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Abstract

This dissertation presents the computational methods for the exploration of protein evolu-

tion using stepwise evolution model of protein structures and local structural similarities

of proteins. Generally, all widely used methods in exploration of evolution are based on

comparison approaches of biochemical structures. Comparison methods that are devel-

oped in the context of the dissertation are graph theory methods and methods of structure

comparison at the level of atomic coordinates.

The area of bioinformatics that explores protein evolution consists of three compo-

nents: well developed protein sequence evolution model, quite new and incomplete protein

structure evolution model and the third component – still undeveloped evolution model of

protein active/binding site regions that are used for the definition of protein functions. For

the development of the general model of protein evolution it is necessary to join together

knowledge concerning three mentioned components.

This dissertation describes a number of novel contributions that move bioinformatics

on a few steps toward creation of the general model of protein evolution. Under assump-

tion that protein structures have evolved by a stepwise process, each step involving a small

change in the structure, the ESSM algorithm has been developed for protein structure

comparison and detection of evolutionary changes. The next contribution is a new com-

bined method for the exploration of evolutionary relations between protein structures in

the whole dataset of proteins. This method consists of two stages: all-against-all compar-

ison of the protein structures by using the ESSM and construction of specific fold space

graph on the basis of discovered mutations.

Local structural similarities between proteins in active/binding site regions which define

protein functionality may reflect distant evolutionary relationships. Implementation of

IsoCleft algorithm for the detection of 3D atomic similarities by using found best values for

the parameters together with method for the creation of different binding site models and

similarity measurement scores allow to obtain better understanding of protein evolution

and functionality.

xiii





Chapter 1

Introduction

It has taken biologists some 230 years to identify and
describe three quarters of a million insects; if there are
indeed at least thirty million ... then, working as they
have in the past, insect taxonomists have ten thousand
years of employment ahead of them.

R. Leakey and L. Roger

Nothing in biology makes sense except in the light of
evolution.

T. Dobzhansky

Computational biology, also called bioinformatics, encompasses the use of algorithmic

tools to facilitate biological analyzes. The first quotation in epigraph shows why

nowadays biologists extremely needs the collaboration with computer scientists in the field

of computational methods and algorithms that allow them to analyze and interpret the vast

amounts of data. In fact, the amount of data in the field of molecular biology (millions

of records concerning DNA sequences and proteins) doubles every eighteen months. So

molecular biologists would also have thousands years of employment without utilization of

computational methods.

Computer scientists working in the field of computational biology and developing al-

gorithmic methods for solutions of biological problems need deep knowledge not only in

the algorithms and computational methods, but also in chemical and biological aspects

of problems under consideration to be able to validate developed methods and to analyze

biological material by using them.

The main material of exploration in bioinformatics are biochemical structures, also

called biomolecules, molecules that naturally occurs in living organisms. Biochemical

structures may be roughly broken down into the following classes: nucleic acids (DNA

and RNA), proteins, and ligands. The complete set of DNA in living organism forms a

genome that codes for the hereditary material that is passed on from generation to gener-

ation. DNA molecules include all of the genes (the functional and physical unit of heredity

passed from parent to offspring) and transcripts (the RNA copies that are the initial step

in decoding the genetic information) included within the genome. In turn, proteins are
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Figure 1.1: The wheel of biological understanding. The comprehensive goal of biology

and as a result of bioinformatics is a complete understanding of a system of life. Image is adapted

from http://www.scq.ubc.ca/image-bank/.

synthesized from genome and required for the structure, function, and regulation of the

body’s cells, tissues, and organs. Ligands are small organic compounds that interacts with

proteins during different processes in organism.

Generally, biomolecules are described by linear sequence of chemical components (atoms,

residues, bases), structure in 3D space and functions in organism.

The major development efforts in the field of bioinformatics from the computer sci-

ence perspective include creation of solutions for databasing, development of algorithms

for biomolecules’ sequence and structure analysis, modeling of biological and chemical

processes.

In turn, from the biological perspective there are a great number of different research

areas where computational methods are being applied. The comprehensive goal of these

bioinformatics areas is to understand complex biological systems (Figure 1.1).

1.1 Problem Statement

In accordance with the second quotation in epigraph, exploration of protein evolution is a

very perspective and challenging field of bioinformatics where still exists a lot of unsolved

algorithmic and biological problems.

Whilst there are well developed models describing evolution of protein sequences and, as

a rule, the comparison of protein sequences is done according to these models, the situation

is quite different for protein structures. Traditional structure comparison methods rely only

on measuring the distances between the elements of two structures. Still, there are some
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studies on evolution of protein structures and several types of structural changes (such

as substitutions/insertions/deletions of structural elements etc.) have been proposed and

have been motivated by particular examples. Generally, the evolution model of protein

structures can be formulated as follows: protein structures, similarly to sequences, have

evolved by a stepwise process, each step is a result of accumulating sequence changes

that reflect in comparatively small but noticeable change in protein structure. Such a

model is unlikely to provide a full picture of structure evolution (a full picture of structure

evolution and appropriate model is not known yet), but it is useful in the exploration of

basic tendencies in evolution of the protein structures and functions.

The another problem concerning protein evolution is the existence of a number of

proteins whose sequences and structures are completely different, but these proteins have

common functions.

As a matter of fact, there are no strict rules in biology and there are several definitions

of protein functions. Protein function in the context of the dissertation is defined as the

ability of protein to bind different types of small molecules, called ligands. The regions

of protein structure that are involved into the interaction with ligands are called active or

binding site regions.

Local structural similarities of proteins, particularly in active/binding site regions, can

provide a different perspective into the evolution of a protein from that obtained using

the overall sequence and/or structure. Besides, there are conserved fragments in protein

sequences that remain in a large extent invariable in the process of evolution. Conserved

fragments may be important for a variety of reasons: to maintain the structure, to control

dynamic aspect of the structure (conferring or restricting flexibility), in the interaction

with ligands or other proteins, etc. Thus data about conservation also can be used for the

detection of local structural similarities of proteins.

To summarize, the area of bioinformatics that explores protein evolution has three

possible components: well developed sequence evolution model, quite new and incomplete

structure evolution model and the third component – still undeveloped evolution model of

protein active/binding site regions. For the development of the general model of protein

evolution it is necessary to join together knowledge concerning three mentioned compo-

nents.

As to the formulation of the general protein evolution model there are a lot of questions

that need explanation before, in addition new algorithmic methods are necessary to answer

some of these questions.

The results obtained in this dissertation can be represented as a few steps toward the

creation of such general model.
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1.1.1 Research Questions

For this dissertation the author investigated a number of different unsolved problems in the

field of protein evolution. These different problems are formulated into research questions

that will be addressed in this dissertation:

• The first cluster of research questions is formulated under assumption that protein

structures have evolved by a stepwise process, each step involving a small change in

the structure.

– How certain types of evolutionary changes between two arbitrary structures of

proteins can be identified?

– How to explore the whole set of proteins under given above assumption?

– How to extract from the whole set of protein structures non-trivial (e.g. con-

sisting of at least three elements) chains of structures s1, ..., sN , such that evo-

lutionary relations between structures si and si+1 seem feasible, but can’t be

directly detected between structures si and si+k for k > 1?

– What are algorithmic solutions for all mentioned above questions?

– What is the estimation of probabilities with which different structural changes

in proteins might occur?

• The second cluster of questions considers situation when proteins whose sequences

and structures are completely different have common functions.

– Independent of our ability to detect active/binding site is it possible, on the

basis of binding site similarities, to discriminate binding sites that bind the

same ligand from binding sites that bind different ligands?

– What is the algorithmic solution for the discrimination problem (the previous

question)?

– How we can model binding site regions of protein taking in account different

possible knowledge about them (bound ligand is known, conservation data are

available, etc.)?

– To what extent knowledge concerning conservation can help to solve the dis-

crimination problem?

1.1.2 Research Goals

The main goal of this dissertation is to answer the questions discussed previously and

contribute algorithmic solutions towards the problems. The specific research goals of the

dissertation are as follows:
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• Algorithmic method for the pairwise comparison of protein structures and identifica-

tion of structural mutations between them;

• Algorithmic method for the exploration of relations between proteins in the whole

protein set under assumption that protein structures have evolved by a stepwise

process;

• Development of different models for protein binding site regions;

• Exploration of the behavior of different models for binding site regions by using local

similarities detection software.

1.2 Thesis Statement

Traditional viewpoint regarding protein sequence and structure similarity of evolutionary

related proteins is that protein structure is much better preserved than protein sequence

and that sequence similarity of about 25% or more almost necessarily implies that protein

structures will be almost identical. Whilst this is true in most of the cases, nevertheless it

is possible to find pairs of proteins with highly similar sequences and at the same time no-

ticeable structural differences. Probably the best known example is Janus protein designed

by (Dalal et al., 1997). The authors have synthesized a pair of proteins with 50% sequence

similarity and, at the same time, completely different folds. Although it is possible to

argue that this is a designed protein, it still demonstrates the credibility of evolutionary

events that preserve sequence similarity but change protein structure.

The existence of protein pairs with similar sequences and different structures also is

implied by current models of protein evolution - although during the evolution protein

structure is much more preserved than protein sequence, there should exist small sequence

mutations that lead to noticeable structural changes.

From biological perspective the problem is thoroughly studied by Grishin (Grishin,

2001; Kinch and Grishin, 2002). The authors have identified a set of possible structural

changes that could occur during protein evolution, each of the proposed mutations is

confirmed by real biological examples. Similar sets of small fold changes are proposed and

studied also by other authors (Matsuda et al., 2003; Przytycka et al., 2002).

An attempt to estimate frequencies of different types of structural mutations has been

made by Viksna and Gilbert (2007). However until now there was no method which allows

to automatically identify all types and arbitrary number of structural changes.

By combining biological results (Grishin, 2001; Kinch and Grishin, 2002; Viksna and

Gilbert, 2007) and graph theory methods for graph comparison (Bron and Kerbosch, 1973;

Ullmann, 1976; McGregor, 1982; Krissinel and Henrick, 2004a) such algorithm can be
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created. This algorithm also can produce a number of scores that allows to estimate evo-

lutionary relationship between proteins. Thus algorithm can be used for the exploration of

the whole protein set under assumption that protein structures have evolved by a stepwise

process.

Mentioned above exploration method can consist of two stages: all-against-all com-

parison of the protein structures by using the algorithm for identification of structural

mutations and construction of specific graph on the basis of discovered mutations.

The author confirms that observing certain rules during the construction of such graph

and in the presence of a method for graph visualization, the analysis of a graph allows to

find non-trivial chains of structures s1, ..., sN where si and si+1 are evolutionary related, to

explore protein clustering and to propose the possible evolutionary mechanisms employed

in this studied set of proteins.

Since the function of protein could be defined as protein ability to bind specific chemical

compounds or to be binded by other biochemical structures, the extremely important parts

of protein structures are active/binding sites – regions of protein structure which are used

for binding activities. The detection of local structural similarities in active/binding site

regions may provide useful clues for prediction of protein function when both sequence sim-

ilarity and overall structural similarity are insufficient. Besides, local structural similarities

between proteins may reflect more distant evolutionary relationships.

There are a lot of algorithmic methods for the detection of local structural similarities

(Schmitt et al., 2002; Weskamp et al., 2004; Shulman-Peleg et al., 2004, 2005; Kobayashi

and Go, 1997; Brakoulias and Jackson, 2004). However, most of them are not suited to

process large sets of atoms that define binding sites using full atomic representation.

By using recently developed IsoCleft algorithm large sets of atoms can be compared.

In turn, sets of atoms can be used for modeling of different knowledge concerning ligand-

interaction regions of binding sites. In that way, combination of IsoCleft algorithm and

different models of binding sites can be used for the exploration of discriminative features

of binding sites and the individual contributions into the discrimination ability of binding

site size (in terms of number of atoms), chemical composition and geometry.

1.3 Contributions

This dissertation makes a number of research contributions to the current state of the

exploration of protein structures and functions. Some of the initial contributions in this

dissertation also require a number of supporting software artefacts to be designed and

developed, each with their own separate contributions. The full list of contributions is:

• The ESSM (Evolutionary Secondary Structure Matching) algorithm for protein struc-

ture comparison and detection of evolutionary changes (Kurbatova, Mancinska and
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Viksna, 2007);

• The method for the exploration of evolutionary relations between protein structures

(Kurbatova and Viksna, 2008);

• Implementation and validation of IsoCleft algorithm for the detection of 3D atomic

similarities (Najmanovich, Kurbatova and Thornton, 2008);

• Binding site models when different knowledge concerning ligand-interaction regions

of proteins are taken into account (Najmanovich, Kurbatova and Thornton, 2008);

• A number of biological results that have been obtained during experiments by using

developed/implemented algorithms and methods (Kurbatova, Mancinska and Viksna,

2007; Kurbatova and Viksna, 2008; Najmanovich, Kurbatova and Thornton, 2008).

The method for the exploration of evolutionary relations between protein structures has

been applied for exploration of potential evolutionary relationships between CATH (Orengo

et al., 1997) protein domains and several facts about the evolutionary relationships between

these domains have been established.

IsoCleft algorithm and different binding sites models have been used in experiments

on the dataset of evolutionary unrelated proteins. The main objective of experiments was

to discriminate (within a dataset) those proteins that bind similar ligands based on local

3D atomic similarities. The results point to the need of combining described approach

with information that help pinpoint which atoms within a binding site model may interact

with the ligand. Such information may come from computational methods as well as

experimental data. The most striking result of the experiments is the poor discriminating

ability when using conserved atoms of binding site model.

1.4 Dissertation Structure

Excluding this introduction chapter and the last chapter with conclusions the dissertation

consists of four chapters. At the same time conceptually the dissertation is divided on

two parts: two theoretical chapters, where concepts of chemistry and biology are discussed

and a review of previous studies in the field of biochemical structure comparison problems

is given; the last two chapters outlines contributions made by the author, where new

developed algorithms and methods are described and the result of experiments by using

these methods are discussed.

Chapter 1 describes biochemical structures: nucleic acids, proteins and ligands, which

are considered in the thesis. The chapter contains main concepts about these biomolecules,

such as chemical composition and properties, structure, functions and role in nature, repre-

sentation methods for biomolecules. The introduction into chemical bonds and properties
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also is given to make further text more comprehensible. Concepts of mutations and evolu-

tion of biochemical structures are discussed at the end of the chapter.

Chapter 2 outlines classical comparison problems of sequences and structures in bioin-

formatics. Definitions of comparison problems and possible solutions, which are widely

used, are discussed. Since graph based approaches are in focus of the thesis, graph match-

ing methods are described in detail. For a number of solutions a schemes representing

pseudocode of algorithms are given. These algorithms were used in modified way or uti-

lized in the frame of this dissertation by author and her colleagues. Comparison algorithms

for sequences and structures of biomolecules are used for the detection of similarity be-

tween these molecules. Therefore exists a number of methods for similarity measurement

and the most widely used scores, such as RMSD and some others, are also described in

this chapter. Besides, applications of comparison algorithms for proteins are presented

in a separate section, including concepts of protein classification, global and local protein

structure comparison and exploration of protein evolution.

