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ABSTRACT 
Melanocortin (MCR) and purinergic (P2YR) receptors are two distinct subgroups of 

G protein-coupled receptors (GPCRs). Natural ligands of MCRs are peptides while 

P2YRs are activated by small nucleotide molecules. The members of these receptor 

families are considered to be potential therapeutic targets. The possible involvement 

of MCRs and P2YRs in development of multifactorial diseases has been disputed. 

The aim of this study was to explore functional characteristics important for receptor 

activation of the two GPCR subgroups with structurally different natural ligand types 

using a yeast expression system and to investigate the implication of MCRs and 

P2YRs in multifactorial conditions using a genetic association approach. The 

construction and functional screening of a randomised library of melanocortin 4 

receptor (MC4R) at the position 126, showed that aspartic acid in this position is 

crucial for receptor signalling and for constitutive activity of MC4R. The common 

SNP rs17782313 of MC4R in case-control groups of a Latvian population showed no 

association with obesity. However, functional testing of four nonsynonymous 

substitutions V103I, S127L, V166I and I251L found in morbidly obese group 

revealed that the novel substitution V166I cause decreased receptor quantity at the 

cell surface, but induced a hyperactive satiety signal transduction. S127L alone or in 

combination with V103I led to a dramatic decrease in receptor quantity in plasma 

membrane and inactivation. V103I and I251L did not affect MC4R signalling when 

stimulated by agonist, but AGRP demonstrated stronger inhibition of V103I variant 

activation compared to wild type MC4R. The designed study groups were also used 

for genotyping of the common fat mass and obesity-associated protein gene (FTO). 

Polymorphisms rs11642015 and rs62048402 were associated with obesity. The 

polymorphisms in the purinergic 1 receptor gene (P2RY1) locus were not associated 

with myocardial infarction or related phenotypes (body mass index, type 2 diabetes, 

angina pectoris, hypertension, hyperlipidemia, atrial fibrillation and heart failure) in 

case-control groups of a Latvian population. Detailed analysis of the regions involved 

in functional activity of purinergic 12 receptor (P2Y12R) demonstrated E181, R256, 

R265 and K280 to be important for signalling integrity of the receptor. Furthermore, 

tree-dimensional (3D) modelling studies suggested K280 to be a key determinant of 

the P2Y12R ADP binding pocket. 
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KOPSAVILKUMS 

Melanokortīnu (MCR) un purīnu (P2YR) receptori ir divas atšķirīgas ar G proteīnu 

saistīto receptoru apakšgrupas. MCR dabīgie ligandi ir peptīdi, bet P2YR aktivējas 

piesaistot mazas nukleotīdu molekulas. Abu šo receptoru grupu pārstāvji tiek uzskatīti 

par potenciāliem terapeitiskiem mērķiem, kā arī plaši tiek apspriesta MCR un P2YR 

loma dažādu multifaktoriālu slimību attīstībā. Šī darba mērķis bija pētīt funkcionāli 

raksturīgās pazīmes, kas ir būtiskas receptoru aktivācijā divās GPCR apakšgrupās ar 

strukturāli atšķirīgiem dabīgo ligandu veidiem, lietojot raugu ekspresijas sistēmu, un 

pētīt MCR un P2YR nozīmību multifaktoriālajās slimībās ar ģenētiskās asociācijas 

metodēm. Darba gaitā izveidota un funkcionāli analizēta melanokortīnu 4. receptora 

(MC4R) D126. pozīcijas randomizētā bibliotēka, kas parādīja šīs pozīcijas nozīmību 

receptora signāla pārneses un konstitutīvās aktivitātes nodrošināšanā. Netika atrasta 

asociācija starp gēna MC4R polimorfismu rs17782313 un aptaukošanos Latvijas 

populācijas case-control grupās. Tomēr četru nesinonīmu nomaiņu - V103I, S127L, 

V166I un I251L, kas atrastas adipozo pacientu grupā, funkcionālā raksturošana 

parādīja, ka pirmo reizi detektētā izmaiņa V166I izraisa hiperaktīvu sāta signāla 

transdukciju, S127L nomaiņa (gan atsevišķi, gan kombinācijā ar V103I) dramatiski 

samazina receptora daudzumu plazmatiskajā membrānā un signāla transdukcijas 

aktivitāti. Izmaiņu V103I un I251L stimulācija ar agonistu neietekmēja MC4R 

funkcionalitāti, tomēr AGRP inhibīcija bija spēcīgāka V103I variantam nekā savvaļas 

tipa MC4R. Šīs pašas paraugkopas tika izmatotas arī ar adipozo audu masas un 

adipozitāti saistītā proteīna (FTO) gēna bieži sastopamo polimorfismu genotipēšanai, 

rs11642015 un rs62048402 uzrādīja asociāciju ar aptaukošanos. Ģenētiskā saistība 

netika atrasta starp purīnu 1. receptora gēna (P2RY1) lokusu un miokarda infarktu, kā 

arī ar citiem saistītiem fenotipiem (ķermeņa masas indeksu, otrā tipa diabētu, 

stenokardiju, hipertensiju, hiperlipidēmiju, priekškambaru mirdzēšanu un sirds 

mazspēju). Detalizēta receptora purīnu 12. receptora (P2Y12R) rajonu analīze norāda, 

ka E181, R256, R265 un K280 pozīcijām ir nozīmīga loma receptora funkciju 

nodrošināšanā, kā arī 3D modelēšana norāda uz K280 pozīcijas izšķirošo lomu ADP 

piesaistē pie receptora. 
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ABBREVIATIONS 
 

 

A#R  adenosine receptor (abbreviation 

according to IUPHAR database) 
aa# amino acid position (for example, 

K20 – lysine in position 20) 

aa#aa replacement of amino acid in 
position by other amino acid (for 

example, K20L – lysine in position 

20 replaced by leucine) 
ABCB#  ATP-binding cassette, sub-family B 

gene 

ACTH adrenocorticotropic hormone 
ADP adenosine diphosphate 

AGRP  agouti-related protein  

AKAP  A-kinase anchor proteins 
AP-2  activating protein 2 

AT  3-amino-1,2,4-triazole 

ATP  adenosine triphosphate 

cAMP   cyclic adenosine monophosphate 

BHK   baby hamster kindey 

BMI  body mass index 
CAD  coronary artery disease 

CCR#  chemokine receptor 

cGMP-PDE  cyclic guanosine monophosphate 
phosphodiesterase 

Cdc#   cell division control protein 

CNS   central nervous system 
CTX   cholera toxin 

CYP#   cytochrome P450 enzyme gene 
DNA  deoxyribonucleic acid 

DREADD  designer receptors exclusively 

activated by a designer drug 
EC50  half maximal effective concentration 

EL#  extracellular loop 

ER  endoplasmic reticulum 
ERK   extracellular-signal-regulated kinase 

FRET  fluorescence resonance energy 

transfer 

FTO  fat mass and obesity-associated 

protein (if given in italic (FTO) then 

FTO gene) 
GABAb   γ-aminobutyric acid b receptor 

GAP  guanosine triphosphatases activating 

protein 
GEF   guanine nucleotide exchange factor 

GDP    guanosine diphosphate 

GPCR  G protein coupled receptor 
GRIN1   glutamate receptor subunit zeta-1 

GRK   G protein coupled receptor kinase 

GTP   guanosine triphosphate  
GWAS  genome-wide association studies 

H2   haplotype 2 

HEK   human embryonic kidney 
HSP#  heat shock protein 

ICD  International Classification of 

Diseases  
IL#  intracellular loop 

iNOS   inducible nitric oxide synthases 

LGDB   Latvian Genome Data Base 

LD    linkage disequilibrium 

MAF   minor allele frequency 

MAP   mitogen-activated protein kinases 
MC#R  melanocortin receptor  
MC#R melanocortin receptor gene 

(abbreviation according to IUPHAR 

database) 
2-MeSADP  2-methylthio- adenosine 

diphosphate 

MI  myocardial infarction 
MRAP  melanocortin receptor accessory 

protein 

MRS#   N-methanocarba-2-methylthio-ADP  
MSH  melanocyte stimulating hormone 

NDP-MSH  Nle4, D-Phe7-α- melanocyte 

stimulating hormone  
NHE   sodium/hydrogen exchanger 

OR  odds ratio 

P2RY# gene of purinergic receptor 

(abbreviation according to IUPHAR 

database) 

P2XR  purinergic receptor (ion channel)  
P2Y# R purinergic receptor (G protein 

coupled)  

pCMBS   p-chloromercuribenzene sulfonate 
PDB   protein data bank 

PI-3   phosphoinositol 3 phosphate 

PLCβ   phospholipase Cβ 
PKA  protein kinase A 

POMC  proopiomelanocortin 
PTX   pertussis toxin 

P-Rex   guanine nucleotide exchange factor 

QSAR  quantitative structure–activity 
relationship  

Rac  subfamily of the Rho family of 

GTPases 
RASSL  receptors activated solely by 

synthetic ligands  

Rap    Ras (small GTPases)-related protein 

Ras   small GTPases 

Rho   Ras (small GTPases) homolog 

rs#  reference single-nucleotide 
polymorphism code 

SNP   single-nucleotide polymorphism 

Src  proto-oncogene tyrosine-protein 
kinase 

STREGA  strengthening the reporting of 

genetic associations 
T2D  type 2 diabetes 

THIQ   tetrahydroisoquinolinium derivate 

TM#  transmembrane domain  
UDP   uridine diphosphate 

UTP   uridine triphosphate 
VASP  vasodilator-stimulated 

phosphoprotein 

wt   wild type 

YM254890  a cyclic depsipeptide isolated from 
Chromobacterium sp QS3666 

2D   two dimensional 

3D   three dimensional 
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INTRODUCTION 

The G protein-coupled receptors (GPCRs) have been implicated in various 

disease-related processes. The molecular biology, genetics, pharmacology and 

physiology of the GPCRs have been investigated for diagnostics, prognostics and 

therapeutic strategies for disease treatments. However, because of the complex 

functionality of the receptor signalling systems, many important features that could 

influence further development of medical innovations are not fully understood.  

Melanocortin 4 receptor (MC4R) is a significant regulator of feeding 

behaviour. Genetic variation in the MC4R locus has been associated with various 

obesity-related conditions and amino acid substitutions in the coding region of the 

receptor cause severe monogenic obesity, even in heterozygous cases. Although, the 

genetics of MC4R have been extensively explored, research studies of different 

populations and cohorts have revealed more interesting and surprising insights about 

MC4R involvement in adiposity development. Functional studies of MC4R have 

described signalling specificity and the number of amino acids responsible for ligand-

binding pocket formation. Novel MC4R ligands that could be used for adiposity 

treatment have been developed, but so far no receptor agonists have been investigated 

in clinical trials. Therefore, further research on MC4R functional regions could aid in 

targeted design of new anti-obesity drugs. 

The P2Y12R is a crucial regulator of platelet aggregation and several 

anticoagulants (clopidogrel, ticlopidine) act as inhibitors on the P2Y12R. P2Y12R 

antagonists are used after different coronary interventions to protect against thrombus 

formation, but resistance to clopidogrel is seen in approximately one-third of patients. 

Attempts to develop other P2Y12R ligands are in progress. Developing novel ligands 

requires understanding the mechanisms of receptor activation and signal transduction. 

The regions of P2Y12R involved in receptor functions are poorly described in the 

literature, and new knowledge on this topic is needed.  

Another P2Y12R related regulator of blood coagulation is P2Y1R. This GPCR 

is not a target of currently used medicines, but genetic variation in the gene P2RY1 

has been implicated in several diseases and the pharmacodynamics of aspirin and 

clopidogrel. However, no study has associated P2RY1 polymorphisms with thrombus-

related diseases. 
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Saccharomyces cerevisiae and mammalian cell lines are the two most commonly 

used expression systems in GPCR studies. Although yeast are considered a less 

sensitive model system than mammalian cells, unlike mammalian cells 

Saccharomyces cerevisiae is more isolated and contains no endogenous receptors and 

other factors that can increase background signalling. However, so far yeast has been 

used more often for expression of GPCRs that are activated by small ligands. The 

ability of large polypeptide ligands to penetrate through the polysaccharide rich cell 

wall of the Saccharomyces cerevisiae has not been assessed. 

The aim of this thesis was to explore the functional characteristics that are 

important for receptor activation of the two GPCR subgroups with structurally 

different natural ligand types by exploiting the advantages of a yeast expression 

system, and investigate the implication of melanocortin and purinergic receptors 

(MCRs, P2YRs respectively) in multifactorial disorders using a genetic association 

approach. To accomplish the aim of the study following tasks were set: 

1. Optimise MC4R expression in yeast Saccharomyces cerevisiae system, 

generate the randomized library at the D126 position of the MC4R and explore 

the influence of different amino acids at this position on receptor activation; 

2. Optimise P2Y12R expression in Saccharomyces cerevisiae system, generate 

the randomised libraries of the E181, R256, R265 and K280 positions of the 

P2Y12R and investigate the role of these positions in receptor activation by 

bioinformatics analysis and three-dimensional modelling; 

3. Evaluate and compare the expression and pharmacological characteristics of 

MCR and P2YR in the yeast system with the different types of natural ligands; 

4. Study the possible role of P2RY1 polymorphisms in development and 

pathogenesis of myocardial infarction and related conditions in the population 

of Latvia using a case-control approach; 

5. Study the MC4R genetics to compare the impact of rare mutations and 

common polymorphisms in pathogenesis of extreme obesity in the population 

of Latvia; 

6. Functionally characterise discovered nonsynonymous variants in the MC4R; 

7. Study the common FTO polymorphisms in designed cohorts of morbidly 

obese and normal weight individuals in the population of Latvia. 
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1 LITERATURE REVIEW 
 

1.1 G protein-coupled receptors 

The G protein-coupled receptors (GPCR) constitute the largest cell surface 

receptor family. Estimates are that 1% of mammalian DNA encodes GPCRs and 800 

GPCR sequences have been discovered in the human genome (Fredriksson et al., 

2003; Fredriksson et al., 2005). Additionally, over than 30% of current drugs used in 

clinical practice take their action via GPCRs (Hill, 2006).  

GPCRs are coupled to G proteins - guanine nucleotide binding proteins and 

their main function in signalling depends on guanosine diphosphate (GDP) 

substitution with guanosine triphosphate (GTP). This substitution further triggers 

second messenger pathways in the cell,  regulating many functions that are vitally 

important for the organism (Alberts et al., 2002). 

  

1.1.1 Structure and classification of GPCRs 

GPCRs bind various ligands with different chemical properties, for example, 

peptides, proteins, lipids, amines, nucleotides, ions, and even photons. Despite this 

great variation in signalling molecules, the structure of all GPCRs is remarkably 

similar (Fredriksson et al., 2005).  

The first evidence on the structure of GPCRs came in the beginning of the 

1980s with the sequencing of bovine rhodopsin. Researchers found seven 

hydrophobic domains proposed to be located in the cell membrane (Hargrave et al., 

1983). GPCRs are composed of seven transmembrane (TM) α-helices with 

intracellular and extracellular loops (IL and EL) between them. The N-terminus of 

these receptors is located in the extracellular space, while the C-terminus is on the 

intracellular side of the cell membrane (Alberts et al., 2002). After 10 years, the two-

dimensional (2D) structure was resolved by electron crystallography and published 

(Schertler et al., 1993), indicating the position and orientation of the TM domains. 

Finally, in 2000, the first 3D high-resolution model of bovine rhodopsine X-ray 

structure was reported (Palczewski et al., 2000). This model served as the only 

template for homology modelling of other GPCRs until 2007, when the crystal 

structure of human β2 adrenergic receptor was published (Rasmussen et al., 2007). In 

2008, the structure of another GPCR - the adenosine 2a receptor (A2aR) - became 
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available (Jaakola et al., 2008). Comparison between these models revealed that 

rhodopsin forms a rigid extracellular structure composed of the N-terminus and EL, 

while the extracellular site of β2 adrenergic and A2aR is more open and flexible. 

Currently, these three structures are used for homology modelling of other GPCRs 

and template choice highly depends on homology and ligand similarity characteristics 

between available templates and the target receptor (Tate et al., 2009).  

However, specific features of the GPCR structures can be learned not only 

from modelling, but also from alignment of receptor sequences. For example, since 

the rhodopsin-like receptors constitute almost 90% of all GPCRs, Mirzadegan and 

colleagues attempted to find commonalities in the rhodopsin receptor family structure 

using a multiple sequence alignment of 270 receptors. This study has revealed some 

interesting insights. First, the authors discovered highly conservative amino acid 

residues in the receptor helices: Gly and Asn in TM1, Leu and Asp in TM2, Cys and 

DRY motif in TM3, Trp and Pro in TM4, Pro and Tyr in TM5, Phe, Trp and Pro in 

TM6 and an NPXXXY motif in TM7. Although DRY and NPXXXY motifs have 

been described before, observations on other residues are highly valuable for further 

understanding GPCR signalling and can serve in homology modelling of GPCR 

structures. For example, the residue following Cys in the TM3 predicted the ligand 

type of the receptor. If Cys is followed by a basic amino acid such as Lys or Arg, the 

natural ligands of the receptor are most likely peptides. However, if Cys is followed 

by acidic residues such as Asp or Glu, the receptor has a pharmacological profile for 

biogenic amines (Mirzadegan et al., 2003). 

Attempts to classify GPCRs started in the early 1990s. At that time, sufficient 

information had accumulated to allow the recognition of similarities in the structures 

and functions of GPCRs. However, initially, researchers encountered the problem that 

GPCRs sharing common functions had very low amino acid sequence similarity, 

leading to rejection of the phylogenetic classification approach. The first classification 

system was described in 1994 (Attwood et al., 1994). According to this system, all 

GPCRs discovered at that time were divided into six classes: A (rhodopsin), B 

(secretin), C (metabotropic glutamates/pheromone), D (fungal pheromone), E (cyclic 

adenosine monophosphate (cAMP) receptors), F (frizzled/smoothened). Authors 

defined these classes as clans, emphasising the common evolutionary ancestry of 

these receptors despite their diverse functional characteristics. Currently, the term 
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“family” is used more often. Later this classification system was defined as PRINTS, 

due to the use of specific patterns or “fingerprints” for receptor group recognition. 

Fingerprints are set of motifs that distinguish sequence region that are characteristic 

for a superfamily, family, or individual receptor, allowing the classification to be 

more thorough (Attwood et al., 2002a; Attwood et al., 2002b). 

Despite the doubts in sequence alignment-based approaches for GPCR classification, 

in 2003, and alternative system called GRAFS was published, based on phylogenetic 

sequence analysis. GRAFS grouped GPCRs into five distinct families - glutamates, 

rhodopsins, adhesions, frizzled/taste 2 and secretin. The drawback of GRAFS was that 

it concentrated on human GPCRs, although correlation with the previous ABCDEF 

classification was also observed (Fredriksson et al., 2003; Fredriksson et al., 2005). 

The GRAFS rhodopsin class corresponded to group A, glutamate to C and fizzled to F 

from the ABCDEF classification; however, adhesions and secretin receptors were 

designated in separate groups while in the conventional system they both constitute 

class B (Davies et al., 2007). Comparison between the classification systems is in 

Table 1. 

 

Table 1. Classification of GPCRs by ABCDEF and by GRAFS systems (adapted from Davies et 

al. 2007) 

ABCDEF 

classification 

ABCDEF family 

description 

GRAFS 

classification 

GRAFS family 

description 

A Rhodopsin-like R Rhodopsin 

B Secretin-like A Adhesion 

S Secretin 

C Metabotropic 

glutamates/pheromone 

G Glutamate 

D Metabotropic 

glutamates/pheromone 

- - 

E cAMP receptors - - 

F Frizzled/Smoothened F Frizzled 

- - F Taste2 
 

Classification systems have greatly aided the annotation of orphan GPCR receptors 

that have been discovered solely by sequence alignment techniques. Knowledge about 

the functions of orphan receptors is usually limited, therefore, classification into 

distinct GPCR groups has promoted the guided exploration of their function and 

“deorphanization” (Davies et al., 2007; Fredriksson et al., 2003). 
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1.1.2 Signal transduction mechanism and trafficking 

Signal transduction via GPCRs begins with the ligand binding to the receptor. 

Depending on the biophysical properties of the receptor, the ligand can either bind 

deeply between the TM helices, or some peptide ligands have been shown to bind also 

extracellular loops. Large hormones can bind to the N-terminus, which then directs 

the appropriate region of the hormone to interact with the receptor binding site 

(Oldham et al., 2008). 

Ligand binding leads to a conformational change in the TM helices of the 

receptor that result in heterotrimeric G-protein binding to the receptor in the 

intracellular space (Alberts et al., 2002). Heterotrimeric G proteins consist of three G 

protein subunits, α, β and γ. In the human genome, G-proteins 35 genes have been 

discovered: 16 encode 21 Gα subunits, 5 encode 6 β subunits and 14 code an γ 

subunit, but only 12 G-protein subunits have been described in detail (Milligan et al., 

2006). Characterization of G-protein subunits is in Table 2.  
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Table 2. Characteristics of G protein subunits (adapted from Milligan et al. 2006) 

Type Subtype Effectors Expression Bacterial toxins 

Gαs 

Gαs(S) 

Gαs(L) 

Gαs(XL) 

Gαolf 

Adenylyl cyclases ↑ (Gαs,s(XL),olfa) 

Maxi K channel ↑ (Gαs) 
Src tyrosine kinases (c-Src, Hck) ↑ (Gαs) 

GTPase of tubulin ↑ (Gαs) 

Gαs: ubiquitous 

Gαolf: olfactory neurons, certain CNS ganglia; 

digestive and urogenital tract 

Gαs: CTX 
Gαolf: CTX 

Gαi/0 

Gαo1 

Gαo2 

Gαi1–i3 

Gαz 

Gαt1/2 

Gαgust 

Adenylyl cyclase ↓ (Gαi,o,z) 
Rap1GAPII-dependent 

ERK/MAPkinase activation ↑ (Gαi) 

Ca2+ channels ↓ (Gαi,o,z) 
K+ channels ↑ (Gαi,o,z) 

GTPase of tubulin ↑ (Gαi) 

Src tyrosine kinases (c-Src, Hck) ↑ (Gαi) 
Rap1GAP ↑ (Gαz) 

GRIN1-mediated activation of Cdc42 ↑ (Gαi,o,z) 

cGMP-PDE ↑ (Gαt) 
Gαgust: ? 

Gαo1–2: neurons, neuroendocrine cells, astroglia, 

heart 

Gαi1–i3: neurons and many others 
Gαz: platelets, neurons, adrenal chromaffin cells, 

neurosecretory cells 

Gαt1: rod outer segments, taste buds 
Gαt2: cone outer segments 

Gαgust: sweet and/or bitter taste buds, chemoreceptor 

cells in the airways 

Gαo(1/2): PTX 
Gαi1-i3: PTX 

Gαz: ? 

Gαt1/2: PTX, CTX 
Gαgust: PTX 

Gαq/11 

Gαq 

Gα11 

Gα14 
Gα15 

Gα16 

Phospholipase Cβ isoforms ↑ 
p63-RhoGEF ↑ (Gαq/11) 

Bruton’s tyrosine kinase ↑ (Gαq) 

K+ channels ↑ (Gαq) 

Gαq/11: ubiquitous 

Gα15/16: hematopoietic cells 

Gαq/11: YM-254890 
Gα14: ? 

