ ݖሻሽଶ݀ݐ

௟

ି௟
 (4.1)

with functional ߬ܨሼܥሺݔ, ሻሽݕ ൌ ׬ ׬ ,ݔሺܥ ሻݕ cosሺ߬ߨሻ 1ݔ݀
െ1 1ݕ݀

െ1  yielding the primary concentration 

mode in the corresponding direction. 

 

Figure 4.4. Formation of the microstructure grids: left - establishing of the stationary 

convective-diffusive microstructure in the parallel applied field, calculated 

signals at (a) ܴݏ௠ ൌ 0, (b) ܴݏ௠ ൌ 100, (c) ܴݏ௠ ൌ 500, (d) ܴݏ௠ ൌ 1000, (e) 

௠ݏܴ ൌ 5000 along the direction of the external field and (f) in the longitudinal 

direction; middle - formation of the microstructure in the perpendicular field 

configuration at (a) ܴݏ௠ ൌ 0, (b) ܴݏ௠ ൌ 100, 500, 1000, 5000;	right - 

dependence of the stationary average and maximum ܷ௠௔௫ convective velocity 

on the control parameter in the parallel (a) ഥܷ∥, (c) ܷ௠௔௫
∥  and perpendicular (b) 

ഥܷୄ, (d) ܷ௠௔௫ୄ  configurations. 

If the formation of the photoabsorptive grid takes place in the parallel configuration of the 

applied field, the anisotropy of the magnetic diffusion coefficient introduces the anisotropy of 
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the measured signals ܬ∥,∟ሺݐሻ - in the direction of the field the magnitude of the parallel signal 

is reduced due to the magnetodiffusive contributions to the mass flux (Figure 4.4). 

In turn, the microconvective fluxes further homogenize the concentration modulation along 

the direction of the applied field. Most importantly, the influence of microconvection changes 

the dynamics of evolution of the photoabsorptive microstructure during the formation stage - 

after the initially attained maximum the signal ܬ∥ begins to diminish and gradually reaches its 

stationary value (Figure 4.4), a characteristic indication of the influence of microconvective 

transport. In contrast, the dynamics of the longitudinal signal ܬ∟remains almost unchanged. 

In the perpendicular configuration of the external field the anisotropy of ܬ∥,∟ vanishes and the 

evolution of the grid in both directions is identical. In this configuration of the applied field 

the magnetic forces act mainly in the transversal direction, which is generally unobservable 

from the experimental point of view. In turn, the character of the dynamics of the measured 

signals is unaltered by the formation of microconvection within the photoabsorptive structures 

and even their magnitude is relatively unchanged. Consequently, the presence of 

microconvection cannot be established by real observations for the vertical orientation of the 

applied field. 

The calculations of the averaged velocity magnitude show saturation with respect to the 

control parameter in the parallel field configuration (Figure 4.4). The corresponding increase 

of the maximum velocity points to the localization of the most intensive convective fluxes 

within the core of the grid element. In the perpendicular configuration the average velocity 

does not saturate within the considered range of parameters, still the maximum velocity grows 

more rapidly. 

Considering the stability of the bidirectional grids, the calculations in real variables did not 

show any destabilization of the photoabsorptive convective-diffusive microstructures in the 

parallel field configuration up to rather large values of the control parameter ܴݏ௠~10଺. This 

conclusion partially correlates with the analysis of the problem of stability of photoabsorptive 

gratings, which demonstrated that the extended gratings are relatively stable under the action 

of the parallel field. Nevertheless, the gratings became easily destabilized by the application 

of perpendicular magnetic field and the same conclusion seems to be valid for the grids. 

During the formation of the photoabsorptive grid under the action of the perpendicular field a 

pair of coaxial toroidal vortices emerges within each element with the axis directed along the 

applied field (Figure 4.3). Due to the periodicity of the grid in two orthogonal directions – the 
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parallel and the longitudinal - the vortices are constrained by the presence of the neighboring 

elements and so do not possess the full toroidal symmetry. Then the symmetry of a single grid 

element corresponds to the symmetry of the whole periodic array. 

If the external magnetic field is applied along the perpendicular direction, then the four planes 

of reflection describe the initial symmetry of the photoabsorptive convective-diffusive 

microstructure – the x-z plane, the y-z plane and two diagonal planes. In turn, the four 

rotations by 
గ

ଶ
 about the axis of the paired convective vortices form the rotational symmetry of 

the element. An additional reflection plane is introduced by the midplane of the layer. 

Consequently, at moderate values of the magnetosolutal Rayleigh number the associated 

reflections and rotational symmetries of the grid element constitute the horizontal dihedral 

group ܦସ௛. 

Gradually increasing the magnetosolutal Rayleigh number the most intensive convective 

motions are localized in the space between the neighboring elements of the photoabsorptive 

grid. At certain value of the control parameter an additional pair of coaxial toroidal vortices 

emerges within the core of the microstructure (Figure 4.3). Further increase of the Rayleigh 

number causes the growth of these secondary circulations, which subsequently lead to the 

eventual loss of stability of the grid element. 

 

Figure 4.5. Development of the instability: concentration contours within the element of the 

bidirectional grid at ܴݏ௠ ൌ 3	000 (left), ܴݏ௠ ൌ 5	000 (middle), ܴݏ௠ ൌ 10	000 

(right). 

The calculations of the evolution of the grid elements show that the peristaltic and undulatory 

instabilities emerging within the photoabsorptive gratings possess direct counterparts in the 

bidirectional configuration. Similarly, as the loss of translational symmetry ensues from the 

destabilization of the extended grating, so the loss of stability of the cuboid group is observed 
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in the bidirectional system followed by the reduction of the order of the rotational symmetry 

corresponding to the transition ܦସ௛ →   .ଶ௛ܦ

The emergence of the undulatory instability was accompanied by the appearance of the cross-

grating flows and the formation of the similar shear currents takes place in the bidirectional 

configuration as well, leading to the stretching of the grid element along one of the diagonal 

directions - by the simultaneous shearing of the element along both of the primary directions 

of the grid by the advective fluxes (Figure 4.5). 

The quantitative description of the destabilization process requires the formulation of the 

corresponding numerical parameters. The initial symmetries of the grid as well as those of the 

emerging perturbations and the properties of the equivalent undulatory instability (3.205)-

(3.208) in photoabsorptive gratings dictates the corresponding choice of the primary modes 

for the bidirectional configuration 

ሻݐ௠௡ሺܥ ൌ ඨ
1
2݈
න ሾܥ௠௡ሺݖ, ሻሿଶݐ
௟

ି௟
, 				 ܷ௠௡ሺݐሻ ൌ

1
2݈
න ܷ௠௡ሺݐሻ
௟

ି௟
 (4.2)

with 

,ݖଵሺܥ ሻݐ ൌ ଵ଴ܥ ൌ ଴ଵܥ ൌ
1
2
,ݔሺܥ௫ሼܨ ,ݕ ,ݖ ሻሽݐ ൌ

1
2
,ݔሺܥ௬ሼܨ ,ݕ ,ݖ ሻሽ (4.3)ݐ

,ݖଵଵሺܥ ሻݐ ൌ න න ,ݔሺܥ ,ݕ ,ݖ ሻݐ sinሺݔߨሻ sinሺݕߨሻ ݔ݀
ାଵ

ିଵ
ݕ݀

ଵ

ିଵ
 (4.4)

ଵܷሺݖ, ሻݐ ൌ ଵܷ଴ ൌ
1
2
න න ܷ௬ሺݔ, ,ݕ ,ݖ ሻݐ sinሺݔߨሻ ݔ݀

ାଵ

ିଵ
ݕ݀

ଵ

ିଵ
 (4.5)