Chapter 3 is devoted to the exploration of protein fold evolution. The algorithm, called

ESSM, for protein structure comparison and detection of evolutionary changes has been

developed by author and described in this chapter. The algorithm is found to be efficient

and accurate to find evolutionary changes of different types comparing structures of two

proteins. Besides, chapter describes a new combined method based on the ESSM that

was developed for visualization and analysis of evolutionary relationships between pro-

tein structures. This method consists of two stages: detection of fold mutations by using

the ESSM and subsequent construction of fold space graphs. The combined method was

applied for analysis of evolutionary relations between CATH protein domains. The exper-

iments, whose results are described at the end of the chapter, allowed to obtain estimates

of the distribution of probabilities for different types of fold mutations, to detect several

chains of evolutionary related protein domains, to prove the ability of fold space graphs to

be a convenient tool for visualization and analysis of evolutionary relationships between

protein structures, providing more information than traditional phylogenetic approaches,

as well as to explore the most probable β-sheet extension scenarios.

Chapter 4 discusses local binding sites similarities detection problem and discrimination

of protein binding sites. The specific graph-matching based method for the detection of

3D atomic similarities is described in the chapter. The method, called IsoCleft, introduces

some simplifications that allow to extend its applicability to the analysis of large all-atom

binding site models. Different models for protein binding sites that have been developed by

author are also described in the chapter. A series of experiments have been done by author

using IsoCleft to answer the following question up to now remained open: Is it possible to

discriminate within a dataset of non-homologous proteins those that bind similar ligands

based on their binding site similarities? The results of these experiments are discussed at

the end of the chapter.



Chapter 2

Biochemical Structures

In every walk with nature one receives far more than he
seeks.

John Muir

Abstract

In the algorithmic methods described in this work the following biochemical struc-
tures are considered: nucleic acids, proteins and ligands. This chapter presents main
concepts concerning these biomolecules, such as chemical composition and properties,
structure, functions and role in nature, representation methods for biomolecules. The
introduction to chemical bonds and properties is given in the first section to make fur-
ther text more comprehensible. Concepts of mutations and evolution of biochemical
structures are discussed at the end of the chapter.

One of the major research efforts in the field of bioinformatics is the analysis of biochem-

ical structures. A biochemical structure or biomolecule is a molecule that naturally

occurs in living organisms. Biochemical structures may be roughly broken down into the

following classes: nucleic acids, proteins, and ligands – small organic compounds which

interacts with proteins.

Since the dissertation subject is an algorithmic methods for the analysis of proteins,

exactly structure of proteins is considered in detail. In turn, the exploration of proteins is

impossible without understanding of a structure of nucleic acids, as proteins are created

by means of nucleic acids and changes in them is the original cause of changes in proteins.

Nucleic acids are large, complex molecules family which includes deoxyribonucleic acid

(DNA) and ribonucleic acid (RNA). Nucleic acids were so named because they were first

found in the nucleus of cells, but they have since been discovered also to exist outside

the nucleus. Both nucleic acids (DNA and RNA) are composed of nucleotide subunits

(organic compounds that consist of three joined structures: a nitrogenous base, a sugar,

and a phosphate group). DNA contains the hereditary information and RNA delivers the

instructions coded in this information to the cell’s protein synthesizing sites.

Proteins are also large complex molecules composed of one or more chains of amino acids

(type of organic molecules containing two functional groups: amine group and carboxyl
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group) in a specific order; the order is determined by the base sequence of nucleotides in the

segment of DNA (gene) that codes for the protein. Proteins are required for the structure,

function, and regulation of the body’s cells, tissues, and organs. Examples are hormones,

which are released by cells to affect cells in other parts of the body (chemical messengers

that transports a signal from one cell to another), enzymes that catalyze chemical reactions,

and antibodies, which are used by the immune system to identify and neutralize foreign

objects, such as bacteria and viruses.

In biochemistry, a ligand is a small organic compound (molecule) that is able to bind

to and form a complex with a biomolecule to serve a biological purpose. One of the most

important functions of proteins is ligands binding process where protein functionality is

defined by the type of ligand binded to protein.

Description of biomolecules can be divided into two parts: chemical components, where

chemical compounds and chemical bonds used for the construction of biomolecule are

described; linear and geometrical structure of biomolecule, where linear order of subunits

and geometrical form of molecule in three dimensions are described.

At the description of a chemical components some concepts of organic chemistry are

used, such as chemical compounds, bonds and properties. All necessary definitions of

chemical concepts are given in the first section of the chapter to facilitate the further

reading.

2.1 Chemical Elements, Compounds, Bonds and Prop-

erties

The following atoms are used in the work: N - nitrogen atom ; C - carbon atom ; P -

phosphorus atom and H - hydrogen atom .

An ion is an atom or molecule which has lost or gained one or more valence electrons,

giving it a positive or negative electrical charge.

Definitions and pictures using in this section are adapted from (McGraw-Hill, 2004)

and (Wikipedia, the free encyclopedia, n.d.).

2.1.1 Chemical Bonds

Chemical bond is a force holding atoms in a molecule together as a specific, separate entity.

In covalent bonds , two atoms share one or more pairs of valence electrons (electrons

found in orbits farthest from the nucleus of the atom) to give each atom the stability.

Covalent bonds include single bonds (e.g., H-H in molecular hydrogen) when one electron

pair is shared; double bonds (e.g., O=O in molecular oxygen) and triple bonds when two

and three electron pairs correspondingly are shared.
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Carbon in organic compounds can have as many as four single bonds, each pointing

to one vertex of a tetrahedron; as a result, certain molecules exist in mirror-image forms.

Double bonds are rigid, leading to the possibility of geometric isomers (molecules that are

composed of the same elements in the same proportions but differ in properties because

of differences in the arrangement of atoms). There are also specific types of covalent

bonds, such as peptide bond , which are apparently single but have some double-bond

characteristics because of the electronic structure of the participating atoms.

Electrons are not always shared equally between two bonding atoms: one atom might

exert more of a force on the electron cloud than the other. This ”pull” is termed elec-

tronegativity and measures the attraction for electrons a particular atom has. The unequal

sharing of electrons within a bond leads to the formation of an electric dipole (a separation

of positive and negative electric charge).

Covalent bonds can fall between one of two extremes - being completely non-polar

or completely polar. A completely non-polar bond occurs when the electronegativities

are identical and therefore possess a difference of zero. A completely polar bond is more

correctly termed ionic bonding and occurs when the difference between electronegativities

is large enough that one atom takes an electron from the other. To determine the polarity

of a covalent bond using numerical means, the difference between the electronegativity of

the atoms is taken. If the result is between 0.5 and 2 (in Pauling units) then, generally,

the bond is polar. For non-polar covalent bond the result should be 0.0-0.4.

There are also other chemical bonds not concerning to covalent bonding. A chemical

bond in which a hydrogen atom of one molecule is attracted to an electronegative atom,

especially a nitrogen and oxygen atom, usually of another molecule is called hydrogen bond .

Hydrogen bonding plays an important role in determining the three-dimensional structures

adapted by proteins and nucleic acids.

2.1.2 Chemical Properties

A chemical compound is composed of one or more chemical bonds between different atoms.

The polarity of each bond within the compound may determine the overall polarity of

the compound: how polar (there are electropositive and electronegative regions) or non-

polar it is. A polar molecule may be polar as a result of polar bonds or as a result of an

asymmetric arrangement of non-polar bonds and non bonding pairs of electrons.

The water molecule is a polar molecule with electropositive and electronegative regions.

Some other polar molecules combine well with water forming hydrogen bonds and are

therefore called hydrophilic molecules. On the other hand, non-polar compounds cannot

form hydrogen bonds and do not combine well with water and hence called hydrophobic.

Protonation, is the addition of a proton to an atom, molecule, or ion. Protonating or

deprotonating a molecule or ion alters many chemical properties beyond the change in the
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charge and mass: hydrophilicity, reduction potential, optical properties, among others.

Negative compound is usually deprotonated molecule in typical environment. Positive

compound is usually protonated molecule in typical environment.

Aromatic compound is a chemical compound that consists of one or more planar rings

of bonds, where each bond in the ring may be seen as a hybrid of a single bond and a

double bond and each bond is identical to every other. The base of typical ring in aromatic

compounds consists of 5 or 6 carbon atoms. Aromatic molecules typically display enhanced

chemical stability, compared to similar non-aromatic molecules.

Aliphatic compound is a chemical compound composed of carbon and hydrogen, which

are not aromatic.

Heterocyclic compound is an organic compound that contain a ring structure containing

atoms in addition to carbon, such as sulfur, oxygen or nitrogen, as part of the ring.

2.1.3 Chemical Compounds

For representation of chemical compounds the shorthand skeletal formulae are used. In

skeletal formulae, the location of carbon atoms (C), and hydrogen atoms (H) bonded to

carbon, are not denoted by the symbols C and H, but are implicit. Carbon atoms are

implied to exist at each vertex. Carbon atoms are assumed to have four covalent bonds

to them, so the number of hydrogen atoms attached to a particular carbon atom can be

deduced by subtracting from four the number of bonds drawn to that carbon. Single

covalent bonds are represented by a single, solid line between two atoms in a skeletal

formula. Double covalent bonds are denoted by two parallel lines, and triple bonds are

shown by three parallel lines. Hydrogen bonds are sometimes denoted by dotted or dashed

lines. Lines can differ representing the position of chemical elements and bonds in space:

solid lines represent bonds in the plane of the paper or screen; wedges represent bonds that

point out of the plane of the paper or screen, towards the observer; dashed lines represent

bonds that point into the plane of the paper or screen, away from the observer.

The following chemical compounds are used to compose biomolecules used in this work:

• Phenyl-group (Phenyl-ring) or Ph with the formula C6H5. It is highly

stable aromatic compound, where the six carbon atoms are arranged in a cyclic ring

structure.

• Pyrimidine is a single-ringed, heterocyclic aromatic compound with the for-

mula C4H4N2.There are following pyrimidine base chemical compounds, which are

the building blocks of DNA and/or RNA
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– Cytosine is a pyrimidine derivative (also called pyrimidine base) chem-

ical compound with the formula C4H5N3O;

– Thymine is a pyrimidine base chemical compound with the formula

C5H6N2O2, that is an essential constituent of DNA;

– Uracil is a pyrimidine base chemical compound with the formula C4H4N2O2,

that is an essential constituent of RNA.

• Purine is a double-ringed, heterocyclic aromatic compound with the formula

C5H4N4. There are two purine base chemical compounds, which are the building

blocks of DNA and RNA

– Adenine is a purine base chemical compound with the formula C5H5N5;

– Guanine is a purine base chemical compound with the formula

C5H5N5O.

• Amino acid with basic chemical formula NH2CHRCOOH.

• Phosphoric acid has the chemical formula H3PO4.

• Deoxyribose is a sugar with the chemical formula C5H10O4.

• Ribose is a sugar with the chemical formula C5H10O5.

The most often used unit to measure distances in biomolecules is an angstrom (symbol

Å) which equal to 0.1 nanometre (1× 1010m).
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2.2 Nucleic Acids

Nucleic acids are chainlike biological macromolecules consisting of multiply repeated units

of phosphoric acid, sugar, and purine and pyrimidine bases. Nucleic acids as a class are

involved in the preservation, replication, and expression of hereditary information in every

living cell.

Nucleic acids have been discovered in the cells nuclei. From this the name follows:

Latin word nucleus - kernel, nucleus.

There are two nucleic acids in nature: deoxyribonucleic acid (DNA) and ribonucleic

acid (RNA).

The main role of DNA molecules is the long-term storage of genetic information, it

contains the instructions needed to construct other components of cells, such as proteins

and RNA molecules.

RNA molecules perform a number of critical functions. Many of these functions are

related to protein synthesis. Some RNA molecules bring genetic information to the part

of organism, where proteins are assembled. Others help translate genetic information to

construct proteins.

The DNA segments that carry genetic information required for constructing proteins

are called genes , but other DNA fragments have structural purposes, or are involved in

regulating the use of this genetic information.

In all organisms with a cell nucleus (animals, plants, and fungi), called eukaryotes,

DNA molecules are located within the nucleus and are packaged by various proteins into a

compact domains called chromosomes . Eukaryotic DNA molecules are very long and have

non-coding sections called introns and coding sections called exons .

In organisms that lack a cell nucleus (bacteria and archaea), called prokaryotes, and

in viruses (do not have cells, but consists of genetic material, DNA or RNA, within a

protective protein coat called a capsid) DNA molecules exist in a circular form. In such

organisms DNA molecules are much shorter than eukaryotic DNA and does not contain

introns, but at the same time genes could overlap.

Genome is the whole hereditary information encoded in the DNA molecules of organism

or virus.

2.2.1 Chemical Components

Nucleic acid is a long polymer (chain) of repeated units called nucleotides. Each nucleotide

is made up of one or more phosphate groups linked to a sugar (deoxyribose for DNA and

ribose for RNA) - which, in turn, is linked to one of four purine and pyrimidine bases -

adenine (A), guanine (G), cytosine (C), and thymine (T) (uracil (U) for RNA).

Chemically, nucleic acid’s chain is constructed with the help of strong covalent bonding



2.2. Nucleic Acids 15

Figure 2.1: Nucleotides are building blocks of nucleic acids. Each nucleotide consists of phos-

phate group linked to a sugar which, in turn, is linked to one of four bases (A, G, C, T or U).

Backbone of nucleic acid’s polymer is formed from sugars and phosphate atoms.

between phosphate groups and sugars that form a backbone of nucleic acid. The deoxyri-

bose and ribose sugar molecule is a 5-carbon structure. Four of the carbon atoms and one

oxygen atom form a ring. The 5th carbon atom is outside the ring, like a tail. The carbons

are distinguished from each other with a numbering system: they are called 1′ (one-prime)

through 5′ (five-prime). One of the nucleic acid polymer ends terminates with the OH

group attached to the 3′ sugar carbon (the 3′ end), whereas the other one terminates with

the OH group attached to the 5′ sugar carbon (the 5′ end). Nucleic acid polymer has a

direction defined by chemical construction of backbone - from the 5′ to the 3′ end.

The construction of a nucleic acid’s polymer is presented in Figure 2.1.

Another important chemical feature of nucleic acids is the formation of hydrogen bonds

between purine and pyrimidine bases. Such pairs are called base pairs (bp). The base pairs

are A–T and G–C in DNA, and A–U and G–C in RNA. With the help of base pairs hybrid

molecules joining DNA and RNA are constructed. Molecules of nucleic acids that are joined

by hydrogen bonds forming base pairs are called complementary molecules or strands.

Ribonucleic acid (RNA) molecules are polymers of nucleotides or more precisely ri-

bonucleotides, where each ribonucleotide consists of phosphate group and ribose sugar

(backbone) and one of the following bases: adenine (A), guanine (G), cytosine (C), and

uracil (U).

Deoxyribonucleic acid (DNA) molecules consists of two polymers of nucleotides, called

strands, where each nucleotide consists of phosphate group and deoxyribose sugar (back-
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Figure 2.2: The formation of double stranded DNA molecule by hydrogen bonds between purine

and pyrimidine bases, that connects the complementary strands of DNA.

bone) and one of the following bases: adenine (A), guanine (G), cytosine (C), and thymine

(T). Strands are held together in a antiparallel manner (in opposite directions of back-

bones) by hydrogen bonds formed between base pairs (A–T and G–C). Thus the bases in

one strand determine the bases of the other strand. The construction of DNA molecule is

presented in Figure 2.2.

Size of RNA depending on function average of about 80 to 2,500 base pairs (bp).

Sizes of prokaryotic genomes are less than 1,000,000 bp. At the same time for more

complicated form of life DNA can be enormous molecules containing billions of bp. Average

size of human genome is 3,000,000,000 bp. Average size of human gene is 1,000 – 1,500

bp including non-coding intronic segments. The number of genes inside human genome is

estimated as 100,000.