Gα15: ? 

Gα16: ? 

Gα12/13 
Gα12 

Gα13 

Phospholipase D ↑ 
Phospholipase Ce ↑ 

NHE-1 ↑ 

iNOS ↑ 
E-cadherin-mediated cell adhesion: ↑ 

p115RhoGEF ↑ 

PDZ-RhoGEF ↑ 
Leukaemia-associated RhoGEF (LARG) ↑ 

Radixin ↑ 

Protein phosphatase 5 (PP5) ↑ 
AKAP110-mediated activation of PKA ↑ 

HSP90 ↑ 

Ubiquitous 
Gα12: ? 

Gα13: ? 

Gβ/γ 
β1–5 

γ1–12 

PLCβs ↑ 
Adenylyl cyclase I ↓ 

Adenylyl cyclases II, IV, VII ↑ 

PI-3 kinases ↑ 
K+ channels (GIRK1,2,4) ↑ 

Ca2+ (N-, P/Q-, R-type) channels ↓ 

P-Rex1 (guanine nucleotide exchange factor for the small 
GTPase Rac) ↑ 

c-Jun N-terminal kinase (JNK) ↑ 

Src kinases ↑ 
Tubulin GTPase activity ↑ 

G-protein-coupled receptor kinase recruitment to membrane ↑ 

Protein kinase D ↑ 
Bruton’s tyrosine kinase ↑ 

p114-RhoGEF ↑ 

β1γ1: retinal rod cells 

β3γ8: retinal cone cells 
β5: neurons and neuroendocrine organs 

β5(L): retina 

Most cell types express multiple β and γ subtypes 

Gβγ: ? 

CTX - cholera toxin; PTX - pertussis toxin; ↑ - enhances signal; ↓ - reduces signal; YM-254890 - a cyclic depsipeptide isolated from Chromobacterium sp QS3666
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The first evidence of G-protein mediated signalling came in the 1970s, when 

several hormones were shown to modify the mode of cAMP production in cells and 

this production was found to be prolonged and increased by Vibrio cholerae toxin 

(Gill et al., 1978). Later it was proposed that since the G-proteins are extremely 

conserved in different organisms and since several bacterial exotoxins act via covalent 

alteration of a G-protein α subunit, they could more easily overcome the species 

barrier. Finally, in 1980, the first G-protein was purified and recognized as a target for 

cholera toxin (Northup et al., 1980). However, this was clearly not sufficient to 

completely explain the changes in cAMP levels after activation, because in some 

cases cAMP production was increased but in others it decreased. The answer came 

when Bordetella pertussis toxin was also recognised as a modifier of G-proteins 

(Bokoch et al., 1984; Katada et al., 1982). Two functionally distinct classes of Gα 

subunits were postulated, Gαs that stimulates and Gαi that inhibits cAMP production. 

Currently, many different Gα subunits are discovered and there are three major 

groups: Gαs and Gαi that act via adenylyl cyclase, the enzyme responsible for cAMP 

production; and Gαq that stimulates phospholipase Cβ (PLCβ), the enzyme that leads 

to intracellular Ca
2+

 mobilization (Milligan et al., 2006). 

In addition to the signal produced by Gα, the Gβ/γ dimer also interacts with 

signalling pathways and influences the ligand-induced response in the cell (Logothetis 

et al., 1987). Intriguingly, in Gαq/Gαi knockout mice, overexpression of angiotensin 

II type I receptors leads to severe heart conditions that might be mediated by ERK 

signalling. This suggests that GPCR signalling is possible without the presence of a G 

protein (Rajagopal et al., 2005; Zhai et al., 2005).  

In recent years, research has been focused on the “life cycle” of GPCRs, 

starting from their delivery to the cell membrane to internalisation following 

activation. Each step of receptor trafficking is crucial for functional activity and 

action of the receptor (Figure 1) (Drake et al., 2006).   

Similar to most cell membrane proteins, GPCRs are folded into the membrane 

during polypeptide chain synthesis at the endoplasmic reticulum (ER) and primed for 

delivery to their final destination by glycosylation (Alberts et al., 2002). In the ER 

GPCRs undergo thorough quality control, followed by targeted degradation if 

misfolding or other errors in protein structure are discovered (Ellgaard et al., 2003). 
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Protein chaperones are also reported to facilitate or detain delivery of GPCRs to the 

cell membrane (Chapple et al., 2003).   

After GPCRs are trafficked to plasma membrane, several factors can affect 

their maintenance and signalling ability. First, their localization within the membrane 

specificially in lipid rafts or calveolae (regions of cell membrane abundant with 

glycosphingolipids, cholesterol and different proteins), can influence GPCR signalling 

(Chini et al., 2004). Characteristics of the membrane surrounding GPCR can attract 

distinct types of Gα subunits or colocalization of GPCRs and adenylyl cyclase in 

specific lipid compartments can enhance signalling efficacy (Oh et al., 2001; Ostrom 

et al., 2001). Several proteins are important in receptor stabilization and maintenance 

in the plasma membrane as well (Tan et al., 2004; Xiang et al., 2002). 

The standard view of GPCR function is that they are present as monomeric 

receptors in the cell membrane, but early studies have already demonstrated possible 

formation of oligomers. Many GPCR clearly require formation of homodimeric or 

heterodimeric aggregates to function, therefore, the study of oligomerization is a 

popular area of GPCR research (Drake et al., 2006; Gurevich et al., 2008; Park et al., 

2004).  

The first convincing evidence of GPCR aggregates came with the study of γ-

aminobutyric acid b receptors (GABAb) showing that heterodimerization of two 

receptors, GABAb-R1 and GABAb-R2, in the ER is essential for receptor transport to 

the plasma membrane (Marshall et al., 1999). Further research revealed that this 

oligomerization is also crucial for receptor activity (Margeta-Mitrovic et al., 2000). 

Functional studies on other receptors demonstrated oligomerization in the ER, but the 

function of this aggregation requires further investigation (Floyd et al., 2003; Issafras 

et al., 2002). GPCRs are also reported to form oligomers in the plasma membrane 

after activation by agonist (Kroeger et al., 2001; Wurch et al., 2001); however, 

ligand-induced inhibition of oligomer formation has also been observed (Cheng et al., 

2001; Latif et al., 2002).  

Oligomerization may change the functional characteristics of GPCR and alter 

ligand-binding profiles (Suzuki et al., 2006; Yoshioka et al., 2001). For example, the 

heteromerization between chemokine receptors CCR2 and CCR5, can lead to 

increased response to the chemokine signal and even transduction of the signal via a 

Gαq pathway that is not typical for each receptor acting separately (Mellado et al., 
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2001). The role of GPCR oligomers in internalization and desensitization processes 

has also been explored (Ecke et al., 2008; Stanasila et al., 2003). Many receptor 

oligomers internalize upon activation of only one receptor ligand of the pair, while 

some receptors detain endocytosis of others by formation of heteromers (Hillion et al., 

2002; Lavoie et al., 2002). Nonetheless, oligomerization of GPCRs can strongly 

influence the “life cycle” and signalling ability of the receptors and further studies 

will discover the practical application of these results. 

Following activation, GPCRs undergo desensitization and internalization. 

First, after agonist activation, serine and threonine residues of the GPCR on the 

intracellular side of the receptor are phosphorylated by GPCR kinases (GRKs) (Ribas 

et al., 2007). The phosphorylated residues attract and bind β-arrestin, which further 

forms a complex with activating protein 2 (AP-2) and clathrin, leading to 

internalization of GPCR in clathrin-coated vesicles (Attramadal et al., 1992; 

Goodman et al., 1996; Laporte et al., 1999). In the intracellular space, internalized 

GPCRs can either be recycled back to the cell surface via the sorting machinery that 

recognizes specific structural signals (Barak et al., 1994; Schulein et al., 1998) or be 

degraded by classical ubiquitination (Wojcikiewicz, 2004). However, several reports 

have demonstrated that β-arrestin is involved not only in the internalization process, 

but also in GPCR ubiquitination, suggesting β-arrestin dependent degradation (Martin 

et al., 2003; Shenoy et al., 2005). 
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Figure 1. “Life cycle” of GPCRs. A Synthesis and trafficking to plasma membrane. B 

Internalization. C Degradation or recycling. D Signalling via β-arrestin (Figure is from Drake et 

al. 2006).  

 

1.1.3 Functional expression of GPCR in yeast 

The expression of GPCRs in yeast has specific advantages over mammalian 

cell model systems. The signalling systems of GPCRs in yeast are very similar to 

mammalian and yeast have only two endogenous GPCR pathways, both of which can 

be switched off by elimination of gene expression or knocked out by deletion from the 

yeast genome, by trivial technical manipulations that are much more complicated in 

mammalian experiments. Yeast grow faster and maintenance is more simple than for 

mammalian cells. Furthermore, yeast systems can be automated for high-throughput 

screening. The drawback of receptor expression in yeast is that proteins in yeast have 

different post-translational modifications than in mammalian cells, which might affect 

trafficking of the receptors to the cell surface. Another disadvantage is the dense 

polysaccharide rich cell wall of yeast that can detain ligand diffusion to the receptor 

(Dohlman et al., 1991; Ladds et al., 2005; Pausch, 1997).  
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Saccharomyces cerevisiae has two native GPCR signalling systems: pheromone and 

glucose pathways. The glucose pathway induces active cell metabolism and 

proliferation while the pheromone signalling pathway ensures specific physiological 

alterations in haploid cells that are crucial for mating and formation of diploid cells 

(Beullens et al., 1988; Donzeau et al., 1999). The glucose pathway in yeast is vital for 

functional maintenance and propagation. Therefore, GPCR research in 

Saccharomyces cerevisiae uses a modified pheromone signalling pathway for receptor 

expression and activation detection (Versele et al., 2001). 

The natural yeast pheromone pathway starts when the pheromone signalling 

molecule binds to the receptor and activated G protein diffuses from the receptor into 

the cellular space. The G protein divides in Gα (Gpa1p) and Gβ/γ (Ste4p/Ste18p) 

dimer and a complex of Gβ/γ activates the protein kinase Ste20p, which triggers the 

MAP kinase cascade. The MAP kinase cascade causes functional changes in yeast 

haploid cells that lead to the mating and fusion of two haploid cells into a diploid 

(Leberer et al., 1992; Whiteway et al., 1989). These changes include Far1 inhibitor 

activation enabling cell-cycle arrest and stimulation of Ste12p that leads to expression 

of mating specific genes, for example, the adhesion factor Fus1(Chang et al., 1990; 

Nomoto et al., 1990; Stevenson et al., 1992). Another yeast regulatory protein, Sst2, 

activates GTPase and triggers Gα inactivation, thus controlling mating capacity 

(Dohlman et al., 1996).  

Yeast strains have been generated for expression of heterologous GPCRs 

(Cismowski et al., 1999; Kajkowski et al., 1997; Price et al., 1996) by altering the 

natural yeast mating signalling system. In these modified yeast strains, the genes for 

the pheromone receptors Ste2 and Ste3 are deleted to exclude possible competition for 

G proteins between natural yeast mating receptors and the transformed heterologous 

receptors. The native Gα subunit gene (Gpa1p) is substituted with a chimeric Gα, one 

part of which represents a human Gα protein to ensure binding to the receptor, and 

other derived from yeast Gα protein for binding of the Gβ/γ dimer (Brown et al., 

2000; Kang et al., 1990). The regulatory protein Sst2 is inactivated, so the Gα subunit 

can remain in active state longer, resulting in more sensitive receptor activity 

detection (Garrison et al., 1999). The gene for Far1 is also deleted so yeast cells can 

continue to proliferate after activation of the MAP kinase cascade (Chang et al., 

1990). Finally, to generate a quantitative signal of receptor activity, the promoter of 
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the gene Fus1 is fused with reporter genes His3 and lacZ. Gene His3 encodes an 

enzyme (imidazole acetol phosphate transaminase) crucial for histidine production. 

Receptor activation leading to His3 expression enables yeast to grow on histidine-

deficient medium, while lacZ provides expression of β-galactosidase that cleaves a 

substrate for measurement of a colour change (Nomoto et al., 1990; Stevenson et al., 

1992). Natural and modified yeast pheromone signalling pathways are in Figure 2. 

However, the reporter gene His3 has background activity in minimal medium lacking 

histidine, so addition of 3-amino-1,2,4-triazole (AT) is necessary to improve 

sensitivity of the method (Cismowski et al., 1999). 

 

 

Figure 2. a) Natural and b) modified yeast pheromone signalling pathway (Figure created by the 

author of the thesis, based on descriptions in literature). 

 

Other modifications vary depending on the specific characteristics of the 

receptor. To increase trafficking efficiency to the cell surface, the receptor can be 

fussed to a leader sequence. Better expression of some GPCRs can be achieved by 

deletion or substitution of specific regions of the receptor, modifying or regulatory 

proteins can also optimise the system (Erlenbach et al., 2001; Miret et al., 2002).  
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 Research on GPCRs in Saccharomyces cerevisiae has different approaches. 

For example, regions of the receptors involved in the receptor activation process can 

be detected by expression of mutant receptor libraries in yeasts. Novel peptide 

agonists can be identified by screening mutant peptide libraries by co-expression with 

a target receptor (Geva et al., 2000; Sachpatzidis et al., 2003). Orphan receptors can 

be tested by high-throughput screening with ligand libraries to discover possible 

agonists and “deorphanise” the receptor (Brown et al., 2003). Yeast can also be used 

to study proteins that regulate G protein activity (Cao et al., 2004) or enzymes that 

phosphorylate GPCRs (Noble et al., 2003). Heteromerization with other proteins that 

affect ligand specificity can also be explored (Miret et al., 2002). 

A revolutionary approach to GPCR mutagenesis in yeast started with attempts 

to isolate receptors activated solely by synthetic ligands (RASSL) or designer 

receptors exclusively activated by a designer drug (DREADD) (Coward et al., 1998; 

Dong et al., 2009). Both of these techniques focused on detection of receptor forms 

whose activity could be induced in either knockout or wild-type animals to target 

specific tissues for deeper comprehension of functional regulation (Sweger et al., 

2007). In this manner, variants of randomly mutagenized rat muscaric receptor 3 were 

isolated and their activation by a synthetic ligand (clopazine-N-oxide), but not the 

natural agonist acetylcholine was detected (Armbruster et al., 2007). 

Yeast have also been used for research on GPCR oligomerization. Floyed and 

colleagues used a fluorescence resonance energy transfer (FRET) method to show that 

CCR5a forms oligomers in an S.cerevisiae expression system (Floyd et al., 2003). 

In addition to S.cerevisiae, other yeast species can be used for GPCR research. 

For example, Ladds et al. have expressed corticotrophin-releasing factor receptors in 

Schizosaccharomyces pombe and showed that diverse ligands can affect receptor 

conformational changes and lead to the binding of different G protein subunits in the 

intracellular space (Ladds et al., 2003). 

 

 

1.2 Proopiomelanocortin signalling 

Melanocortin receptors (MCRs) are a distinct group of GPCRs. All MCRs are 

activated by melanocortins that are neurogenic peptides derived from a single 

precursor, proopiomelanocortin (POMC). POMC is expressed in various tissues, 
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predominantly in the pituitary and areas of the brain and skin, where it undergoes 

enzymatic cleavage into several signalling peptides (Figure 3). Cleavage of POMC is 

tissue specific, leading to different signalling peptide profiles in different tissues. 

Signalling peptides that act via MCRs are α-melanocyte stimulating hormone (MSH), 

βMSH, γMSH and adrenocorticotropic hormone (ACTH) (Crine et al., 1979; Hadley 

et al., 1999; Mains et al., 1979). After production in the pituitary, both αMSH and 

ACTH are delivered to their site of action in an endocrine manner via blood 

circulation. However, since MCRs are abundantly expressed in the central nervous 

system (CNS), POMC peptides can signal in a paracrine way to surrounding tissues as 

well (Hadley et al., 1999). Two other peptides that are also expressed in the CNS act 

as natural antagonists of MCRs: agouti and agouti-related protein (AGRP) (Graham et 

al., 1997; Lu et al., 1994). 

Five different MCRs have been identified in humans: MC1R, MC2R, MC3R, 

MC4R and MC5R (Chhajlani et al., 1992; Gantz et al., 1993; Gantz et al., 1994; 

Mountjoy et al., 1992; Roselli-Rehfuss et al., 1993). A detailed overview of MCRs is 

in Table 3. 

 

 

 

Figure 3. Peptides that are derived from proopiomelanocortin during post-translational 

processing (Figure created by the author of the thesis, based on descriptions in literature). 
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Table 3. Subtypes, chromosome position, pharmacological profiles, functions and sites of expression of melanocortin receptors (Table 

summarized by the author of the thesis from IUPHAR database (http://www.iuphar-db.org) and literature used in thesis) 

 

Receptor 
Gene 

localization 

Natural 

agonist 

Full 

agonist/partial 

agonist affinities 

Antagonist/inverse 

agonist affinities 

Signal 

transduction 

mechanism 

Tissue expression Functions 

MC1R 16q24.3 αMSH 

[125I]NDP-MSH 

>SHU9119 

>HS014 >NDP-

MSH >α-MSH  

agouti >HS024 

>ASIP [90-132 

(L89Y)]  

Gαs 

Melanocytes, neutrophils, 

endothelial cells, dermal papilla 

cells, pituitary and testes 

Pigmentation (synthesis of 

eumelanin), anti-inflammatory 

actions 

MC2R 18p11.21 ACTH 
ACTH (1-39) > 

ACTH (1-24)  

ACTH (11-24) > 

ASIP [90-132 

(L89Y)]  

Gαs 
Adrenal gland, adrenal cortex, 

skin tissue 
Adrenal cortical steroidogenesis 

MC3R 20q13.2 γMSH 

[125I]NDP-MSH 

> γ-MSH > NDP-

MSH > MT-II > 

α-MSH > D-Trp8 

γ-MSH  

HS024 > HS014 > 

SHU9119 > AGRP 

> agouti  

Gαs 

Stomach, duodenum and 

pancreas, heart, placenta, CNS, 

kidneys 

Energy homeostasis, naturesis 

MC4R 18q21.3 αMSH 

[125I]NDP-MSH 

> NDP-MSH > 

MT-II > α-MSH > 

THIQ > RY764  

MCL0129 > HS014 

> SHU9119 > 

MBP10 > AGRP  

Gαs 
Various areas of the CNS, 

dermal papilla cells 

Feeding behaviour, the regulation 

of metabolism, sexual behaviour, 

male erectile function 

MC5R 18p11.2 αMSH 

SHU9119 > 

[125I]NDP-MSH 

> α-MSH > PG-

901 > NDP-MSH  

HS024 > agouti > 

AGRP  
Gαs 

Adrenal gland, fat cells, kidney, 

leukocytes, lung, lymph node, 

mammary gland, ovary, 

pituitary, testis, uterus, various 

exocrine cells 

Water and thermoregulation, 

production of sebaceous lipids, 

sexual behaviour 
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1.2.1 MC4R 

The cloning of MC4R and characterization of its expression profile was 

performed in the early 1990s. The primary sites of MC4R expression are the 

ventromedial, dorsomedial, paraventricular and arcuate hypothalamic nuclei regions 

of the CNS. The natural agonist of MC4R is αMSH, but with lower affinity also 

βMSH and γMSH. Agouti and agouti-related protein (AGRP) are antagonists of 

MC4R (Gantz et al., 1993; Mountjoy et al., 1994). 

Observations of the possible physiological functions of MC4R began long 

before the discovery of the receptor itself. First, a relationship between rodent coat 

colour and obesity was noticed along with a change of hair colour upon αMSH 

injection (Geschwind, 1966). Later, αMSH was found to stimulate both MC1R 

(responsible for pigmentation) and MC4R (responsible for feeding behaviour). Mice 

with light hair colour and obesity phenotypes were found to be carriers of genetic 

mutations in the agouti gene (Miller et al., 1993). The most convincing evidence of 

role of MC4R in feeding behaviour came with phenotype characterization of MC4R 

knockout mice. MC4R knockouts demonstrated obese, hyperphagic and 

hyperinsulinemic phenotypes (Huszar et al., 1997).  

The mechanism of MC4R action is complex and it integrates of various 

feeding signals that are reviewed and processed in the arcuate nucleus of the 

hypothalamus including leptin, cocaine-amphetamine-regulated transcripts, ghrelin 

and other systems. The signal downstream of MC4R is further processed in the 

ventromedial and lateral hypothalamus nuclei where it is integrated with orexin, the 

melanin-concentrating hormone system and other pathways. All these signalling 

routes interact with each other and are regulated by different feedback systems, both 

within and outside the hypothalamus (Cone, 2006). 

Another important regulator of MC4R-mediated signalling is mahogany 

protein. The mahogany protein is reported to be a TM attractin that is widely 

expressed and is possibly involved in low-affinity agouti binding. The mahogany 

protein directly interacts with MC4R, but further research is needed to explain the 

underlying mechanisms (Gunn et al., 1999; Haqq et al., 2003; Nagle et al., 1999).  

MC4R has been reported to form homooligomeric structures, and 

heterooligomerization between MC4R and the kappa opioid receptor has been 
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investigated; however, the interaction signal is at the detection threshold and the 

possible physiological role of dimerization is unclear (Nickolls et al., 2006). 

Genetic polymorphisms and mutations in MC4R are mainly associated with obesity-

related phenotypes. This is further discussed in Chapter 1.2.4, Genetic studies of 

MC4R. 

 

1.2.2 Other melanocortin receptors 

MC1R has wide tissue expression, and is detected in melonocytes, pituitary, 

fibroblasts, and immune cells (Mountjoy et al., 1992).  The natural agonist of MC1R 

is αMSH and its antagonist is agouti. The main physiological function of MC1R is 

considered to be pigmentation of skin and hair. After receptor stimulation, Gαs 

activates adenylyl cyclase, which increases the intracellular cAMP concentration, 

triggering eumelanin synthesis leading to the formation of dark pigment (Rana, 2003). 

Homodimerization of MC1R has been reported by several research groups (Mandrika 

et al., 2005; Sanchez-Laorden et al., 2006; Zanna et al., 2008). Intriguingly, 

dimerization has also been described between wild type MC1R and several 

polymorphic MC1R variants associated with pigmentation. Furthermore, this 

oligomerization process has been demonstrated to influence receptor signal 

transduction (Sanchez-Laorden et al., 2006). 

MC2R is primarily expressed in the adrenal cortex where it regulates 

steroidogenesis. For a long time, attempts to functionally express MC2R were 

unsuccessful, delaying investigation of this receptor. Expression of recombinant 

MC2R was eventually achieved in adrenal cell lines (Schimmer et al., 1995). 

Intriguingly, the use of non-adrenal cell lines was unsuitable because in all other cells, 

MC2R was detained in the ER and not transported to the cell membrane (Webb et al., 

2009). This led to the suggestion that adrenal cells contain a specific signalling 

mechanism to direct MC2R to the membrane, leading to the discovery of 

melanocortin receptor accessory protein (MRAP). Furthermore, co-expression of 

MRAP and MC2R in non-adrenal origin cells enabled MC2R transport to the cell 

membrane (Metherell et al., 2005). 