The performed calculations show that the eventual stationary value of the amplitude of the 

concentration mode ~cosሺݔߨሻ cosሺݕߨሻ, which is imposed by the photoabsorptive 

thermophoretic stratification depends little on the Rayleigh number and well corresponds to 

the value calculated with respect to the thin layer approximation and just the phoretic mass 

transport 

1

√2݈
ฮݕݔܨሼܥሺݔ, ,ݕ ሻሽฮଶݖ ൎ െ

݉ݏ
,ߨሺܪ݀ ሻߨ

ഥܶ11 	with 		 ഥܶ11 ൌ
1
8
ቈ1 െ

݅ܤ
݂1

sinhሺ1݈ݎሻ
1݈ݎ

቉ (4.6)

where ଵ݂ ൌ ଵݎ sinhሺݎଵ݈ሻ ൅ ݅ܤ coshሺݎଵ݈ሻ and ݎଵ ൌ  .2√ߨ

Subsequently, this mode is appreciably influenced neither by the parasitic microconvection, 

nor by the emerging instability and thus cannot participate in the destabilization of the grid. It 

is then pointless to consider it any further.  
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Figure 4.6. Calculated time evolution of the mode amplitudes ܥଵ, ܥଵଵ (top) and average 

velocity magnitude ഥܷ (bottom) in the course of the numerical simulation of the 

photoabsorptive grating in perpendicular magnetic field: ܥଵ, ഥܷ at (a) ܴݏ௠ ൌ

4	000, (b) ܴݏ௠ ൌ 5	000, (c) ܴݏ௠ ൌ 10	000; (d), (e), (f) – corresponding 

dynamics of ܥଵଵ. 

 

Figure 4.7. Bifurcation curves of the instability of photoabsorptive grid in the perpendicular 

configuration of the external field: calculated stationary amplitudes ଵܷ (left), ܥଵ 

(middle) and ܥଵଵ (right). 

The calculated evolution of the selected concentration modes ܥଵ and ܥଵଵ and the averaged 

velocity magnitude ഥܷ during the formation of the grid from the initially homogeneous state to 

the quasi-stationary state and then the eventual emergence of the destabilizing perturbations is 

plotted in Figure 4.6 for ݈ ൌ 1 and some arbitrary values of the magnetosolutal Rayleigh 

number ܴݏ௠ exceeding the threshold of the instability. 
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The appearance of the cross-grid flows leads to the lowering of the contrast of the grid in both 

of the primary directions as evidenced by the decrease of the amplitude ܥଵ. The calculated 

bifurcation curves for the instability are plotted in Figure 4.7.  

The character of the destabilization corresponds to the supercritical pitchfork instability, its 

properties are in many ways similar to the case of the undulatory instability in 

photoabsorptive gratings and the same principle conclusions apply here as well. The critical 

threshold corresponds to ܴݏ௠ ൎ 2	820. 

The counterpart of the peristaltic instability of the photoabsorptive gratings was also observed 

in the numerical simulations of the bidirectional grids. Instead of the stretching of the grid 

element in the diagonal direction, the element is stretched in either of the primary directions 

of the modulation (Figure 4.8). 

 

Figure 4.8. Development of the instability: concentration contours within the element of the 

bidirectional grid at ܴݏ௠ ൌ 10	000 (left), ܴݏ௠ ൌ 20	000 (middle), ܴݏ௠ ൌ

50	000 (right). 

This type of instability develops at higher values of the magnetic Rayleigh number as the one 

previously described and the corresponding perturbation then is not the critical perturbation. 

The state of the grid is characterized in this case by the modes ܥଵ଴ and ܥ଴ଵ (4.3) and the 

appropriate corresponding mode ଵܷଵ with 

ଵܷଵሺݖ, ሻݐ ൌ න න ܷ௬ሺݔ, ,ݕ ,ݖ ሻݐ cosሺݔߨሻ sinሺݕߨሻ ݔ݀
ାଵ

ିଵ
ݕ݀

ଵ

ିଵ
 (4.7)

The evolution of the selected modes during the formation of the grid from the initial 

homogeneous state is determined from the numerical simulations. While initially both the 

modes ܥଵ଴ and ܥ଴ଵ coincide and at some point reach a seemingly stationary state, the eventual 
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appearance of the splitting of the mode amplitudes during the further evolution of the 

photoabsorptive microstructure evidences the loss of stability of the cuboid group and the 

reduction of the order of the rotational symmetry corresponding to the transition ܦସ௛ →  ଶ௛ܦ

above the corresponding threshold. The calculated bifurcation curves (Figure 4.9) evidence 

the divergence of the stationary values of the mode amplitudes with the increasing of the 

magnetic Rayleigh number. 

      

Figure 4.9. Bifurcation curves of the instability of photoabsorptive grid in the perpendicular 

configuration of the external field: calculated stationary amplitudes ଵܷଵ (left) 

and ܥ଴ଵ, ܥଵ଴, ܥଵଵ (right). 

The bifurcation is identified by the splitting of the calculated amplitudes  

ܥ∆ ൌ ଵ଴ܥ| െ ଴ଵ| (4.8)ܥ

The form of the symmetry breaking again corresponds to a supercritical pitchfork bifurcation. 

Extrapolating the calculated numerical values of the splitting ∆ܥ by a square root dependence 

on the control parameter ~√ݎ, the critical threshold of the instability can be determined. 

Apparently, the growth of the destabilizing perturbations begins somewhere at around 

௠௖௥௜௧ݏܴ ൎ 11	700. The subsequent emerging anisotropy signifies the appearance of the 

stratification of the concentration distribution within the element of the photoabsorptive grid 

in one or the other direction. 

In contrast to the photoabsorptive grating, the bidirectional grids are still scantily explored. At 

present, the development of the described instabilities and the subsequent reduction of order 

of the rotational symmetry have yet neither been looked for, nor observed in photoabsorptive 

concentration grids. In this regard, the experimental confirmation of the proposed mechanism 

of destabilization may help ascertain the crucial role of advective transport in the formation of 

photoabsorptive microstructures and will be expected in the future.  
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5. Localized structures 
In the previous sections the presence and role of the magnetic microconvection were 

considered on the example of some model problems. The unifying feature of the examined 

model systems lies in the extended geometry of these problems and the eventual solutions in 

one or both orthogonal directions within the ferrofluid layer. Clearly, the real physical 

photoabsorptive gratings and grids created in the experiments are not infinite in these 

directions, but it is assumed that they are sufficiently extended to allow considering them such 

(the actual FRS gratings usually contain tens of periods) and the end effect can be 

disregarded. 

The opposite situation is the case of the localized microstructures embedded in an infinite 

layer of otherwise quiescent ferrofluid. The purpose of this section then is to discuss some 

aspects of the formation and evolution of the localized photoabsorptive microstructures such 

as those, for example, formed in the beam spot of a laser by the complex magnetodiffusive 

and magnetoadvective interactions. While the principal mechanisms of the formation of 

magnetoconvective currents are similar and so, consequently, also will be the employed 

approach to elucidate their role, the localized microstructures are not constrained and not 

affected by the presence of the neighboring elements as the elements of the extended systems 

are and their shape and dynamics show notable differences.  

Technically, gaining information about the structure of the localized photoabsorptive 

formations is more complicated in comparison with the extended ones. From the theoretical 

point of view, the problem of modeling of the unbounded flows possesses peculiarities. The 

symmetry of the localized microstructure also dictates the application of the appropriate 

coordinate system and frequently requires the use of the curvilinear coordinates. These factors 

complicate the form of the governing equations and the methods of obtaining their solution. 