2.2.2 Structure and Representation

Since backbone of nucleic acid’s polymer is invariable part of its chemical structure, nu-

cleic acids can be represented by linear order of four bases (A, C, G, T for RNA and

A, C, G, U for RNA) read from the 5′ to the 3′ end of a backbone of nucleic acid’s
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Figure 2.3: DNA double-helix

polymer. The second strand of DNA can be ignored, because the bases in one strand

determine the bases of the other strand. Thus DNA/RNA sequences are constructed

from 4 symbols alphabet Σ = { A, G, C, T(U) }. There are a lot of different for-

mats for nucleic sequences, one of them is FASTA - text-based format for represent-

ing either nucleic acid sequences or polypeptide sequences (for proteins). The format

also allows for sequence names and comments to precede the sequences. Example of

Homo sapiens DNA fragment in FASTA format, where AB000263 is specific database Id:

AB000263 |acc=AB000263|descr=Homo sapiens DNA fragment for preprocortistatin like peptide, complete cds.|len=368

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC

CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGCC

CTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAG

TTTAATTACAGACCTGAA

In three-dimensional space double stranded DNA forms a helix (Figure 2.3). DNA

three-dimensional structures are quite stable and do not have serious variations (three

conformations: A, B, Z). In contrast to DNA, RNA is a single-stranded molecule, though

it can form hydrogen bond base pairs with itself, thus forming hairpin loops and more

complicated structures. Particular types of RNA have complex 3-dimensional forms.

2.3 Proteins

The word protein comes from the Greek word protos, meaning first element.

Proteins are the major components of living organisms and perform a wide range of
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Figure 2.4: Protein is a polypeptide - a long chain of amino acids

essential functions in cells. While DNA is the information molecule, it is proteins that do

the work of all cells. Proteins regulate metabolic activity, catalyze biochemical reactions

and maintain structural integrity of cells in organisms.

2.3.1 Chemical Components

Proteins are large organic compounds made of amino acids arranged in a long linear chain

and joined together by peptide bonds (Figure 2.4).

Amino Acids

Amino acid is an organic compound containing an amino group (NH2), a carboxylic acid

group (COOH) and any of various side groups (R) bonded to the same carbon atom,

known as the alpha carbon (Cα). The basic formula of amino acid is NH2CαHRCβOOH

(Figure 2.4) where the carbon atom from a carboxylic group is known as the beta carbon

(Cβ).

All proteins in all species, from bacteria to humans, are constructed from the same set

of twenty ”standard” amino acids. Amino acids differ only in the side chain (R group)

that is bonded to the alpha carbon. To represent 20 ”standard” amino acids three-letter

code and one-letter code is used (Table 2.1).

Amino acids are grouped in different ways according to their properties. Figure 2.5

represents one of many classifications that are possible. Chemical properties of amino

acids from which protein consists of define three-dimensional conformation of protein and

as the result its function.
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Table 2.1: 20 ”standard” amino acids
Name Three-letter code One-letter code

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V

Polypeptides

Due to peptide bonds between amino acids arranged in a long linear chain proteins also

are called polypeptides . The short chain of amino acids is called peptide . An informal

dividing line between polypeptides and peptides is placed at approximately 50 amino acids

in length.

All polypeptides (proteins) and peptides have 2 ends, the amino end (N) and the

carboxyl end (C). The backbone of the polypeptide/peptide is defined as all of the atoms

except the side chains (R1, R2, R3 at Figure 2.6). Residue or repeating unit refers to what’s

left of the amino acid monomer after it has been incorporated into a polypeptide/peptide,

which is most of it: it just lacks one H at what was the amino end and one OH at what

used to be the carboxyl end.

The length of polypeptides is commonly 100-1000 amino acids, but smaller and larger

ones also can be found.
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Figure 2.5: The Venn diagram shows physio-chemical properties of amino acids. Diagram have

been made by Taylor in 1986.

Figure 2.6: The following parts of polypeptide are shown: backbone and side chain, peptide

bond, residue, as well as 2 ends - the amino end and the carboxyl end.

Protein Synthesis

The sequence of amino acids in a protein is defined by a gene in DNA and encoded in the

genetic code, which specifies 20 ”standard” amino acids and is used during the synthesis

of proteins.

Protein synthesis consists of three main processes (Figure 2.7):

• Transcription – the process in which DNA fragment is converted into complementary

RNA. During this process specific enzymatic complex unravels and unzips DNA

helix, recruits RNA nucleotides and matches them by base pairing to the DNA gene

sequence. Special regulatory sequences inside of DNA are used as signals for DNA
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Figure 2.7: Scheme of protein synthesis

transcription process beginning and end.

• Since a primary transcript is a mirror copy of all the gene sequence it includes also

intronic non-coding sequences (in eukaryotic cells). The process of introns removal

is called the RNA splicing.

• During the process called translation RNA is expressed into polypeptide chain of

amino acids using the genetic code.

The genetic code (Figure 2.8) is the set of rules by which information encoded in genetic

material (RNA sequences) is translated into proteins (amino acid sequences). Specifically,

the code defines a mapping between three-nucleotide sequences called codons and amino

acids; every triplet of nucleotides in a nucleic acid sequence specifies a single amino acid.

Figure 2.8 shows the 64 codons and the amino acid each codon codes for. The direction

to read bases of RNA is 5′ to 3′. The genetic code has redundancy but no ambiguity.

For instance, although codons GAA and GAG both specify glutamic acid (redundancy),

neither of them specifies any other amino acid (no ambiguity). The degeneracy of the

genetic code is what accounts for the existence of silent mutations, when changes in DNA

do not change resulting protein (codon is changed, but coded amino acid remains the

same).

2.3.2 Structure and Representation

Biochemistry refers to four distinct aspects of a protein structure:
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Figure 2.8: Genetic code

• Primary structure - the amino acid sequence of the polypeptide chains. Protein

primary structures (sequences) could be represented as sequences constructed from 20

words alphabet. The basic format that is used for protein sequences is FASTA - text-

based format for representing either nucleic acid sequences or polypeptide sequences,

in which base pairs or amino acids are represented using single-letter codes. The for-

mat also allows for sequence names and comments to precede the sequences. Example

of Flavoprotein sequence in FASTA format, where 1NFP is PDB Id - unique four let-

ter code for protein identification:

1NFP:A|PDBID|CHAIN|SEQUENCE

MTKWNYGVFFLNFYHVGQQEPSLTMSNALETLRIIDEDTSIYDVVAFSEHHIDKSYNDETKLAPFVSLGKQIHVLATSPE

TVVKAAKYGMPLLFKWDDSQQKRIELLNHYQAAAAKFNVDIANVRHRLMLFVNVNDNPTQAKAELSIYLEDYLSYTQAET

SIDEIINSNAAGNFDTCLHHVAEMAQGLNNKVDFLFCFESMKDQENKKSLMINFDKRVINYRKEHNLN

• Secondary structure - well defined periodic structure stabilized by hydrogen bonds

(makes up 60% of a protein’s structure), meaning that there can be many different

secondary elements present in one single protein molecule. The DSSP code is fre-

quently used to describe the protein secondary structure elements with a single letter

code. DSSP is an acronym for ”Dictionary of Protein Secondary Structure”.

– β-strand (E) is a stretch of amino acids whose polypeptide back-

bones are almost fully extended. β-sheets consist of β-strands connected lat-

erally by three or more hydrogen bonds, forming a generally twisted, pleated

sheet.
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– α-helix (H) is a right-handed coiled conformation, resembling a

spring, in which every backbone N-H group (amino acid i) donates a hydro-

gen bond to the backbone C=O group of the amino acid four residues earlier

(i+4); 310-helix (G), when formation of hydrogen bond is between N-H group

of the amino acid i and the C=O group of the amino acid three residues earlier

(i+3); π-helix (I), when hydrogen bond is formed between N-H of amino acid i

and C=O of amino acid i+5 - very rare secondary structure.

– hydrogen bonded turn (T) - exist 3, 4 or 5 turn;

– loop (L) - undefined structures, however sometimes these elements also are clas-

sified as secondary structures.

The detailed description of secondary structure elements is given above (Section

2.3.2).

• Tertiary structure - three-dimensional structure of a single protein molecule (one

polypeptide chain); a spatial arrangement of the secondary structures. Example of

Ligase (PDB Id:12as) chain A:

• Quaternary structure - complex of several protein molecules (few polypeptide

chains), usually called protein subunits in this context, which function as part of the

larger assembly or protein complex. Example of Ligase (PDB Id:12as) 3D structure

(chains A and B):
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Figure 2.9: Flavoprotein 3D structure in PDB format

The sequence of a protein is unique to that protein, and defines the other structure

levels and as the result function of the protein. Secondary, tertiary and quaternary levels

define protein structure in 3D space.

Three-dimensional structure of protein is defined by amino acids properties and envi-

ronment of protein compound. The main data base containing protein three-dimensional

structures is Protein Data Bank. In March 2008 the number of records in it is more than

40,000.

As FASTA format is used for sequences, PDB format is widely used for 3D protein

structures representation (Flavoprotein 3D structure in PDB format see in Figure 2.9).

Almost in all bioinformatics software concerning proteins PDB format is primary or basic

3D structure representation way.

Secondary Structure Elements

The formation of α-helix by hydrogen bonds is shown on Figure 2.10. The direction of

α-helix is indicated by the sequence of atoms within each residue (by the direction of

polypeptide backbone from amino end N to carboxyl and C).

The carbonyl (C=O group) oxygen of the first amino acid makes a hydrogen bond

to the N-H hydrogen of the fifth amino acid. In a α-helix, each of the first four amino

acids, through the carbonyl oxygen makes only one hydrogen bond within the polypeptide

backbone. The N-H oxygen of the ninth amino acid makes a hydrogen bond to the carbonyl

hydrogen of the fifth amino acid. In a α-helix, each of the last four amino acids, through

the N-H oxygen makes only one hydrogen bond within the polypeptide backbone The pitch
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Figure 2.10: The formation of α-helix. First is the nitrogen colored blue, second is the alpha

carbon (Cα), colored grey, and third is the group of carbon (grey) and oxygen (red), called

carbonyl. Hydrogen atoms are colored white. Helix runs from the top to a bottom, N-¿C.

of a helix is the length per one complete turn. In an α-helix this distance is 5.4 Å. In an

α-helix 18 residues will make 5 complete turns - 3.6 residues per one turn.

The principle of formation of 310-helix and π-helix is similar to α-helix. To form a

310-helix the carbonyl oxygen of the first amino acid makes a hydrogen bond to the N-H

hydrogen of the fourth amino acid. In an 310-helix pitch is 2 Å and it has approximately 3

residues per one turn. A substantial amount of all 310 helices occur at the ends of α-helices.

For the π-helix the carbonyl oxygen of the first amino acid have a hydrogen bond with

the N-H hydrogen of the sixth amino acid. In an π-helix pitch is 1.5 Å and it has 4.1

residues per one turn. The π helix is an extremely rare secondary structural element in

proteins.

All three types of helices are presented on Figure 2.11. A large proportion of (85%) of

helices are distorted in some way, i.e. radius of curvature greater than 90 Å and deviation

of axis from straight line is equal to or greater than 0.25 Å.

β-strand (stretch of amino acids typically 210 amino acids long whose peptide back-

bones are almost fully extended) lack intra-segment hydrogen bonds. Any interactions

between atoms of neighboring residues of β-strand are not significant due to the extended

nature of the chain. This extended conformation is only stable as part of a β-sheet where
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Figure 2.11: α-helix, 310-helix and π-helix

contributions from hydrogen bonds between aligned strands exert a stabilizing influence.

The β-sheet is sometimes called the beta pleated sheet since sequential neighboring Cα
atoms are alternately above and below the plane of the sheet giving a pleated appearance.

β–sheets are found in two forms designated as ”Antiparallel” or ”Parallel” based on the

relative directions of two interacting β-strands. The formation of ”Antiparallel” and ”Par-

allel” β-sheet by hydrogen bonds is shown on Figure 2.12. The direction of β-strand is

indicated by the sequence of atoms within each residue (by the direction of polypeptide

backbone N− >C or C− >N). In anitparallel β-sheet adjacent strands run in opposite

directions and hydrogen bonds between strands are approximately perpendicular to the

direction of the strands. In parallel β-sheet adjacent strands run in the same directions

and hydrogen bonds between strands are angled with respect to the direction of the strands.

β-sheets are formed from strands that are very often from distant portions of the

polypeptide sequence. Hydrogen bonds in β-sheets are on average 0.1 Å shorter than

those found in α-helices.

Hydrogen bonded turn is defined by the close approach of two Cα atoms (< 7 Å), when

the corresponding residues are not involved in a regular secondary structure element such

as an helices or β-strands of β-sheet. Hydrogen bonded turns are characterized by the

number of residues between the donor (N-H group of amino acid) residue and acceptor

(C=O group) residue of hydrogen bond. The most common form of turn has the donor
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Figure 2.12: ”Antiparallel” and ”Parallel” β-sheet formation by hydrogen bonds between β-

strands.

and acceptor residues separated by three other residues - 3 turn.

Residues which are not in any of the above conformations (Helix, Beta strand, Hydrogen

bonded turn) are designated with L (loop).

The α-helix and β-sheet conformations for polypeptide chains are generally the most

stable of the regular secondary structure elements. However, in most proteins there are

significant regions of unordered structure.

Domain, Motif, Fold

Proteins can be organized into several units.

A structural domain is an element of the proteins overall structure that is self-stabilizing

and often folds independently of the rest of the protein chain. Many domains are not unique

to the protein products of one gene or one gene family but instead appear in a variety of

proteins. Domains often are named and singled out because they figure prominently in the

biological function of the protein they belong to.

A motif in this sense refers to a small specific combination of secondary structural

elements. These elements are often called supersecondary structures. In the frame of this

work following motifs are used:
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Figure 2.13: Fold examples: a) Helix-bundle, b) Beta-barrel

• β-hairpin - defined as two adjacent β-strands that also hold adjacent

positions in a β-sheet

• 3-β-meander - three adjacent β-strands that also hold adjacent positions

in a β-sheet

Fold refers to a global type of secondary structural elements arrangement, like helix-

bundle (small protein fold composed of several alpha helices that are usually nearly parallel

or antiparallel to each other) or beta-barrel (large beta-sheet that twists and coils to form

a closed structure in which the first strand is hydrogen bonded to the last) on Figure 2.13.

Despite the fact that there are about 100,000 different proteins expressed in eukaryotic

systems, there are much fewer different domains, structural motifs and folds.

The number of possible sequences is practically unlimited, but the estimated number

of folds is approximately 4,000. This is partly a consequence of evolution, since genes or

parts of genes can be doubled or moved around within the genome. This means, that e.g.

a protein domain might be moved from one protein to another thus giving the protein a

new function. Because of these mechanisms pathways and mechanisms tends to be reused

in several different proteins.

2.3.3 Protein Surface

The chief characteristic of proteins that allows their diverse set of functions is their ability

to bind other molecules specifically and tightly. Tertiary structure of the protein defines

its molecular surface. The binding ability of protein is mediated by its surface.