The highest MC3R expression levels are detected in the ventromedial 

hypothalamus, medial habenula, ventral tegmental area and raphe (Roselli-Rehfuss et 

al., 1993). MC3R is involved in regulation of different autonomous functions and 
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inflammatory responses. The distinction between MC3R and other MCRs is that 

beside signal transduction via Gαs, MC3R has also been reported to couple to Gαq 

(Konda et al., 1994). MC3R is demonstrated to form homooligomers as well as 

heteromers with MC1R (Mandrika et al., 2005). Interestingly, MC3R 

heterooligomerization with ghrelin receptor affects ghrelin signalling, implicating this 

receptor in feeding behaviour (Rediger et al.). 

MC5R is mainly expressed in periphery tissues: skin, muscles and exocrine 

glands. The functions of this receptor remained unclear until the development of the 

knockout mouse. At first, no specific phenotypic features of knockouts were 

observed. However, after a swim test, MC5R-deficient mice retained wet coats for 

longer periods than wild type. This led to the discovery that MC5R regulates secretion 

in exocrine glands (Chen et al., 1997). Recently, MC5R has also been implicated in 

regulation of sexual behaviour (Morgan et al., 2006). In addition to MC2R, MC5R 

has been reported to interact with MRAP. Contrary to MC2R, MRAP is responsible 

for detaining MC5R cell surface trafficking and blocking homooligomerization 

(Sebag et al., 2009). 

 

1.2.3 Functional regions of MC4R 

Since MC4R is a key player in feeding behaviour, the main pharmacological 

interest of many MC4R studies is developing new adiposity treatment drugs that act 

via MC4R. Targeted design of novel ligands requires insight into the regions of 

MC4R that are important for functional activity. Several studies have explored the 

MC4R ligand-receptor interaction and signal transduction mechanisms (Fleck et al., 

2005; Nickolls et al., 2003; Yang et al., 2000). 

The characteristic amino acid sequence His-Phe-Arg-Trp of αMSH is a 

pharmacophore that is the amino acid sequence of the peptide that interacts with the 

MC4R binding pocket. The pharmacophore of AGRP is reported to be Arg-Phe-Phe. 

The binding pocket of MC4R that interacts with the pharmacophore of its natural 

ligand αMSH is considered to have two distinct parts - a negatively charged 

conformation pocket and a hydrophobic cavity (Wilczynski et al., 2004). A possible 

model of MC4R binding with αMSH and AGRP pharmacophores is in Figure 4.  
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Figure 4. Schematic representation of a) natural antagonist pharmacophore and b) natural 

agonist pharmacophore binding pocket of MC4R (adapted from Wilczynski et al. 2004). 

 

A functional mutagenesis study by Yang and colleagues showed that the 

single substitutions E61A, D90A, E100A, D122A, D122N, M200A, M204A, W258A, 

F261A, D298A, R305A in the MC4R significantly decrease receptor binding affinity 

for αMSH and NDP-MSH, but substitutions D126A, D126N or double substitutions 

D122N/D126N or D122A/D126A completely abolish αMSH binding to MC4R and 

have a significant effect on binding of NDP-MSH and AGRP. Overall, these data also 

correlate with the changes in cAMP half-maximal effective concentration (EC50) 

values (Yang et al., 2000). The positions E100, D122, D126, F254, W258, F261 and 

H264 are also involved in THIQ binding and receptor activation (Yang et al., 2009). 

D122A substitution was later demonstrated to result in significantly lower 

binding affinities for other peptides and non-peptide agonists and antagonists. D126A, 

M200A, F261A and F284A mutant receptors are important in ligand binding in 

similar studies (Fleck et al., 2005; Nickolls et al., 2003). Additionally, I125F and 

I137T MC4R variants have significantly decreased affinity for THIQ and SHU9119 

(Nickolls et al., 2003). The binding properties of the MC4R antagonist SHU9119 

have been explored and, interestingly, L133M substitution leads to an MC4R 

signalling swap from antagonist to agonist (Yang et al., 2002). A slight influence of 

amino acids in positions 125, 129, 268, 287, 291 on ligand binding to MC4R has also 

been observed (Hogan et al., 2006). A functional study of mouse MC4R confirmed 

the human receptor data for positions E100, D122 and D126 (with corresponding 

residues in mouse MC4R: E92, D114, D116), but F184 (F176 in mouse) significantly 

influenced binding of NDP-MSH, MTII and AGRP (Haskell-Luevano et al., 2001); in 

human MC4R, substitution to Ala causes no significant effects (Hogan et al., 2006). 

Inconsistent results were also observed for residue F261; the human F261A MC4R 
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variant has significantly decreased affinity for NDP-MSH, but not for AGRP while 

the corresponding F253A variant of the mouse receptor shows significantly lower 

affinity for AGRP and not for NDP-MSH (Haskell-Luevano et al., 2001; Yang et al., 

2000). 

Several MC4R residues have been mutagenised to determine G-protein coupling 

characteristics in the intracellular part of the receptor. The results highlighted R220A, 

T232A, T232V mutant receptors as having significantly decreased signalling efficacy 

(Kim et al., 2002). Mutagenised residues of the MC4R are in Figure 5. 
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Figure 5. Schematic diagram of MC4R. Coloured amino acids are reported to be important using 

mutagenesis. Highlighted in red are amino acids, that are believed to be involved in forming of 

acidic pocket, in violet are amino acids, that are believed to form hydrophobic pocket, in green – 

other residues responsible for receptor activation, in orange – residues involved in G protein 

coupling (Figure created by the author of the thesis, based on descriptions in literature). 

 

1.2.4 Genetic studies of MC4R 

The first evidence on the influence of genetic variants on human obesity-

related traits came from multiple studies analysing polymorphisms/mutations and 

deletions in coding region of MC4R. Generally, the reports analysed different cohorts 

with distinct obesity phenotypes such as severe obesity or early childhood obesity. A 

detailed map of the most common genetic variants discovered in MC4R is in Figure 6. 

Alongside variation detection, research on these positions usually involves functional 

characterization of the found alterations. One of the most common nonsynonymous 

substitutions in the MC4R coding region is V103I (rs code: rs2229616, MAF = 
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0.016). Some studies pointed out that this variant has a somewhat protective effect 

against obesity, as demonstrated by genetic association studies (Stutzmann et al., 

2007; Wang et al., 2010). However, functional analysis of mutant MC4R containing 

the V103I substitution demonstrated that this alteration does not affect trafficking or 

signalling ability of the receptor when activated by agonist (Hinney et al., 2003; Ho et 

al., 1999), but it has also been shown that V103I receptor variant has decreased 

AGRP binding (Xiang et al., 2006). Alterations reported to have an impact on MC4R 

trafficking are D37V (rs13447325), P78L (rs13447326), R165W (rs13447332), 

P299H (rs52804924), and I317T (rs13447337). Alterations P78L (rs13447326), S94R 

(rs13447327), V95I (rs13447328), I121T (rs13447330), S127L (rs13447331), G181D 

(rs13447333), P230L (rs13447334), and A244E (rs13447335) have significant 

decrease signalling transduction. Genetic variants T112M (rs13447329), I169S 

(rs1016862), and I251L (rs52820871) do not seem to affect receptor function (Calton 

et al., 2009; Fan et al., 2009; Hinney et al., 2003; Lubrano-Berthelier et al., 2003; 

Valli-Jaakola et al., 2004; Xiang et al., 2006). Interestingly, alteration D90N (no rs 

code) is reported to have an autosomal dominant effect in heterozygous carrier. This 

is explained by oligomerisation between MC4R expressed from the wild type allele 

and the mutant D90N MC4R that affect the signal transduction mechanisms of the 

receptor (Biebermann et al., 2003). 
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Figure 6. Schematic diagram of MC4R. Highlighted in red are nonsynonymous coding amino 

acid substitutions described in literature, also frameshift coding deletions in positions L322, I251, 
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L211 and deletion in position Y35 leading to stop codon has been reported (Figure created by the 

author of the thesis, based on data from Ensemble Genome Browser, www.ensembl.org). 

 

The first important report that associated common polymorphisms in the 

MC4R region with obesity was a meta-analysis of several genome-wide association 

studies (GWAS) (Consortium, 2007). The main goal of this research was to identify 

single-nucleotide polymorphisms (SNPs) associated with body mass index (BMI). A 

very strong association was found with rs17782313 located upstream of MC4R in an 

initial scan of over 16,000 people; the authors also generalised these findings in other 

populations as well (Loos et al., 2008). This study was replicated in other cohorts to 

find associations between rs17782313 and other SNPs in the MC4R region with BMI 

and obesity-related phenotypic traits. rs17782313 was found to be associated with 

BMI, waist circumference, body weight, hypertension, some characteristics of body 

fat distribution and other phenotypes (Hardy et al., 2010; Haupt et al., 2009; Timpson 

et al., 2009; Zobel et al., 2009).  

Another SNP that is frequently genotyped in the MC4R locus is rs12970134. 

There is a high linkage disequilibrium (LD) between rs12970134 and rs17782313 (r
2 

= 0.8) suggesting that rs12970134 should also be associated with BMI-related 

conditions. However, results on rs12970134 are not consistent, although evidence 

suggests that rs12970134 is associated with BMI, waist circumference and insulin 

resistance (Been et al., 2009; Chambers et al., 2008; Zobel et al., 2009). Another 

study has demonstrated no association with any BMI-related phenotypes, however 

(Ng et al., 2010). 

Several other SNPs including rs477181, rs502933, rs4450508 in the MC4R 

locus are not associated with any BMI condition (Been et al., 2009; Zobel et al., 

2009), but another report showed association with waist circumference (Chambers et 

al., 2008). rs571312, rs10871777 and rs476828 are in strong LD (r
2 

= 1) with 

rs17782313 and associated with obesity (Grant et al., 2009). 

 

1.3 FTO 

In addition to MC4R, the FTO (fat mass and obesity-associated protein) is an 

important regulator of body mass and energy homeostasis. The first evidence of FTO 

polymorphism correlation with weight-related phenotypes came from GWAS 

performed in a Finnish population that identified a genetic variant in the FTO locus as 
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a SNPs associated with T2D. However, upon adjustment for BMI, this association 

weakened (Scott et al., 2007). Another GWAS study found significant association of 

rs9939609 located in the first intron of FTO with increased BMI (Frayling et al., 

2007). These results were replicated in multiple populations where the FTO locus was 

been associated with various BMI and obesity-related phenotypes such as hip and 

waist circumference, weight, T2D, higher energy intake and decreased satiety (Cecil 

et al., 2008; Frayling et al., 2007; Scott et al., 2007; Scuteri et al., 2007; Wardle et al., 

2008). 

After implication of the genetic variants of the FTO in body mass regulation, 

studies of the physiological functions of FTO encoded protein began. The functional 

domains of the FTO are related to enzyme group – Fe(II)- and 2-oxoglutarate–

dependent oxygenases. Furthermore, FTO is demonstrated to participate in DNA 

demethylation (Gerken et al., 2007). Homologous sequences to the FTO locus have 

been found in organisms from algae to humans, indicating the ancient origin of the 

gene (Fredriksson et al., 2008). FTO is ubiquitously expressed, with the highest levels 

in brain and hypothalamus, the regulation centre of feeding behaviour (Frayling et al., 

2007; Fredriksson et al., 2008). Upregulation of FTO is observed in rats after 48 h 

food restriction (Fredriksson et al., 2008). However, decreased FTO expression is 

observed in obese mice (mice strains A
y
, Lep

ob
, Lepr

db
, Cpe

fat
, tub) upon food 

deprivation (Stratigopoulos et al., 2008). Two recombinant FTO mice models have 

been phenotypically characterized. First, model mice with an introduced I367A 

mutation in the sixth exon of FTO. It has been showed that in-vitro this alteration 

leads to decreased dimerization of FTO that is essential for full catalytic activity of 

the enzyme. Mice containing a I367A substitution demonstrated reduced body weight 

(Church et al., 2009). The second mouse model is deficient for FTO and has 

decreased fat mass and growth retardation (Fischer et al., 2009). 

Strong association of FTO with obesity is assumed to be due to linkage 

disequilibrium with other functional SNPs or associated genetic variants localized in 

regions responsible for regulation of other genes (Frayling et al., 2007). However, 

functional studies indicate that FTO has physiological functions in body mass 

regulation (Church et al., 2009). 
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1.4 Purinergic receptors 

Signalling by purines in different tissues has been reported since the mid-20
th

 

century (Forrester et al., 1969; Mills et al., 1968). In the 1970s and 1980s the two 

groups of purine-recognizing receptors were described, dividing the adenosine and 

adenosine triphosphate (ATP)/adenosine diphosphate (ADP) receptors (Spedding et 

al., 1976). The next step in classification of purinergic receptors was the 

establishment of two receptor types:  P2XRs (ion channels) and P2YRs (GPCRs) 

(Abbracchio et al., 1994). However, the cloning and pharmacological characterization 

of P2YRs started only in the beginning of 1990s due to technology development. 

P2Y1R was first cloned and recognised to bind ADP (Lustig et al., 1996; Webb et al., 

1993) followed by all other receptors in this group: P2Y2R, P2Y4R, P2Y6R, 

P2Y11R, P2Y12R, P2Y13R and P2Y14R (Chambers et al., 2000; Communi et al., 

1997; Communi et al., 1996; Communi et al., 1995; Hollopeter et al., 2001; Janssens 

et al., 1996).  

Currently, eight P2YRs are described in humans. All missing numbers in the 

classification order (P2Y3R, P2Y5R, P2Y7R, P2Y8R, P2Y9R, P2Y10R) constitute 

P2YR that are expressed in other organisms or are still orphan receptors that share 

sequence similarity to P2YR. The natural ligand spectrum of P2YR receptors is ATP, 

ADP, uridine triphosphate (UTP), uridine diphosphate (UDP) and UDP-glucose. All 

transduce signals via Gαq or Gαi of Gα subunits and all except P2Y11R are coded for 

intronless genes (Abbracchio et al., 2006). A detailed overview on P2YRs is in Table 

4. 
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 Table 4. Subtypes, chromosome position, pharmacological profiles, functions and sites of expression of purinergic receptors (Table 

summarized by the author of the thesis from IUPHAR database (http://www.iuphar-db.org) and literature used in thesis) 

Receptor 
Gene 

localization 

Natural 

agonist 

Full agonist/partial 

agonist affinities 

Antagonist 

affinities 

Signal transduction 

mechanism 
Tissue expression Functions 

P2Y1R 3q24–25 ADP 

2',3'-ddATP >dATPαS 

>ATPγS > 

2MeSATP >ATP >ADP 

>2MeSADP  

[32P]MRS2500 

>[3H]MRS2279 

>MRS2500 

>suramin >A2P5P  

Gαq 

Blood platelets, placenta, brain, 

intestine, skeletal muscle, heart, 

macrophages, pituitary, lung, pancreas, 

spleen, adipose, stomach, lymphocytes, 

liver, kidney 

Induction of platelet aggregation 

and cell shape change, endothelial 

cell migration, regulation of 

epidermal growth factor activity 

P2Y2R 11q13.5 ATP=UTP 
MRS2698 =UTP =ATP 

>Up4U>UTPγS>5BrUTP  

AR-C126313 

>=Reactive Blue-2 

>suramin  

Gαq 
Brain, bronchial epithelium, epidermal 

cells 

Control of cellular proliferation, 

spreading and migration, ion 

transport control, chloride 

secretory response 

P2Y4R Xq13 UTP 
(N)methanocarba-UTP 

>Up4U>UTP >ATP>GTP 

>CTP  

ATP >PPADS 

>Reactive Blue-2  
Gαq 

Intestine, brain , adipose,  lung, skeletal 

muscle, spleen, lymphocytes, prostate, 

heart, pancreas, placenta, kidney, 

stomach, bone, bronchial epithelium 

Regulation of chloride epithelial 

transport, ion transport control 

P2Y6R 11q13.5 UDP 
MRS2693 >UDP-β-S 

>Up3U >UDP >UTP 

>ADP >2MeSATP  

MRS2578 

>MRS2567 

>MRS2567 

>Reactive Blue-2  

Gαq 

Spleen, placenta, kidney, intestine, 

adipose, bone, lung, heart, brain, 

skeletal muscle, stomach,  bronchial 

epithelium 

Contraction of smooth muscle, 

ion transport control,  anti-

inflammatory actions 

P2Y11R 19p31 ATP 
AR-C67085>ATPγS 

>UTP >dATP >ATP 

>2MeSATP >NAD  

NF157 >NF340 

>suramin >Reactive 

Blue-2  

Gαq 
Platelets, brain, pituitary, lymphocytes, 

spleen, intestine, macrophages, lung, 

stomach, adipose, pancreas 

Maturation and migration of 

dendritic cells,  cell 

differentiation 

P2Y12R 3q21–25 ADP 
2MeSADP 

>2MeSATP>ADP 

>ATPγS >ATP >ADPβS  

active metabolite of 

clopidogrel 

>pCMPS >AR-

C69931MX 

>INS50589 

>AZD6140 

>2MeSAMP  

Gαi 
Platelets, brain,  vascular smooth 

muscle 

Platelet aggregation,  thrombus 

growth and stabilization 

P2Y13R 3q24–25 ADP 
2MeSADP >2MeSATP 

>ADP >ADPβS >ATPγS 

>ATP  

AR-C69931MX 

>Ap4A >Cangrelor 

(AR-C69931MX) 

>MRS2603 

>Reactive Blue-2 

>suramin  

Gαi 
Brain, spleen, bone marrow, platelets, 

epidemal cells, monocytes 

Inhibition of ATP release from 

erythrocytes,  regulation of 

hepatic high-density lipopotein 

endocytosis 

P2Y14R 3q24–25 
UDP-

glucose 

UDP-glucose >UDP-

galactose >UDP-

glucuronic acid >UDP N-

acethyl-glucosamine  

UDP  Gαi 

Spleen and T- and B-lymphocytes, 

platelets, adipose tissue, intestine, 

skeletal muscle, spleen, lung, heart, 

peripheral blood mononuclear cells, 

pituitary, various brain regions 

Chemotaxis,  neuroimmune 

functions,  dendritic cells 

activation regulation 
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1.4.1 P2Y1R 

P2Y1R has been cloned from several species including humans, mice and rats 

(Ayyanathan et al., 1996; Tokuyama et al., 1995; Webb et al., 1993). P2Y1R has a 

wide tissue expression profile including various brain areas and the peripheral 

nervous system, smooth muscle, endocrine tissue, adipocytes, kidneys, lungs and 

platelets (Burnstock et al., 2004). P2Y1R stimulation is demonstrated with adenine 

nucleotides and its synthetic derivates. The natural agonist of P2Y1R is ADP, while 

conflicting data is reported about P2Y1R interaction with ATP. ATP is demonstrated 

to both stimulate the receptor as a partial agonist (Palmer et al., 1998; Ralevic et al., 

1998) or to antagonize P2Y1R signal transduction (Hechler et al., 1998; Leon et al., 

1997). This dual effect is thought to be caused by an ectoenzyme NTPDase2 that 

converts ATP to ADP on the cell surface (Alvarado-Castillo et al., 2005). Two 

synthetic agonists 2-methylthio-ADP (2-MeSADP) and N-methanocarba-2-

methylthio-ADP (MRS2365) are reported to have a potency on P2Y12R several times 

higher than ADP and are often used in research (Chhatriwala et al., 2004; Waldo et 

al., 2004). MRS2365 derivates MRS2179 and MRS2279 are used as potent 

antagonists of P2Y1R (Table 4) (Boyer et al., 2002; Boyer et al., 1998).  

Currently, one of the most important physiological functions of P2Y1R is 

considered to be participation in platelet aggregation. Two purinergic receptors, 

P2Y1R and P2Y12R, are expressed on the platelet surface where they jointly facilitate 

blood coagulation. The first evidence of a P2Y1R role in blood clotting came with 

description of a prolonged bleeding phenotype in P2Y1R knockout mice (Leon et al., 

1999). Further investigation showed that ADP binding to P2Y1R leads to activation 

of PLCβ via the Gαq subunit of a G protein and PLCβ mobilizes intracellular calcium 

ions, changing platelet cell shape and insuring initiation of the coagulation process 

(Park et al., 1999). A detailed scheme and description of P2Y1R and P2Y12R 

functions in platelet aggregation is in Figure 7. 
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Figure 7. The platelet aggregation activation by P2Y1R and P2Y12R. After blood vessel injury, 

activated platelets bind to von Willebrand factor (Savage et al., 1996) and release specific, primed 

granules upon recognition of collagen molecules in to the vessel wall. The secreted granules then 

discharge their contents of ADP, ATP and hormones into the blood circulation (Mills et al., 1968). 

The liberated ADP binds to P2Y1R, which in turn induces activation of the G protein’s Gαq 

subunit. Interaction of Gαq with PLCβ mobilizes intracellular calcium ions, changing platelet cell 

shape and initiating aggregation (Park et al., 1999). Meanwhile, binding of ADP to P2Y12R 

prompts the Gαi subunit to reduce the intracellular concentration of cyclic adenosine 

monophosphate (cAMP). The subsequent increase in vasodilator-stimulated phosphoprotein and 

other enzymes ultimately leads to αIIbβ3 integrin receptor activation (Halbrugge et al., 1990). 

(Figure and figure legend adapted from (Gachet, 2006)). 

 

Much attention in the literature is given to the possible importance of P2Y1R 

in neuronal signalling. However, P2Y1R involvement in neuronal signalling is more 

complex than its function in platelet aggregation. Since P2Y1R is detected in many 

neuronal tissues a role in signal transduction is logical. Several reports have 

demonstrated a connection between Gαq activation and opening or closure of Ca
2+

 

and K
+
 ion channels, the main pathways of neuronal signalling. For example, Gαq 

activation can lead to voltage-independent inhibition of Ca
2+

 flux via second 

messenger pathways (Filippov et al., 2003). Implication of Gαq activation on K
+
 

channels has also been observed (Huang et al., 1998; Suh et al., 2002). However, 

further studies are required to assess the practical application of these findings. 

P2Y1R has been implicated in protection against development of 

atherosclerosis in studies of P2Y1R/apolipoprotein E double-knockouts, suggesting 
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involvement in prevention of angina pectoris and heart diseases (Hechler et al., 

2008). 

P2Y1R is reported to form homooligomers when expressed in HEK293 cells. 

Agonist stimulation was demonstrated to strongly increases oligomer aggregation 

(Choi et al., 2008). Several other studies investigated heterooligomerization between 

Gαi-coupled P2Y1R and Gαq-coupled adenosine 1 receptor (A1R). Heteromeric 

A1R/P2Y1R structures decrease in response to A1R agonists and antagonists, while 

increasing functional activation or inhibition by P2Y1R ligands. Experiments using 

PTX indicate that the Gαi subunit of a G protein is the primal signal transduction 

mechanism of the oligomer, but signalling via the Gαq subunit, usually by 

transducing A1R activation, is reduced (Nakata et al., 2005; Yoshioka et al., 2001). 

Interesting facts of P2Y1R trafficking and oligomerization with P2Y11R were 

revealed by Ecke et al. The authors reported formation of P2Y1R/P2Y11R heteromers 

and sequential internalization of these complexes after activation by agonists. 

Intriguingly, P2Y11R is not able to internalize alone therefore, P2Y1R might be 

crucial factor for P2Y11R-mediated signalling (Ecke et al., 2008). 