From the experimental side, while the formation of the localized photoabsorptive 

microstructures is relatively simple, in this case the reliable and powerful method of forced 

Rayleigh scattering is not easily applicable to the quantitative characterization of the 

ferroparticle concentration field. Still, some qualitative results are available in the literature 

and will be discussed. 
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5.1. Diffusive state 

Assuming that a Gaussian beam illuminates an infinitely extended layer of ferrofluid, the 

formulation of the governing equations is more convenient in cylindrical coordinates ሺݎ, ,ߠ  .ሻݖ

To analyze the shape of the localized convective-diffusive microstructure formed by the 

absorption of the incident optical intensity and estimate the role of the microconvective 

fluxes, the previously established procedure is observed and the solution of the purely 

diffusive problem is initially obtained. Due to the separation of the timescales the thermal 

transport is purely conductive and the temperature equation obtained by substituting the 

Gaussian heat source in (2.5) has simple form, disregarding the secondary photoabsorption 

∆ܶ ൅ ଶ݁ିߨ
௥మ

ଶఙమ ൌ 0 (5.1)

with ∆ൌ ଵ

௥

డ

డ௥
ቀݎ

డ

డ௥
ቁ ൅

ଵ

௥మ
డమ

డఏమ
൅ డమ

డ௭మ
 – the cylindrical Laplacian and the boundary condition 

(2.6) on the transversal walls. Additionally, the thermal perturbation should vanish as ݎ → ∞. 

The problem (5.1) then yields an axially symmetric solution, which is obtained by applying 

the radial Hankel transformation 

መ݂
஝ሺݏሻ ൌ ࣢஝ሼ݂ሺݎሻሽ ൌ න ݎሻ݀ݎݏఔሺܬሻݎሺ݂ݎ

ஶ

଴
 (5.2)

of order ߥ ൌ 0, with ܬఔ – Bessel’s function of the same order, and making use of its principal 

property 

࣢஝ሼΔ஝݂ሺݎሻሽ ൌ െݏଶ࣢஝ሼ݂ሺݎሻሽ (5.3)

with Δν ൌ
1
ݎ
߲
ݎ߲
ቀݎ ߲

ݎ߲
ቁ െ 2ߥ

2ݎ
 to transform (5.1) to an ODE with constant coefficients. Taking 

account of the boundary condition (2.6) the transformed temperature field is expressed 

without difficulty 

෠ܶ଴ሺݏ, ሻݖ ൌ ሻݏ଴ሺܭ ൤1 െ
݅ܤ

௦݂ሺݏሻ
coshሺݖݏሻ൨ (5.4)

with 

ሻݏ଴ሺܭ ൌ ଶߨ
ଶߪ

ଶݏ
݁ି

ఙమ௦మ
ଶ  (5.5)

and ௦݂ሺݏሻ ൌ ݏ sinhሺ݈ݏሻ ൅ ݅ܤ coshሺ݈ݏሻ. 
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The corresponding stationary concentration field established by the equilibrium of 

thermophoretic, diffusive and magnetophoretic fluxes is governed by the condition (3.7) and 

the corresponding distribution of the demagnetizing field is described by (3.5). 

In the following only the case of the transversally oriented external field ࢎ ൌ ሺ0,0,1ሻ will be 

considered, because this configuration yields an axially symmetric solution. The zero-order 

Hankel transformation (5.2) is then applied to the problem (3.7), (3.5) and making use of the 

temperature distribution (5.4) the concentration and demagnetizing field perturbations are 

obtained in the s-domain 

ሻݏுሺܭ ൌ െ
௠ݏ
௣ࣧ௛

݅ܤ

௦݂ሺݏሻ
ሻ (5.6)ݏ଴ሺܭ

,ݏመ଴ሺܥ ሻݖ ൌ ሻݏ௖ሺܭ coshሺݎ௦ݖሻ െ ሻ (5.7)ݏ଴ሺܭ௠ݏ

,ݏ෡଴ሺܪ ሻݖ ൌ ሻݏுሺܭ coshሺݖݏሻ ൅
1

௣ࣧ௛
ሻݏ௖ሺܭ coshሺݎ௦ݖሻ (5.8)

with ݏݎሺݏሻ ൌ ට 2ݏ

ௗ೘
.  

The coefficients ܭ௖ and ܭு are expressed from the transversal boundary conditions (3.6) and 

(3.1) 

ሻݏ௖ሺܭ ൌ
௠ݏ
݀௠

ݏ
݃௦ሺݏሻ

ሻݏ଴ሺܭ ൤ሺ݀௠ െ 1ሻ ൅
݅ܤ

௦݂ሺݏሻ
݁௦௟൨ (5.9)

ሻݏுሺܭ ൌ െ
௠ݏ
௣ࣧ௛

݅ܤ

௦݂ሺݏሻ
ሻ (5.10)ݏ଴ሺܭ

with ݃௦ሺݏሻ ൌ ௦ݎ sinhሺݎ௦݈ሻ ൅ ݏ coshሺݎ௦݈ሻ. 

In turn, the inverse Hankel transformation is 

݂ሺݎሻ ൌ ࣢஝
ିଵ൛ መ݂஝ሺݏሻൟ ൌ න ݏ መ݂஝ሺݏሻܬఔሺݎݏሻ݀ݏ

ஶ

଴
 (5.11)

and the spatial distributions of the fields in real variables are expressed by the integrals 

ܶሺݎ, ሻݖ ൌ න ݏ ෠ܶ଴ሺݏ, ݏሻ݀ݎݏ଴ሺܬሻݖ
ஶ

଴
 (5.12)

,ݎሺܥ ሻݖ ൌ න ,ݏመ଴ሺܥݏ ݏሻ݀ݎݏ଴ሺܬሻݖ
ஶ

଴
 (5.13)

,ݎሺܪ ሻݖ ൌ න ,ݏ෡଴ሺܪݏ ݏሻ݀ݎݏ଴ሺܬሻݖ
ஶ

଴
 (5.14)
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The set of integrals (5.12)-(5.14) can be evaluated numerically, in this case the upper limit is 

replaced by an appropriate cut-off radius depending on the required tolerance. 

 

Figure 5.1. Diffusive base state of the localized photoabsorptive microstructure: from top to 

bottom - spatial distributions of (a) temperature ܶ, (b) concentration ܥ and (c) 

demagnetizing field ܪ perturbations, (d) vector plot of the resulting magnetic 

force ܪ׏ܥ, corresponding radial profiles of the transversally averaged 

distributions: (a) 〈ܶ〉௭, (b) 〈ܥ〉௭, (c) 〈ܪ〉௭, (d) 〈ܥ〉௭
డ

డ௥
 .௭〈ܪ〉

The r-z distributions of the corresponding fields calculated according to (5.12)-(5.14) are 

plotted on Figure 5.1 for the case of the variance ߪଶ ൌ 0.2. The particular value 	ߪ ൌ √0.2 is 

chosen because the resulting distribution of the absorbed optical intensity approximately 

corresponds to a single period of the 
ଵ

ଶ
ሾ1 ൅ cosሺݕߨሻሿ distribution employed previously (2.5), 

which allows qualitative comparison with the extended systems. The obtained profiles show 
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the exponential decay of the field perturbations with the radial distance from the center of the 

beam and the microstructure is well localized.  

There is notable difference between the structures of the localized and extended 

photoabsorptive formations calculated previously (Figure 3.4). The dissipation of the thermal 

energy within the localized microstructure is accomplished by two mechanisms – radial 

dissipation, which is suppressed in the extended gratings by the presence of the neighboring 

elements and the transversal dissipation through the boundaries of the layer. The later 

mechanism is limited to the area of a single period of the grating for each of its elements, 

while the localized element can technically dissipate heat through the whole boundary. Of 

course, the most intensive heat flux is located near the center of the beam. This distinction 

causes the presence of intensive transversal thermal gradients in the elements of the extended 

gratings and the corresponding mass fluxes. The decoupled thermophoretic flux is 

compensated by the coupled diffusive and magnetophoretic fluxes. The transversal 

magnetophoresis apparently plays a significant role in the formation of extended 

photoabsorptive microstructures, while on the other hand in the localized ones it is not so 

pronounced and the shape of the microstructure is determined mostly by the equilibrium of 

thermophoretic and diffusive fluxes. 