A binding site is a region on a protein surface to which specific other molecules and

ions (ligands) form a chemical bond. In most of the cases binding sites are located in clefts
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Figure 2.14: Clefts and binding sites. The surface and clefts of the metalloproteinase

thermolysin (PDB code 4tmn). The contours defining the proteins clefts are shown as the red

wire-cage regions lying between the proteins surface ridges (orange). The ligand can be seen

sitting inside one of the cleft (binding site) regions in the middle of the figure. Image is adapted

from Laskowski et al. (1996).

(also called depressions or ”pockets”) on the molecular surface.

Figure 2.14 demonstrates an example of protein surface, defined clefts and binding site

with bound ligand.

2.4 Mutations

The word mutation derives from the Latin mutatio (change). In classical biology, mutation

means a permanent changes in DNA. In most cases, DNA changes either have no effect

or cause harm, but mutation can improve an organism’s chance of surviving and passing

the beneficial change on to its descendants. Mutations can be caused by copying errors

in the genetic material during cell division, by exposure to ultraviolet or ionizing radia-

tion, chemical mutagens or viruses. In modern biology and particularly in bioinformatics

the word “mutation” refers to any stable change in some biochemical structure including

protein structures. In the framework of this dissertation two specific types of mutations

are distinguished: sequence mutation - changes in a DNA or protein sequences and fold
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mutation - changes in tertiary/quaternary levels of protein structure.

There are following types of sequence mutations:

• Point mutations also called gene level mutations in case of DNA:

– Substitution: exchange a symbol (single nucleotide or amino acid) for another;

– Insertion: adding one or more extra symbol (nucleotides or amino acid) into the

sequence;

– Deletion: removing one or more symbol (nucleotides or amino acids) from the

sequence.

• Chromosome level mutations: specific for DNA changes of whole segments of chro-

mosome, such as gene duplications, chromosome region deletion, reversing the orien-

tation of a chromosomal segment, etc.

• Genome level mutations: specific for DNA changes on the level of genome (whole

hereditary information encoded in the DNA), such as chromosome deletion, chromo-

some duplication, genome rearrangement etc.

Chromosome and genome level mutations are infrequent and cause severe diseases. At the

same time chromosome and genome mutations could define differences between species, for

instance, cabbage genome can be transformed into turnip genome with the help of genome

rearrangement (change the content and/or the order of genes of a genome).

The most frequent type of mutations are point mutations, that usually take place

during DNA replication process (the process of copying a double-stranded DNA molecule

to form two double-stranded molecules). In the result changes in DNA caused by point

mutation errors can appear in protein sequence, creating partially or completely non-

functional proteins. However, only a small percentage of mutations are harmful causing

medical conditions (genetical disorder); most have no impact on health. For example, some

mutations alter a gene’s DNA base sequence but dont change the function of the protein

made by the gene.

A very small percentage of all mutations are beneficial, meaning that mutations have

a positive effect. These mutations lead to new versions of proteins that help an organism

and its future generations better adapt to changes in their environment or in other words

these mutations are advancing evolution.

2.4.1 Mutations of Protein Structures

Relatively new idea is that in protein structures changes, similarly as in sequences, have

evolved by a stepwise process, each step involving a small change in the protein fold.

Such a model is unlikely to provide a full picture of structure evolution (a full picture
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of structure evolution and appropriate model is not known yet). However, there are a

number of studies demonstrating that such an approach is useful in the exploration of

basic tendencies in evolution of the protein structures and functions (Grishin, 2001; Kinch

and Grishin, 2002; Matsuda et al., 2003; Viksna and Gilbert, 2007).

The definition of fold changes involves β-strands (E), α-helices (H), 310-helices (G),

loops, β-hairpins (S2) and 3-β-meanders (S3). The following set of fold mutations based on

the recent biological and bioinformatics discoveries (each of mutations can occur in both

directions) has been used in this work:

1. Insertion (deletion): loop ←→ E,

2. Insertion (deletion): loop ←→ H,

3. Insertion (deletion): loop ←→ S2,

4. Insertion (deletion): loop ←→ S3,

5. Substitution: E ←→ H,

6. Substitution: S2 ←→ E,

7. Substitution: S2 ←→ H,

8. Substitution: S3 ←→ E,

9. Substitution: S3 ←→ H,

10. β-hairpin flip/swap: exchange of the order of β-hairpin’s strands in a β-sheet,

11. Insertion (deletion): loop ←→ G,

12. Substitution: E ←→ G,

13. Substitution: H ←→ G,

14. Substitution: S2 ←→ G,

15. Substitution: S3 ←→ G,

16. Circular permutation of SSEs: changes in protein connectivity that can be visualized

through ligation of the termini and cleavage at another site.

This set is largely based on the types of fold mutations proposed in (Grishin, 2001;

Kinch and Grishin, 2002). Additionally, it includes insertions/deletions and substitutions

of β-hairpins (the existence of such changes was suggested in (Viksna and Gilbert, 2007)).
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The set consists of possible fold mutations that can occur during protein evolution and

each of them is confirmed by real biological examples (Grishin, 2001; Kinch and Grishin,

2002; Viksna and Gilbert, 2007). Most of these fold mutations are presumably the result of

accumulated point-mutations (insertions/deletions and substitutions of single amino acids)

in the protein sequence.

Structural changes also can arise from circular permutations (11) of protein fragments.

The likely cause for this process is gene duplication followed by truncation of protein. This

process has been studied by several authors and also is confirmed by biological examples

(Jung and Lee, 2001; Peisajovic et al., 2006; Uliel et al., 1999; Weiner et al., 2005).

2.4.2 Evolution and Homology

The word evolution derives from the Latin evolutio (unrolling). Biological evolution is the

change in the inherited traits of a population from one generation to the next. During

the evolution process step-by-step chain of point mutations lead to changes in protein

structures and functions.

Homology of biochemical structures means that two (or more) biomolecules have a com-

mon ancestor – they are evolutionary related. Homology of DNA sequences is discovered on

the basis of sequence similarity and type of DNA region (exon, intron, regularity regions).

Homology among proteins is concluded on the basis of sequence and three-dimensional

structure similarity. Such proteins are called homologous.

2.5 Ligands

The word ligand derives from the Latin ligare (to bind). In chemistry, it usually refers

to ions, atoms or functional groups which are covalently bonded to one or more partners.

In biochemistry, however, the use of the word is somewhat broader, being applied to any

molecule which interacts with a large macromolecule. As a consequence, the term “ligand”

in a biological context comprises an extremely diverse set of molecules, playing a wide

range of biological roles: provision of energy, enabling enzyme catalysis, signalling and

regulation functions.

The major biochemical ligands may be roughly broken down into the following six

classes:

1. Carbohydrates (e.g. glucose, fructose, mannose) - a group of simple organic com-

pounds that are aldehydes or ketones with many hydroxyl groups added (molecule

consisting of an oxygen atom and a hydrogen atom connected by a covalent bond),

usually one on each carbon atom that is not part of the aldehyde or ketone;

2. Peptides (e.g. MHC antigens, EGF);
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Figure 2.15: Ligands considered in this work.

3. Nucleotides and nucleotide derivatives (compounds that at least theoretically can be

formed from the nucleotides);

4. Lipids (e.g. glycerol, phosphatidylcholine, steroids) - a group of organic compounds

that are insoluble in water but soluble in non-polar organic solvents and are oily to

the touch;

5. Metal ions (e.g. Mg2+, Ca2+, Zn2+);

6. Heterocyclic aromatic compounds (e.g. heme).

In the context of the dissertation few ligands are considered (Figure 2.15): Adeno-

sine monophosphate (AMP) and Adenosine triphosphate (ATP) from nucleotides; Flavin-

adenine dinucleotide (FAD), Flavin mononucleotide (FMN) and Nicotinamide adenine din-

ucleotide (NAD) from nucleotide derivatives; Glucose (GLC) from carbohydrates; Heme

(HEM) from heterocyclic aromatic compounds and two lipids - steroid Androstenedione

(AND) and steroid Estradiol (EST).

2.6 Conclusions

In the given chapter chemical and biological concepts used in the dissertation have been

described. Chemical composition, linear and geometrical structure of biomolecules (DNA,
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RNA and proteins) have been discussed, including the description of protein synthesis and

other specific topics.

Since the main focus of the work is on protein structures and evolution of biochemical

structures, the components of protein structures (SSEs, domains, motifs and folds) as well

as mutations of protein sequences and structures are described in detail.

The last section is devoted to ligands – small molecules that interacts with proteins.

Ligands that are bound to protein define the protein functionality that, in turn, is also

related to protein evolution.

For the creation of this chapter different chemical, biological and bioinformatics books,

articles and manuals have been used, namely (Grishin, 2001; Kinch and Grishin, 2002;

Uliel et al., 1999; Jung and Lee, 2001; Peisajovic et al., 2006; Weiner et al., 2005; Kabsch

and Sander, 1983; Betts and Russell, 2003; Eidhammer et al., 2004; Clote and Backofen,

2000; Mowery and Seidman, n.d.), as well as internet resources (Collomb, n.d.; Kimball,

n.d.; Wikipedia, the free encyclopedia, n.d.).

Images have been created by author using Pymol software (DeLano, n.d.) for protein

structure visualization or adapted from the following internet resources:

• http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/Illustration/Pdf/

amino acid.pdf ;

• http://www.geneticengineering.org/chemis/ ;

• http://www.russell.embl.de/aas/ ;

• http://wiz2.pharm.wayne.edu/biochem/prot.html.



Chapter 3

Comparison of Biochemical Structures

Computer Science is no more about computers than
astronomy is about telescopes.

E. W. Dijkstra

Abstract

This chapter is devoted to classical comparison problems of sequences and structures
in bioinformatics. Definitions of comparison problems and possible solutions, which
are widely used, are discussed. Since graph based approaches are in focus of the
thesis, graph matching methods are described in detail. For a number of solutions
a schemes representing pseudocode of algorithms are given. These algorithms were
used in modified way or utilized in the frame of this dissertation.

Comparison algorithms for sequences and structures of biomolecules are used for the
detection of similarity between these molecules. Therefore exists a number of methods
for similarity measurement and the most widely used scores, such as RMSD and
some others, are also described in this chapter. Besides, applications of comparison
algorithms for proteins are presented in a separate section, including concepts of
protein classification, global and local protein structure comparison and exploration
of protein evolution.

Nowadays, comparison of sequences and structures are the most fundamental operations

in the analysis of biochemical structures.

When biologists discover a new sequence (DNA or protein), they would like to compare

it to a database of already known sequences and find those sequences which are similar

(does not have to be exactly identical) to the newly discovered one. Sequences in database

are known, their features are defined and described. Then, if the new sequence is similar

to some from database, it means that they have some similar features. In case of proteins,

sequence similarity allows to detect protein structure and to transfer functional annotation.

In case of DNA, sequence similarity allows to detect special regulatory sequences of DNA

and to transfer gene annotations.

However, there are situations when sequence similarity is not enough for protein func-

tion prediction. If that’s the case and protein structure is known, biologists make complex

search of proteins with similar sequence and structure.



36 3. Comparison of Biochemical Structures

Proteins are distributed into classes and families based on sequence and structure sim-

ilarities. If some sequence class is specified by one or more sub-sequences (patterns), then

to define whether a sequence belongs to the class is just to find a sequence segment that is

similar to the pattern. If some structural class is defined by specific type of fold (Section

2.3.2), then to identify whether a structure belongs to the class is to compare structure to

fold representatives of various classes and to choose the class that gives the best result.

Given more than two similar sequences it is possible to define evolution process, to find

segments, which are predisposed to some kind of mutations, or to find segments, which are

conserved during the evolution process. However, multiple sequence comparison problem

is much more complicated in comparison with pairwise problem. The same is true for

multiple structure comparison problem: finding similarities in a set of structures gives

much more insight into structure evolution process and understanding of protein functions

than pairwise similarities, but the problem is also much more complicated.

Comparing sequences or structures, biologists would like to answer quite simple ques-

tion that is not dependent of the purpose of comparison: How similar are sequences or

structures?

The concept of similarity between biological sequences is different from mathematical

approach. Sequences does not have to be exactly identical, but biologically similar. Thus,

to evaluate similarity of biological sequences one has to consider mutations that may hap-

pend in sequences (Section 2.4): substitutions, insertions/deletions of elements. For DNA

elements are nucleotides, but for proteins - amino acids. Mutations in protein sequences

are caused by point mutations in DNA. In accordance with such biological similarity con-

cept identical regions of sequences and mutated regions have to be evaluated together by

using probabilities with which detected mutations could happened. Probabilities of each

mutation type in protein sequences are calculated and summed in so called substitution

matrices.

In turn, there are no general concept of similarity between structures. Any structure

comparison method can be conceptually deconstructed into three components: structure

representation, comparison algorithm, scoring of result. The choices made in all three com-

ponents depends on purpose of comparison: similarity of the positions of atoms, similarity

of physicochemical properties of the residues and atoms; similarity of secondary structure

packing; similar topology (relative positions of the elements and the order of the elements

along backbone), etc. The choices made in a given method on each of the three conceptual

components might be inter-related. For example, certain choices of structure representa-

tion might preclude certain search methods and impose constraints on the way scoring is

performed.

Quite roughly, representation of structures is divided into two classes: element-based

representation, when relation between elements (distance, direction, etc.) is explicitly given

and the sequential order of elements might be important and space-based representation



3.1. Comparison of Sequences 37

when the space in which the structure is located is divided into geometrically defined cells,

some values are calculated for each cell and values in two or more sets of cells are compared.

Thus, relation between elements still can be used in space-based representation, but the

sequential order is always disregarded.

In the frame of this chapter author focuses on the approaches that consider the following

widely used concept of structure similarity: to evaluate how similar are structures one has

to find the best superimposition of structures and to measure the average distance between

the superimposed elements by using root mean square deviation. In such a case element-

based representation of structures is used and the similarity of in understanding of geometry

is considered in explicit way. In turn, chemical similarity of elements and similarity of their

sizes (i.e. number of atoms in each element) are often considered in implicit way during

the superimposition process.

Generally, there are many various approaches to the comparison problem of biochemical

structures by using element-based representation. Algorithms that were used in modified

way or utilized later in the dissertation are discussed in detail including pseudocode. Other

most widely used methods in bioinformatics are only discussed briefly and referenced. Thus

the chapter represents the review of previous studies in the field of comparison problems

of bioinformatics.

Since the main focus of the work is on proteins, application of comparison algorithms

for proteins is discussed in detail including methods for protein SSEs prediction, detection

of global and local similarities between protein structures, methods for exploration of fold

evolution and protein classification types that also are based on comparison algorithms.

It is important to notice that none of the concepts of similarity between protein struc-

tures till now did include ideas of structural mutations, or, in other words, comparing two

structures represented by sets of structural elements, possible mutations of elements were

neglected (Section 2.4.1). The innovation made by author is the concept of structure com-

parison when to evaluate similarity of structures one, similarly as with sequences, has to

consider structural mutations that may happen in structures as the result of evolutionary

processes. An appropriate method that implements this concept is described in the next

chapter.

3.1 Comparison of Sequences

The comparison of sequences is probably the first application of computer science to the

study of molecular biology.

DNA and RNA sequences are constructed from 4 symbols alphabet

Σ = {A,G,C, T (U)}, where symbols are nucleotides (Section 2.2.2).
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Proteins sequences are constructed from 20 symbols alphabet

Σ = {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y }, where each symbol is an

amino acid in one-letter code (Section 2.3.1).