 

1.4.2 P2Y12R 

P2Y12R is reported in several species including humans, mice and rats (Foster 

et al., 2001; Hollopeter et al., 2001; Zhang et al., 2001). The natural agonist of 

P2Y12R is ADP. Information about ATP action on P2Y12R is inconsistent. ATP is 

reported to stimulate the receptor with a lower affinity than ADP (Simon et al., 2001; 

Zhang et al., 2001) or to display antagonist properties (Kauffenstein et al., 2004). The 

cause of this difference is not completely clear. Commonly used synthetic agonists of 

P2Y12R are 2MeSADP, which displays higher potency than ADP, and ADPβS, 

which has a lower potency than ADP (Abbracchio et al., 2006). Several antagonists of 

P2Y12R, AR-C derivates and AZD6140 have also been developed (Ingall et al., 

1999; Storey et al., 2007).  

P2Y12R is expressed in various tissues including the central and peripheral 

nervous system, immune system, kidneys and platelets (Burnstock et al., 2004). The 

main physiological function of P2Y12R as described in the literature is participation 

in blood coagulation. After binding of ADP to P2Y12R on the platelet cell surface, a 

conformational change in the receptor structure activates the Gαi subunit of a G 
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protein in the intracellular space. Gαi triggers inhibition of adenylyl cyclase and 

subsequently cAMP concentration in the cell decreases. This reduction leads to 

increased activity of several proteins such as vasodilator-stimulated phosphoprotein 

(VASP), which switches on expression of αIIbβ3 integrin receptor. The αIIbβ3 

integrin receptor further binds fibrinogen, resulting in formation of a blood clot 

(Figure 7) (Eckly et al., 2001; Halbrugge et al., 1990; Kauffenstein et al., 2001; 

Savage et al., 1996). 

P2Y12R signalling has been implicated in crosstalk with P2Y1R second 

messenger pathways. P2Y12R stimulation not only triggers Gαi adenylyl cyclase 

inhibition, but also increases Ca
2+

 ion concentration, thereby assisting P2Y1R-

induced second messenger pathways (Hardy et al., 2004). 

Similar to P2Y1R, the P2Y12R is considered to be involved in regulation of neuronal 

signalling. In particular, the liberation of the Gβ/γ dimer that occurs after Gαi 

activation, which allows Gβ/γ to interact with various pathways leading to Ca
2+

 or K
+
 

channel activation (Simon et al., 2002). However, the role of these interactions is not 

generally clear and further investigations are needed. 

Participation of P2Y12R in blood coagulation is considered a more important 

function because it is targeted by several clinically used antiplatelet drugs. Ticlopidine 

(trade name: Ticlid) and clopidogrel (trade name: Plavix) are two therapeutics that 

target P2Y12R and are frequently used for prophylactic purposes after coronary 

interventions like stenting or angioplastics to protect against thrombosis (Gurbel et 

al., 1999; Jauhar et al., 1999). Ticlopidine and clopidogrel belong to thienopyridine 

derivates. They bind to cystein residues in the extracellular loops, blocking agonist 

binding (Ding et al., 2003). The drawback of these compounds is that enzymatic 

cleavage by hepatic P450 cytochromes in liver is required for creation of the active 

metabolite (Pereillo et al., 2002; Savi et al., 1992) and this process can delay drug 

effects. Up to 40% of patients treated with clopidogrel have resistance to the drug 

(Gurbel et al., 2007) for various reasons such as genetic polymorphisms that affect 

drug absorbability (e.g. ABCB1) or enzymatic cleavage (CYP3A4, CYP3A5, 

CYP2C19), or physiological specificities that influence therapy effectiveness (Hulot et 

al., 2006; Lau et al., 2004; Simon et al., 2009; Suh et al., 2006). Because of these 

disadvantages, the search for next-generation P2Y12R antagonists is continuing. 

Novel compounds like cangrelor (compound code: ARC-69931 MCX), prasugrel 
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(compound code: CS-747) and elinogrel (compound code: PRT060128) are 

undergoing pharmacological evaluation (Ingall et al., 1999; Sugidachi et al., 2000; 

Ueno et al., 2010). 

P2Y12R receptors form homooligomers in human platelets. Intriguingly, upon 

stimulation by active state clopidogrel these oligomers disarrange into monomeric 

receptor forms. Furthermore, activation by the clopidogrel metabolite caused 

migration of P2Y12R out of lipid rafts (Savi et al., 2006). This suggests that 

clopidogrel not only inhibits agonist binding to P2Y12R, but also might affect the 

effectiveness of signal transduction. As adenylyl cyclases are reported to be located in 

lipid rafts on the cell membrane (Ostrom et al., 2001), removal of P2Y12R from its 

secondary messenger system could inhibit agonist signal transmission. 

 

1.4.3 Other P2YRs 

P2Y2R has a very wide tissue expression, and is detected in the nervous and 

immune systems, endocrine glands, gastrointestinal tract, bone tissues, skin and 

endothelial cells (Moore et al., 2001). P2Y2R natural agonists are ATP and UTP, 

which display equal potencies. The functions of P2Y2R have mostly been suggested 

to be related to ion-exchange regulation, first for Cl
-
 ions in epithelial cells (Cressman 

et al., 1999), and also Ca
2+

, K
+
 and Na

+
 ions (Matos et al., 2005; Pochynyuk et al., 

2008; Ryu et al., 2010). P2Y2R is reported to form heterooligomers with A1R, with 

aggregation leading to an increase in the Gαq signalling pathway stimulated by either 

P2Y2R or A1R agonists, indicating a shift to higher P2Y2R signal transduction in 

these oligomers (Suzuki et al., 2006). 

The natural agonist of human P2Y4R is UTP. P2Y4R is widely expressed in 

the brain, gastrointestinal tract, smooth muscles and lungs (Communi et al., 1995; Jin 

et al., 1998; Moore et al., 2001). The phenotype of knockout mice revealed that, 

similar to P2Y2R, P2Y4R is involved in Cl- ion regulation in epithelial cells (Robaye 

et al., 2003).  

P2Y6R has the highest affinity for UDP, however, it also binds UTP, ADP 

and ATP with reduced affinity (Communi et al., 1996). This receptor is expressed in 

the spleen, gastrointestinal tract, smooth muscle and immune cells (Chang et al., 

1995). The functions of P2Y6R are not clear, but it is suggested to be involved in ion-

exchange regulation, cell differentiation and proliferation (Schafer et al., 2003; Warny 
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et al., 2001). P2Y4R and P2Y6R oligomerization has studied, demonstrating that both 

P2Y4R and P2Y6R form homoaggregates as well as heteromers (D'Ambrosi et al., 

2007).  

P2Y11R is expressed in the immune system, gastrointestinal tract, kidneys and 

endothelial cells (Communi et al., 1997; Moore et al., 2001). This receptor has no 

ortholog in mice, therefore, no knockout studies have been performed and the 

physiological functions of P2Y11R remains unclear. Some indications have 

implicated P2Y11R in the maturation of dendritic cells and granulocyte 

differentiation, suggesting involvement in the immune response (van der Weyden et 

al., 2000; Wilkin et al., 2001). P2Y11R is the only P2YR containing an intron. 

Interestingly, P2Y11R is reported to form oligomers with P2Y1R and this process is 

crucial for receptor trafficking (Ecke et al., 2008). 

P2Y13R functions are also not entirely clear. It is expressed in spleen, brain, 

bone marrow, monocytes, erythrocytes and leucocytes (Communi et al., 2001; Wang 

et al., 2004). The primary natural agonist of P2Y13R is ADP. The physiological 

functions of the P2Y13R are not yet known, but some studies have demonstrated 

involvement in endocrine function and nociceptive mechanisms (Amisten et al., 2010; 

Malin et al., 2010). 

P2Y14R is the only P2YR that is stimulated by sugar-bound nucleotides UTP-

glucose, and with lower affinity, UTP-galactose. This receptor is expressed in adipose 

tissue, gastrointestinal tract, lungs, bone marrow, spleen and distinct brain areas 

(Chambers et al., 2000; Moore et al., 2003). P2Y14R is suggested to be involved in 

neuroimmune functions (Skelton et al., 2003), but these findings require further study. 

 

1.4.4 Functional characteristics of P2Y12R 

Although P2Y12R is the target for the important clinical drug clopidogrel, the 

functional structures of P2Y12R are poorly understood. The first evidence of residues 

involved in P2Y12R functional activity were from Cattaneo and colleagues, who 

found two SNPs in positions R256 (rs121917885) and R265 (rs121917886) 

associated with platelet coagulation dysfunction (Cattaneo et al., 2003). So far, few 

published mutagenesis studies have explored the ligand binding and activation of 

P2Y12R. Hoffman and colleagues generated R256K, R256A, R256D, S101A, 

Y259D, K280A mutants and the double mutant H253A/R256A of P2Y12R, and 
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showed that positions R256, Y259, H253 and K280 influence P2Y12R functional 

activation with 2-MeSADP. The R256A receptor variant had significantly reduced 

functional effects with the antagonist reactive blue-2, but not with cangrelor 

(Hoffmann et al., 2008). Detailed analysis demonstrated the importance of positions 

R256 and S101 in interaction with different antagonists (Hoffmann et al., 2009). Mao 

et al. investigated mutants F104S, Y109S, F198P, H253S, R256T, R256Q, R265W, 

S288P and the double mutant R256Q/R265W of P2Y12R for their activity after ADP 

activation (Mao et al., 2010). Their results indicated the importance of F104S and 

S288P in reduced agonist activation. Positions R256 and R265 showed no 

involvement in ADP activation separately, but the double mutant R256Q/R265W had 

significantly decreased receptor activity. However, the single mutations R256Q, 

R256T and R265W and the double R256Q/R265W mutant demonstrated increased 

antagonist AR-C69931MX-mediated signalling (Mao et al., 2010). Another 

mutagenesis study of thiol reagent effects on P2Y12R revealed a disulphide bridge 

formed by residues C17 and C270 to be important in the interaction between the thiol 

agent p-chloromercuribenzene sulfonic acid (pCMBS) and P2Y12R (Ding et al., 

2003).  

The only mutagenesis report in which P2Y12R was expressed in yeast 

concentrated on the identification of residues that ensure the ground state of the 

receptor by generating untargeted randomised libraries. For example, the authors 

described position L115 of P2Y12R as important for constitutive receptor signalling 

(Schoneberg et al., 2007). Functionally important residues of the P2Y12R are in 

Figure 8. Other information on the functional characteristics of P2Y12R can be 

deduced based on similarities to other purinergic receptors. 
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Figure 8. Schematic diagram of P2Y12R. Coloured amino acids are reported to be important 

using mutagenesis. Highlighted in blue are amino acids, that have been found in patients with 

blood coagulation disorder, in green - other residues responsible for receptor activation, in red – 

residue, that is responsible for constitutive activity of the receptor, in orange – cysteins, that 

interact with thiol groups of synthetic antagonists (Figure created by the author of the thesis, 

based on descriptions in literature). 

 

 

The first complete three-dimensional homology model of P2Y12R was 

published in Protein Data Bank (PDB) and described in 2007 by Zhan et al. (Zhan et 

al., 2007). This model was created using bovine rhodopsin (PDB entry 1HZX) as a 

template, but docking studies on the generated P2Y12R (PDB entry 1VZ1) failed to 

demonstrate ligand binding to the receptor in the possible binding pocket indicated by 

functional mutagenesis studies of P2Y12R and other P2YRs (Hoffmann et al., 2008; 

Mao et al., 2010; Moro et al., 1998; Zylberg et al., 2007). Previous homology 

modelling and docking of P2Y12R (using bovine rhodopsin PDB entry 1F88 as a 

template) were more consistent with ligand-receptor interaction data from the 

literature, but this model was not published in PDB (Costanzi et al., 2004). A recent 

publication showed homology modelling of several P2YRs including P2Y12R using 

human β2 adrenergic receptor template (PDB entry 3SN6). These models had some 

correspondence to functional studies of P2YRs; for example, they indicated positively 

charged amino acid residues in the upper parts of TM domains of P2YRs. However, 
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the authors did not explore the ligand binding properties of P2Y12R in detail 

(Bhatnagar et al., 2011). 

 

1.4.5 Functional characteristics of other P2YRs 

Functional properties of other P2YR receptors have been studied in more 

detail than P2Y12R. These data on other P2YRs can serve as a useful guide for 

description of P2Y12R.  

Extensive P2Y1R mutagenesis studies have been carried out over the last 

decade. Residues from TM3, TM6, TM7 and EL2 are shown to be responsible for 

ADP-binding pocket formation. Positions F226, K280, Q307 and to lesser extent 

H132, Y136 and T222 of P2Y1R are important for receptor activation by the 

antagonist MRS2179 (Moro et al., 1998). In experiments using the agonists 2-

MeSATP and 2-MeSADP on P2Y1R mutants, neither ligand functionally activated 

R128A, R310A, or S314A and they showed decreased activity with the K280A and 

Q307A P2Y1R variants. Reduced P2Y1R activity was also seen in F131A, H132A, 

Y136A, F226A, or H277A replacement variants, but T221A and T222A substitutions 

in the receptor significantly lowered response to 2-MeSATP (Jiang et al., 1997).  

Hoffmann and colleagues studied the extracellular loops of P2Y1R and found 

that like many other GPCRs, P2Y1R has a disulphide bridge formed by residues C124 

and C202 that is required for stabilizing the receptor during trafficking to the cell 

membrane. Two other disulphide bridge-forming cysteins C42 and C296 are crucial 

for 2-MeSADP-induced receptor activation. Mutagenesis of several charged amino 

acids in EL showed that most of them have small effect on receptor’s functional 

activity (positions K125, R195, K196, K198, D204, R212, R285, D289, D300, R301). 

Only E209A and R287E mutants in EL2 and EL3 showed 1000-fold lower activity 

(Hoffmann et al., 1999).  

The role of the E209 position of P2Y1R has also been explored by homology 

modelling. An involvement in ligand attraction to the binding pocket by formation of 

possible meta-binding sites was proposed (Moro et al., 1999).  

The regions involved in functional activity and ligand binding in other P2YRs 

have been less well studied. P2Y11R mutagenesis demonstrated R106A, Y261A and 

R307A replacement variants are functionally inactive after ATP stimulation, R268A 

has significant reduction of potency, while F109I, E186A and R268Q show slight 
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reductions (Zylberg et al., 2007). Hillman et al. reported that R272 and S296 are 

essential amino acids required for response to both ATP and UTP activation of 

P2Y2R (Hillmann et al., 2009).  

These studies have led to the overall characterization of the nucleotide binding 

pocket of P2YRs. The nucleotide base is believed to bind deep in the receptor cavity 

formed by TM3 and TM7, where this binding is promoted by Ser, Tyr, Phe and His 

residues, while phosphate groups are fixed in the upper parts of the TM6 and TM7 

helices by Arg, Lys and Gln amino acids (Hillmann et al., 2009; Ivanov et al., 2006; 

Moro et al., 1998; Zylberg et al., 2007).  

 

1.4.6 Genetic association studies of P2RY12 

Many studies have attempted to establish P2YR functions by investigating a 

possible correlation between genetic variation at the candidate gene locus and distinct 

phenotypic traits. P2Y12R is the most extensively assessed P2YR in genetic 

association studies. The reason for this is the hypothesis that specific genetic 

variations of P2RY12 could influence responsiveness of the receptor for clopidogrel 

therapy, and therefore selected SNPs might serve as markers for pharmacogenetic 

evaluation (Angiolillo et al., 2005; Bura et al., 2006; Fontana et al., 2003b).  

The first relevant information on the association of P2RY12 genetic variants 

with clopidogrel effects was by Fontana et al. Who showed four SNPs of P2RY12 in 

strong linkage disequilibrium: iC139T (rs10935838), iT744C (rs2046934), ins801A 

(rs5853517) and G52T (rs6809699). These were reported to be associated with 

decreased response to clopidogrel in healthy subjects. A tetrad of minor alleles of 

these SNPs was referred as haplotye 2 (H2) (Fontana et al., 2003a). In the literature, 

genotyping of any of four of these polymorphisms is named H2, because of the strong 

LD between them. These results were replicated in another healthy volunteer group 

where the H2 homozygous haplotype was reported to have a slightly decreased 

response to clopidogrel (Bura et al., 2006). The assumption of correlation between H2 

and P2Y12R function was strengthened after a case-control study demonstrated 

association of H2 with peripheral artery disease (Fontana et al., 2003b). Nonetheless, 

two other studies showed no association of H2 with platelet aggregation in patients 

after coronary stenting undergoing clopidogrel therapy (Angiolillo et al., 2005; von 

Beckerath et al., 2005). On opposing report showed that the H2 homozygous 
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genotype is associated with clopidogrel resistance after stenting (Staritz et al., 2009). 

No association between the H2 and clopidogrel response was found in patients with 

coronary artery disease (CAD) (Bierend et al., 2008), however, one study indicated 

association of CAD and platelet aggregation after clopidogrel treatment in a non-

smokers group (Cavallari et al., 2007). H2 was not associated with increased risk for 

cardiovascular events in either CAD (Schettert et al., 2006) or acute myocardial 

infarction patients treated with clopidogrel (Simon et al., 2009). Another report stated 

an association of H2 with deep venous thrombosis and pulmonary embolism, but no 

association with myocardial infarction or stroke (Zee et al., 2008). The possible 

impact of H2 on occurrence of neurological events in patients treated with clopidogrel 

was also assessed in a study by Ziegler et al., that found no association with H2; 

however, another SNP 34C-T (rs6785930) in the P2RY12 locus demonstrated 

association with ischemic cerebrovascular events (Ziegler et al., 2005). In non-ST-

elevation acute coronary syndrome patients, no correlation between H2 genotype and 

clopidogrel induced aggregation occurred (Cuisset et al., 2007). Two studies on large 

patient groups were carried out by Rudez et al. These studies focussed not on the H2 

haplotype, but tagged several haplotypes to completely cover the P2RY12 locus. One 

study demonstrated that in patients undergoing clopidogrel treatment after 

percutaneous coronary intervention, the haplotype containing the minor alleles of 

rs10935842 and rs6787801 and the haplotype containing the minor alleles of 

rs10935842, rs6787801 and rs2044935 had an increased risk of target vessel restinosis 

(Rudez et al., 2008). In the other study by Rudez et al., the haplotype containing the 

minor allele of rs6787801 was associated with decreased aggregation in response to 

clopidogrel in patients with CAD (Rudez et al., 2009). 

In spite of these studies, the significance of P2RY12 variation in platelet 

aggregation remains unclear. Interestingly, Malek et al. postulated that the possible 

role of P2Y12R in responsiveness to clopidogrel might be limited not to variation in 

P2RY12 alone but might include coexistence with a variation in CYP2C19 responsible 

for metabolization of clopidogrel. Together, these genetic variations could have a 

significant effect on clopidogrel resistance and explain the controversies in the 

literature, if these possible effects were considered (Malek et al., 2008). Another gene 

associated with a higher rate of cardiovascular events among patients treated with 

clopidogrel is ABCB1, which is responsible for its absorption (Simon et al., 2009). 
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This indicates that research on P2RY12 without considering the context of other genes 

related to clopidogrel pharmacodynamics does not lead to interpretable results (Malek 

et al., 2008). A LD plot of the P2RY12 region is in Figure 9.  
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Figure 9.  LD plot of the P2RY12 region, created by the author of the thesis in HaploView 4.2 using HapMap project genotype frequency data (Rel#24; 

www.hapmap.org), 20 Kbp captured. The pairwise r
2
 values are presented in each box. Black – strong evidence of LD, dark grey – moderate evidence of LD, light 

grey – low evidence of LD, white – uninformative.
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1.4.7 Genetic association studies of P2RY1 

P2Y1R has been suggested to correlate with coronary dysfunctions and 

discussed as possible target for antiplatelet therapies, since, with P2Y12R, it 

contributes to platelet aggregation (Gachet, 2006). So far, however, no antagonists are 

known to act via P2Y1R as used in clinical practice. Nonetheless, several studies 

explored the role of SNP variation at the P2RY1 locus in relation to different 

phenotypes. rs701265 is located in coding region of P2RY1 and is associated with 

higher platelet reactivity to ADP in healthy adults (Hetherington et al., 2005). In 

contrast, another study on a similar but a half smaller study population detected no 

association of this polymorphism with platelet aggregation (Fontana et al., 2005). 

This SNP showed no association with clopidogrel (Lev et al., 2007; Sibbing et al., 

2006) or aspirin (Lev et al., 2007; Li et al., 2007) resistance. However, one study 

revealed a significant association of rs701265 with platelet responsiveness to aspirin 

in myocardial infarction (MI) patients after percutaneous coronary intervention 

(Jefferson et al., 2005). A second frequently genotyped SNP of P2RY1 is rs1065776, 

which is located in the upstream non-coding region of the P2RY1. This polymorphism 

is reported to significantly correlate with aspirin resistance in Caucasian and Chinese 

populations (Jefferson et al., 2005; Kunicki et al., 2009a; Li et al., 2007). In a healthy 

adult study group, rs1065776 had significant effects on platelet response to collagen 

binding and ADP (Kunicki et al., 2009b). Extensive exploration by genotyping of 

seven SNPs (rs2579133, rs17451266, rs9289876, rs1065776, rs701265, rs16864613, 

rs12497578) in the P2RY1 locus and correlation of the genotypes to administration of 

ticagreol (a clopidogrel analog) on platelet reactivity showed no significant 

association between these polymorphisms and the studied phenotype (Storey et al., 

2009). Therefore, the function of P2RY1 genetic association in relation to phenotypic 

traits remains unclear. A LD plot of the P2RY1 region is in Figure 10. 
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Figure 10.  LD plot of the P2RY1 region, created by the author of the thesis in HaploView 4.2 

using HapMap project genotype frequency data (Rel#24; www.hapmap.org), 20 Kbp captured. 

The pairwise r
2
 values are presented in each box. Black – strong evidence of LD, dark grey – 

moderate evidence of LD, light grey – low evidence of LD, white – uninformative. 

 

1.4.8 Genetic association studies of other P2RYs 

The other P2RYs have not been as thoroughly studied by genetic association as 

P2RY1 or P2RY12, but reports have linked polymorphisms in P2RYs with phenotypic 

features. For example, the genetic variant R312S (rs3741156) of P2RY2 is more 

common in cystic fibrosis patients than in healthy controls. Furthermore, functional 

studies have shown that this variation has an effect on intracellular Ca
2+

 release that 

might influence the cystic fibrosis phenotype (Buscher et al., 2006). The role of 

P2Y2R in development of atherosclerosis and thus association of P2RY2 

polymorphisms with myocardial and cerebral infarction has been explored in a 

Japanese population, which revealed that the specific haplotypes CA (rs4382936 and 

rs10898909) and TCA (rs1783596 and rs4382936, rs10898909) are associated with 

myocardial infarction in Japanese men. Another genotype (rs1783596-rs4382936-

rs10898909) correlates with the incidence of cerebral infarction in Japanese women 

(Wang et al., 2009b; Wang et al., 2009c). 
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One report explored the association of the A87T polymorphism (rs3745601) in 

P2RY11 in relation to acute myocardial infarction. This SNP is significantly 

associated with MI and C-reactive protein levels indicating the possible effects of 

P2Y11R in inflammation processes that contribute to coronary dysfunctions (Amisten 

et al., 2007). Amisten and colleagues examined the Met-Thr-156 (no rs code) 

polymorphism in P2RY13 association with myocardial infarction, but found no 

significant association (Amisten et al., 2008).  
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2  MATERIALS AND METHODS 

 

2.1 Escherichia coli strain 

DH5α - F–, phi80dlacZDelta M15, Delta(lacZYA–argF), U169, deoR, recA1, 

hadR17(rk–, mk+), gal–, phoA, supE44, Lambda–, thi-1, gyrA96m relA1 

 

Purchased from Invitrogen, USA. 