Consequently, the calculated profile of the magnetic force in the localized microstructure 

(Figure 5.1 (d)) also differs from such within the element of the extended grating (Figure 3.4) 

in the perpendicular configuration of the external field. The near-wall contributions are not so 

pronounced in comparison with the bulk contributions and their direction is reversed. The 

bulk magnetic force is directed outward from the center of the localized microstructure, while 

in the extended gratings the bulk contributions are directed vertically, i.e. along the 

transversally applied external field. The distribution of the magnetic force is obviously not 

potential and will inevitably promote some form of magnetic microconvection leading to the 

redistribution of the ferroparticles, but evidently the non-potential component of the magnetic 

force is not defining and the advective contributions may not be very significant. 
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5.2. Stationary microconvection 

The consideration of the presence of the magnetoconvective fluxes within the localized 

photoabsorptive microstructure leads again to the set of equations (1.36)-(1.39), (3.5) with the 

boundary conditions (3.1), (3.6) and (3.70). Additional constraint imposed on the solution is 

the condition of eventual vanishing of the field perturbations with the radial distance from the 

center of the Gaussian beam ݎ → ∞. Because the problem is axially symmetric in the 

configuration of the transversally applied external magnetic field ࢎ ൌ ሺ0,0,1ሻ it is reasonable 

to look for the initial solution of the convective-diffusive problem with the same symmetry. 

 

Figure 5.2. Definition of the problem: toroidal convective fluxes within the localized 

photoabsorptive microstructure formed by a Gaussian beam under the action of 

the perpendicular applied magnetic field. 

The calculated magnetic force possesses no azimuthal component so initially the convective 

currents should take the form of a pair of coaxial toroidal vortices with their axis of rotation 

directed vertically along the applied field (Figure 5.2). This arrangement retains the full 

symmetry of the problem, the question of its stability is not considered at this point. 

The obtaining of the spectral solution to the problem (3.64)-(3.70) is complicated for several 

reasons – unboundedness of the flow requiring the use of advanced numerical methods and 

the symmetry of the system necessitating the application of the cylindrical coordinates. The 

numerical solution is most convenient in finite volume formulation. The calculated 



 
 

126 
 

streamlines and stationary concentration profiles are plotted in Figure 5.3 for some values of 

the magnetosolutal Rayleigh number. 

 

Figure 5.3. Computed streamlines (left) and concentration profiles (right) of the localized 

convective-diffusive microstructure for the values of the magnetosolutal 

Rayleigh number (a) ܴݏ௠ ൌ 100 (b) ܴݏ௠ ൌ 200 (c) ܴݏ௠ ൌ 500 (d) ܴݏ௠ ൌ

1	000 (top to bottom) 

The numerical simulations show that intensity of advective mass transport is not very 

substantial, it becomes comparable with the diffusive mechanism at approximately ܴݏ௠ ൌ

1	000 and in fact promotes slight homogenization of the concentration field in the transversal 

direction. The configuration of the convective flow is somewhat more interesting – as the 

value of the magnetosolutal Rayleigh number is increased a second pair of toroidal vortices 

appears near the symmetry axis of the microstructure. The secondary vortices begin to grow 

and eventually displace the original pair from the center of the Gaussian beam spot at some 

௠ݏܴ ൌ 200…500. Intuitively, it is clear that such structure of the flow is unstable and is only 

realized in the numerical simulation due to the artificially imposed axial symmetry.  
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In fact, the formation of the corresponding secondary circulations has also been observed 

within the elements of the bidirectional grids (Figure 4.3) leading to the subsequent loss of 

stability. It can be hypothesized that the localized photoabsorptive formations can be similarly 

destabilized by the emergence of azimuthal convective currents. 

5.3. Azimuthal instability 

In order to determine the reliability of the previously obtained numerical solution its stability 

with respect to higher azimuthal modes must be examined. Such analysis requires the 

formulation of the linearized stability problem analogous to the previously solved system 

(3.162)-(3.164), (3.5) with the corresponding boundary conditions (3.1) and (3.6) and no-slip 

condition for velocity perturbation, which would eventually yield the dispersion relation and 

the neutral curves. Clearly, the direct approach to the formulation of this problem is 

prohibitively complex for the same reasons as were earlier described for the impracticality of 

the spectral solution of the stationary problem so some approximations would be desirable. 

The previous calculations show that the stationary toroidal convective fluxes are not intense, 

do not exert significant influence on the concentration field and only cause a slight 

homogenization of its transversal profile. There is then the possibility to concentrate on the 

emerging lateral motions within the plane of the ferrofluid layer and decrease the complexity 

of the problem by reducing the transversal direction. At the same time, it is necessary to retain 

some degree of generality with respect to the thickness of the ferrofluid layer so as not to limit 

the validity of the assumptions to infinitely thick or very narrow layers, because in the 

conditions of real experiments neither is usually true. 

To formulate a slightly simpler stability problem the equations (3.162) and (3.164) are 

averaged across the transversal direction, adopting the notation (3.159)-(3.161) for the 

convective-diffusive base state and the corresponding infinitesimal perturbations. The 

averaging of the Stokes equation (3.162) with account to the parabolic profile (2.11) for ෥࢛ 

yields the already familiar linearized Darcy-Stokes equation (2.21) with Brinkman’s term 

െસୄ݌ ൅ ሺ∆ୄ െ ሻ〈෥࢛〉௭ߚ ൅ ௭〈ܪ〉௠൫ܿ̃સୄݏܴ ൅ ௭સୄ〈ܥ〉 ෨݄൯ ൌ ૙ (5.15)

where it has been assumed that the infinitesimal perturbations ܿ̃ሺݎ, ,ݎሻ and ෨݄ሺߠ  ሻ of theߠ

concentration and demagnetizing fields are independent of the transversal coordinate. While 

intuitively such assumption might seem rather coarse, numerical simulations of the evolution 

of the localized convective-diffusive microstructure above the threshold of the azimuthal 

instability show that it is surprisingly accurate even for finite amplitude perturbations. 
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In turn, the averaging of the concentration balance equation is straightforward 

߲ܿ̃
ݐ߲

ൌ ∆ୄܿ̃ െ 〈෥࢛〉௭સୄ〈ܥ〉௭ (5.16)

taking into account that the term ࢁસܿ̃ vanishes after averaging due to the axial symmetry of 

the primary toroidal convective circulation and the assumed transversal homogeneity of the 

concentration perturbation. The influence of the lateral magnetophoresis also disappears for 

the same reason by virtue of the equation (3.5). 

Taking the curl of the equation (5.15) and introducing the polar stream function ෨߰ in the 

following form 

௥ݑ ൌ
ଵ

௥

డట෩

డఏ
ఏݑ  , ൌ െడట෩

డ௥
 (5.17)

with 〈෥࢛〉௭ ൌ ࢘܍௥ݑ ൅  the equation for ෨߰ is obtained after some transformations ,ࣂ܍ఏݑ

ሺ∆ୄ െ ୄ∆ሻߚ ෨߰ ൅ ௠ݏܴ ቆ
1
ݎ
߲ܿ̃
ߠ߲

߲
ݎ߲
௭〈ܪ〉 െ

1
ݎ
߲ ෨݄

ߠ߲
߲
ݎ߲
௭ቇ〈ܥ〉 ൌ 0 (5.18)

The numerical solution to (5.16) and (5.18) can be found by applying the Galerkin method 

and the following ansatz is adopted 

ܿ̃ሺݎ, ሻߠ ൌ ෍ ܿ̂௠ cos ൬
ݎ݉ߨ
ܴ௖

൰ cosሺΚߠሻ

ே೎

௠ୀ଴

 (5.19)

෨߰ሺݎ, ሻߠ ൌ ෍ ෠߰௠ܨ௷௠ሺݎሻ sinሺΚߠሻ

ே഍

௠ୀଵ

 (5.20)

which transforms the unbounded problem into a bounded one with ܴܿ – the cut-off radius and 

Κ is the azimuthal wavenumber. The convergence of the solution with respect to the size of 

the expansions ܰܿ, ܰߦ and ܴܿ is required. 