Since the main purpose of sequence comparison is to understand how similar are se-

quences from biological point of view, the comparison is mostly made by trying to align

the sequences. In making an alignment, a 1:1 correspondence is set up between the sym-

bols of the two sequences. This has the evolutionary implication that at one time the

paired nucleotides/amino acids were the same in an ancestral DNA, RNA or protein and

have diverged through the point mutations – insertions/deletions and substitutions of nu-

cleotides/amino acids (Section 2.4).

At the same time biologists distinguish homologous sequences - sequences that share a

common evolutionary ancestry and similar sequences - sequences that have a high percent-

age of aligned residues with similar physicochemical properties. Homology is qualitative

feature that can be drawn between two sequences when they share a high enough degree of

sequence similarity. Similarity is quantitative feature that can be observed directly from a

sequence alignment and can be described using percentages.

Definition 1 (Sequence Alignment).

Instance: Two sequences S1 and S2 represented as lists of symbols, where each symbol

si ∈ Σ.

Solution: A set of pairs A = {< s1
1, s

2
1 >, ..., < s1

n, s
2
n >}, where n ≥ max{|S1|, |S2|} and

s1
i ∈ S1 ∪ {“-”}, s2

i ∈ S2 ∪ {“-”} and < s1
i , s

2
i >6=< “-”, “-” >.

During the alignment of two sequences the symbol “-”(denoted by blank) means deletion

or insertion. One or several contiguous blanks are called a gap.

From the definition of sequence alignment follows that there are a number of alignments

for two sequences, not only one. To chose the best alignment one needs to distinguish

between alignments that occur due to homology and those that occur by chance defining

a scoring function that rewards symbol matches and penalizes mismatches and gaps.

For instance, if S1 = VEITGEIST and S2 = PRETERIT, sequence alignments A1 and

A2 are:

A1: V E I T G E I S T A2: V - E I T G E I S T

P R E T - E R I T P R E - T E R I - T

Score:0 0 0 1-1 1 0 0 1=2 Score:0-1 1-1 1 0 0 1-1 1=1

The score of an alignment is obtained by summation of scores for similarity of symbols

from each pair in an alignment.

In the example above scores of each pair (column) of symbols are presented in the

third line together with the total scores (Score(A1)=2 and Score(A2)=1). These scores are

calculated by using the following scoring method and appropriate model of evolution: -1
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for gap insertion (one symbol in pair is “-”) as in this model of evolution insertion/deletion

of symbol is the most rare case; 1 for the same symbols in pair (match) - the most frequent

and favorable case; 0 for different symbols in pair (mismatch) - substitution of symbol is

more probable than insertion/deletion, but less probable than match. The total score to

a great extent depend on the chosen scoring method. the highest scoring alignment in the

example above is A1. To summarize, scoring function S of alignment A:

S(A) = λ1(#matches)− λ2(#mismatches)− λ3(#gaps), where λ1,2,3 are costs for match

(the same symbols in pair of the alignment), mismatch (different symbols in the alignment

pair) and gap respectively.

As a rule matches are scored equally, but for mismatches substitution matrices are used

(Section 3.1.1), because some amino acids are more “exchangeable” than others (physico-

chemical properties are similar). Substitution matrix can be used to introduce ”mismatch

costs” for handling different types of substitutions in protein sequences. Mismatch costs

are not usually used in aligning DNA or RNA sequences, because in general no substitution

is ”better” than any other.

There are two main types of alignment: global alignment when sequences have main-

tained a correspondence over their entire length and local alignment when only the most

similar part of the sequences are aligned. One of variants is chosen depending on the pur-

pose with which alignment is done. For instance, searching for conserved motifs in DNA or

protein sequences biologists are more interested to find similar local regions of sequences

than to find overall sequence similarity. But comparing closely related sequences with al-

most similar length biologists assumed sequences to be generally similar over entire length.

Thus, the first problem is associated with local alignment, but second type of problem with

global alignment. Some other examples when local alignment is more suitable: comparing

DNA sequences introns are more likely to contain mutations than exons; comparing pro-

teins with similar structures and/or similar functions but from different species; searching

of protein domains.

To solve the sequence comparison problem, it is necessary to find global or local sequence

alignment(s) that gives the highest possible score.

Definition 2 (Global Pairwise Sequence Alignment).

Instance: Two sequences S1 and S2 represented as lists of symbols, where each symbol

s1,2
i ∈ Σ.

Solution: A set of pairs A = {< s1
1, s

2
1 >, ..., < s1

n, s
2
n >} that gives the highest score

Score(A) =
∑max{|S1|,|S2|}

i=1 Score(s1
i , s

2
i ), where n ≥ max{|S1|, |S2|} and s1

i ∈ S1 ∪ {“-”},
s2
i ∈ S2 ∪ {“-”} and < s1

i , s
2
i >6=< “-”, “-” >.

Definition 3 (Local Pairwise Sequence Alignment).

Instance: Two sequences S1 and S2 represented as lists of symbols, where each symbol

s1,2
i ∈ Σ.
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Solution: A set of pairs A = {< s1
1, s

2
1 >, ..., < s1

n, s
2
n >} that gives the highest score

Score(A) =
∑n

i=1 Score(s1
i , s

2
i ), where s1

i ∈ S1 ∪ {“-”}, s2
i ∈ S2 ∪ {“-”} and < s1

i , s
2
i >6=<

“-”, “-” >.

3.1.1 Substitution Matrices

The substitution matrix SM describes the rate at which one symbol in a sequence changes

to other symbol states over evolution time.

Pr{symbol i −→ symbol j } = SM(i, j)

The most frequently used substitution matrices for protein sequences are PAM (Dayhoff

et al., 1978), PAM derivatives (Jones et al., 1992) and BLOSUM (Henikoff and Henikoff,

1992).

PAM (Point Accepted Mutation) series of matrices developed by Dayhoff in the 1978

relies on evolutionary model based on observed differences in closely related proteins. The

PAM1 is the matrix based on the observation of 1572 accepted mutations between 34

superfamilies of closely related sequences (with no more than 1% divergence). Other PAM

matrices are extrapolated from PAM1. Suffix number in PAM series (n) reflects amount of

“time” passed: rate of expected mutation if n% of amino acids had changed. PAM1 - for

less divergent sequences (shorter time). PAM250 - for more divergent sequences (longer

time).

In this work JTT (Jones–Taylor–Thornton) matrix based on the renewed matrix PAM250

is used:

JTT (i, j) = 10 lg
(renewed PAM250)ij

fi

The calculation of renewed PAM1 matrix included 59190 accepted point mutations in

16130 protein sequences. Renewed PAM250 has been extrapolated from renewed PAM1.

JTT matrix is used for problems where divergent sequences are compared assuming that

they could be evolutionary related long time ago (Section 5.1).

BLOSUM (BLOck SUbstitution Matrix) series of matrices developed by Henikoff and

Henikoff in 1992 are based on percentage of substitutions observed in blocks of conserved

sequences within evolutionary divergent proteins. BLOSUM matrices don’t rely on a spe-

cific evolutionary model. Suffix number in BLOSUM series (n) reflects expected similarity:

the minimum percentage identity of the blocks of multiple aligned amino acids used to

construct the matrix. For instance, BLOSUM45 can be used for more divergent sequences,

but BLOSUM62 - for less divergent sequences. In the frame of this work BLOSUM62

matrix is used for the detection of global sequence similarities.

As a rule, BLOSUM62 substitution matrix is used for the sequence comparison problems

when there are no clues about evolutionary relationship between proteins under consider-

ation (Section 4.1).
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Figure 3.1: JTT matrix. See details in the text.

Figure 3.2: BLOSUM62 matrix. See details in the text.

3.1.2 Algorithms for Pairwise Sequence Alignment

There are two main approaches to the pairwise sequence alignment problem: dynamic

programming, that guaranteed to find optimal alignment and much more efficient but not

exact heuristic algorithms. As a rule heuristic approaches are used for comparison of target

sequence with database of sequences.

Dynamic Programming

Since symbols in sequences are independent from each other, the sequence alignment prob-

lem can be solved using dynamic programming approach – the optimal alignment of suffix

found early in the solution procedure is used in later calculations.
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Figure 3.3: Scheme of forward phase of Needelman and Wunsch algorithm. See details

in the text.

The task of finding the highest scoring alignment(s) is done in two phases: the forward

phase – using dynamic programming, find the highest scoring and the backtracking phase

– find alignments achieving the highest score by using the intermediate results from the

forward phase.

The first version of dynamic programming for the solution of global pairwise alignment

problem was developed in 1970 by Needelman and Wunsch ((Needelman and Wunsch,

1970)).

The scheme of the forward phase of the Needelman and Wunsch algorithm (NWA) is

presented on Figure 3.3. In the NWA dynamic programming matrix D is used to compute

the optimal alignment of two sequences S1 = {s1
1, ..., s

1
n} and S2 = {s1

1, ..., s
1
m}. Each cell

of the matrix D(i,j) is defined to be the highest score of aligning the two subsequences

{s1
1, ..., s

1
i } and {s2

1, ..., s
2
j}. At line 01 the values for the first row and column of D are

calculated, which means aligning the empty sequence to appropriate subsequence. The

recurrence relation is used to compute all other values of D(i,j) (lines 02–07):

D(i, j) = max


1. D(i− 1, j − 1) + SM(s1

i , s
2
j);

2. D(i− 1, j)− gap;

3. D(i, j − 1)− gap.

, (3.1)

where gap - is a gap penalty for symbol insertion/deletion, SM - substitution matrix.

The forward phase is finished when value of D(n,m) is calculated – the highest score is

found (line 08).

Time complexity of this dynamic programming algorithm is O(nm).

The second phase is to reconstruct the highest scoring alignment by tracing back in
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the matrix paths from D(n,m) to D(0,0). To compute which alignment actually gives this

score for each cell D(i,j) of matrix D starting from the cell D(n,m), the values with the

three possible sources have to be compared to see which it came from (Choice1, Choice2,

and Choice3 from Equation 3.1). If Choice1, then s1
i and s2

j are aligned, if Choice2, then

s1
i is aligned with a gap, and if Choice3, then s2

j is aligned with a gap.

The classical form of the Needelman and Wunsch algorithm presented on Figure 3.3

uses the local gap model, which means that the penalty of a gap is found independently

of other gaps in the alignment. However, from biological point of view the more realistic

model is the contiguous gaps model when extending a gap is penalized less that opening

one. Hence a better formula for the gap penalty is an affine gap penalty function:

gl = gopen + lgextend (3.2)

Together with affine gap penalty function so called the ends-space free variant of the global

alignment is often used. It is a way to remove the penalty for mismatched overlapping

prefixes and/or suffixes of sequences S1 or S2. This variant of the global alignment is

useful for identifying a region in a long sequence that is the similar to a shorter sequence.

The scheme of the forward phase of the ends-space free algorithm for the global align-

ment that uses affine gap penalty function (ESFA) is presented on Figure 3.4.

The algorithm uses four matrices: D,G,E and F, where D is the main matrix that is

used for the collection of the maximal scores from other matrices (line 08), the highest

scores for symbols matching are stored in the matrix G (line 05), the maximal scores that

could be obtained for the start or the extend of a gap in the first sequence or extent are

stored in the matrix E (line 06) and the matrix F stores the highest scores of the start or

the extend of a gap in the second sequence (line 07).

The prefix penalty is removed by setting zeros to the first column and row of all matrices

(lines 01, 02). The suffix penalty is removed by searching for the maximum value in row

n and column m (lines 11-16) and starting the backtrack phase from this cell. The found

maximal value is reported as the highest score of the alignment (line 17).

Time complexity of the algorithm is still O(nm).

The solution to the local alignment problem is the same as the maximal solution to the

local suffix alignment problem over all indices i and j of S1 and S2. The modification of

the global alignment dynamic programming algorithm that allows to find such local suffix

alignments have been done by Smith and Waterman in 1981 ((Smith and Waterman, 1981))

. The main difference to the Needleman-Wunsch algorithm (Figure 3.3) is that negative

scoring matrix cells are set to zero, which renders the local suffix alignments visible. The
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Figure 3.4: Scheme of forward phase of Ends-Space Free algorithm with Affine Gap

Penalty function. See details in the text.

recursive formula for the matrix D filling is:

D(i, j) = max


1. 0;

2. D(i− 1, j − 1) + SM(s1
i , s

2
j);

3. D(i− 1, j)− gap;

4. D(i, j − 1)− gap.

(3.3)

The another modification is made in base conditions – the the first column and row of

the matrix D is filled with zeros. The last step in forward phase is finding of pair i? and

j? that meet the requirement: D(i?, j?) = max1≤i≤n,1≤j≤mD(i, j). The second phase is to

reconstruct the highest scoring local alignment by tracing back in the matrix paths from

D(i?, j?) to D(i, j) = 0.
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Heuristic Algorithms

Dynamic algorithms is time consuming if the whole database of sequences have to be com-

pared with target sequence. More efficient heuristic algorithms, such as BLAST ((Altschul

et al., 1990)) and FASTA ((Lipman and Pearson, 1985)) are used for database searching,

although not guaranteed to find optimal alignments.

The FASTA algorithm initially observes the pattern of word hits, word-to-word matches

of a given length, and marks potential matches before performing a more time-consuming

optimized search using a dynamic programming type of algorithm (Smith-Waterman). The

size taken for a word, given by the parameter ktup, controls the sensitivity and speed of the

program. Increasing the ktup value decreases number of background hits that are found.

From the word hits that are returned the program looks for segments that contain a cluster

of nearby hits. It then investigates these segments for a possible match.

The BLAST (Basic Local Alignment Search Tool) searches for high scoring sequence

alignments between the query sequence and sequences in the database using a heuristic

approach that approximates the Smith-Waterman algorithm. Firstly, BLAST searches for

exact matches of a small fixed length W between the query and sequences in the database.

For each word match, extend the alignment in both directions to find alignment that score

greater than a threshold of value S.

3.1.3 Multiple Alignment Problem

There are several reasons for finding multiple alignments. Comparing several sequences can

reveal what is common for a whole sequence family: properties shared by several sequences

can become significant when all of the sequences are considered together, but need not

appear significant when regarding only few of them in the analysis. Multiple alignments

can show which elements are critical for the sequences. In a case of protein sequences,

residues that appear in all/almost all sequences of the family are called conserved residues.

Exists the theory according to which conserved residues are critical for the structure and

functional of the proteins in the family.

A multiple alignment is an extension of pairwise alignment, each alignment element is

not a pair, but a list of m symbols, where m is the number of sequences.

Definition 4 (Multiple Sequence Alignment).

Instance: m sequences S1, S2, ..., Sm represented as lists of symbols, where each symbol

si ∈ Σ.

Solution: A set of listsA = {< s1
1, ..., s

m
n >, ..., < s1

n, ..., s
m
n >}, where n ≥ max{|S1|, ..., |Sm|}

and sji ∈ Sj ∪ {“-”}. Each list aj containts at least one symbol sij 6= “-”.

Example of multiple sequence alignment (MSA) is given on Figure 3.5.
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Figure 3.5: Multiple sequence alignment example. Multiple sequence alignment example

obtained by means of the ClustalW tool.

The exact solution, using dynamic programming, is practical for only a small number

of sequences. Moreover, the MSA problem has be proven to be NP-complete. Several

effective heuristic approaches for making multiple alignment have been proposed: iterative

pairwise alignment, progressive alignment, algorithms based on HMM (Hidden Markov

Model), etc.

The most frequently used heuristic approach to solve MSA problem is the progressive

alignment. The first version of it have been developed by Feng and Doolittle in 1987

(Feng and Doolittle, 1987). The order of aligning of sequences, or sets of sequences, in this

heuristic is determined by their highest scoring pairwise alignment.