 

2.2 Saccharomyces cerevisiae strains 

MMY23 - MATa his3 leu2 trp1 ura3 can1 gpa1Δ::Gi far1Δ::ura3 sst2Δ::ura3 

Fus1::FUS1-HIS3 LEU::FUS1-lacZ ste2Δ::G418
R
 

 

MMY28 - MATa his3 leu2 trp1 ura3 can1 gpa1Δ::Gs far1Δ::ura3 sst2Δ::ura3 

Fus1::FUS1-HIS3 LEU::FUS1-lacZ ste2Δ::G418
R

  
  

Both were kindly provided by Dr. S.J. Dowell (Olesnicky et al., 1999). 

 

2.3 Mammalian expression cell lines 

HEK 293 (EBNA) - Human embryonic kidney cell line (Invitrogen, USA)  

BHK – Baby hamster kidney cell line (Invitrogen, USA) 

 

2.4 Primers 

Primers for minisequencing were purchased from Biotez (Germany), all other primers 

from Metabion (Martinsried, Germany). Primer sequences are presented in Table 5, 

Table 6 and Table 7. 
 

 

Table 5. Primers used for mutagenesis of MC4R and P2RY12 

Primer name Primers for MC4R randomisation 
MC4R D126rand Fw CATTGATAATGTCATTNNNTCGGTGATCTGTAGC 

MC4R D126rand Rs GCTACAGATCACCGANNNAATGACATTATCAATG 

Primer name Primers for P2RY12 randomisation 
P2RY12R E181rand Fw CATGCCAGACTAGACCGAANNNTGATTTAAGGAAAGAGCA 

P2RY12R E181rand Rs TGCTCTTTCCTTAAATCANNNTTCGGTCTAGTCTGGCATG 

P2RY12R R256rand Fw TCAGGGTGTAAGGAATNNNGGCAAAATGGAAAGGAAC 

P2RY12R R256rand Rs GTTCCTTTCCATTTTGCCNNNATTCCTTACACCCTGA 

P2RY12R R265rand Fw CAGTGCAGTCAAAGACATCNNNGGTTTGGCTCAGGGTGT 

P2RY12R R265rand Rs ACACCCTGAGCCAAACCNNNGATGTCTTTGACTGCACTG 

P2RY12R K280rand Fw TAACCACAGAGTGCTCTCNNNCACATAGAACAGAGTATT 

P2RY12R K280rand Rs AATACTCTGTTCTATGTGNNNGAGAGCACTCTGTGGTTA 

Primer name Primers for site-direct mutagenesis of the MC4R  
MC4R V103I Fw CTGGTGAGCGTTTCAAATGGATCAGAAACCATTATCATCACCCTATTAAACAGTACAGATACGG 

MC4R V103I Rs CCGTATCTGTACTGTTTAATAGGGTGATGATAATGGTTTCTGATCCATTTGAAACGCTCACCAG 

MC4R S127L Fw CAGTGAATATTGATAATGTCATTGACTTGGTGATCTGTAGCTCCTTGCTTGCATCC 

MC4R S127L Rs GGATGCAAGCAAGGAGCTACAGATCACCAAGTCAATGACATTATCAATATTCACTG 

MC4R V166I Fw CCAGTACCATAACATTATGACAGTTAAGCGGATTGGGATCATCATAAGTTGTATCTGGGCAGC 

MC4R V166I Rs GCTGCCCAGATACAACTTATGATGATCCCAATCCGCTTAACTGTCATAATGTTATGGTACTGG 

MC4R I251L Fw CCAATATGAAGGGAGCGATTACCTTGACCATCCTGCTTGGCGTCTTTGTTGTCTGCTGGGCC 

MC4R I251L Rs GGCCCAGCAGACAACAAAGACGCCAAGCAGGATGGTCAAGGTAATCGCTCCCTTCATATTGG 
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Table 6. Primers used for genotyping of P2RY1 

rs code Primers for amplification 
rs2579133 Fw - ACG TTG GAT GCT TTA TCT CAT AAA TCA GGG TCT C 

Rs - ACG TTG GAT GAG AAT GGG AAA ATC ATT GG 

rs17451266a  
rs9289876 

Fw - ACG TTG GAT GAT TAA CAT GGA ATG CTT AGG G 
Rs - ACG TTG GAT GCT GAC TTC ACT CAG AAG TTT GTT 

rs1439009 Fw - ACG TTG GAT GGT GCT AGA TTC CAT TCT TGT G 

Rs - ACG TTG GAT GAC GGT TAT AAT TCC AAA GTG AC 

rs1065776 Fw - ACG TTG GAT GTC TAA GGT AGG GAG GAG GAA 
Rs - ACG TTG GAT GTT TGA ACG ACG AGG AGA C 

rs701265 Fw - ACG TTG GAT GGC TTT GAT TTA CAA AGA TCT GG 

Rs - ACG TTG GAT GAC ATG GAA AGG GAT GTA AGA 

rs12497578 Fw - ACG TTG GAT GGC CTA TGT AGA TTG AGG ATT TG 

Rs - ACG TTG GAT GAA TCA CTG CTT TGG AAG GT 

rs code Primers for minisequencingb 
rs2579133 bioTCT TAC CTA (L)CA GCT CCC AAC TTC 

rs17451266 bio TT ATT CCC ACA AGG C(L)A AAT TTT 

rs9289876 bioGA AAT GTA CAC TT(L) GTC CAG ATA CCA 

rs1439009 bioA GAA AAC GAG TTT GTC (L)GT AAA TGT 

rs1065776 bioCCA GGA C(L)A ACC CGG ACC 

rs701265 bioC AGC AAA AAC (L)GT CAG TAC AAT GAT 

rs12497578 bioT CTT CAT TGA TCT TAG (L)GG CCA 
a for both SNPs the same primers were used. 
b bio - indicate biotin cap; (L) - photolinker cleavage site. 

 

Table 7. Primers used for sequencing of MC4R and P2RY12 

Primer name Primers for P2RY12 amplification and sequencing 
P2RY12Fw CCAAAAGCTTATGCAAGCCGTCGACAACCT 

P2RY12Rs TACTCGAGTTACATTGGAGTCTCTTCATTT 

Primer name Primers for MC4R amplification  
MC4R pcr Fw1 GGAGGAAATAACTGAGACG 

MC4R pcr Fw2 TATGCTGGTGAGCGTTTC 

MC4R pcr Rs1 CCAATCAGGATGGTCAAG 

MC4R pcr Rs2 TTCAGGTAGGGTAAGAGT 

Primer name Primers for MC4R sequencing 
MC4R seq Fw1 CTGAGACGACTCCCTGAC 

MC4R seq Fw2 GGATCAGAAACCATTGTC 

MC4R seq Rs1 CCAATCAGGATGGTCAAG 

MC4R seq Rs2 TGTTCCTATATTGCGTGC 

 

 

2.5 Vectors 

For yeast experiments yeast shuttle vector p426TEF (American Type Culture 

Collection, USA) was used. For expression and activation experiments of MC4R in 

mammalian cells vector pcDNA3 (Invitrogen, USA) was used. For confocal 

microscopy of mammalian cells vector pCEP4-GFP-C was used, this vector was 

obtained by modification of pCEP4 (Invitrogen, USA) with insertion of enhanced 

green fluorescent protein (EGFP) gene at the 3’end of the multiple cloning site. 
 

2.6 PCR-directed mutagenesis 

Mutant libraries of MC4R and P2RY12 and site-direct mutant variants of MC4R were 

obtained by mutagenesis PCR using QuikChange II XL Site-Directed Mutagenesis 

Kit (Stratagene, Canada) using mutant primers shown in Table 5 following 

manufacturers’ protocol. Heterogeneity of the randomised products was confirmed by 

sequencing (described below). 
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2.7 DNA agarose gel electrophoresis 

DNA agrose gel electrophoresis was performed in TAE buffer (40 mM Tris–acetate 

pH 8.3, 20 mM sodium acetate, 1 mM EDTA) on 1.2 % agarose (Fermentas, #R0491) 

gels containing ethidium bromide (1 μg/ml). 

 

2.8 Restriction of DNA 

The restriction of DNA was carried out in reaction mix that contained: 1 μl of 10Χ R 

restriction buffer (Fermentas, #BR5), 5–10 μl of DNA (volume depended on the type 

and concentration of the DNA), 0.5 μl of each of the required restriction enzymes 

(HindIII (Fermentas, #ER0501) and/or XhoI (Fermentas, #ER0691)), and sterile 

distilled water up to 20 μl. The reaction mix was incubated for 3 h at 37°C. 

 

2.9 Ligation of DNA fragments 

The ligation of DNA fragments was carried out in reaction mix that contained: 1 μl of 

10× ligation buffer, 1 μl of 10 mM rATP, 1 μl of vector DNA, 8 μl of fragment DNA, 

1 μl of T4 DNA ligase (Fermentas, #EL0011). The reaction mix was incubated for 3 h 

at 22°C. 

 

2.10 DNA extraction and purification from agarose gel 

DNA gel extraction and purification was performed with the Silica Bead DNA 

Purification and Gel Extraction Kit (Fermentas #K0513) following the manufacturers 

protocol. 

 

2.11 Preparation of transformation competent E. coli cells  

E.coli cells from a frozen stock of DH5α strain were inoculated into 6 ml of LB media 

(10 g/l Bacto tryptone, 5 g/l Bacto yeast extract both from Difco Laboratories, USA 

and 10 g/l sodium chloride from Sigma- Aldrich Co, USA) containing no antibiotics 

and were incubated overnight at 37ºC with aeration (~200 rpm). Then, the overnight 

culture (~1 ml) was inoculated into 150 ml of Psi media (20 g/l Bacto tryptone, 5 g/l 

Bacto yeast extract, 5 g/l magnesium sulphate, at pH 7.6, adjusted using potassium 

hydroxide) and the culture was then incubated at 37ºC with aeration (~200 rpm) until 

the OD590  = 0.3–0.4. Then culture was incubated on ice for 15 min and pelleted for 5 

min at ~5000 rmp. 20 ml of TfbI (30 mM potassium acetate, 100 mM rubidium 

chloride, 10 mM calcium chloride, 50 mM magnesium chloride, 15% v/v glycerol, at 

pH 5.8, adjusted using acetic acid, all purchased from Sigma-Aldrich, Germany) was 

added to cell pellet and cells were resuspended, incubated on ice for 15 min and 

pelleted for 5 min at ~5000 rmp. The supernatant was discarded and 2 ml of TfbII (10 

mM MOPS, 75 mM calcium chloride, 10 mM rubidium chloride, 15% glycerol, at pH 

6.5, adjusted using sodium hydroxide, all purchased from Sigma-Aldrich, Germany) 

were added to the pellet and resuspended. Finally, cells were incubated on ice for 15 

min, snap-frozen in liquid nitrogen in 100 μl aliquots and stored at –70ºC. 

 

2.12 Transformation of E. coli cells 

An eppendorf containing transformation competent E. coli cells was defrozen on ice. 

10 μl of ligation mix or 1 μl of plasmid was added to the cells and incubated on ice for 

30 min. The heat shock was carried out for 45 s at 42°C and then cells were incubated 
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on ice for 2 min. The cells were transferred to 0.9 ml of pre-warmed LB (10 g/l Bacto 

tryptone, 5 g/l Bacto yeast extract both from Difco Laboratories, USA and 10 g/l 

sodium chloride from Sigma- Aldrich Co, USA) broth containing no antibiotics, 

incubated for 1 h at 37ºC with aeration (~200 rpm) and pelleted for 3 min at ~3000 

rpm. Most of the supernatant was carefully discarded leaving ~100 μl of media. The 

cells were then resuspended and inoculated on LB agar (10 g/l Bacto tryptone, 5 g/l 

Bacto yeast extract both from Difco Laboratories, USA and 10 g/l sodium chloride, 

15 g/l Bacto agar both from Sigma- Aldrich Co, USA) plates containing ampicillin 

(Sigma-Aldrich, Germany) (1 mg/ml). 

 

2.13 Plasmid DNA extraction 

E.coli cells from a single colony or a frozen stock was inoculated into 6 ml (Miniprep) 

or 150 ml (Midiprep) of 2×YT media (16 g/l Bacto tryptone, 10 g/l Bacto yeast 

extract both from Difco Laboratories, USA and 5 g/l sodium chloride from Sigma- 

Aldrich Co, USA) containing ampicillin (Sigma-Aldrich, Germany) (1 mg/ml) and 

was incubated overnight at 37ºC with aeration (~200 rpm). For Miniprep DNA 

extraction the GeneJet™ Plasmid Miniprep Kit (Fermentas #K0503) was used and for 

Midiprep DNA extraction the JETSTAR 2.0 Plasmid Midiprep Kit (Genomed 

#210050) was used. Plasmid DNA extraction was carried out following 

manufacturers’ protocol. 

 

2.14 Sequencing of mutant P2RY12 and MC4R vector constructions 

Isolated mutant vector constructions were sequenced using primers P2RY12Fw and 

P2RY12Rs for P2RY12 and MC4R seq Fw1, MC4R seq Fw2, MC4R seq Rs1, MC4R 

seq Rs2 for MC4R (Table 7). Sequencing mix contained  - 5 μl Millipore H2O, 2 μl 

sequencing buffer, 0.5 μl BigDye (both from Applied Biosystems, USA), 0.5 μl 

primer using the following conditions denaturation at 95
0
C for 5 min, 25 cycles of 

95
0
C for 15 sec, 50

0
C for 5 sec, 60

0
C for 4 min. Products were precipitated by 

addition of 30 μl of 96% ethanol and 1 μl of 7.5 M ammonium acetate (Sigma-

Aldrich, Germany) and incubated at room temperature for 10 min and then 

centrifuged at ~14000 rmp for 15 min, supernatant was removed and 150 μl of 70% 

ethanol added and centrifuged for 5 min at ~14000 rmp. After centrifugation 

supenatant was removed and precipitant air-dried. Sequencing analysis was performed 

on 3130xl Genetic Analyzer (Applied Biosystems, USA). Analysis of the sequences 

was done by ContigExpress software as implicated in VectorNTI (Invitrogen, USA) 

and manually verified.  
 

2.15 Yeast maintanence and transformation 

Yeast cells from frozen stock of MMY23 or MMY28 were grown overnight in 4 ml 

YPD medium (20 g/l bactotriptone, 10 g/l yeast extract, both from Difco Laboratories, 

USA) at 30°C with aeration (~200 rpm). The transformation in yeasts with desired 

vector was carried out in 100 mM lithium acetate (Sigma, Germany) and 0.2 mg/ml 

salmon sperm DNA (Sigma, USA), yeasts were heat shocked for 40 min and then 

inoculated on SC medium agar plates containing 1.92 g/l yeast synthetic drop-out 

medium supplement without uracil, 1.7 g/l yeast nitrogen base, 5 g/l ammonium 

sulfate, 2 % glucose, 16.67 g/l agar (all purchased from Sigma, Germany). The agar 

plates were grown for 24 – 48 h at 30°C. The colonies from selective agar plates were 

inoculated in 2 ml liquid SC medium (recipe above) lacking uracil and grown 
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overnight, culture were stored frozen in 25 % glycerol (Sigma-Aldrich, Germany) at -

70°C. 

 

2.16 Receptor functional activation in yeast system 

A single colony from selective agar plates or culture from frozen stock was inoculated 

in 2 ml liquid SC medium (recipe above) lacking uracil and grown overnight at 30°C 

with aeration (~200 rpm). Functional activation was carried out in 96-well plates 

(Starsted, USA) in 200 μl SC medium  (recipe above) also containing 2 mM AT (3-

Amino–1,2,4-triazole from Sigma, Germany) that is a competitive inhibitor of 

imidazoleglycerol-phosphate dehydratase for control of background synthesis of 

histidine, 100 μl/ml 10xBU salts (70 g/l Na2HPO4•7H2O, 30 g/l NaH2PO4 ph7 

adjusted by 2 M NaOH, all purchased from Reahim, Russia), 0.1 mg/ml chlorophenol 

red-β-D-galactopyranoside (Roche, Germany). For functional activation of MC4R – 

αMSH, ACTH (both from PolyPeptide group, France), THIQ (kindly provided by the 

Institute of Organic Synthesis of Latvia) were used, for P2Y12R – ADP, 2MeSADP 

(both from Sigma, Germany), AR-C 66096 (Tocris Bioscience, UK) – were used. 

Lignads were applied in a concentration interval from 30 μM to 10 nM depending on 

experiment. Cells were diluted with activation medium to concentration of 250 

cells/μl. Additionally, negative control for each clone was performed in activation 

medium without ligand to determine background activity of the receptor variants. 

Cells were grown in room temperature for 24h or longer, depending from experiment. 

OD at 595 nm was measured on Victor
3

TMV reader (PerkinElmer, USA). Data 

analysis was performed in GraphPad Prism (GraphPad Software, USA). Data sets 

were normalized according to highest and lowest values, and transformed using 

function X=log(X), and EC50 values and SEM were calculated automatically. 

Significance of difference between wt receptor EC50 and mutant receptor EC50 values 

was estimated by t-test. 

 

2.17 Transfection and cultivation of mammalian expression cell 

lines 

Prior to transfection BHK or HEK 293 cells were grown in Dulbecco’s Modified 

Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (both purchased 

from Sigma, Germany) to 70% monolayer density at 37
0
C. 1 μl of transfection vector 

DNA was diluted in 100 μl of DMEM and 2 μl of TurboFect
TM

 in-vitro Transfection 

Reagent (ThermoScientific, USA). The transfection mix was incubated for 15 min in 

room temperature and then added to cell monolayer and grown for 24 h for 

microscopy experiments and for 36 h for cAMP response assay. 

 

2.18 cAMP response assay 

After transfection cells were grown for 36 h and transferred to 384-well plate in final 

concentration 1 x 10
4
 cells per well. The expressed receptors were functionally 

activated with serially diluted concentrations of αMSH, ACTH (both from 

PolyPeptide group, France) and AGRP (83-132) (Phoenix Pharmaceuticals, USA). 

Intracellular cAMP concentration was measured using LANCE cAMP 384 kit 

(PerkinElmer, USA) following the manufacturer’s protocol and measurements were 

done on plate reader VictorV3 (PerkinElmer, USA). The cAMP concentrations were 

quantified by comparison to a standard curve of the control concentrations of cAMP 

provided in a kit. Data analysis was performed in GraphPad Prism (GraphPad 
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Software, USA) as described above (Chapter 2.16 Receptor functional activation in 

yeast system). 

 

2.19 Preparation of confocal microscopy samples 

BHK cells 24 h after tansfection grown in 12-well plate containing microscopy slips 

were labelled with AlexaFluor 633-labeled wheat germ agglutinin to visualize cell 

membrane (Invitrogen, USA) for 2 min washed with 1×PBS (137 mM NaCl, 2.7 mM 

KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4) and fixed with formaldehyde 

(Sigma, Germany) for 10 min at 37
0
C and washed again with PBS. After that cell 

nucleus was visualized with DAPI 6 μl of 1.5 μg/ml (Sigma-Aldrich, Germany). The 

microscopy slips were placed on microscopy slide and cover slip were placed on the 

cell droplet and inspected with confocal fluorescent microscope Leica DM 600B 

(Leica, Germany). Each receptor mutant was microscoped at least after two 

independent transfections. 
 

2.20 QSAR 

The QSAR (quantitative structure–activity relationship) was performed using by 

SIMCA P-11 software (Umetrics AB, Sweden). EC50 values from activation 

experiments were converted to logarithmic scale and inactive receptor variants were 

assigned with dramatically decreased receptor activity EC50 value 10
5
 nM. 

Descriptors by Sandberg et al. (Sandberg et al., 1998) and Gottfries et al.(Gottfries et 

al., 2009) were used, charge was also added as descriptor (1 – positively; -1 – 

negatively; or 0 – not charged). Descriptors represented - 

hydrophobibity/hydrophilicity (z1), steric/bulk properties (z2), polarity (z3) and 

electronic effects (z4 and z5) of amino acids, and t-Rig – rigidity, t-Flx – flexibility 

(Gottfries et al., 2009; Sandberg et al., 1998). Different combinations of the 

descriptors were used to obtain a model that best correlated amino acid properties 

with receptor activity of the studied mutant libraries. Models were generated by 

orthogonal partial least square regression (OPLS) and characterized by calculation of 

activity variation (R
2
) and predictive ability (Q

2
) calculated in SIMCA P-11. 

 

2.21 Homology modeling and docking 

Due to the highest sequence homology 2.6 Å resolution X-ray structure of human 

adenosine 2a receptor (A2aR) (PDB entry 3EML) (Jaakola et al., 2008) was used as a 

template for P2Y12R modeling.  First, the P2Y12R and A2aR sequences were aligned 

using GPCR AlignmentBuilder available at www.gpcr.org, this web-tool implements 

a special alignment algorithm for class A (rhodopsin-like) GPCRs, that is designed 

taking into consideration specific characteristics of the  transmembrane regions of 

rhodopsin-like GPCRs as described by  (Mirzadegan et al., 2003).  Then obtained 

sequence alignment was manually adjusted in MolSoft ICM-Pro 3.5, and 3D model of 

P2Y12R created by ICM-Homology modeling algorithm. This algorithm incorporates 

- alignment of P2Y12R sequence to template structure and replacement of non-

identical sequence residues simultaneous global energy optimization is done and the 

prediction of side chain torsion angles is carried out (based on biased probability 

Monte Carlo (BPMC) conformation alignment and optimization (Abagyan et al., 

1994; Totrov et al., 1997)). The quality of the generated model is verified by 

specialized ICM function that predicts possible deviation of backbone between the 

model and the template (Cardozo et al., 2000).  The obtained 3D homology model of 
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P2Y12R was used for ADP docking by ICM-Docking algorithm implemented in 

MolSoft ICM-Pro 3.5. Briefly, the location of binding pocket was identified and 

receptor energy maps generated with grid cell size 0.5 Å. After that flexible ligand 

docking was done using multiple conformations of the ADP and different locations 

within designated binding pocket. As the last step the refinement of the developed 

model was done for all docked conformations of the ADP to adjust receptor 

conformation to the ligand. The docking model of 3D P2Y12R with the lowest free 

energy value was considered the most corresponding to binding in-vivo. 

 

2.22 Study group for P2RY1 genotyping 

The STrengthening the REporting of Genetic Associations (STREGA) guidelines 

(Little et al., 2009) were followed to plan study design and statistical analysis. Groups 

of cases and controls were selected from the Latvian Genome Data Base (LGDB) 

national biobank of health and genetic information collected for adult residents of 

Latvia (over 18 years old). Health status of the participants was designated by 

certified physicians using International Classification of Diseases (ICD)-10 codes. 

Anthropometric data such as weight and stature were obtained by direct measurement, 

demographic information (ethnic, social, and environmental characteristics) and 

familial health status had been obtained by questionnaire-based interview. Written 

confirmed consent had been acquired from all LGDB participants. The study protocol 

was approved by the Central Medical Ethics Committee of Latvia.  