The radial expansion of the polar stream function is performed making use of the 

Chandrasekhar’s cylindrical functions ܨ௷௠ሺݎሻ [95] 

ሻݎ௠ሺ௷ܨ ൌ ௷ܬ ൬ߙ௠
ݎ
ܴ௖
൰ ൅ ௠ܤ ௷ܻ ൬ߙ௠

ݎ
ܴ௖
൰ ൅ ௷ܫ௠ܥ ൬ߙ௠

ݎ
ܴ௖
൰ ൅ ஂܭ௠ܦ ൬ߙ௠

ݎ
ܴ௖
൰ (5.21)

where ஂܭ ,௷ܫ ,ܻ௷ ,௷ܬ are the Bessel and modified Bessel functions of the first and second kind 

of order Κ, following the conventional notation; the coefficients ݉ܥ ,݉ܤ and ݉ܦ depend on 

 ሻ satisfy theݎሺ݉߈ܨ and the corresponding functions ݉ߙ and Κ. The characteristic values ݉ߙ

characteristic equation 
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ቆ
݀ଶ

ଶݎ݀
൅
1
ݎ
݀
ݎ݀

െ
Κଶ

ଶݎ
ቇ
ଶ

௠௷ܨ ൌ ሻ (5.22)ݎ௠ሺ௷ܨ௠ߙ

and the boundary conditions  

ሾ߲௥ܨ௷௠ ൌ ௠௷ܨ ൌ 0ሿ ೝ→బ
ೝసೃ೎

 (5.23)

What remains is the determining of the relationship between the perturbations of the 

demagnetizing field and concentration. It follows from the equations (3.5) along with the 

boundary conditions (3.6) and can be obtained by several methods – either as the boundary 

integral by the application of the Green’s function method [96] or by integral transform. For 

the problems in cylindrical coordinates the latter approach seems more convenient because it 

allows separating the azimuthal modes in a straightforward way. 

The application of the Henkel transformation to the problem (3.5)-(3.6) simplifies the 

cylindrical Laplacian and the solution is not complicated 

෨݄ሺݎ, ሻߠ ൌ െߙ෤௖ ෍ ܿ̂௠ܪ௠ሺݎሻ cosሺΚߠሻ

ே೎

௠ୀ଴

 (5.24)

with 

ሻݎ௠ሺܪ ൌ
1
2݈
න ሺ1 െ ݁ିଶ௟ୱሻஂܬ ሺݎݏሻන ݎ cos ൬

ݎ݉ߨ
ܴ௖

൰ ܬஂ ሺݎݏሻ݀ݎ
ஶ

଴
ݏ݀

ஶ

଴
 (5.25)

where the transversal coordinate has been reduced by averaging across the gap of the layer.  

Projecting the governing equations (5.16) 

and (5.18) onto the modes of the expansions 

(5.19), (5.20) and (5.25) the dispersion 

relation is obtained and the neutral curves 

are determined for different azimuthal 

modes (Figure 5.4). The solutions 

corresponding to different values of the 

azimuthal wavenumber Κ consist of a set of 

vortices positioned symmetrically around 

the axis of the laser beam. The number of 

the vortices corresponds to the value 2Κ and 

the primary critical mode is the one with 

Κ ൌ 2, corresponding to a set of 4 vortices. 

 

Figure 5.4. Neutral curves of the azimuthal 

instability for different azimuthal 

modes: (a) Κ ൌ 2, (b) Κ ൌ 3,  

(c) Κ ൌ 4, (d) Κ ൌ 5, (e) Κ ൌ 6. 
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The motions described by different arbitrary values of the azimuthal wave-number Κ along 

with the expected deformations of the concentration field are shown in Figure 5.5. 

    

Figure 5.5. Calculated azimuthal motions and the corresponding expected deformations of 

the concentration field. 

 

Figure 5.6. Numerical simulation of the localized photoabsorptive microstructure above the 

threshold of the azimuthal instability at ܴݏ௠ ൌ 500: left – symmetric base state, 

right – convective symmetry breaking (convective streamlines and concentration 

contours). 

It seems that the concentration field can form different shapes above the threshold of the 

instability. Apart from simple elongations of the concentration distribution, more complicated 

configurations are possible with higher azimuthal wave-numbers – triangular, quadratic, 

pentagonal and others. 

The numerical simulations of the evolution of the localized photoabsorptive microstructure 

above the threshold of the instability confirm the principal conclusions of the approximate 

linear model. The establishing of the stationary lateral circulation was observed at certain 

arbitrary values of the control parameter (Figure 5.6). The calculations evidence that the mode 

Κ ൌ 2 is indeed the most unstable one.  
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Discussion 

In the previous sections the problems of formation, evolution and stability of the extended and 

localized convective-diffusive microstructures formed by photoabsorption and the subsequent 

simultaneous interactions of the gradients of temperature, concentration and demagnetizing 

field in non-isothermal and inhomogeneous ferrodispersions have been consequently 

considered. By the application of theoretical and numerical methods it was demonstrated that 

rather than simple modulations of concentration and magnetic field the fotoabsorptive 

formations can possess complex internal structure generated by the reciprocal interactions of 

phoretic and advective currents.  

Yet, the discussed possibility of the existence of magnetoconvection within the 

photoabsorptive microstructures does not necessarily imply its presence or significance in the 

conditions of real experiments. Many of the results of the experimental measurements 

seemingly signifying the influence of magnetic microconvection in photoabsorptive systems 

can well be interpreted in terms of phoretic transport or magnetostatic effects. Also, the 

presence of transversal microconvection is not easily discerned by the direct visualizations of 

the regular photoabsorptive formations, as it initially possesses the same symmetries unless 

the destabilization of the microstructures takes place. It is then the purpose of this section to 

interpret some available experimental observations of the formation and evolution of the 

magnetic photoabsorptive microstructures accommodating the influence of the 

magnetoadvective transport. 

Extended grating 

Firstly, the formation of the extended concentration grating with interfringe 30 μm was 

observed in a 100 μm thick ferrofluid cell under the influence of a uniform external magnetic 

field with adjustable magnitude oriented along the direction of the imposed photoabsorptive 

thermal modulation [94], i.e. in the parallel direction. The experiments were performed by Dr. 

A. Mezulis (Laboratory of Heat and Mass Transfer, IPUL).  

The employed ferrofluid was a magnetite based solution in n-tetradecane, with steric 

stabilization (oleic acid was used as surfactant). The relevant parameters of the sample TD-5 

are summarized in Table 5.1., the volume concentration of the ferroparticles was 2.3%. 
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Table 5.1. Parameters of the ferrofluid samples [94] 

Parameter TD-5 207BNE  

solvent density ߩ௦ 800 875 kg m-3 

viscosity 10-4·5.9 0.002 ߟ Pa s 

thermal conductivity 0.14 0.12 ߣ W (m K)-1 

specific heat capacity ܿ௣ 2100 1670 J (kg K)-1 

particle density ߩ௣ 5200 5200 kg m-3 

diffusivity 11-10·6.2 11-10·1.2 ܦ m2 s-1 

Soret coef. ்ܵ 0.16 0.16 K-1 

magnetic diameter ݀௠ 7.3 9.1 nm 

spontaneous magnetization ܯ௦ 4.9·105 4.9·105 A m-1 

 
Instead of the usual FRS setup, the photoabsorptive grating was created by illuminating the 

metallic mask with periodically spaced slits by a high pressure mercury lamp. The total 

incident intensity of the optical grating was ~27	ܹ݉ focused in a circle of diameter ~1	݉݉. 