Popular tool for MSA is ClustalW tool of European Bioinformatics Institute. ClustlW

uses modification of Feng-Doolittle algorithm developed by Thompson, Higgins and Gibson

in 1994 ((Thompson et al., 1994)).

3.2 Comparison of Structures

Comparison of structures (three-dimensional conformations) usually is specific for protein

and RNA molecules.

Any structure comparison method can be conceptually deconstructed into three com-

ponents:

1. Structure representation;

2. Comparison algorithm;

3. Scoring.

The choices made in all three components depends on purpose of comparison: similarity

of the positions of atoms, similarity of physicochemical properties of the residues and

atoms; similarity of secondary structure packing; similar topology (relative positions of the

elements and the order of the elements along backbone), etc.

The choices made in a given method on each of the three conceptual components might

be inter-related. For example, certain choices of structure representation might preclude

certain search methods and impose constraints on the way scoring is performed.
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As in the case of sequences, comparison of structures is divided into pairwise and

multiple comparison. Since pairwise comparison of structures has the big practical value

in analysis of proteins and methods of comparing pairs of structures can often be extended

to the comparison of more than two structures, in the frame of the dissertation only pairwise

structure comparison is considered.

The pairwise comparison of structures begins with the construction of structure model

using chosen method for structure description. The next step is comparison of structures

using algorithm approaching for the given models. As a rule, some constraints and some-

tomes scoring methods are needed for comparison algorithms. The result of comparison is

estimation of similarity of structures expressed in scores.

In overwhelming majority of cases, elements, such as atoms, residues, fragments, SSEs

etc., are used for representation of protein structures. Generally, elements defines the level

of abstraction of structure representation: atoms, residues, points of the surface – low level

of abstraction; SSEs, fragments, domains – high level of abstraction.

Depending on a task in view, some structure comparison methods simplify the descrip-

tion of the protein structure or increase the level of detail in its description using the same

elements.

3.2.1 Representation

The most common representation is element based, meaning that the description has refer-

ence to each element. Further, there are two main components in each method for protein

structure representation: elements on which the representation is based (atoms, residues,

SSEs, surface vectors, etc.) and description model of elements (strings, coordinates in 2D

or 3D space, vectors, matrices, graphs, etc.). The purpose with which the structure repre-

sentation is created dictates the choice of elements and their description model as well as

the parity of accuracy and complexity of this model.

In the frame of this work two types of elements are considered:

• Atoms and residues of protein (Section 2.3.2) – “low level representation”;

• SSEs and structural motifs (sections 2.3.2, 2.3.2) –“high level representation”.

As to the description model of elements there is a great number of different variants:

mapping the structure (residues) onto strings to employ sequence similarity methods to

detect structural similarities; construction of the distance matrix for atoms that allows

to compare structures in 2D space; construction of the surface of protein to describe the

solvent accessible surface of the residues being considered, etc.

The fundamental protein structure description is the coordinates in three-dimensions

of each atom, as given in the PDB files (Figure 2.9). Also it is common to let one or
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two atomic coordinates represent each residue, often the Cα and sometimes additionally

Cβ atoms are used (Section 2.3.1). Other description methods use combinations of atoms

or pseudo-atoms to increase the level of detail with respect to the Cα representation.

Coordinate based representation of protein structure is the most exact one, especially in

case if all atoms are used in the description.

Graph based approach have been used for the description model of protein structures

in the algorithms developed in the work.

Graph Based Approach

Description of the protein structure by some kind of graph allows to translate the structure

comparison problem to the graph comparison and to use classical graph theory algorithms.

Initially the development of graph based methods probably was mainly motivated by look-

ing for faster (but less exact) alternatives for structure comparison, however the approach

also has some intrinsic advantages, since it explicitly allows to include information about

SSEs, hydrogen bonds etc.

In graph based representation of protein structure the elements (atoms, residues and

SSEs) are graph’s vertices, but edges describe different type of connections between ele-

ments.

Graph based methods can be roughly divided into following classes: topological graphs,

atom based graphs and, so called, 3D graphs.

Generally, topological approach for the representation of protein structures involves

the description of how elements are assembled – their connectedness and orientability. The

well known example of graphs usage for the description of topologies is TOPS cartoons

(Westhead et al., 1999; Michalapoulos et al., 2004). TOPS cartoon is a highly simplified

representation of protein structure by using vertex ordered graph. In such graph vertices

represent SSEs of protein (α-helices and β-strands) and each vertex has label indicating

appropriate SSE up- or down- orientation and the sequence of SSEs in chain of protein

from C- to N-terminus. There are two types of edges in TOPS cartoons: H edges connect

pairs of vertices with H-bonds between them, C edges represent chiralities between SSEs.

TOPS cartoons are useful for the understanding of particular protein structure topology

and making comparisons between topologies.

Atom based graph is complete undirected labelled graph, where each vertex is defined

by atom coordinates in 3D space. Such type of graphs are frequently used for the RNA

structure and for some particular part of protein structure representation, because the

whole protein structure consists of 100-500 residues and the size of the respective graph is

too big even using only C − α atoms.

3D graph is a complete undirected graph, with vertex set corresponding to the set of

structural elements (SSEs and sometimes structural motifs) of structure – the i-th SSE
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Figure 3.6: Graph based protein structure representation. a)Traditional ribbon rep-

resentation of CATH domain 1fjgQ00. b) 3D graph for 1fjgQ00, where vertices are vectors

representing SSEs. Red balls – shows terminal points of vectors, green balls – the initial points.

Each vertex is labelled by SSE type and order in the backbone. Edges connect middle points of

vectors and are labelled by distances between these middle points. c Atom based graph for α-

helix of CATH domain 1fjgQ00, where vertices represents atoms (Cα and Cβ carbons atoms were

used here) and edges are labelled by distances between atoms. d) TOPS cartoon representing

1fjgQ00 topology.

(according to their order from C- to N- terminus) is represented by vertex i. Each SSE

is considered as a vector v in 3D space and each vertex is labelled with type of structural

element. Edge between vertices i and j is labelled by distance eij between the middle

points of vectors vi and vj.

Figure 3.6 shows the examples of graphs used for protein structure description.

3.2.2 Structure Comparison Methods

Given the sets of elements defining the structures under comparison, the structure compar-

ison problem reduces to the searching of equivalence or co-linear equivalence (alignment)

of the elements that gives the highest score. As elements there can be any objects of
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representation, like atoms, SSEs, structural motifs, surface vectors etc.

Definition 5 (Equivalence of Elements).

Instance: Two objects A and B with elements: A = (a1, a2, ..., am);B = (b1, b2, ..., bn),

where ai and bj are structural elements.

Solution: A set of pairs L(A,B) = {(ai1, bj1), (ai2, bj2), ..., (ail, bjl)}, where each element

ai ∈ A and bj ∈ B appears only once in L and each equivalenced pair z is defined by

mapping f : aiz → bjz that represents condition(s) of equivalence. L is called equivalence

of elements from objects A and B.

Definition 6 (Structure Alignment).

Instance: Two objects A and B with elements: A = (a1, a2, ..., am);B = (b1, b2, ..., bn),

where ai and bj are elements.

Solution: Equivalence L(A,B) = {(ai1, bj1), (ai2, bj2), ..., (ail, bjl)}, where i1 < i2 < ... < il
and j1 < j2 < ... < jl. L is called structural alignment or co-linear equivalence of elements

from objects A and B.

Widely used approach for solution of structure alignment problem when structures are

presented in coordinate form is Iterated Double Dynamic Programming (Taylor, 1999) –

heuristic algorithm, when structures are simultaneously aligned and superimposed using

two levels DP in each cycle (in each iteration when new alignment is detected).

Equivalence searching problem for coordinates of elements in structure can be solved

using geometric technique called Geometric Hashing (Wolfson, 1997). The idea behind

geometric hashing is to find the maximal coincidence between points of query and model

structures, invariant under both rotation and translation (rigid-body transformation) by

extracting invariant geometric features from structures and storing this data in a hash

table where the information of the identity/similarity of the structure of query and model

can be accessed directly through a hash key generated from the values of the features.

In case when graph based representation is used for structures, equivalence search-

ing methods are related to the two classical problems of graph theory concerning graph

matching: Subgraph Isomorphism and Maximal Common Subgraph.

An isomorphic mapping of one graph to another one is a one-to-one mapping of the

vertices and the edges of one graph onto the vertices and the edges, respectively, of the

other.

Definition 7 (Isomorphic mapping). There is an isomorphic mapping f : V (G1)→ V (G2)

between two graphs G1 and G2 when any two vertices u and v of G1 are adjacent in G1 if

and only if (u) and (v) are adjacent in G2.

Subgraph Isomorphism (SI) problem – checking whether for a given pair of graphs

(pattern graph and target graph) pattern graph is a subgraph of target graph.
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Definition 8 (Subgraph Isomorphism problem).

Instance: Two graphs G1 = (V1, E1);G2 = (V2, E2), where V1 and V2 are sets of vertices

and E1 and E2 are sets of edges.

Solution: G1 is a subgraph of G2 if exists an isomorphic mapping f : V (G1)→ V (G2).

SI problem is known to be NP-complete and as rule have to be solved during pattern-

matching procedures, e.g. when target graph is compared with number of patterns in the

database.

Maximal Common Subgraph (MCS) problem – searching for the largest graph which is

a subgraph of two given graphs.

Definition 9 (Maximal Common Subgraph problem).

Instance: Two graphs G1 = (V1, E1);G2 = (V2, E2).

Solution: All maximal subgraphs H = (V,E) such that H is isomorphic to subgraph

G′1 = (V ′1 , E
′
1) of G1 and G′2 = (V ′2 , E

′
2) of G2, and the appropriate isomorphic mappings

f1 : V (H)→ V (G1) and f2 : V (H)→ V (G2).

MCS problem is known to be NP-hard.

Both SI and MCS problems have variations when the vertex connectivity of two given

graphs should be preserved in the subgraph. This type of MCS is called Maximal Common

Induced Subgraph problem (MCIS) – searching for the maximal induced subgraph.

Most of the algorithms for solving graph matching problems belong to one of two types:

1. detection of the maximal cliques in the association graph;

2. enumeration and pruned search of space of all common subgraphs.

Maximal Cliques Detection

Definitions and explanations of algorithms in this section are based on the work I.Koch

(Koch, 2001), who explored maximal clique detection problem and appropriate algorithms

in detail.

Parts of two undirected labelled graphs G1 = (V1, E1) and G2 = (V2, E2, where n = |V1|
and m = |V2|, could be mapped onto another. Information of all possible compatibilities

(certain vertices and edges of graph G1 are compatible to certain vertices and edges of graph

G2) is stored in a new graph – called product graph, compatibility graph or association

graph. The notion of an association graph has been introduced by H.Barrow and R.Burstall

(Barrow and Burstall, 1976) as a useful auxiliary graph structure for solving general graph

matching problems. Depending on solving MCIS or MCS problem, a vertex product graph

or an edge product graph is generated.
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Definition 10 (Vertex Product Graph, Vertex Compatibility Graph or Vertex Association

Graph).

The vertex product graph Hv = (VH , EH), where the vertex set VH = V1 × V2 and the

vertex pairs {ui, uj} ∈ VH : ui ∈ V1, uj ∈ V2, u and v have the same labels. An edge

(uH , vH) ∈ EH , where uH = {u1, u2} and vH = {v1, v2}, exists if u1 6= v1 and u2 6= v2, and

if the vertex pair {u1, v1} shares a common edge in G1 with the same label as the common

edge shared by the vertex pair {u2, v2} in G2, or if vertex pairs {u1, v1} and {u2, v2} are

not adjacent in G1 and G2, respectively.

Levi proved (Levi, 1972) the correspondence between a maximal common induced sub-

graph and a clique (maximal complete subgraph) in the vertex product graph.

The definition of the edge product graph is analogous to that of the vertex product

graph. Detecting the maximal clique in the edge product graph, MCS problem could be

solved (Koch, 2001). Algorithm 457 by C.Bron and J.Kerbosch (Bron and Kerbosch, 1973)

is the most frequently used method for finding maximal cliques. Algorithm is based on the

branch-and-bound technique in which the main part of the recursive procedure consists of

choosing a vertex of a maximum degree and selecting a set of vertices which are adjacent

to it.

The scheme of the Bron and Kerbosch algorithm is presented on Figure 3.7. The

algorithm works with sets of vertices and edges (V,E) of the vertex product graph (G)

and three other sets: the set C contains vertices belonging to the current clique; the set S

contains vertices, which can no longer be used for the completion of C (all cliques containing

these vertices are already generated); the set N contains vertices which are neighbors of

selected vertex vi.

The algorithm starts with the empty sets C and S. Initially, V includes all vertices of

the vertex product graph G. If V and S are empty, a clique was found and will be reported

(line 02). From the set V the vertex vt with the largest vertex degree is chosen (line 04) in

order to decrease the vertex set that has to pass through the for-loop (lines 05–14). One

of ways how to find a vertex with the largest degree is to order the set V in accordance

with vertex degrees before the first call of the procedure “FindCliques”. In such a case the

first vertex in V is needed vertex with the largest degree.

The clique containing the vertex with the largest degree do not have to be the largest

clique. In many cases the choice of vertex vt ∈ V with the largest degree will result in the

smallest recursion tree what is not stringent and depends on the type of a graph. At line

06 the vertex vi ∈ V not adjacent to vt is chosen (it could be also vertex vt by itself). The

neighbors of vertex vi are stored in the set N (lines 08–10). Vertex vi is added to the clique

and the recursion call with V ∩ N and S ∩ N takes place (line 11). After the return of

recursive procedure processed vertex vi is added to the set S (line 12).

The time complexity of Bron-Kerbosch algorithm is estimated by O(2n), where n - is



3.2. Comparison of Structures 53

Figure 3.7: Scheme of the Bron and Kerbosch algorithm. See details in the text.

number of vertices in the vertex product graph.

Common Subgraphs Isomorphism

Another type of methods for solving SI and MCS problems are based on enumeration and

pruned search of space of all common subgraphs. One of the first algorithms belonging to

this type was developed for SI problem by J.Ullman (Ullmann, 1976). Few years later J.

McGregor (McGregor, 1982) proposed an alternative method based on enumeration and

pruned search for finding solution to MCS problem. Recently an improved backtracking

algorithm of Ullman have been proposed by E.Krissinel and K.Henrick (Krissinel and Hen-

rick, 2004a) for MCS problem. This algorithm, called Common Subgraphs Isomorphism

Algorithm (CSIA), will be considered in detail.
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Find common subgraphs H1 = (V,E) and H2 = (W,F ) for two labelled graphs G1 =

(V1, E1);G2 = (V2, E2) means to find such numeration of subgraph’s vertices, that all

pairs of matching vertices in the subgraphs are connected by matching edges. Common

subgraphs could be defined by set M consisted of pairs {vi, wj}, where vi ∈ H1 and wj ∈ H2

and isomorphism conditions are satisfied:

• vertices are compatible – comparison function µ(vi, wj) returns true;

• edges are compatible – ∀{vx, wy} ∈ M : edge (vi, vx) ∈ E is compatible to edge

(wj, wy) ∈ F (comparison function ν((vi, vx), (wj, wy)) returns true).

The scheme of the Common Subgraphs Isomorphism Algorithm (CSIA) is presented on

Figure 3.8.