Case-control groups were selected from all LGDB participants (n=11342) recruited 

from 2003 to 2009. From the initial pool of subjects all individuals with cancer (ICD: 

from C00 to C97), renal conditions (ICD10: from N00 to N99) or rare diseases were 

excluded, to avoid overwhelming confounding influences on the analysis. Also all 

individuals with missing important phenotypic data were excluded. The selection of 

MI cohort was based on several criteria – MI diagnoses were verified by professional 

cardiologists according to symptomology at presentation, electrocardiogram results 

and biomarkers in blood. A total of 1781 individuals comprised the final MI study 

group (females, n=536 and males, n=1245). For analysis, 263 females and 592 males 

were randomly selected from the MI group. The healthy group of controls were 

selected from the initial pool of LGDB participants excluding all individuals with 

chronic diseases and heart and coronary disease conditions (ICD10: from I20 to I70), 

leaving 1725 healthy adults from this 855 group controls were randomly selected 

maintaining the same sex proportion as in the case group.  

 

2.23 Genotyping with MALDI-TOF 

DNA sample stocks from LGDB (description above - chapter 2.22 Study group for 

P2RY1 genotyping) were diluted into 96-well PCR plates to final concentration 28ng 

per well using the Freedom Evo robotic workstation (Tecan, Männedorf, 

Switzerland). PCR primers for amplification of genomic DNA are presented in Table 

6. Amplification mix contained  - 1 mM DB buffer, 2.5 mM MgCl2, 0.5 units (U) 

HotFire polymerase, 0.2 mM dNTP mix  (all from SolisBioDyne, Tartu, Estonia) and 

0.3mM each primer. PCR was done using following conditions - denaturation at 5 

min at 95
0
C, 40 cycles of amplification 30 sec at 95

0
C, 30 sec at 55

0
C and 1 min at 

72
0
C and final extension at 72

0
C for 5min. PCR products were visualized on agarose 

gel electrophoresis. After that degradation of unused dNTP was done with shrimp 

alkaline phosphatase (Fermentas, Lithuania) following the producer’s protocol. 
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Minisequencing primers were designed using the CalcDalton program (Kirsten et al., 

2006), the primers contained a biotin cap on 5’ –end and a photolinker cleavage site, 

all primer sequences are presented in Table 6. The minisequencing mix contained - 

0.5 mM 10xC buffer, 1.25 mM MgCl2, 1 U TermiPol DNA polymerase (all from 

SolisBioDyne), 0,2 mM ddNTPs (Fermentas, Lithuania), 1 mM each primer, and 5 μl 

of the purified PCR product. Minisequencing conditions were - denaturation of 2 min 

at 95
0
C, followed by 99 cycles for 10 sec at 95

0
C, 10 sec at 55

0
C, 10 sec at 72

0
C, and 

final extension at 72
0
C for 5min. Minisequencing products were precipitated on 

streptavidin-coated 384-well plates (Biotez, Germany) and subjected to UV exposure 

for 15 min. 1μl of the precipitated DNA minisequencing product was diluted in 1 μl 

of 3–hydroxypicolinic acid matrix (70 mM and 40 mM diammonium hydrogen 

citrate) and spotted on an MTP AnchorChip 400/384TF (Bruker Daltonik, Germany) 

and finally air-dried at room temperature. Matrix-assisted laser desorption/ionization 

(MALDI)-TOF MS analysis was carried out on a Autoflex MS (Bruker Daltonik, 

Germany) using a maximum of 40 nitrogen laser shots with frequency of 16.7 Hz for 

each sample spot. Mass calibration was performed with the low molecular weight 

oligonucleotide calibration standard (1000-4000 Da; Bruker Daltonik, Germany). For 

genotyping of rs2579133 and rs701265: 4000–5000 Da was used, for rs1439009, 

rs1065776 and rs12497578: 1300–3600 Da was used and for rs17451266 and 

rs9289876: 1900–4200 Da was used. Genotyping data was analysed with the 

Genotools SNP Manager software (Bruker Daltonik, Germany) and manually 

verified. 

 

2.24 Study group for MC4R and FTO genotyping 

The STrengthening the REporting of Genetic Associations (STREGA) guidelines 

(Little et al., 2009) were followed to plan study design and statistical analysis. Case 

and control groups were selected from LGDB (for more detailed description of LGDB 

see above chapter 2.22 Study group for P2RY1 genotyping). For case and control 

groups subjects were selected from LGDB participants recruited from 2003 till May 

of 2011 (n=16503). The participants with missing important phenotypic data, with 

body mass associated conditions like cancer (ICD: from C00 to C97), hyperthyriosis 

related diseases (ICD: from E00 to C07), and other (ICD: from E20 to E27) and 

professional athletes were excluded. Than stratification according to BMI was carried 

out - normal weight (BMI 18.5 – 24.9) (n=2129) and obese (BMI > 30) (n=4096). For 

obesity study group 380 subjects having the highest BMI in LGDB were selected. For 

control group we randomly selected 380 individuals from normal weight group, 

maintaining the same sex proportion and average age as in the case group. 

 

2.25 Genotyping of the MC4R and FTO with RT-PCR  

DNA sample stocks from LGDB (description above - chapter 2.22 Study group for 

P2Y1R genotyping) were diluted into 96-well PCR plates to final concentration 28 ng 

per well using the Freedom Evo robotic workstation (Tecan, Männedorf, 

Switzerland). Genotyping was carried out with an Applied Biosystems TaqMan SNP 

Genotyping Assay (Applied Biosystems, USA). PCR mix contained 4.75µl TaqMan 

Genotyping Mix (Applied Biosystems, USA), 5µl Millipore H2O (Millipore) and 0.25 

µl of SNP genotyping assay for rs17782313 ID:C_32667060_10, for rs11642015 

ID:C_2031268_20, for rs9939609 ID:C_30090620_10 and for rs62048402 custom 

made probe was used (labelled on 5’ end with VIC and FAM) (Applied Biosystems, 
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USA). The reaction was performed on a ViiA
TM

 7 Real-Time PCR System (Applied 

Biosystems, USA) using cycling conditions - initialization at 60
0
C for 1min and 95

0
C 

for 10 min, 40 cycles of 92
0
C for 15 sec and 60

0
C for 1 min, final step at 60

0
C for 

1min. AutoCaller 1.1 (Applied Biosystems, USA) software was used to designate 

genotypes, samples with unsuccessful genotyping were removed. 

  

2.26 Sequencing of MC4R 

For the sequencing of complete coding region of the MC4R first amplification of the 

interested region by two primer pairs of the MC4RpcrFw1 and MC4RpcrRs1, 

MC4RpcrFw2 and MC4RpcrRs2 (Table 7) was carried out by standard polymerase 

chain reaction, mix contained 1 mM DB buffer, 2.5 mM MgCl2, 0.5 units (U) HotFire 

polymerase, 0.2 mM dNTP mix (all from SolisBioDyne, Tartu, Estonia), 0.3 mM each 

primer, and 28 ng template DNA. PCR conditions were denaturation at 95
0
C for 5 

min, 40 cycles of amplification at 95
0
C for 30 sec, 55

0
C for 30 sec, and 72

0
C for 1 

min, and final extension at 72
0
C for 5 min, reaction was carried on a Veriti96 

ThermalCycler (Applied Biosystems, USA). PCR products were visualized on 

agarose gel electrophoresis and degradation of unused dNTP and primers was carried 

out using shrimp alkaline phosphatase and exonuclease I (Fermentas, Lithuania) 

according to the manufacturer’s protocol. For sequencing primers MC4RseqFw1 and 

MC4RseqRs1, MC4RseqFw2 and MC4RseqRs2 were used (Table 7). Sequencing 

PCR mix contained 5 μl Millipore H2O, 2 μl sequencing buffer, 0.5 μl BigDye (both 

from Applied Biosystems, USA), 0.5 μl primer using the following conditions 

denaturation at 95
0
C for 5 min, 25 cycles of 95

0
C for 15 sec, 50

0
C for 5 sec, 60

0
C for 

4 min. The purification of PCR products was done by Sefadex following the 

manufacturer’s protocol (Sigma, Germany). Sequencing analysis was performed on 

3130xl Genetic Analyzer (Applied Biosystems, USA). Analysis of the sequences was 

done by ContigExpress software as implicated in VectorNTI (Invitrogen, USA) and 

manually verified.  

 

2.27 Statistical analysis of genotyping data 

Statistical analysis of genotyping data was performed with Plink 1.06 software 

(Purcell et al., 2007) (http://pngu.mgh.harvard.edu/purcell/plink/). The possible 

deviation from HardyWeinberg equilibrium was estimated as implemented in Plink 

1.06. To compare characteristics between case and control groups the chi-square and 

Student’s t-test were used. The possible association between distinct phenotype and 

genotype was estimated by either logistic or linear regression, dependent on studied 

parameter. In case of the P2RY1 association was adjusted for the cofactors of sex, age, 

BMI, smoking, alcohol consumption and physical activity, but in case of the MC4R 

and FTO association was adjusted for sex and age. For P2RY1 also haplotype 

association and frequencies of haplotypes were calculated in Plink 1.06. LD plot was 

generated using the HaploView software 4.2. (Barrett et al., 2005). Power calculations 

were performed using Quanto v.1.2.3 (Gauderman et al., 2006) 

(http://hydra.usc.edu/gxe/). The allele frequencies estimated in our study were 

applied. For P2RY1 population risk for MI was set at 0.01, but for MC4R and FTO 

population risk of obesity was set at 0.2 and α was set at 0.05. An additive mode of 

inheritance was assumed for power calculations. 
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2.28 Statistical analysis of microscopy images 

Statistical analysis to determine cell surface expression of mutant MC4R variants 

confocal microscopy images were performed as previously described (Fridmanis et 

al., 2010). Cells transfected with the desired receptor construct were separately 

examined for presence of EGFP fluorescence and cell membrane labelling with AF-

WGA. Two particular transfections were done for each MC4R receptor construct and 

three distinct cells from each transfection were analysed. 18 cross section images 

were taken for the studied cell. The presence of the receptor variant in the cell 

membrane was determined by detection of EGFP/AF-WGA fluorescence intensity 

ratio at multiple - randomly selected points in the surface membrane. 20 points were 

picked for a single cell and their EGFP/AF-WGA fluorescence intensity ratios were 

quantified using Leica Confocal Software (LCS-Lite v2.61). The uniformity of the 

obtained intensity ratios was inspected with Kruskal-Wallis test (α set at 0.05) as 

implemented in GraphPad Prism software (GraphPad software, USA), if the 

significant variation was detected in the data set, outlayers were determined by 

Dunn’s multiple comparison test (α set at 0.05) (GraphPad software, USA). In cases 

when significant differences were detected with more than two data sets, these data 

were replaced with new data from repeated transfection. Median values of 

fluorescence intensity of different receptor variants were compared using Kruskal-

Wallis test (α set at 0.05). 
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3 RESULTS 

 

3.1 Expression of Human Melanocortin 4 Receptor in 

Saccharomyces cerevisiae 
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3.2 Single nucleotide polymorphisms of the purinergic 1 receptor 

are not associated with myocardial infarction in a Latvian 

population  
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 Online Resource 1 Primers used in this study 

a 
for both SNPs the same primers were used. 

b 
bio - indicate biotin cap; (L) - photolinker cleavage site. 

 

 

Online Resource 2 The distribution of haplotype frequencies in MI patients and the 

control group, including haplotype association with MI 

Haplotype 

No. 
Haplotype 

Frequency in 

MI patients 

Frequency 

in controls 

Haplotype 

p-value* 

1 GGAACAC
a
 72.9% 72.1% 0.935 

2 GGtACAC 3.1% 2.7% 0.442 

3 GtAACAC 11.4% 12.1% 0.588 

4 GGAACgg 9.1% 9.1% 0.925 

5 GGAttgC 1.9% 1.9% 0.894 

 

*p-value was calculated using haplotype association test as implemented in Plink 1.06 

(Purcell et al., 2007). 
a
 Uppercase letters represent the major allele, lowercase letters the minor allele. 

rs code Primers for amplification 

rs2579133 Fw - ACG TTG GAT GCT TTA TCT CAT AAA TCA GGG TCT C 

Rs - ACG TTG GAT GAG AAT GGG AAA ATC ATT GG 

rs17451266
a
  

rs9289876 

Fw - ACG TTG GAT GAT TAA CAT GGA ATG CTT AGG G 

Rs - ACG TTG GAT GCT GAC TTC ACT CAG AAG TTT GTT 

rs1439009 Fw - ACG TTG GAT GGT GCT AGA TTC CAT TCT TGT G 

Rs - ACG TTG GAT GAC GGT TAT AAT TCC AAA GTG AC 

rs1065776 Fw - ACG TTG GAT GTC TAA GGT AGG GAG GAG GAA 

Rs - ACG TTG GAT GTT TGA ACG ACG AGG AGA C 

rs701265 Fw - ACG TTG GAT GGC TTT GAT TTA CAA AGA TCT GG 

Rs - ACG TTG GAT GAC ATG GAA AGG GAT GTA AGA 

rs12497578 Fw - ACG TTG GAT GGC CTA TGT AGA TTG AGG ATT TG 

Rs - ACG TTG GAT GAA TCA CTG CTT TGG AAG GT 

rs code Primers for minisequencing
b
 

rs2579133 bioTCT TAC CTA (L)CA GCT CCC AAC TTC 

rs17451266 bio TT ATT CCC ACA AGG C(L)A AAT TTT 

rs9289876 bioGA AAT GTA CAC TT(L) GTC CAG ATA CCA 

rs1439009 bioA GAA AAC GAG TTT GTC (L)GT AAA TGT 

rs1065776 bioCCA GGA C(L)A ACC CGG ACC 

rs701265 bioC AGC AAA AAC (L)GT CAG TAC AAT GAT 

rs12497578 bioT CTT CAT TGA TCT TAG (L)GG CCA 
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Online Resource 3 Association of SNPs (a) and haplotype (b) with MI in study groups 

with BMI<30 (normal weight) and BMI>30 (obese). Significance values were 

transformed as negative logarithm of p-value from an unadjusted logistic regression 

analysis. The major allele is indicated by uppercase letters, and the minor allele by 

lowercase. 
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Online Resource 4 Association of MI with seven P2RY1 SNPs in BMI<30 (normal weight) 

and BMI>30 (obese) study groups  

SNP 
BMI<30  

p-value* 
OR [95% CI]* 

BMI>30 

p-value* 
OR [95% CI]* 

2579133 0.396 0.37 [0.04 - 3.65] -
a
 - 

17451266 0.919 0.98 [0.73 - 1.33] 0.376 0.80 [ 0.49 - 1.31] 

9289876 0.472 0.79 [0.4 - 1.51] 0.470 1.53 [0.48 - 4.88] 

1439009 0.594 0.83 [0.42 - 1.645] 0.747 0.85 [0.31 - 2.32] 

1065776 0.307 0.69 [0.34 - 1.41] 0.955 0.97 [0.34 - 2.80] 

701265 0.923 0.98 [0.72 - 1.35] 0.193 0.72 [0.45 - 1.18] 

12497578 0.975 1.00 [0.71- 1.42] 0.129 0.65 [0.38 - 1.13] 

*p-value and OR were calculated using logistic regression adjusted for sex, age, smoking, 

alcohol consumption and physical activity. 
a
 No minor allele. 

 

 

Online Resource 5 Association of mean age of MI onset with seven P2RY1 SNPs  

SNP 

No. 
rs code Allele, Mean age (count, n) p-value* 

1 2579133 
T/T T/C C/C 

0.6305 
- 62.75(4) 59.89(669) 

2 17451266 
T/T T/G G/G 

0.5459 
61.12(17) 60.32(128) 59.8(530) 

3 9289876 
A/A A/T T/T 

0.4624 
64(2) 58.25(44) 60.11(621) 

4 1439009 
T/T T/A A/A 

0.111 
- 62.76(38) 59.63(632) 

5 1065776 
T/T T/C C/C 

0.05387 
- 63.65(34) 59.67(624) 

6 701265 
G/G G/A A/A 

0.2177 
61(11) 60.95(147) 59.58(517) 

7 12497578 
C/C C/G G/G 

0.5957 
61.83(6) 60.16(115) 59.69(550) 

*p-value was calculated using unadjusted linear regression.
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3.3 Identification and analysis of functionally important amino 

acids in human purinergic 12 receptor using a Saccharomyces 

cerevisiae expression system 
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Figure S1. Activation curves of wt P2Y12R after stimulation with ADP and 

2MeSADP. 



100 

 

 

 

Figure S2. Activation curves of recombinant P2Y12Rs with ADP and ADP + 1μM AR-C66096. (A) wt P2Y12R, (B) E181R, (C) E181D, (D) E181A. 
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Figure S2. Activation curves of recombinant P2Y12Rs with ADP and ADP + 1μM AR-C66096. (E) E181I, (F) E181Y, (G) R256I, (H) R265K. 
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Figure S2. Activation curves of recombinant P2Y12Rs with ADP and ADP + 1μM AR-C66096. (I) R265D, (J) R265A, (K) R265F, (L) R265S. 
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3.4 Analysis of common and rare MC4R variants and their role in 

extreme form of obesity  
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Abstract 

Melanocortin 4 receptor (MC4R) is an important regulator of food intake and 

number of studies report genetic variations influencing the risk of obesity. Here we 

explored the role of common genetic variation from MC4R locus comparing with 

SNPs from gene FTO locus, as well as the frequency and functionality of rare MC4R 

mutations in cohort of 380 severely obese individuals (BMI > 39 kg/m
2
) and 380 lean 

subjects from the Genome Database of Latvian Population (LGDB). 

We found correlation for two SNPs - rs11642015 and rs62048402 in the fat 

mass and obesity-associated protein (FTO) with obesity but no association was 

detected for rs17782313 located in the MC4R locus in these severely obese 

individuals. We sequenced the whole gene MC4R coding region in all study subjects 

and found four previously known heterozygous nonsynonymous substitutions V103I, 

I121T, S127L, I251L and one novel mutation V166I. Expression in mammalian cells 

showed that the S127L, V166I and double V103I/S127L mutant receptors had 

significantly decreased quantity at the cell surface compared to the wild type MC4R. 

Despite low abundance in the plasma membrane, the novel V166I variant 

demonstrated higher cAMP response upon αMSH activation than the wild type 

receptor, while the level of AGRP inhibition was lower, implying that V166I cause 

hyperactive satiety signalling. Overall, this study suggest that S127L may be the most 

frequent functional MC4R mutation leading to the severe obesity in general 

population and provides new insight into the functionality of population based 

variants of the MC4R.  
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Introduction 

 

The melanocortin 4 receptor (MC4R) is a plasma membrane G protein-

coupled receptor. It is mainly expressed in endocrine regions of the brain 

ventromedial, dorsomedial, paraventricular and arcuate hypothalamic nuclei, where it 

controls feeding behaviour (Cone, 2005; Mountjoy et al., 1994). Furthermore, MC4R 

knockout mice exhibit obese, hyperphagic and hyperinsulinemic phenotype (Huszar et 

al., 1997) and MC4R antagonist and agonist are very potent in animal feeding studies 

(Kask et al., 1998). There are number of studies that link variants of the MC4R with 

human obesity and feeding behaviour related phenotypes. It is also known that several 

different variants within the coding region of the MC4R can affect the functionality of 

the MC4R, in some cases even causing monogenic forms of childhood obesity 

(Biebermann et al., 2003). A detailed view of rare alterations in the MC4R is 

presented in Figure 1.  

 

 

Figure 1. Schematic diagram of the melanocortin 4 receptor. Highlighted in gray are 

nonsynonymous coding amino acid substitutions described in literature, also frameshift 

coding deletions in positions L322, I251, L211 and deletion in position Y35 leading to 

stop codon has been reported (data from Ensemble Genome Browser, 

www.ensembl.org) 

 

Most of these substitutions are functionally relevant and characterization of 

nonsynonymous MC4R variants has been performed in various studies. These have 
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demonstrated involvement of D37V, P78L R165W, P299H, I317T in receptor protein 

trafficking to cell membrane, while P78L, S94R, V95I, I121T, S127L, G181D, 

P230L, A244E substitutions have shown the impact on signal transduction 

mechanisms, but T112M and I169S MC4R variants had equal trafficking and 

transduction efficacy as the wild-type receptor (Calton et al., 2009; Fan et al., 2009; 

Hinney et al., 2003; Lubrano-Berthelier et al., 2003; Valli-Jaakola et al., 2004; Xiang 

et al., 2006). Functional studies of two of the most common substitutions V103I and 

I251L have not demonstrated significant changes in functionality compared to the 

wild-type MC4R, but genetic association studies indicate that both variant could have 

protective effect against obesity related conditions (Mirshahi et al.; Stutzmann et al., 

2007; Wang et al., 2010; Young et al., 2007). 

Common genetic polymorphic variants in non-coding part of the MC4R locus 

have also been implicated in obesity development. Thorough meta-analysis of several 

genome wide association studies (GWAS) (Consortium, 2007) performed in 2008 

showed association of the MC4R region with BMI (Loos et al., 2008). Initial scan of 

over 16,000 people pointed out strong significant association of rs17782313, located 

upstream of the MC4R with increased BMI.  These finding have been replicated in 

several populations, covering more than 44,000 people of European descent (Loos et 

al., 2008). The association of rs17782313 has been replicated by different research 

groups to various obesity related phenotypic traits such as - BMI, waist 

circumference, body weight, hypertension, some characteristics of body fat 

distribution and other phenotypes in different cohorts (Hardy et al., 2010; Haupt et 

al., 2009; Timpson et al., 2009; Zobel et al., 2009). Today the genes that are most 

studied in relations to human obesity are probably the MC4R and the fat mass and 

obesity associated protein FTO (Frayling et al., 2007).  

In this study we evaluated both the common genetic variant rs17782313 and 

nonsynonymous substitutions identified by the sequencing the coding part of MC4R 

in relation to severe obesity in Latvian population in comparison with three SNPs in 

gene FTO locus. Moreover, we generated five recombinant constructs of the MC4R 

variants: V103I, S127L, V166I, I251L and double mutant containing both V103I and 

S127L, functionally expressed these mutants and estimated receptor quantity in cell 

surface and signal transduction efficacy. 

res:////ld1062.dll/type=1_word=thoughtful
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Methods and Procedures 

Study group 
The STrengthening the REporting of Genetic Associations (STREGA) guidelines 

(Little et al., 2009) were used for the design of the study group and statistical analysis. 

Groups of cases and controls were selected from the Latvian Genome Data Base 

(LGDB), a government funded biobank (shortly described in (Ignatovica et al., 

2011)). 

The study group for this analysis was selected from all LGDB participants recruited 

from 2003 till May of 2011 (n=16503). We excluded participants: with missing 

important phenotypic data, with body mass associated conditions like cancer (ICD: 

from C00 to C97), hyperthyroidism related diseases (ICD: from E00 to E07), other 

endocrine diseases (ICD: from E20 to E27) and professional athletes. For the obesity 

study group, we selected 380 individuals from the extreme end of the BMI scale (to 

match four 96 well plate format, including 95 participants and one negative control in 

each plate). For the control group, we randomly selected 380 individuals from normal 

weight group (BMI 18.5 – 24.9) (total n=2129) maintaining the same sex proportion 

and average age as in the case group. 