The evaluation of the characteristic temperature difference has yielded the value of about 

 The values of the dimensionless parameters calculated for the intensities of the .ܭ	0.1~

magnetic field employed in the series of experiments are summarized in Table 5.2. 

The measured quantity in a FRS setup is the diffracted intensity of the probe laser beam, 

which illuminates the index grating corresponding to the forming concentration 

microstructures. Figure 5.7 shows the time dependence of the square root of the measured 

diffracted intensity in a series of experiments with different field strengths. The value of this 

quantity is proportional to the magnitude of first parallel mode of the induced concentration 

perturbation ඥܫௗ~ܥଵ [93]. The value ඥܫௗ is compared to the L2-norm ܬሺݐሻ (3.157), which is 

obtained from the numerical calculations by finite volume integration of (3.64)-(3.70).  

Table 5.2. Dimensionless parameters (grating experiments) 

۰૙ ∥  mT 20 mT 30 mT 40 mT 60 mT 80 mT 120 mT 0 ܶ׏

 ෤௖ - 1 1 1 1 1 1ߙ

௣ࣧ௛ - 0.01 0.02 0.03 0.05 0.08 0.12 

 ௠ - 1.01 1.02 1.03 1.05 1.08 1.13ݏ

 ௠ - 5 11 16 30 43 62ݏܴ

∆ܿതതതሾܪሿ

∆ܿതതതሾ0ሿ
 1.0 0.99 0.98 0.97 0.95 0.92 0.89 
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The time evolution of ܬሺݐሻ is determined from the simulations of the formation stage of the 

concentration grating for the parameters in Table 5.2. Much information can be gained from 

the comparison of the experimental and calculated data (Figure 5.7). For convenience all 

series have been normalized by the corresponding zero-field saturation values. 

   

Figure 5.7. Formation of the concentration grating, establishing of the stationary state in the 

parallel applied field: experimental measurements of the diffracted intensity 

(left, courtesy of Dr. A. Mezulis) and corresponding numerical calculations 

(right) at (a) zero field (b) 20	݉ܶ, (c) 30	݉ܶ, (d) 40	݉ܶ, (e) 60	݉ܶ, (f) 80	݉ܶ, 

(g) 120	݉ܶ.  

The notable evidence of the influence of microconvective transport is the somewhat 

relaxational character of the measured diffracted signal after the initially attained maximum. 

In fact, despite rather small values of the magnetic solutal Rayleigh numbers, such behavior 

cannot be explained by any phoretic process and is a clear sign of microconvection. 

Comparing the calculated and measured time dependencies of the appropriate quantities it is 

possible to conclude that the correspondence is not perfect, but is still meaningful, taking into 

account the absence of the approximation parameters. Certainly, the qualitative comparison is 

possible at the least. 

Some of the main factors for the quantitative discrepancy between the calculations and the 

experimental measurements seem to be the large aspect ratio of the thickness of the ferrofluid 

layer to the interfringe of the induced photoabsorptive grating as well as the polydispersity of 

the studied sample. The magnetic core size distribution can be obtained by the method of 

magnetic granulometry. In fact the magnetic diameters were approximately in the range 

between 5 and 10 nm yielding the averaged value of 7.3 nm. This leads to two notable 

conclusions. First of all, larger magnetic nanoparticles have greater magnetophoretic mobility. 
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Secondly, the relative contribution of the certain size fraction to the diffracted intensity is 

proportional to the sixth power of its diameter ~݀଺ [94]. Then the visibility of the larger 

particles is far greater than that of the smaller ones. The models of the polydisperse mixtures 

are, however, outside the scope and focus of this work and will not be discussed further. 

Considering the dynamics of the evolution of the grating, it seems that the presence of 

microconvection significantly slows down the formation of the stationary state, especially at 

lower values of the magnetic solutal Rayleigh numbers as compared with the phoretic process 

alone. At higher fields, the evolution of the measured diffracted signal reaches the stationary 

state rather quickly, somewhat faster than predicted by the theory. It can then be concluded 

that in this case the effective value of the Rayleigh number is greater than the one predicted 

due to the presence of some contributing factor. Additional calculations show that the 

observed rapid establishing of the stationary regime takes place at ܴݏ௠ ∼ 250. Such 

discrepancy can be explained by the deformation of the assumed symmetric configuration of 

the perturbations with respect to the midplane of the layer, since the dependence of the solutal 

Rayleigh number on the characteristic dimensions is very strong (Section 2.1). This effect 

should be more pronounced in photoabsorptive gratings with larger aspect ratios, such as the 

one considered here. 

 

Figure 5.8. Formation of the concentration grating, establishing of the stationary state in the 

parallel applied field of 120	݉ܶ. The calculated contours of the concentration 

field and convective streamlines at time moments ݐ ൌ 0.2, 0.4, 0.6, 0.8, 1.0. 
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For the purpose of gaining understanding of the dynamics of the measured diffracted signal 

during the formation stage of the concentration grating it is appropriate to consider the 

microscopic evolution of the element photoabsorptive convective-diffusive microstructure. In 

the large aspect ratio structures the process of formation of the concentration profile possesses 

peculiarities and begins at the boundary regardless of the sign of the Soret coefficient.  

Initially, the interaction of the concentration boundary layer with the gradient of the 

corresponding demagnetizing field creates two sets of convective rolls near the opposite 

sidewalls of the ferrofluid layer (Figure 5.8). The concentration front, which is advanced by 

the interaction of the thermophoretic and magnetophoretic fluxes, then, drives these rolls to 

the center of the layer, all the while the microconvection acting to homogenize the 

concentration perturbation that creates it and slow down the evolution of the concentration 

profile. 

If the symmetry of the field perturbations across the midplane of the layer is broken then the 

asymmetric contributions cannot be neglected anymore. Qualitatively this means that one of 

the pairs of the convective rolls will begin to suppress the other pair with the increase of the 

control parameter, leading to the increase of the effective Rayleigh number for the dominating 

set of rolls. In fact, the measurements of the intensity of the beam exiting the ferrofluid layer 

show considerable decrease as compared with the entering beam, which can as well lead to 

the asymmetry of the field profiles across the midplane of the layer. Unfortunately, the 

present model cannot account for the asymmetric terms, but their presence does not seem to 

change the qualitative picture of the process. 

Bidirectional grid 

In turn, a bidirectional photoabsorptive grating can be created in the same fashion by 

illuminating the ferrofluid layer through an array of square openings in a metallic stencil. A 

ferrofluid sample 207BNE, magnetite based solution in toluene (Table 5.1) with 3.3% volume 

fraction of the solid phase, was employed for this particular experiment. The optical grid 

formed by the metallic stencil was focused within the ferrofluid layer. The period of the 

imposed optical modulation constituted 75μm in both directions, the thickness of the layer 

remained at 100μm. The calculations of the photoabsorptive thermal nonhomogeneities 

predict the characteristic temperature difference in the range ~0.5-0.6K.  

The measurements were performed in the parallel configuration of the external magnetic field, 

applying the field along one of the preferred orientations. During the set of experiments the 



 
 

136 
 

intensity of the optical pumping remained unchanged and the magnitude of the external field 

was varied from 3mT to 50mT. The calculated values of the necessary dimensionless 

parameters corresponding to magnetic field strengths employed during the series of the 

measurements are summarized in Table 5.3. 