The CSIA searches for the largest common subgraph of two graphs G1 = (V1, E1) and

G2 = (V2, E2), where V1,2 are sets of vertices and E1,2 are sets of edges. V ′1 and V ′2 are

sets of locked vertices correspondingly for V1 and V2. In the algorithm the set M defines

common subgraph in the current backtracking state. M is the set of pairs < vi, wj >,

where vi ∈ V1 and wj ∈ V2. Isomorphism is checked by two functions: “CompareVertices”

and “CompareEdges”, that have to be defined for the type of graphs G1 and G2. The

CSIA works with the set of candidate mappings U , which consists of pairs < vi, Listi >,

where vi ∈ V1 and Listi is the list of vertices wj ∈ V2 that are compatible with vi. As to

variables: nmax contains the size of the maximal detected subgraph, n0 is defined by user

for the minimal size of common subgraph that user would like to find.

The main recursive procedure of the CSIA is “Backtrack”. Before this procedure is

called for the first time (line 09), the set U is completed with all vertices from the set V1

and appropriate lists of compatible vertices from the set V2 (lines 01–08).

In the procedure “Backtrack” the subset Uc ⊂ U contains vertices vi ∈ V1 which are

accessible and have compatible vertices from V2 in the current recursion level (line 01). The

maximum possible size of common subgraph that may be achieved by further continuation

of the search is evaluated by the size of the set Uc. If this maximum possible size of

common subgraph is smaller than nmax (the size of the maximal detected subgraph) or

n0 (the minimal size of common subgraph) (line 02), common subgraph is found and will

be reported (line 22), but variable nmax will be updated (line 23). Otherwise, the vertex

vq from the set Uc with the least number of compatible vertices from V2 is picked up (line

03). Using loop (lines 04 – 16) each pair of vertices < vq, wq >, where vertex wq ∈ V2

is compatible with vq is added to the set M (line 05). Each pair of edges connecting the

last matched vertices vq, wq and all candidate mappings from the subset Uc is checked for

compatibility (line 08). In the result, new set U ′ of candidate mappings is created (line

12). Then procedure “Backtrack” is called recursively with U ′ in order to make further

extensions (line 14). To perform different mappings on each loopover the set M is restored
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after the recursive call (line 15). Since common subgraph does not have to contain any

particular vertex, the search must be complemented by exploring all extensions of the set

M that do not include the selected vertex vq. For that purpose vq is temporarily locked

and “Backtrack” is called again (lines 17–18). After it returns, vq can be unlocked (line

19).

The time complexity of CSI algorithm is estimated as O(mn+1n), where m is number

of vertices in the first graph and n is number of vertices in the second graph.

In practise, both algorithms BKA and CSIA are usable only for comparison of small

graphs (less than 70-80 vertices). The advantage of CSIA is a possibility in a simple way

to implement the ordering of the vertices. At the same time BKA is very useful for specific

types of graphs, where the vertex with the maximal degree with high probability is in the

maximum clique. In such a case a heuristic approach could be used – the first found clique

is considered as maximum.

3.2.3 Scoring and Superimposition Problem

When equivalence for elements of two structures is already found, the similarity of struc-

tures can be evaluated solving the superimposition problem and calculating RMSD (Root

Mean Square Deviation) value.

Definition 11 (Superimposition Problem).

Instance: Two structures P1 and P2 defined by their coordinate sets and equivalence E =

{< p1
i1
, p2

j1
>, ..., < p1

iN
, p2

jN
>}, where N is the size of the equivalence, p1

i ∈ P1 and p2
j ∈ P2.

Solution: Transformation T, consisting of R – rotation matrix and t – translation vector,

that minimizes the equation:

RMSDC(P1, P2) = minT

√∑N
i=1(p

1
i − Tp2

i )
2

N
(3.4)

RMSDC or simply RMSD means coordinate based root mean square deviation.

Superimpostion problem can be solved in polynomial time using different methods. The

frequently used approach includes two steps:

1. Relocation of the origin to center of mass for P1 and P2;

2. Searching of the best rotation.

The scheme of the superimposition algorithm is presented on Figure 3.9. The algorithm

for the superimposition of structures works with the following sets and lists: P and P ′ are

sets of coordinates in 3D representing protein structures that have to be superimposed,

where each coordinate is a point in 3D pi = {p1
i , p

2
i , p

3
i }; equivalence E is defined by a
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Figure 3.8: Scheme of Common Subgraphs Isomorphism algorithm. See details in the

text.
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Figure 3.9: Scheme of Superimposition algorithm. See details in the text.

list of N pairs, where each pair consists of coordinate from P and coordinate from P ′;

R = (rcr)c,r=1,2,3 – is 3× 3 rotation matrix; Q and Q′ are relocated sets of coordinates.

The algorithm starts with calculation of centers of mass p and p′ for sets P and P ′ (lines

01–03). Coordinates included into equivalence E are relocated so that the origin is in the

center of mass (lines 04–06). In the result there are two new sets Q and Q′ that consists of

coordinates from equivalence qi is equivalent to q′i for i = 1...N . At line 07 the translation

vector is calculated by subtraction of radius vectors p′ and p: t = p′ − p. Rotation matrix

is found by procedure FIND ROTATION (line 08) discussed later in this section. RMSD

value is calculated using simplified Equation 3.4:

√PN
i=1(p′i−Rpi)2

N
(lines 09–15).

The best rotation matrix can be found by different methods like stepwise search of

rotational space (Remington and Matthews, 1978), Least Squares minimization (McLach-
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lan, 1972) and matrix based methods (Kabsch, 1976, 1978; Lesk, 1986; Arun et al., 1987).

Matrix based singular value decomposition method is used in the frame of this work.

Rotation Matrix Search

A number of methods have been reported for the calculation of the rotation matrix R,

which optimally superimposes two sets of points P and P ′ in three-dimensional space,

where pi = {p1
i , p

2
i , p

3
i }, i = 1, ..., N and the origin of both set are relocated to center of

mass of P and P ′. The best rotation matrix R minimizes the equation (McLachlan, 1972;

Kabsch, 1976, 1978; Lesk, 1986; Arun et al., 1987):

D =
N∑
i=1

(p′i −Rpi)2. (3.5)

All matrix based methods for detection of the best rotation matrix involve converging

iterations, diagonalization or orthogonal decomposition of the 3 × 3 correlation matrix H

(Kabsch, 1976, 1978; Lesk, 1986; Arun et al., 1987):

Hcr =
N∑
i=1

p′ip
T
i =

N∑
i=1

p′ci p
r
i , (3.6)

where c,r = 1,2,3; pi ∈ P and p′i ∈ P ′, T in superscript means matrix transposition.

Matrix method is a very stable numerical procedure applicable even to singular corre-

lation matrices. According to Lesk and Arun (Lesk, 1986; Arun et al., 1987) H = RTA,

where A is a (unique) Hermitian (square matrix with complex entries which is equal to its

own conjugate transpose) positive definite matrix. Applying singular value decomposition

(SVD) to matrix H, the following matrix could be obtained:

H = USV T = (UV T )(V SV T ), (3.7)

where U and V are orthonormal matrices and S is a diagonal matrix of non-negative

singular values. Considering that V SV T represents a Hermitian positive definite matrix

A, R is obtained by:

R = V UT (3.8)

This procedure, however, does not guarantee that R will represent a proper rotation. If

det(R) < 0 then the superimposed set P is inverted (rotoinversion) ((Kabsch, 1978)).

There is no way out of this problem other than to make an appropriate correction to the

correlation matrix H. As follows from Equation 3.8, changing the sign of any of the vectors

Ui or Vi will change the sign of det(R) and thus make R the matrix of proper rotation
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(R = V ′UT , where V ′ is obtained from V by changing the sign of one column). Such a

change of sign is equivalent to a distortion of H. Since (Lesk, 1986; Arun et al., 1987)

D =
N∑
i=1

(| pi |2 + | p′i |2)− trace(RH), (3.9)

where trace is the sum of the elements on the main diagonal, such a distortion may result

in increasing D. As may be derived from Equations 3.7 and 3.9, this increase is least

(and therefore the resulting proper rotation is the best possible one) if changing the sign

is applied to the vector Ui or Vi that corresponds to the minimal singular value si. It is

important to note that the calculation of the rotation matrix using SVD gives a meaningful

result even if the correlation matrix H is degenerate.

The scheme of the algorithm for the best rotation matrix search by using SVD is

presented on Figure 3.10. The algorithm works with the following sets and matrices: P

and P ′ are sets of coordinates, where each coordinate pi = {p1
i , p

2
i , p

3
i }; ∀p′i = Rpi + t R –

rotation matrix, t – translation vector, H = (hcr)c,r=1,2,3 – 3× 3 correlation matrix.

The algorithm starts with the construction of the correlation matrix H by using Equa-

tion 3.6 (lines 01–03). At line 04 singular value decomposition of H is found (Equation

3.7):H = USV T , where U = (ucr)c,r=1,2,3, V = (vcr)c,r=1,2,3 and S = {s1, s2, s3}. The

candidate for rotation matrix R is constructed at line 05 (Equation 3.8). In a case if the

determinant of the matrix R is positive, this matrix is reported as rotation matrix (line

22), otherwise singular values of the diagonal matrix S are checked (line 07). If one of the

singular values is more than zero, points in P ′ = {p′i} are coplanar, otherwise points in P ′

are collinear and no rotation matrix can be detected (line 16). In case of coplanar points

in P new orthonormal matrix V ′ is constructed from V by changing the sign of its column,

which corresponds to the minimal singular value si (lines 08–15). New rotation matrix is

calculated by using V ′ (line 17).

In the frame of the dissertation for the computation of SVD Golub-Reinsch algorithm

(Golub and Reinsch, 1970) is used in its implementation in the GNU Scientific Library.

The time complexity of the algorithm for the best rotation matrix by using SVD is O(n),

where n is number of points in the set that have to be superimposed.

Other Scores

RMSDC and derivatives of RMSDC are used to evaluate the similarity of two structures

after superimposition based on the equivalence. It is possible to say that RMSDC are the

main way to score geometrical similarity of two structures.

Frequently used derivative of RMSDC is so called Q-score, that represents a ratio

of N (number of equivalenced pairs) and the RMSD. Q score correspond to an intuitive

understanding of structural similarity suggests contradictory requirements of achieving a
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Figure 3.10: Scheme of SVD algorithm for rotation matrix search. See details in the

text.

lower RMSD and a higher number of equivalenced pairs.

Q =
N2

(1 + (RMSDC
R0

2
))N1N2

(3.10)

where N1 is a number of residues in the first protein, N2 is a number of residues in the

second protein, but R0 is an empirical parameter that measures the relative significance of

RMSD and N.

The distance based RMSDD given in Equation 3.11 alleviates the need for finding a
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translation and rotation of one of the structures.

RMSDD(A,B) =
1

N

√√√√ N∑
i=1

N∑
j=1

(dist(Ai, Aj)− dist(Bi, Bj))2 (3.11)

Since there is no need to calculate a transformation, RMSDD is a faster calculation.

However, it has a weakness: it is invariant under reflection.

Another widely used scores for graph matching methods are the size of the common

subgraph or Tanimoto scores based on the size of the graphs and common subgraph.

In some applications probability values (P-value ) or expectation values (E-value ), that

measure, respectively, the probability or number of times that a match such a type should

be expected by chance are calculated to score the biological significance of the matches

in equivalence. Besides, every particular application of structure comparison methods can

use specific scores, when various specific factors are considered.

3.3 Application of Comparison Algorithms for Pro-

teins

Exists a lot of different algorithms for protein structure comparison. Each algorithm in-

cludes all three discussed above parts: representation of structure, similarity detection and

scoring. The differences of algorithms are defined by biological reasons of their application.

A central goal in the field of structural biology is to understand how protein structure

determines and affects protein function. Predicting the function of a protein from its

three-dimensional structure is a major intellectual and practical challenge.

Another challenging problem is the exploration of evolution of protein structures, since

the understanding how structures have been evolved could help to understand evolution of

protein functions and to give a new clues in the field of prediction the function of a protein

from its structure.

Nowadays, a lot of protein sequence data are produced by large-scale DNA sequencing

projects. At the same time the number of experimentally determined protein structures

by time-consuming and relatively expensive X-ray crystallography or NMR spectroscopy

technologies is lagging far behind the determined protein sequences. Functions of proteins

with known structures also can be detected during experiments or in terms of biologists

”functions can be annotated”. But again the number of known structures is larger than

the number of proteins with annotated functions.
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3.3.1 Methods for SSE Prediction

Before to construct 3D graph or do something else on the high level of protein structure

representation (where elements are SSEs and structural motifs) SSEs have to be detected

from coordinate based structure description (PDB file). Exists a number of different al-

gorithms for SSEs prediction. Here the widely used three methods are considered: DSSP

(Kabsch and Sander, 1983), DSSP derivative PROMOTIF (Hutchinson and Thornton,

1996) and PSIPRED (Jones, 1999).

Early methods of secondary-structure prediction like DSSP and PROMOTIF were

based on the helix- or β-sheet-forming propensities of individual amino acids, sometimes

coupled with rules for estimating the free energy of forming secondary structure elements.

Such methods are typically ∼60% accurate in cross-validated predictions. A significant

increase in accuracy (to nearly ∼76%) was made by exploiting multiple sequence align-

ment (Section 3.1.3), knowing the full distribution of amino acids that occur at a position

throughout evolution provides a much better picture of the structural tendencies near that

position. This method is used in PSIPRED software.

Currently no secondary structure prediction techniques yield more than 80% accuracy.

PSIPRED algorithm is more accurate than DSSP and PROMOTIF, but at the same

time is much more time and space consuming (processing multiple sequence alignment it

needs the whole database of homologous proteins). Besides, in some cases if there are

no enough similar proteins, PSIPRED is unable to produce the result. DSSP algorithm

has linear time complexity and does not need additional data. That is why DSSP and its

derivatives are still frequently used.

In the dissertation PROMOTIF software is used as separate module for SSE predic-

tion. Since DSSP results are stored in public databases and can be used without additional

computational costs, during the experiments both variants of prediction were used: PRO-

MOTIF and DSSP.

3.3.2 Protein Sequence Comparison

Computational methods are used to detect protein structure and function from a given

protein sequence. If sequence similarity between proteins is more than 25 %, than their

structures will be almost identical and their functions will be the same. That is the

reason why a number of precise and heuristic sequence comparison algorithms have been

developed during the last 40 years. Currently, BLAST, FASTA and Smith-Waterman

algorithms (Sections 3.1.2,3.1.2) are the most frequently used methods in this cluster of

comparison problems for proteins.

Multiple sequence comparison (Section 3.1.3) is often used in identifying conserved

sequence regions, when specific protein atoms and/or residues have been unchanged during
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evolution process.

The HSSP (Homology-Derived Secondary Structure of Proteins) (Glaser et al., 2005a)

database provides multiple sequence alignments (MSAs) for proteins of known three-

dimensional structure in the Protein Data Bank (Section 2.3.2). The database also contains

an estimate of the degree of evolutionary conservation at each amino acid position.

3.3.3 Global Protein Structure Comparison

If sequence and structure of protein is known, than structure comparison algorithms can

help to predict protein functions even if there are no known proteins with similar sequences

(more than 25 %). In most of the cases it is possible using global structure comparison

approaches, when the whole structures are compared. Structure based predictions can also

be used to strengthen sequence-based predictions.