 
Genotyping by RT-PCR 

Stock DNA samples acquired from the LGDB were diluted into 95 wells of 96-well 

PCR plates (28 ng per well) using the Freedom Evo robotic workstation (Tecan, 

Männedorf, Switzerland) with disposable filter tips, one position in the plate was 

filled with Millipore (Millipore, Bedford, USA) H2O for negative control. Genotyping 

was performed using an Applied Biosystems TaqMan SNP Genotyping Assay 

(Applied Biosystems, USA) as previously described (Peculis et al., 2011). SNP 

genotyping assays used for rs17782313 ID:C_32667060_10, for rs11642015 

ID:C_2031268_20, for rs9939609 ID:C_30090620_10 and for rs62048402 custom 

made probe was used (Applied Biosystems, USA). Genotypes were assigned using 

AutoCaller 1.1 (Applied Biosystems, USA) software and manually verified.  
 

Statistical analysis 

Statistical analysis was carried out as implemented in Plink 1.06 software (Purcell et 

al., 2007) (http://pngu.mgh.harvard.edu/purcell/plink/). The deviation from Hardy-

Weinberg equilibrium was tested using Plink. The χ
2
 test was performed to compare 

case-control groups. The additive model of inheritance was used in logistic regression 

for each analysed polymorphism adjusting for sex and age. Power calculations were 

done in Quanto v1.2.3 (Gauderman et al., 2006) (http://hydra.usc.edu/gxe/). 

Population risk for obesity was set at 0.2 and α was set at 0.05. The allele frequencies 

were used as previously reported – for rs17782313 - 0.25, for rs9939609 - 0.46 and 

for both rs11642015 and rs62048402 - 0.41 (Frayling et al., 2007; Loos et al., 2008; 

Sallman Almen et al., 2012). An additive mode of inheritance was used for power 

estimation. 
 

Sequencing of MC4R 

DNA samples were prepared as described above. PCR primers for amplification of 

genomic DNA and sequencing of MC4R were designed by modified Primer3 program 

(http://primer3.sourceforge.net/) and synthesized by Metabion (Martinsried, 

Germany). Two sets of primers were used to amplify entire coding region of the 
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MC4R: pcrFw1 and MC4RpcrRs1, MC4RpcrFw2 and MC4RpcrRs2 (all primer 

sequences are presented in Supplementary Material 1). Amplification was carried out 

by standard polymerase chain reaction (PCR), using a reaction mix containing 1mM 

DB buffer, 2.5mM MgCl2, 0.5 units (U) HotFire polymerase, 0.2mM dNTP mix  (all 

from SolisBioDyne, Tartu, Estonia), 0.3mM each primer, and 28ng template DNA. 

PCR was carried out on a Veriti96 ThermalCycler (Applied Biosystems, USA) using 

the following conditions: denaturation at 95
0
C for 5 min, 40 cycles of amplification at 

95
0
C for 30 sec, 55

0
C for 30 sec, and 72

0
C for 1 min, and final extension at 72

0
C for 5 

min. Products were confirmed by visualization on agarose gel after electrophoresis. 

Dephosphorylation and degradation of unused dNTP and primers in the reactions was 

carried out by addition of shrimp alkaline phosphatase and exonuclease I (Fermentas, 

Lithuania) according to the manufacturer’s protocol. For sequencing two sets of 

primers were used - MC4RseqFw1 and MC4RseqRs1, MC4RseqFw2 and 

MC4RseqRs2. Sequencing of PCR products was performed using reaction mix 

containing 5μl Millipore H2O, 2μl sequencing buffer, 0.5μl BigDye (both from 

Applied Biosystems, USA), 0.5μl primer using the following conditions denaturation 

at 95
0
C for 5 min, 25 cycles of 95

0
C for 15 sec, 50

0
C for 5 sec, 60

0
C for 4 min. 

Purification of sequencing products was performed with Sephadex following the 

manufacturer’s protocol (Sigma, Germany). Sequencing analysis was performed on 

3130xl Genetic Analyzer (Applied Biosystems, USA). All chromatograms were 

manually inspected using ContigExpress software as implemented in VectorNTI 

(Invitrogen, USA).  
 
MC4R mutant expression microscopy and activation in BHK cells and statistical 

analysis 

MC4R was amplified from anonymous human genomic DNA using MC4R-Fw and 

MC4R-Rs primers (Supplementary Material 1) containing HindIII and XhoI 

restriction sites and cloned directly into mammalian cell vector pCEP-GFP-C, 

modified from pCEP4 (Invitrogen, USA) with insertion of the enhanced green 

fluorescent protein gene at the 3’ end of the multiple cloning site. Consistency of the 

cloned sequence to the gene MC4R (ID: 4160 in GenBank) was confirmed by 

sequencing. Mutant MC4R were constructed by PCR using QuikChange II XL Site-

Directed Mutagenesis Kit (Stratagene, Canada) and oligonucleotide primers 

(presented in Supplementary Material 1) following manufacturers’ protocol. 

Nucleotide substitutions in the gene MC4R products were confirmed by sequencing.  

For cAMP and microscopy experiments baby hamster kidney (BHK) cells were 

grown in DMEM medium supplemented with 10% fetal calf serum  (both purchased 

from Sigma, Germany) to 70% monolayer density. Vector transfection was carried 

out using TurboFect
TM

 in-vitro Transfection Reagent (ThermoScientific, USA) 

following the manufacturer’s protocol. For microscopy, cells were grown for 24 h 

after transfection in 12-well plate containing microscopy slip and labelled for 2 min in 

AlexaFluor 633-labeled wheat germ agglutinin (AF-WGA) (Invitrogen, USA) and 

fixed with formaldehyde (Sigma, Germany) for 10 min. Microscopy slips were then 

placed on microscopy slides and inspected with confocal fluorescent microscope 

Leica DM 600B (Leica, Germany). At least three independent transfections were 

carried out for each receptor mutant for microscopy analysis. Statistical analysis of 

confocal microscopy was carried out as previously described (Fridmanis et al., 2010). 

For cAMP response assays cells were grown for 36-48 h after transfection and 

functionally tested with αMSH (melanocytes stimulating hormone) (PolyPeptide 
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group, France) and AGRP (83-132) (Phoenix Pharmaceuticals inc., USA). 

Intracellular cAMP labelling was carried out with LANCE cAMP 384 kit 

(PerkinElmer, USA) following the manufacturer’s protocol and measured on plate 

reader VictorV3 (PerkinElmer, USA). The cAMP concentrations were quantified by 

comparison to a standard curve of the control concentrations of cAMP provided in a 

kit. Analysis of αMSH and AGRP activation data was done using GraphPad Prism 

software as previously described (Ignatovica et al., 2012).  
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Results 

Phenotypic characteristics of the study groups are given in Table 1. Both 

groups were well matched for sex proportion and age. Apart from BMI, significant 

differences between cases and controls existed with respect to presence of 

hypertension, hyperlipidemia and type 1 and 2 diabetes, while presence of angina 

pectoris, myocardial infarction and other types of diabetes did not differ significantly 

between the study groups. 

 

Table 1 Characteristics of the study group 

Characteristic Cases (380) Controls (380) p-value 

Female, n (%) 265 (70%) 265 (70%) 1 

Male, n (%) 115 (30%) 115 (30%) 1 

Mean age, (±SD) years 57 ± 11.7 57 ± 12.3 1 

Mean BMI, (±SD) kg/m
2
 44.5 ± 5.0 22.9 ± 1.6 <0.0001 

Hypertension, n (%) 253 (67%) 129 (34%) <0.0001 

Angina Pectoris, n (%) 89 (23%) 74 (19%) 0.2060 

Myocardial infarction, n (%) 81 (21%) 86 (23%) 0.5633 

Type 2 diabetes, n (%) 204 (54%) 36 (9%) <0.0001 

Type 1 diabetes, n (%) 4 (1%) 19 (5%) 0.0025 

Other type of diabetes, n (%) 1 (0.3%) 5 (1.3%) 0.2542 

 BMI - body mass index, SD - standard deviation 

 

All samples (n=760) were genotyped for rs17782313, rs9939609, rs11642015 

and rs62048402 polymorphisms using RT-PCR. The genotyping success, minor allele 

frequencies and deviation from Hardy-Weinberg equilibrium are shown in 

Supplementary Material 2. All SNPs were in Hardy-Weinberg equilibrium and 

genotyping success was higher than 99.3 %. 

According to power calculations, our sample size provided 80% power (at α = 

0.05) to detect odds ratio (OR) above 1.4 for MC4R SNP rs17782313 and 1.35 for 

SNPs in the gene FTO (Supplementary Material 3). 

Table 2 shows the results of association analysis of four studied SNPs and 

obesity (adjusted for sex and age).  rs11642015 and rs62048402 were in complete 
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linkage disequilibrium (LD and statistical analysis of these SNPs is presented together 

(Table 2)). rs17782313 from MC4R locus was not associated with obesity. We, 

however, observed significantly increased frequency of A and C alleles for the gene 

FTO SNPs rs11642015 and rs62048402, respectively, in the group of severely obese 

patients (pperm = 0.042).  

 

Table 2 Association of obesity with rs17782313, rs9939609, rs11642015 and 

rs62048402 

SNP 

(Gene) 
Genotypes 

Genotype distribution 
OR [95% CI]

b
 P – value

b
 

Cases Controls 

rs11642015
a
 

rs62048402
a
 

(FTO) 

CC/CT/TT 

GG/GA/AA 
107/184/89 80/192/108 1.272 [1.04-1.56] 0.0192

c
 

rs9939609 

(FTO) 
TT/TA/AA 102/184/94 79/194/107 1.208 [0.99-1.48] 0.0658 

rs17782313 

(MC4R) 
TT/TC/CC 17/119/241 17/109/253 1.091 [0.85-1.40] 0.4935 

a 
 rs11642015 and  rs62048402 were in 100% LD, 

b
 P-value and OR was estimated 

using logistic regression and adjusted for age and sex, 
c
 100,000 permutations pperm = 

0.042 

 

We searched for presence of any sequence alterations within the MC4R gene 

in obesity and control groups by sequencing of the entire coding region. We found 

five different nonsynonymous single nucleotide substitutions in heterozygous state. 

Three previously known variants V103I, I251L and S127L and one novel substitution 

V166I (Supplementary Material 4) were found in the group of obese patients. Three 

previously described variants V103I, I251L and I121T were found in the controls. 

The occurrence of these variants in cases and controls are shown in Table 3, except 

for I121T that was only found in one individual. Two people had MC4R variant with 

double substitutions V103I and S127L that according to haplotype analysis are 

localized on the same copy of MC4R. 

To evaluate the possible role of these mutations in the obesity group on 

functionality of the receptor, we generated five recombinant constructs of the MC4R: 
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V103I, S127L, V166I, I251L and double mutant containing both V103I and S127L. 

We estimated receptor quantity in cell surface and signal transduction efficacy for all 

constructs. Confocal microscopy followed by statistical analysis revealed that mutant 

MC4R containing S127L, V166I and double mutation V103I and S127L had 

significantly decreased cell surface expression when compared to wt MC4R (Figure 2, 

Figure 3). The melanocortin 2 receptor (MC2R) that reported to be detained in 

endoplasmic reticulum when expressed in mammalian cells (Webb et al., 2009) was 

used as control that corresponds to no trafficking to the cell membrane (Figure 2, 

Figure 3).  

 

 

Figure 2. Cell-surface fluorescence quantification of 

receptor variant-EGFP (enhanced green fluorescent 

protein) fusion proteins in BHK (baby hamster kidney) 

cells. Cell membranes labelled red with AF-WGA 

(AlexaFluor Wheat germ agglutinin), receptor variant-

EGFP fusion proteins – green, in case of receptor 

variant localization in cell membrane yellow colour can 

be observed, nuclei is labelled blue with DAPI. a – wt, b 

– V103I, c – I251L, d – S127L, e – double mutant 

V103I/S127L, f – V166I melanocortin 4 receptor 

variants and g – melanocortin 2 receptor 
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Figure 3. Medians with interquartile ranges of EGFP/AF-WGA (enhanced green 

fluorescent protein/AlexaFluor Wheat germ agglutinin) ratio in the cell membrane of 

the melanocortin 4 receptor variants and melanocortin 2 receptor. Columns with dark 

grey colouring and asterisk represent receptor variants that have significantly decreased 

transport to cell membrane (estimated using Kruskal-Wallis test) 

 

Pharmacological analysis of recombinant mutant MC4R obtained from the 

cAMP assay are shown in Table 3 and Figures 4 and 5. The I251L and V103I variants 

demonstrated EC50 values similar to the wt MC4R upon activation with αMSH. 

Interestingly, the V166I mutant had significantly lower EC50 value and higher 

increase in cAMP accumulation compared to wt MC4R after αMSH activation (Table 

3, Figure 4. a, c). Due to low affinity of S127L and double mutant V103I/S127L to 

αMSH, we were unable to calculate EC50 (Table 3, Figure 4. b, d). Interestingly, this 

double V103I/S127L mutant displayed some increase in cAMP accumulation at 

highest αMSH concentration compared to S127L (Figure 4. d). 
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Table 3 Effects of αMSH stimulation on MC4R mutants 

Mutant MC4R 

variant 

Number 

in 

controls
a
 

Number 

in  

cases
a
 

EC50 ± SEM 

(αMSH, nM) 

EC50 ± SEM  

(αMSH + 100μM 

AGRP, nM) 

Dose Ratio (EC50 

AGRP vs. EC50 

αMSH) 

wt - - 326 ± 61 4249 ± 818 13.03 

I251L 2 2 196 ± 27 2104  ± 93 10.73 

V103I 12 8 210 ± 55 20140 ± 7801 95.90 

S127L 0 1 nd nd - 

V103I/S127L 0 2 nd nd - 

V166I 0 1 59 ± 3
b
 238 ± 121

b
 4.03 

nd - not determinable, because cAMP response curves formed no plateau, 
a
 all mutations 

were in heterozygous state, 
b
 P< 0.05 significance of difference for wt MC4R EC50 ± SEM 

vs. mutant EC50 ± SEM (t-test) 

 

 

 

Figure 4. Cyclic adenosine monophosphate (cAMP) response curves of melanocortin 4 

receptor mutants in BHK (baby hamster kidney) cells. a, b – cAMP concentration is 

expressed as percentage with the basal level set to 0% and the highest level in each data 

set to 100%, c, d – relative increase in cAMP concentration 
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To evaluate the possible impact of these alterations on natural antagonist 

AGRP binding to the receptor, we performed activation of all mutants with addition 

of 100 µM AGRP (Table 3, Figure 5). Dose ratio for the I251L receptor was 

comparable with that of wt MC4R. The V103I mutant demonstrated highly increased 

EC50 value compared to wt MC4R upon AGRP inhibition (Table 3) while the V166I 

variant on the other hand showed smaller receptor affinity curve shift in presence of 

AGRP comparing to other tested MC4R variants (Table 3, Figure 5). 

 

Figure 5. Cyclic adenosine monophosphate (cAMP) response curves of melanocortin 4 

receptor (MC4R) mutants in BHK (baby hamster kidney) cells with addition of 100 μM 

agouti-related protein (AGRP). cAMP concentration is expressed as percentage with the 

basal level set to 0% and the highest level in each data set to 100%. a – wt, b – I251L, c – 

V103I, d – V166I, e – S127L, f – V103I/S127L MC4R variants 
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Discussion 

In this study we explored the role of genetic variations in MC4R as risk factors 

for development of morbid obesity. We genotyped extremely obese (BMI > 39.28 

kg/m
2
) and normal weight controls (n = 760) for four common BMI associated 

polymorphisms and found correlation for two FTO SNPs - rs11642015 and 

rs62048402 with obesity, however, no association was detected for rs17782313 

located in MC4R locus. The sequencing of the complete MC4R coding region 

followed by functional recombinant expression studies of four discovered 

nonsynonymous receptor variants and one double mutant revealed that the V166I 

substitution might cause hyperactive satiety signal transduction despite occurrence in 

morbidly obese individual, while S127L could be the reason for extreme adiposity 

due to functional impairment of the MC4R. 

We chose to genotype the rs17782313 because it has demonstrated strong 

association with BMI in meta-analysis of several GWAS (Consortium, 2007; Loos et 

al., 2008). We found no association of rs17782313 with extreme obesity, but the same 

was not true for SNPs in gene FTO, the most commonly associated obesity gene. 

Thus minor alleles of two SNPs recently identified by massive sequencing (Sallman 

Almen et al., 2012) were also more frequent among cases in our study, however, with 

smaller effect. Interestingly, other association studies of rs17782313 have correlated 

this SNP with quantitative traits like: body mass index (BMI), waist circumference 

and body weight etc. (Hardy et al., 2010; Haupt et al., 2009), but as we did not have 

normal distribution in our study groups and due to specific selection of the extremely 

adipose sample pool, we were not able to calculate association with quantitative 

parameters.  It could be suggested that stronger correlation between rs17782313 and 

quantitative phenotypes as opposed to qualitative parameters (obesity) might exist. 

Nonetheless, literature data indicate that the MC4R risk allele has less impact on BMI 

than FTO polymorphism (0.22 kg/m
2
 and 0.36 kg/m

2 
increase

 
in BMI, respectively) 

(Frayling et al., 2007; Loos et al., 2008), and probably FTO SNPs have larger effect 

on pathogenesis of obesity than common variation of MC4R. 

We also assessed the possible role of the rare genetic factors as a cause of 

extreme obesity in our study group. We thus sequenced the coding part of MC4R in 

all subjects to investigate how many of those additional genetic factors may be 

attributed to nonsynonymous changes in MC4R. In order to evaluate the functional 
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consequences of these substitutions we tested cell surface expression and signalling 

potency of all these variants. We also discovered a new variant V166I beyond finding 

several previously known mutations. Interestingly, the V166I substitution, despite the 

significant decrease in receptor quantity on the cell surface, caused increased cAMP 

response after αMSH stimulation and consequently a significantly higher EC50 value 

compared to the wt MC4R (Table 3, Figure 4). At the same time V166I lead to 

decreased inhibition by the antagonist AGRP compared to the wt MC4R (Table 3, 

Figure 5). In physiological terms this would mean that V166I hyperactivity leads to 

increased satiety signal caused by αMSH activation, while inefficient AGRP 

inhibition fails to trigger food intake. It is intriguing since we found this alteration in 

the group of severely obese subjects, therefore, it is difficult to predict what is the 

balance between the low cell surface expression and the increased activity as well as 

overall impact of this substitution on the food intake in-vivo.   

The position 166 of the MC4R is located in the inner part of 4th 

transmembrane domain of the receptor (Figure 1) and, therefore, may interact with G 

proteins. Other nonsynonymous substitution described in this region is R165W 

(Lubrano-Berthelier et al., 2006). This alteration is demonstrated to significantly 

reduce quantity in plasma membrane of the MC4R, which is similar to our data, 

however, the activity of the receptor is reduced by approximately 8-fold (Lubrano-

Berthelier et al., 2006). Thus the increased cAMP signalling of V166I receptor variant 

despite the low cell surface expression might suggest that the isoleucine residue at the 

position 166 promotes increased G protein coupling with the receptor, contrary to the 

described effects of R165W variant. 

Two other nonsynonymous variations V103I and I251L found in our study 

cohort have been previously reported as protective to obesity risk (Mirshahi et al.; 

Stutzmann et al., 2007; Wang et al., 2010; Young et al., 2007). We also found that the 

V103I variant was more frequent in the control group (n=12) compared to cases 

(n=8), but this result was not statistically significant. In our study we detected no 

significant differences in EC50 values for the V103I and I251L mutants when 

stimulated with αMSH, but addition of AGRP induced stronger inhibition of cAMP 

accumulation for the V103I variant compared to the wt MC4R. This result is different 

to findings of Xiang and colleagues, where decreased binding of antagonist AGRP 
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was observed for the V103I (Xiang et al., 2006), however, it is important to note the 

methodological difference as we used cAMP measurement instead of binding.  

The S127L variant of the MC4R has been previously described to have 

significantly decreased membrane trafficking and functional activity (Calton et al., 

2009; Fan et al., 2009) which is in agreement with our results. Interestingly, we 

discovered two individual carriers with both the V103I and S127L substitutions and 

we explored the functionality of this double mutant. Our results demonstrate that 

together V103I/S127L have higher increase in relative cAMP response than S127L 

alone (Figure 4. d) and considering the curve shifts of the normalised data (Figure 4. 

b), it is obvious that S127L has lower potency compared to the double substitution 

receptor. This suggests that the V103I mutation modulates the effect of S127L on 

MC4R activity. The V103I could increase both potency and efficacy of the receptor 

which is in turn down-regulated by S127L. We discovered three carriers of the S127L 

substitution in the group of extremely obese patients, but none in the controls. 

Therefore, taking in consideration the important alterations in signal transduction 

caused by this variant, we propose that the genetic variant S127L is the most frequent 

MC4R mutation leading to morbid obesity in the Latvian population. 

At the beginning of study design, we proposed two plausible scenarios: firstly, 

that those with the more pronounced obesity phenotype show stronger association 

with the common SNPs and secondly, that rare genetic factors are more likely to be 

responsible for development of morbid obesity and that these rare factors then may 

mask and weaken the impact of the common SNPs. We did not find stronger 

association with the common obesity variants, but we detected one alteration, S127L, 

that probably can promote increased food intake in three adipose subjects. However, 

this would unlikely shift the association strength within the study group. This suggests 

that indeed rare genetic variants can conceal effects of the common SNPs. But these 

common variants may be located in different obesity related loci, in this case not only 

MC4R. The combination of such rare and common variants could be important for the 

extreme obesity cases. 

The strength of this study is that we studied both common variation and rare 

mutations as causative factors for morbid obesity, furthermore, functional expression 

experiments allowed us to demonstrate the possible role of nonsynonymous MC4R 

variations on receptor physiology. The limitations of this study are: 1) we do not have 
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sufficient power to detect smaller effects of rs17782313 and 2) we have high 

frequency of cardiovascular conditions and diabetes among the controls, that both can 

be explained by specific study group selection from LGDB that contains restricted 

number of morbidly adipose individuals from which we chose the extremely obese 

subjects.  Large proportion of the LGDB participants have been recruited through 

hospitals, therefore, the frequency of these diseases in normal weight subjects might 

be higher than in the general population. 