Table 5.3. Dimensionless parameters (grid experiments) 

۰૙ ∥  mT 3 mT 10 mT 20 mT 30 mT 40 mT 50 mT 0 ܶ׏

 ෤௖ - 1 1 1 1 1 1ߙ

௣ࣧ௛ - 0.0 0.02 0.06 0.12 0.17 0.23 

 ௠ - 1.0 1.02 1.06 1.12 1.18 1.24ݏ

 ௠ - 95 1670 4530 7680 10 450 12 390ݏܴ

∆ܿതതതሾܪሿ

∆ܿതതതሾ0ሿ
 1.0 1.0 0.98 0.94 0.89 0.85 0.81 

 
The dimensional analysis predicts rather weak magnetophoretic effects, the diffusive mobility 

of the ferroparticles is increased by not more than approximately 20% in the direction of the 

field, but the magnetosolutal Rayleigh number reaches considerable values, owing to the 

larger characteristic temperature difference and interfringe than in the grating experiments. 

The intensity of the diffracted component of a scanning laser beam was measured in both 

directions – parallel ܫௗ
∥  and longitudinal ܫௗ

∟. The square root of these signals is compared with 

the corresponding quantities ܬ∥ and (4.1) ∟ܬ calculated from the numerical model for the 

parameters of the experiment (Figure 5.9). The experimental setup did not allow the 

measurements in zero field, but the imposed magnetic field could be reduced to the lowest 

value of 3mT. To exclude the coefficients of proportionality between the measured and 

calculated values the measured diffracted intensities are normalized by the maximum value in 

the lowest field and the same is done with the calculated curves, which are normalized by the 

maximum of the parallel signal ܬ∥. 

The observations of the formation stage of the bidirectional photoabsorptive grid already 

point to the strong influence of the microconvective effects. The longitudinal signal is 

affected very little at higher fields comparing with its dynamics in low fields, but the mixing 

in the direction of the imposed external field is significantly enhanced causing the attenuation 

of the amplitude of the concentration modulation in that direction. The characteristic primary 

maximum and consequent relaxation to the stationary state evidencing the presence of 
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microconvection is observed in the evolution of both the diffracted signal ܫௗ
∥  and the 

calculated signal ܬ∥.  

 

Figure 5.9. Formation of the bidirectional concentration grid, establishing of the stationary 

state in the parallel applied field: experimental measurements of the parallel ܫௗ
∥  

and longitudinal ܫௗ
∟ diffracted intensity (left, courtesy of Dr. A. Mezulis) and the 

corresponding numerical calculations of ܬ∥ and ܬ∟ (right) at (a) zero field (b) 

3	݉ܶ, (c) 10	݉ܶ, (d) 20	݉ܶ, (e) 30	݉ܶ, (f) 40	݉ܶ, (g) 50	݉ܶ.  

Generally, the relaxation of the measured parallel diffracted intensity is slower than that of the 

calculated dependencies ܬ∥. This perhaps can be attributed to the polidispersity of the 

employed ferrofluid sample and different dynamics of the fractions. Otherwise, the 

correspondence is sufficient to confirm the presence and direction of the magnetic 

microconvection. Although in this case the similarity is much better than in the situation of 

the photoabsorptive grating, owing most probably to the lower aspect ratio of the induced 

microstructures, it can in part be accidental. 

Symmetry breaking 

The linear analysis of the stability of the extended photoabsorptive convective-diffusive 

microstructures, similar to those formed in ferrofluid layers in the framework of forced 
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Rayleigh scattering experiments, has yielded the limits for the values of the magnetic 

Rayleigh number within which the stability of the gratings is retained. Above the threshold of 

the instability the growth of the longitudinal perturbations is not dampened but is instead 

amplified and in parallel applied magnetic field the peristaltic stratification develops in the 

longitudinal direction, while in the perpendicular field the instability assumes the form of 

undulatory bending of the concentration front. In this regard, the parallel configuration of the 

external field seems to be relatively stable, while the perpendicular orientation is much less 

so. Still, the relatively high values of the magnetic Rayeligh number, which are necessary to 

cross the threshold of the peristaltic instability in parallel field, are quite reachable in the FRS 

experiments without significant difficulties. 

 

Figure 5.10. Holographic visualization of the photoabsorptive grating in parallel magnetic 

field (courtesy of Dr. A. Mezulis): the emergence of the secondary grating near 

the threshold 

The formation of the peristaltic instability of the photoabsorptive grating was ascertained 

experimentally by the FRS procedure in a ferrofluid sample TD-5 [94] under the action of the 

parallel magnetic field. The period of the primary grating was 80μm and estimations showed 

that the induced thermal difference constituted about 0.5K-0.6K. The thickness of the 

ferrofluid cell was as previously 100μm. At the magnitude of the applied field of 

approximately 150mT the emergence of a microstructure similar to a secondary perpendicular 

concentration grating was observed (Figure 5.10). 
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The dimensional analysis shows that the critical threshold for the peristaltic instability in the 

parallel field corresponds to the imposed temperature difference of approximately 1K, which 

is slightly higher than the estimations. The ratio of the periods of the primary thermal and the 

emerging secondary gratings determined from the experiment was ~0.59. This corresponds 

very well with the longitudinal period of the critical peristaltic perturbation ~0.54 calculated 

from the stability analysis (Figure 3.14). 

In turn, the loss of stability of a photoabsorptive concentration microstructure localized in a 

beam spot of a laser was observed by Luo, Du and Huang [68]-[69] upon the application of 

uniform vertical magnetic field. The ferrofluid layer with thickness 100 μm was illuminated 

by a focused laser beam with radius of 6.7 μm and power of 10 mW. Their employed magnetic 

fluid was a magnetite based solution in kerosene with 6% volume fraction of the solid 

component. The high intensity of the incident beam has produced rather large thermal 

differences due to photoabsorption. The authors reported the results of their numerical 

simulations of the temperature distribution within the layer: the temperature difference of 

~15K was obtained between the center of the hot spot and the edge of the beam. The total fall 

off constituted approximately 40K at several beam widths. Such strong thermal gradients 

cause the formation of pronounced concentration inhomogeneities in colloidal dispersions. 

The Soret coefficient of the ferrofluid was large and positive ~0.1 K-1 as is characteristic for 

mixtures with steric stabilization. 

In the absence of magnetic field the formation of a concentric interference pattern similar to 

Newton’s rings was observed due to the reciprocal interaction between the incident laser 

beam and the photoabsorptive thermal lens, which is formed by the radial gradients of 

temperature and concentration contributing to the variation of the refractive index.  

Upon the application of the vertical magnetic field in the direction along the beam axis, the 

transformation of the interference rings took place if the strength of the external field 

exceeded some threshold value. A triangle-shaped instability was reported and observations 

of differently shaped polygons – tetragons and pentagons - have been claimed. 

The authors of [68] interpret the observed evolution of the interference patterns in terms of the 

magnetoconvective instability of the flat photoabsorptive concentration profile with initially 

circular symmetry. The proposed model is that of a system of six (eight or ten in the case of 

tetragons or pentagons) convective rolls with axes parallel to the axis of the beam emerging 
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within the concentration microstructure due to the bifurcation from the diffusive state. The 

deformation of the concentration profile is then the influence of the microconvective fluxes. 

An alternative explanation was offered in [70], where it was pointed out that the intense 

thermal gradients can eventually cause significant thermophoretic depletion of the 

ferroparticles in the beam spot. The expulsion of the ferroparticles from the heated region 

leads to the formation of a non-magnetic “bubble” immersed in magnetic liquid. The 

magnetic forces on the surface of the bubble can be interpreted in terms of the magnetic 

surface tension. The observed formation of the polygons can then be explained in terms of the 

magnetostatic shape instability.  

While both approaches seem to be valid and have been observed in principle in different 

systems, additional considerations evidence in favor of the hydrodynamic effects driving the 

instability [71].  

Although the formation of different shapes via azimuthal hydrodynamic instability of a 

localized photoabsorptive microstructure is consistent with the analysis of Section 5.3, the 

interpretation of the observed effect in terms of the magnetic microconvection is neither 

simple nor clear. The experimental procedure employed considerable thermal differences and 

very strong thermal gradients owing to the focusing of the laser beam. In such conditions the 

thermomagnetic effect may be sufficiently strong to influence the convective motion. Also, 

the optical index variation was formed generally by the thermal contribution and not the 

concentration contribution as it was in the case of the previously discussed FRS procedures in 

the application to ferrofluids. In this regard the visualization of the beam spot yields 

information exclusively about the shape of the thermal perturbation, while the solutal 

constituent remains concealed. The intensity of the convective motion is then sufficient to 

deform also the temperature field. It remains to conclude that the model based on just the 

magnetosolutal convection cannot describe the observed effects. 

At this time it is unclear, what is the character of interactions of the solutal and thermal 

mechanisms of the magnetic buoyancy in such localized systems and the relative role of the 

respective contributions in the formation of magnetoconvection. While some attempts have 

been made to approach the magnetic convection in cylindrical systems [103]-[104] the 

conclusions are not readily applicable to localized photoabsorptive microstructures and more 

specific investigations are required. 
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Final remarks 

In this work the formation, evolution and stability of extended and localized photoabsorptive 

microstructures in non-isothermal and inhomogeneous ferrodispersions have been 

consequently considered in the presence of the applied uniform magnetic field in different 

configurations on the grounds of the pseudohomogeneous mixture model.  

The starting point for the investigation was the plane hydrodynamic instability of a flat array 

of periodic concentration stripes. The formulation of this problem should qualitatively 

correspond to the application of a Forced Rayleigh scattering technique in very thin ferrofluid 

layers. A nonlinear Lorenz-type model based on selective truncation of the modes was 

proposed for the formation and relaxation scenarios in a weakly nonlinear regime.  

1. It was ascertained that the emergence of the lateral circulation would lead to the 

enhancement of the mass transport in both parallel and perpendicular configurations of the 

applied magnetic field manifesting in the increase of the measured diffusion coefficient 

and the corresponding decrease of the Soret coefficient. 

2. In turn, the formation of the convective currents can occur only through the breaking of 

the translational symmetry of the grating and implies the presence of the critical threshold. 

The limits of applicability of the thin layer approximation are very narrow and degenerated 

microstructures are rarely observed in the real conditions. The subsequent consideration of the 

transversal profile was found to be crucial to the understanding of the mass transport 

processes in photoabsorptive microstructures in magnetizable dispersions and leads naturally 

to the notion of the photoabsorptive convective-diffusive microstructures.  

3. It was determined that the magnetic microconvection is an important and integral 

component of the photoabsorptive mass transport in ferrofluids under the action of the 

external magnetic field. 

4. The calculations show the significant role of the transversal boundary and in this regard 

the two principal driving mechanisms of magnetoconvection have been observed. 

In parallel field the convective fluxes are driven by the induced bulk nonhomogeneities of the 

ferroparticle concentration and the associated gradients of the demagnetizing field. In turn, in the 

perpendicular field configuration the main mechanism is related to the interaction of the 

concentration perturbation with the discontinuity of the normal component of the magnetic field.  
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The calculations of the formation and relaxation of the extended photoabsorptive 

microstructures with account to the transversal microconvection demonstrate the considerable 

role of the magnetoadvection in the lateral mass transport.  

5. It was concluded that the principal direction of the lateral magnetoadvective currents 

corresponds both to the magnetophoretic mass fluxes and to the expected influence of 

the interparticle interactions on the mass transport coefficients, which considerably 

complicates the separation and interpretation of these effects in the conditions of the 

experiment. 

6. The transversal circulation emerges without the presence of a distinct threshold and 

does not violate the initial symmetry of the photoabsorptive microstructures, in 

contrast to the appearance of the previously considered lateral convective circulations 

in very narrow layers. 

Consequently, it was recognized that the magnetic fotoabsorptive formations possess complex 

internal structure generated by the reciprocal interactions of phoretic and advective currents.  

In turn, the subsequent consideration of the problem of stability of the extended and localized 

photoabsorptive microstructures has shown richness of behavior and diverse bifurcating 

regimes. 

7. It was shown that the translational symmetry of the extended convective-diffusive 

microstructures in parallel applied field can be broken by a peristaltic perturbation 

leading to the eventual longitudinal stratification; while in the perpendicular field the 

undulatory bending of the concentration front may occur. 

8. The comparing of the results of stability analysis in thin layer approximation and with 

account for the transversal direction has revealed the existence of the regime of 

efficient mixing responsible for the enhanced stability of the photoabsorptive gratings 

in the parallel configuration of the applied magnetic field. 

In this regard, the normal field configuration is unstable and the parallel configuration is 

somewhat stable.  

9. The destabilization of the bidirectional photoabsorptive grid and the eventual 

reduction of the order of its rotational symmetry in the configuration of the 

perpendicular external field were noted in numerical calculations, but are yet to be 

established in real observations. 
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The formation of the bidirectional grids of the photoabsorptive convective-diffusive 

microstructures was considered by numerical simulations and the principal similarities 

between the grids and extended gratings were noted. 

In turn, the simulations of the localized photoabsorptive formations within the beam spot of a 

Gaussian beam showed small influence of the transversal microconvection in vertical 

magnetic field.  

10. The loss of stability of the localized photoabsorptive microstructure occurred through 

the emergence of the azimuthal perturbations. 

The subsequent establishing of the lateral circulations causes the eventual deformations of the 

concentration field and the formation of polygonal shapes within the beam spot. 

The comparison of the theoretical calculations with the available experimental data strongly 

evidences the presence of magnetic microconvection in photoabsorptive concentration 

microstructures subjected to an external magnetic field. The process of the formation of the 

extended gratings and the bidirectional grids is interpreted in terms of the convective-

diffusive processes and the microscopic evolution of the photoabsorptive structures is 

explained on these grounds. The principal applicability of the current model and its limits in 

relation to the experimental systems are then discussed. The principal success of the 

hydrodynamic approach is the correct prediction of the parameters of the observed peristaltic 

instability due to the growth of the cross-roll perturbation. 

In conclusion, the principal theses, which summarize the findings of this work are formulated 

and submitted for defense: 

I. The formation of invisible magnetic microconvection within the photoabsorptive 

microstructures is claimed upon the application of external magnetic field. 

The shape and direction of the microconvective currents completely correspond to the action 

of lateral magnetophoretic transport and the two transport mechanisms are almost 

indistinguishable in this regard. 

II. The presence of magnetic microconvection is evidenced by the destabilization of 

the photoabsorptive convective-diffusive microstructures and the consequent 

symmetry breaking. 
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In principle, we consider that the existence of magnetoconvection in photoabsorptive 

concentration microstructures under the action of the applied magnetic field is highly 

probable, although substantial experimental investigations are still required. The possibility of 

fine magnetic control over the transport processes is one of the main features of 

ferrodispersions. Even relatively low thermal differences can cause intensive 

magnetoadvective mixing, enhancing the efficiency of the phoretic transport many times. 

Given the very recent interest in photoabsorptive thermogravitational microconvection for 

efficient phoretic trapping of macromolecules or crystal growth, ferrocolloids may prove 

invaluable for these purposes, especially under the conditions when the process is sensitive to 

the employed temperature range. 
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