In summary we have assessed the role of the MC4R genetics as possible cause 

of extreme obesity in the Latvian population. We detected association with common 

genetic variants of FTO (rs11642015 and rs62048402), but not with MC4R SNP 

(rs17782313). The functional studies of novel MC4R substitution V166I revealed that 

it causes hyperactivity of the receptor. We also propose that nonsynonymous 

alteration S127L can lead to adiposity development via abolishment of MC4R 

functions. 
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Supplementary Material 1 Primers used in this study 

 

Primer name Primers for amplification of the coding region of MC4R 

MC4R pcr Fw1 GGAGGAAATAACTGAGACG 

MC4R pcr Rs1 CCAATCAGGATGGTCAAG 

MC4R pcr Fw2 TATGCTGGTGAGCGTTTC 

MC4R pcr Rs2 TTCAGGTAGGGTAAGAGT 

Primer name Primers for sequencing of the MC4R 

MC4R seq Fw1 CTGAGACGACTCCCTGAC 

MC4R seq Rs1 CCAATCAGGATGGTCAAG 

MC4R seq Fw2 GGATCAGAAACCATTGTC 

MC4R seq Rs2 TGTTCCTATATTGCGTGC 

Primer name Primers for site-direct mutagenesis of the MC4R 

MC4R V103I Fw CTGGTGAGCGTTTCAAATGGATCAGAAACCATTATCATCACCCTATT

AAACAGTACAGATACGG 

MC4R V103I Rs CCGTATCTGTACTGTTTAATAGGGTGATGATAATGGTTTCTGATCCAT

TTGAAACGCTCACCAG 

MC4R S127L Fw CAGTGAATATTGATAATGTCATTGACTTGGTGATCTGTAGCTCCTTGC

TTGCATCC 

MC4R S127L Rs GGATGCAAGCAAGGAGCTACAGATCACCAAGTCAATGACATTATCA

ATATTCACTG 

MC4R V166I Fw CCAGTACCATAACATTATGACAGTTAAGCGGATTGGGATCATCATAA

GTTGTATCTGGGCAGC 

MC4R V166I Rs GCTGCCCAGATACAACTTATGATGATCCCAATCCGCTTAACTGTCAT

AATGTTATGGTACTGG 

MC4R I251L Fw CCAATATGAAGGGAGCGATTACCTTGACCATCCTGCTTGGCGTCTTT

GTTGTCTGCTGGGCC 

MC4R I251L Rs GGCCCAGCAGACAACAAAGACGCCAAGCAGGATGGTCAAGGTAATC

GCTCCCTTCATATTGG 
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Supplementary Material 2 Characteristics of the genotyped SNPs 

 

rs code 

Genome 

position 

Minor 

allele 

MAF 

MAF 

controls 

MAF 

cases 

Genotyping 

success (%) 

H-W test 

p-value 

rs17782313 54560394 C 0.196 0.189 0.203 99.5 0.248 

rs9939609 39707357 A 0.487 0.463 0.511 100 0.942 

rs11642015 39689324 T 0.493 0.463 0.524 99.5 0.772 

rs62048402 39690053 A 0.493 0.463 0.524 99.3 0.772 
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Supplementary Material 3 Power to detect association OR for studied SNPs.  

* rs11642015 and rs62048402 are presented together due to complete linkage disequilibrium 

between them 
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a 

 

 

b 

 

 

Supplementary Material 4 Forward sequence of nucleotides coding for 166 amino acid 

position of the MC4R. (a) wild-type MC4R, (b) V166I MC4R.  
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c 

 

 

d 

 

 

Supplementary Material 4 Reverse sequence of nucleotides coding for 166 amino acid 

position of the MC4R. (c) wild-type MC4R, (d) V166I MC4R.  



128 

 



129 

 

4 DISCUSSION 

 

The results of the studies in this thesis present the comprehensive research of 

purinergic and melanocortin receptors representing two distinct subgroups of GPCRs. 

We have demonstrated that these two distinctly different receptor types can be 

expressed in a yeast model system and functionally characterised. Furthermore, we 

studied the possible involvement of MC4R and P2RY1 in development and 

progression of different multifactorial diseases.   

Previous functional studies have considered MC4R to be a crucial factor of body 

mass regulation (Huszar et al., 1997). It is also recognised as one of the most 

important monogenic factors of morbid obesity (Mergen et al., 2001; Vaisse et al., 

2000). The MC4R locus and its common variants, however, seem to be less important 

determinants of obesity than the fat mass and obesity-associated protein gene FTO. 

Although mutations in MC4R can explain a limited number of obesity cases, the 

impact of common SNPs on the pathogenesis of extreme obesity is unclear. We 

therefore attempted to investigate morbid obesity (BMI > 39 kg/m
2
) and related 

phenotype association with both the common polymorphism near MC4R and changes 

in the coding sequence of MC4R.  

The Genome Database of the Latvian Population (LGDB) constitutes almost 1% 

of the entire population of Latvia. Consequently, the selected group of the 380 most 

obese patients from the LGDB represents a significant proportion of all obesity cases 

in Latvia. The results of this study are discussed in detail in Chapter 3.4. The SNP 

rs17782313 was selected for analysis based on a meta-analysis of several GWAS 

(Consortium, 2007; Loos et al., 2008) in which it displayed the strongest association 

with BMI.  However, our data showed no association with obesity in morbidly 

adipose individuals. This result could indicate that stronger genetic factors than 

common polymorphisms underly the pathogenesis of extreme obesity. To test whether 

the SNPs at the other obesity gene FTO locus, displayed the same lack of association 

we genotyped three SNPs from FTO in our study cohort. Contrary to the analysed 

polymorphism in MC4R, we observed association of obesity with FTO 

polymorphisms rs11642015 and rs62048402, the recently identified strongly 

associated obesity variation within a transcription regulatory site (Sallman Almen et 

al., 2012). The commonly studied FTO SNP rs9939609 was close to the border of 
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significance (P = 0.066; odds ratio (OR) = 1.21 [0.99-1.48]). This result indicated that 

although with the reduced effects, the impact of common SNPs (at least at the FTO 

locus) was significant, possibly accompanied with the influence of other genetic or 

nongenetic factors.  

  For other genotype associations, GWAS findings are not consistently 

replicable in other populations (Ioannidis, 2007). Since GWAS usually reveals genetic 

association with OR not greater than 1.5, this demonstrates that effects of the 

determined genotype are not essential for the disease development, but more likely 

serve as one of a range of contributing factors leading to medical dysfunctions. Thus, 

the lack of association of MC4R rs17782313 in our study might be explained by the 

insufficient power due to small sample group size. GWAS replications have been 

done in populations of various origins with different health status and lifestyles that 

contribute with genetic polymorphisms to multifactorial diseases like adiposity 

(Jacobsson et al., 2008; Ng et al., 2010). Previous reports have linked rs17782313 

mainly with quantitative parameters such as body mass index (BMI), waist 

circumference, and body weight (Hardy et al., 2010; Haupt et al., 2009), while we 

compared the presence of genotype between the lean and obese groups. The 

specificity of our study group including the extreme end approach did not allow us to 

perform the parametric analysis using BMI as quantitative value for association. Other 

possible explanation for lack of association is that stronger rare genetic factors are 

responsible for development of morbid obesity and these factors then masks and 

weakens the impact of common SNPs. 

 Functional mutations within MC4R could be among such stronger factors that 

might influence obesity. We therefore sequenced all MC4R coding region in our study 

group. We identified four heterozygous nonsynonymous substitutions in MC4R: 

V103I, S127L, V166I and I251L in morbidly obese subjects. Interestingly, two people 

were double mutants for both V103I and S127L mutations. To investigate the 

functionality of these MC4R variants, mutant receptor constructs were made and 

expressed in a mammalian cell system (detailed discussion in Chapter 3.4). Two 

previously reported substitutions, V103I and I251L, demonstrated no significant 

effect on MC4R functionality, although V103I had a slightly decreased relative cAMP 

response compared to the wt receptor when activated with αMSH. Interestingly, these 

alterations have been found to be protective against obesity in several genetic 
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association studies (Mirshahi et al., 2011; Stutzmann et al., 2007; Wang et al., 2010; 

Young et al., 2007). In our study cohort we also detected V103I more often in 

controls (n=12) than in obese subjects (n=8), but the difference was not statistically 

significant. Our results and other reports (Hinney et al., 2003; Ho et al., 1999; Xiang 

et al., 2006) found no essential functional inclinations in MC4R signalling when 

stimulated by agonist. However, it has been reported that V103I significantly lowers 

affinity for the natural antagonist AGRP (Xiang et al., 2006), that suggests that 

natural orexigenic signal reception (antagonist AGRP) by MC4R for V103I carriers is 

reduced, while affinity for the satiety signal (agonist αMSH) remains. Therefore, 

transduction via receptor is shifted toward satiety and might lead to decreased risk for 

obesity. Our results, however, demonstrated that addition of AGRP induced stronger 

inhibition of cAMP concentration for the V103I variant compared to the wt MC4R. It 

should be noted that these results are no comparable with literature as we used cAMP 

accumulation measurement instead of binding assay.  

Originally, the substitution V166I exhibited a significantly higher cAMP response 

then wt MC4R, despite the poor cell surface trafficking. One may suggest that V166I 

alteration affects G protein coupling to the receptor, since position 166 of MC4R is on 

the edge of the inner cell surface and could interact with G protein. For example, 

V166I could increase binding of the G protein to the receptor and therefore cause 

MC4R hyperactivity after αMSH stimulation. In physiological terms, hyperactivity of 

the MC4R means an increase in satiety signal that would be protective against 

obesity. These findings were complemented by antagonist experiments in which 

AGRP inhibition was lower than for wild type also indicating the shift toward 

decreased food intake. As we detected V166I substitution in extremely adipose 

person, it is difficult to evaluate how low cell surface expression interact with the 

increased receptor activity and what physiological consequences it causes in living 

organism. 

The substitution S127L has been studied previously and it is reported to 

decrease membrane trafficking and signal transduction (Calton et al., 2009; Fan et al., 

2009). In our study cohort, we discovered two individuals with both S127L and 

V103I substitutions. We described the effect that V103I had on S127L-induced 

changes in MC4R functionality. Our data demonstrated that V103I was able to 

increase potency and efficacy of the MC4R that is down-regulated by S127L. Since 
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we have found S127L only in severely obese individuals and, furthermore, functional 

experiments suggest that physiological role of this alteration is increased food intake, 

we propose that S127L is the most frequent MC4R mutation that cause extreme 

adiposity in the Latvian population. However, we only detected S127L substitution in 

three obese subjects and this mutation alone cannot decrease the association strength 

for rs17782313 within the study group, as was proposed. Overall, our results 

demonstrate that rare variants are the more probable determinants of morbid obesity 

than common polymorphisms, but these individual mutations are not located only in 

MC4R locus, but in other obesity related genes as well. For deeper comprehension of 

genetics underlying the development of extreme adiposity targeted gene sequencing 

of obesity related loci or complete genome sequencing of subjects with pronounced 

inherited adiposity phenotypes is required. 

For the genetic association study of complete P2RY1 locus (results discussed 

in Chapter 3.2) we used more extensive approach in common SNPs analysis by 

simultaneous correlation of the polymorphisms not only with MI but also related 

phenotypes to adjust for possible interaction of all involved traits. We explored 

association of polymorphisms covering the entire gene P2RY1 locus with seven 

parameters emphasizing cardiovascular events. In this genetic study, a candidate gene 

approach was used and a target gene was selected based on the physiological role of 

P2Y1R in blood coagulation processes. These were well demonstrated in previous 

studies (Leon et al., 1999), but genetic variations were not shown to influence any 

phenotype. Candidate gene association is based on the hypothesis of a presumed link 

between genotype and phenotype based on known function, while replication of the 

association depends more on data from GWAS or other genetic studies. Both study 

designs have advantages and drawbacks. GWAS and replication of GWAS can study 

genome regions not previously annotated functionally. After discovery of significant 

association, explanation of mechanisms underlying the genotype influence on 

phenotype can be difficult. Furthermore, a potential SNP could be in strong linkage 

disequilibrium with other polymorphisms that expand the association region 

enormously, making understanding of disease development more difficult. However, 

the advantage of GWAS-related methods is that the results can indicate novel 

functions of proteins that in turn can help in understanding the influence of the 

genotype on phenotypic traits. 
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Other candidate genes of blood clotting factors have been studied in relation to 

heart disease development (Ken-Dror et al., 2010; Mo et al., 2011). Our study, 

however, did not find any association of tagSNPs in the P2RY1 locus with MI. Other 

rare polymorph variants of P2Y1R might still be associated with heart condition 

development, but our ability to detect such variants was limited by the use of tagSNP 

genotyping. Intriguingly, our results demonstrated a tendency toward late-onset MI in 

the P2RY1 polymorphism carriers (Chapter 3.2). This fits well with the hypothesis 

that the observed effect could be caused by lower blood coagulation intensity in these 

individuals and decrease thrombus formation potential, delaying heart condition 

progression. However, more studies are needed to investigate this hypothesis.  

We explored Saccharomyces cerevisiae expression systems by studying two 

different types of receptors purinergic and melanocortin. GPCR expression in yeast 

has been compared to mammalian cell models (Beukers et al., 2004; Pausch et al., 

2004). Each has advantages and drawbacks, but for specific experimental needs one 

system might be advisable over the other. We suggested that expression of P2Y12R in 

yeast could be more sensitive and specific than in mammalian cells (Chapter 3.3) for 

several reasons. First, different kind of purines and their signalling systems are 

abundant in mammalian cells. This might cause background activity of the receptor. 

Second, as mammalian cells express other GPCRs besides the desired receptor, 

oligomerization could occur to shift the activation signal in a specific manner. In 

yeast, the model system is isolated from the impact of other receptors. The 

oligomerization of MC4R has been indirectly implicated in the cause of monogenic 

form of severe obesity in heterozygous case (Biebermann et al., 2003). In addition to 

oligomerization, other physiological mechanisms can adjust the final signal 

transduction via GPCRs, for example, ligand effects on receptor-G protein binding, 

proteins that regulate G protein activity, and signalling of GPCRs via non-G protein 

pathways (Cao et al., 2004; Ladds et al., 2003; Zhai et al., 2005). This indicated that 

all features influencing GPCR signalling and trafficking must be considered not only 

in functional but also genetic receptor research. Furthermore, yeast and mammalian 

model systems can complement each other in these studies.  

One of the most relevant factors to consider in using Saccharomyces 

cerevisiae for GPCR research is ligand size. Yeast cells have a dense polysaccharide-

rich cell wall that can affect migration of the ligand to the receptor expressed on the 
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plasma membrane. However, we demonstrated that even ACTH with 39 amino acids 

(Fw = 4541) can successfully cross the yeast cell wall and activate the receptor 

(Chapter 3.1). Another disputable point concerning the receptor ligand is stability. For 

P2Y12R activation, ADP was used, which is believed to be unstable in biological 

systems. To assess this, we performed a detailed analysis of P2Y12R activation by 

ADP and the chemically stable synthetic compound 2MeSADP. Our results indicated 

functional activity of the receptor similar to previous reports (Pausch et al., 2004; 

Zhang et al., 2001), showing that hydrolysis of ADP did not affect the detected 

activity of P2Y12R.  

For functional studies in this thesis for both MC4R and P2Y12R, we used site-

directed mutagenesis to characterise distinct amino acids in the receptor protein to 

determine their role in receptor activity. The results are discussed in Chapters 3.1 and 

3.3. Usually, site-direct mutagenesis of GPCRs involves substitution of specific 

amino acids with other amino acids that are chemically neutral, although sometimes 

substitution with amino acids of opposite properties is used (Hoffmann et al., 2008; 

Yang et al., 2000). This approach does not completely describe the functionality of 

the studied position. We generated and characterized randomised libraries of selected 

residues and found that any substitution of D126 in the MC4R and K280 of the 

P2Y12R completely abolished receptor function. A three-dimensional model of 

P2Y12R suggested that K280 is a fixating switch that fastens ADP into the ligand 

binding cavity between the TM helices of the receptor. Any substitution of the Lys in 

this position even with chemically related Arg, disabled the receptor.  

Similar results were observed for D126 of the MC4R where even substitution 

with another acidic residue (Glu) abolished receptor signalling. Interestingly, we 

observed that some substitutions such as Leu and Glu had higher background activity 

than others such as Phe, suggesting that this MC4R position might be involved in 

constitutive activity of the receptor. To exclude possible effects of the yeast 

physiological state we performed a second round of random receptor plasmid 

isolation and retransformation and obtained the same results. The constitutive activity 

of MC4R has been previously described (Srinivasan et al., 2004). Beukers and 

colleagues demonstrated that random point mutations of other GPCRs can cause 

receptor constitutive activity (Beukers et al., 2004). Intriguingly, most of these 

substitutions were neutral, aliphatic or acidic amino acids, leading to the overall 
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observation that constitutive activity of the GPCRs can be caused by definite 

biochemical interactions of amino acid residues at specific sites. Further experimental 

studies are needed to analyse this hypothesis. 

Besides, the K280 residue analysis, P2Y12R revealed interesting facts about 

other receptor positions as well. Substitutions of E181 pointed out that hydrophility in 

this position is preferred for better receptor activation. Since the E181 is located in EL 

of the P2Y12R it is unlikely that this residue is involved in formation of ligand 

binding pocket even though the ELs of GPCRs have been demonstrated to guide and 

fix receptor ligand into it’s binding site. Detailed description of the ligand binding to 

the P2Y1R has been done specifying the meta-binding sites that direct ligand into 

main binding cavity (Moro et al., 1999). It is possible that this kind of interaction 

occurs also in other P2YRs, furthermore, acidic amino acids like Glu or Asp are 

common in EL2 of most P2YRs indicating possible involvement in signalling 

mechanisms of this receptor group. Two other P2Y12R residues analysed were R256 

and R265. There is definite evidence in the literature that these positions affect 

signalling properties of P2Y12R (Cattaneo et al., 2003; Hoffmann et al., 2008; Mao et 

al., 2010). We observed that substitutions of R256 can dramatically decrease or 

completely abolish functionality of the P2Y12R. Since R256 residue is located in the 

upper part of TM helix of the receptor the most probable way in which it can affect 

P2Y12R signalling is its involvement in the formation of ligand binding pocket. On 

the contrary R265 mutant variants that are also located in the upper part of TM 

domain, did not show such dramatic decrease in receptor activity as R256 receptor 

variants. However, tendency can be observed that statistically significant shifts in 

EC50 values were detected for Ala, Leu and Ile variants of R265 mutant library, 

indicating that aliphatic and hydrophobic properties are not preferable at this site for 

functional integrity of the receptor upon ADP activation (Chapter 3.3, Table 1). 

Inhibition experiments with antagonist AR-C66096 showed no strict patterns 

of biochemical properties required at the studied positions for its functional inhibition 

of P2Y12R. But as all ligand activity curves indicate, some randomised receptor 

variants had greater inhibition shift than others (Chapter 3.3, Figure S2) suggesting 

that these positions are involved in AR-C66096-P2Y12R binding. However, to gain 

full understanding of the interaction process, further experiments are needed.  
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We have analysed functional results of the P2Y12R mutant libraries activation 

using two bioinformatic methods: QSAR and three-dimansional modelling. These 

methods supplement each other and enable comprehensive characterization of 

practical data. QSAR is used more often in targeted ligand design in order to predict 

binding of series of novel compounds and save time and expenses over laboratory 

experiments (Hao et al., 2011). Some studies, however, use QSAR to gain deeper 

knowledge of the protein regions involved in different biological interactions (DeVore 

et al., 2009; Wang et al., 2009a). We used QSAR to characterise type of 

physiochemical properties of amino acids required for interaction of P2Y12R and 

ADP. The advantage of using QSAR is that, we were able to successfully correlate 

our E181 and R256 mutant library experimental data with particular physiochemical 

properties including charge, steric/bulk properties, polarity, electronic effects, rigidity 

and flexibility, and to obtain mathematical models that characterise and quantify the 

ligand binding site that could not be done by manual analysis of experimental results 

alone. These data are essential for novel ligand design as it helps predict ligands that 

are prone to interact with the receptor and should be included in functional studies to 

encompass full complexity of physiochemical properties in biological systems. In 

addition to QSAR, another technique that could be used in similar research is 

proteochemometrics that could integrate both target receptor and ligand determinants 

(Lapins et al., 2008). 

For generation of a three-dimensional P2Y12R structure model we used 

homology modelling to observe possible interactions of ADP with the studied 

residues of the receptor to determine those involved in ligand binding. The 

hydrophobic nature of GPCRs makes it difficult to obtain soluble protein isolates, 

hindering crystallization and X-ray structure development. Therefore, homology 

modelling on the templates of the resolved GPCR structures is often used. The 

template selection for homology modelling greatly affects the final model including 

how well the obtained model corresponds to the structure of the in-vivo receptor. 

Distinct differences between available templates have been characterised (Tate et al., 

2009) and using the best fitting template is important. We used the adenosine 2A 

receptor (A2aR) 2.6 Å resolution model as a template (Jaakola et al., 2008), because 

at the time, this was the most closely related crystal structure to P2Y12R. In addition 

to the chemical properties of the natural agonist of the A2aR, adenosine is similar to 
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ADP, so the ligand binding pockets of these receptors could share considerable 

structural resemblance.  

In summary, this thesis conducted complex genetic and functional studies of 

melanocortin and purinergic receptor signalling and outlined important aspects of a 

yeast expression system and candidate gene association approach in multifactorial 

disease research. 



138 

 

5 CONCLUSIONS 

 

1. Substitutions of the D126 position of MC4R with any amino acid abolish ligand-

mediated signal transduction via the receptor. 

2. Neutral, aliphatic or acidic substitutions at the 126 position of MC4R lead to 

increased background constitutive activity, while aromatic hydrophobic residue 

substitution variants have decreased constitutive activity.  

3. The gene P2RY1 locus is not associated with myocardial infarction, body mass 

index, type 2 diabetes, angina pectoris, hypertension, hyperlipidemia, atrial 

fibrillation or heart failure in the population of Latvia. 

4. The Saccharomyces cerevisiae model system has been successfully used to express 

and functionally characterise both GPCRs binding small molecules (P2Y12R) and 

large peptides (MC4R). 

5. Hydrophobic residues at position E181 of P2Y12R decrease functional activity of 

the receptor. Any substitution of the R256 residue dramatically decreases P2Y12R 

signalling and the functional activation of P2Y12R. R265 random variants proved the 

importance of this position in the structural integrity of the receptor. 

6. Residue K280 serves as a fixing switch in the P2Y12R ADP binding pocket. 

7. MC4R polymorphism rs17782313 is not associated with severe adiposity when 

compared with normal weight controls, while FTO polymorphisms rs11642015 and 

rs62048402, but not rs9939609, were significantly associated with obesity in the same 

cohort.  

8. V103I and I251L variants of MC4R had functional properties similar to the wild 

type receptor when stimulated with αMSH, but V103I demonstrated stronger AGRP 

inhibition.  

9. S127L had a significantly decreased receptor quantity at the cell surface and 

decreased functional activity. In the double mutant V103I/S127L, the substitution 

V103I appears to modulate the effects of S127L. 

10. V166I alteration in MC4R causes decreased receptor quantity in the plasma 

membrane, however, this receptor variant has a significantly higher cAMP response 

upon stimulation with αMSH, but AGRP inhibition is decreased compared to wild 

type MC4R. 
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6 MAIN THESIS FOR DEFENCE 

 

1. Position D126 of MC4R is crucial for functional activity of the receptor and is 

involved in constitutive activation of the receptor.  

2. Polymorphisms in P2RY1 do not affect development of cardiovascular conditions, 

despite its role in blood coagulation mechanisms. 

3. Hydrophilic properties of the residues in extracellular loop 2 of the P2Y12R are 

relevant for functional activity of the receptor. 

4. K280 of the P2Y12R is an essential determinant of the P2Y12R ADP binding 

pocket. 

5. Saccharomyces cerevisiae can be used as an expression system for functional 

research on GPCRs. 

6. Common FTO polymorphisms are more significant determinants of morbid obesity 

than SNP at the MC4R locus. 

7. The originally discovered nonsynonymous substitution V166I in the coding region 

of the gene MC4R might cause a hyperactive satiety signal reception. 

8. The nonsynonymous substitution S127L is the most frequent functional variant of 

MC4R causing morbid obesity.  
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