Several methods exist for the solution of global structure comparison problem (detection

of overall structural similarity): DALI (Holm and Sander, 1995), GRATH (Harrison et al.,

2003) and SSM (Krissinel and Henrick, 2004b).

DALI algorithm uses distance matrix for structure representation – it contains all pair-

wise distances between Cα atoms. The comparison procedure consists of 2 basic steps: 1.

In the first step of the algorithm, similar submatrices of size six in two proteins are found

by comparing their distance matrices. These comparisons result in alignments of size six

between two proteins. Then, compatible alignments are merged to obtain larger align-

ments called patterns. 2. A Monte Carlo algorithm is used to deal with the combinatorial

complexity of assembling patterns into larger consistent sets of pairs.

GRATH uses 3D graph for description of protein structure and Bron-Kerbosch algo-

rithm for the solution of maximal clique detection problem.

For given two structures (3D graphs) SSM (Secondary Structure Matching) algorithm

finds the largest common subgraph of these graphs using CSI algorithm. After the largest

common subgraph is found, SSM algorithm chooses two sets of Cα atoms belonging to SSEs

matched by common subgraph and computes a 3D alignment with minimal RMSD for

atoms belonging to these sets. Finally a RMSD-based Q-score is computed to characterize

the quality of alignment.

For comparison of protein topologies, when TOPS cartoons are used for structure de-

scription, pattern matching algorithm have been developed to solve subgraph isomorphism

problem (Viksna and Gilbert, 2001).

3.3.4 Protein Classification

The classification of proteins based on overall structural similarities is a well-established

field. Resources such as CATH (Orengo et al., 1997) and SCOP (Murzin et al., 1995)
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publicly available that can help predict the function of a protein and also aid in our

understanding of the general principles behind protein architecture. These resources are

based on a combination of manual curation and automatic methods.

CATH

The CATH Protein Structure Classification is a semi-automatic, hierarchical classification

of protein domains. Currently the automatic comparison procedure is based in the global

structure comparison algorithm GRATH discussed above. The name CATH is an acronym

of the four main levels in the classification.

The four main levels of the CATH hierarchy are as follows:

• Class: the overall secondary-structure content of the domain (composition of SSEs).

• Architecture: a large-scale grouping of topologies which share particular structural

features (spatial packing of SSEs).

• Topology: high structural similarity but no evidence of homology (includes arrange-

ment of SSEs along the chain). Equivalent to a fold in SCOP.

• Homologous superfamily: indicative of a demonstrable evolutionary relationship (pro-

teins with common ancestry apparent from sequence). Equivalent to the superfamily

level of SCOP.

CATH defines four classes :

1. mostly-α,

2. mostly-β,

3. α and β,

4. few secondary structures.

SCOP

Structural Classification of Proteins (SCOP) database is a largely manual classification of

protein structural domains based on similarities of their amino acid sequences and three-

dimensional structures.

SCOP utilizes four levels of hierarchic structural classification:

1. Class - general ”structural architecture” of the domain

2. Fold - similar arrangement of regular secondary structures but without evidence of

evolutionary relatedness
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3. Superfamily - sufficient structural and functional similarity to infer a divergent evo-

lutionary relationship but not necessarily detectable sequence homology

4. Family - some sequence similarity can be detected.

SCOP includes the following structural classes:

• α-helical domains

• β-sheet domains

• α/β domains which consist of from ”beta-alpha-beta” structural units or ”motifs”

that form mainly parallel -sheets

• α+β domains formed by independent -helices and mainly antiparallel -sheets

• multi-domain proteins

• membrane and cell surface proteins and peptides (not including those involved in the

immune system)

• ”small” proteins

• coiled-coil proteins

• low-resolution protein structures

• peptides and fragments

• designed proteins of non-natural sequence

SCOP shares many broad features with its principal rival, CATH, however there are also

many areas in which the detailed classification differs greatly.

3.3.5 Local Protein Structure Comparison

Current computational methods for the prediction of function from sequence and structure

are restricted to the detection of similarities and subsequent transfer of functional anno-

tation. In a significant minority of cases, global sequence or structural similarities do not

provide clues about protein function.

Since the function of protein could be defined as protein ability to bind specific chemical

compounds or to be binded by other biochemical structures, the extremely important parts

of protein structures are binding sites – regions of protein structure which are used for

binding activities.
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The detection of local structural similarities may provide useful clues for prediction

of protein function when both sequence similarity and overall structural similarity are

insufficient. In particular, knowing what kind of ligands are binded to a protein, may

provide valuable functional information. Local structural similarities between proteins

may still reflect more distant evolutionary relationships.

Methods for the detection of local structural similarities vary primarily in the type of

representation (generally simplified) and search method, usually via the graph matching

algorithms or geometric hashing. However, due to the time consuming nature of the

graph matching approaches, methods have mostly resorted to simplifications in the form

of pseudo-atoms (Schmitt et al., 2002), (Weskamp et al., 2004). Other approach uses

combination of the simplified representation and graph-matching based method with a

geometric hashing pre-screening step (Shulman-Peleg et al., 2004), (Shulman-Peleg et al.,

2005).

Methods that make use of full atomic representation (coordinates of toms) are few and

only applicable in limited cases requiring pre-definition of the molecular environments (e.g.

superimposition of bound ligands) (Kobayashi and Go, 1997), (Brakoulias and Jackson,

2004).

A more thorough review of methods for the detection of local structural similarities can

be found in Najmanovich et al. (Najmanovich et al., 2005) and references therein.

Recently, IsoCleft algorithm (Najmanovich et al., 2008), a graph-matching based method

for the detection of pairwise local 3D atomic similarities have been developed with the par-

ticipation of the author. IsoCleft is suited to compare large sets of atoms using full atomic

representation and does not require any bonding or sequence alignment information.

The detailed description of the IsoCleft, as well as the results obtained with it help are

presented in the Section 5.

3.3.6 Exploration of Protein Evolution

The process of structure evolution present us several interesting and challenging problems.

Firstly, although some real examples of pairs of proteins confirming one or another struc-

tural change are known, it could be useful to estimate the comparative frequencies with

which different structural changes could occur. Secondly, it could be useful to have tools

for structure comparison that can automatically identify such structural changes (and pos-

sibly estimate ”evolution distance” on the basis of observed changes). Such tools can be

useful either directly for comparison of two structures or for search of structural changes

within database of known protein structures in order to gain better understanding of the

nature of structure evolution.

The solution of both mentioned problems can be based on structure comparison algo-

rithms.
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Regarding the first problem, an attempt to estimate frequencies of different types of

structural changes has been made using topological description of protein structures (TOPS

cartoons) (Viksna and Gilbert, 2007).

To address the second problem, the special algorithm, called ESSM (Evolutionary Sec-

ondary Structure Matching), have been developed by author (Kurbatova et al., 2007). The

algorithm uses 3D graph representation of protein structures and the CSI algorithm for

graph matching. The main difference with traditional global structure comparison algo-

rithms like the SSM is the following: the ESSM is able to detect fold mutations and to

estimate the similarity of structures taking into account detected mutations.

The results of the ESSM algorithm were successfully used for the exploration of the

CATH fold space by using fold space graphs for representation of comparison results and

estimation of ”evolution distance” on the basis of observed changes (Kurbatova and Viksna,

2008).

The detailed description of the ESSM and fold space graph construction, as well as the

results of exploration are presented in the Section 4.

3.4 Conclusions

This chapter is a review of previous studies in the field of biochemical structure comparison

problems. For a number of algorithms a schemes representing pseudocode of algorithms are

given. In all cases these algorithms were used in modified way or utilized for the algorithms

and algorithmic methods developed by author and her colleagues.

Here biochemical structures comparison problems are defined and possible solutions,

which are widely used, are discussed. Since graph based approaches are in focus of the work,

graph matching methods are described in detail. Comparison algorithms for sequences and

structures of biomolecules are used for the detection of similarity between these molecules.

Therefore exists a number of methods for similarity measurement and the most widely

used scores, such as RMSD and some others, are described in this chapter. Besides,

applications of comparison algorithms for proteins are presented in the separate section,

including concepts of protein classification, global and local protein structure comparison

and exploration of protein evolution.

As sources for creation of the given chapter different bioinformatics books, publications

and reviews have been used. Definitions mainly are provided by author, but in several

cases adaptation of definitions from books or publications took place and these are noted

in the text.





Chapter 4

Exploration of Fold Evolution

A curious aspect of the theory of evolution is that
everybody thinks he understands it.

Jacques Monod

Abstract

This chapter is devoted to the exploration of protein fold evolution. A new algorithm,
called ESSM, is developed by author for protein structure comparison and detection
of evolutionary changes. The algorithm was found to be efficient and accurate to find
evolutionary changes of different types comparing structures of two proteins.

Besides, a new combined method has been developed for the exploration of evolu-
tionary relations between protein structures. The approach is based on the ESSM
algorithm for detecting structural mutations, the output of which is then used for
construction of fold space graphs.

The combined method was applied for analysis of evolutionary relations between
CATH protein domains. The experiments allowed to obtain estimates of the dis-
tribution of probabilities for different types of fold mutations, to detect several chains
of evolutionary related protein domains, to prove the ability of fold space graphs to
be a convenient tool for visualization and analysis of evolutionary relationships be-
tween protein structures, providing more information than traditional phylogenetic
approaches, as well as to explore the most probable β-sheet extension scenarios.

Traditional viewpoint regarding protein sequence and structure similarity of homolo-

gous proteins is that protein structure is much better preserved than protein sequence

and that sequence similarity of about 25% or more almost necessarily implies that protein

structures will be almost identical. Whilst this is true in most of the cases, nevertheless it

is possible to find pairs of proteins with highly similar sequences and at the same time no-

ticeable structural differences. Probably the best known example is Janus protein designed

by (Dalal et al., 1997). The authors have synthesized a pair of proteins with 50% sequence

similarity and, at the same time, completely different folds. Although it is possible to

argue that this is a designed protein, it still demonstrates the credibility of evolutionary

events that preserve sequence similarity but change protein fold.
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The existence of protein pairs with similar sequences and different structures also is

implied by current models of protein evolution - although during the evolution protein

structure is much more preserved than protein sequence, there should exist small sequence

mutations that lead to noticeable structural changes.

Generally the fold evolution model can be formulated as follows: protein structures,

similarly to sequences, have evolved by a stepwise process, each step involving a small

change in the protein fold. Such a model is unlikely to provide a full picture of structure

evolution (a full picture of structure evolution and appropriate model is not known yet).

However, there are a number of studies demonstrating that such an approach is useful in

the exploration of basic tendencies in evolution of the protein structures and functions.

From biological perspective the problem is thoroughly studied by Grishin (Grishin,

2001; Kinch and Grishin, 2002). The authors have identified a set of possible fold mutations

that could occur during protein evolution, each of the proposed mutations is confirmed by

real biological examples (Section 2.4.1). Similar sets of small fold changes are proposed

and studied also by other authors (Matsuda et al., 2003; Przytycka et al., 2002), – although

these studies give less biological motivation and are more interested in the exploration of

protein fold space under assumption that structures have evolved by a stepwise process,

each step consisting of a small fold change belonging to the proposed set.

An attempt to estimate frequencies of different types of fold mutations has been made

by (Viksna and Gilbert, 2007). Although not conclusive, these results confirm often used

assumption that most probable fold changes are indels of single helices and indels of single

strands at one end of β-sheets. Rough estimates for frequencies of other types of fold

mutations also have been obtained.

However, a number of challenging problems in which decision biologists are interested

remained up to now unsolved:

• method for automated identification of fold mutations between two structures of

proteins;

• method for search of non-trivial (e.g. consisting of at least three elements) chains of

structures s1, ..., sN , such that evolutionary relations between structures si and si+1

seem feasible, but can’t be directly detected between structures si and si+k for k > 1;

• method for the exploration of fold space under the assumption that structures have

evolved by a stepwise process.

Solutions for the listed problems have been successfully found by author and her col-

leagues.

The ESSM algorithm is created for pairwise comparison of structures that allow to

identify fold mutations and to estimate evolutionary relationship between proteins.
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The algorithm have been applied to identify number of biologically confirmed fold

mutations, in these experiments fold mutations were automatically identified in 85% of

cases.

For the exploration of the whole fold space of some database of protein structures the

combined method is developed that consists of two stages:

• All-against-all comparison of the protein structures by using the ESSM algorithm;

• Construction of fold space graph on the basis of discovered fold mutations along with

methods for their visualization and automated analysis.

The method has been applied for exploration of potential evolutionary relationships

between CATH (Orengo et al., 1997) protein domains and several facts about the evolu-

tionary relationships between these domains have been established.

Results of experiments on CATH (Orengo et al., 1997) domains showed that fold space

graphs really allow to find chains of protein structures according to the mentioned above

conditions. Extracted chains of domains from CATH class 2 (mainly β) gave a possibility

to explore the most probable β-sheet extension scenarios using terms of stepwise process

of the fold evolution.

Besides, the analysis of fold space graphs allows to propose the possible evolutionary

mechanisms employed in the fold space (such as possible origins inside the group of CATH

domains and connections between different CATH homologous superfamilies or between

subgroups of one superfamily) and gives magnificent possibility to explore domain/protein

clustering in the fold space.

4.1 ESSM Algorithm

The main problem in the development of algorithms for the identification of fold mutations

is the confirmation of the correctness of found structural changes. At the moment the

only way how to convince biologists that predicted fold mutations between two protein

structures can be trusted, it to demonstrate evolutionary relationship between proteins.

That is why method for the identification of fold mutations along with candidate fold

changes between two protein structures has to produce a number of scores that allow to

estimate structure and sequence similarity of proteins.

Since exists a number of specific algorithms for the identification of circular permu-

tations, a new method for the detection of fold mutations focus on the following fold

changes: substitution and insertion/deletion of structural elements, modification of struc-

tural elements like (β-hairpin flip/swap mutations). All these fold mutations are explicitly

characterized in terms of SSEs and structural motifs (Section 2.4.1). If structures are
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represented also in terms of structural elements, then to identify fold mutations between

two protein structures means to find pairs of elements which can be classified as substi-

tuted or modified (flipped/swapped in case of β-hairpins) and to find elements which can

be classified as inserted in one of the structures and correspondingly as deleted in other

structure.

Definition 12 (Identification of Fold Mutations).

Instance: Two structures S1 and S2 with elements: S1 = (s1
1, ..., s

1
m);S2 = (s2

1, ..., s
2
n),

where s1,2
i are elements.

Solution: Set of pairs E(S1, S2) = {< s1
i1, s

2
j1 >, ..., < s1

il, s
2
jl >}, where l = max{m,n}.

In each pair < s1
i , s

2
j > with the element s1

i ∈ S1 and s2
j ∈ S2 elements are matched

if their types coincide and are substituted in other case. In each pair with the element

s1
i ∈ S1∪{“-”} or s2

j ∈ S2∪{“-”} the element that is not blank is inserted into appropriate

structure.

Generally, from the given above definition follows that for the identification of fold mu-

tations pairs of matched elements from two structures have to be found and the alignment

of structural elements based on the detected matched pairs have to be constructed.

The algorithm, called ESSM (Evolutionary Secondary Structure Matching), have been

developed for structure comparison and automated identification of fold mutations. The

ESSM uses ideas of the SSM (Secondary Structure Matching) tool (Krissinel and Henrick,

2004b) for structure representation by means of 3D graphs and the search of the largest

common subgraph by using of the CSIA algorithm (Section 3.2.2).

In the ESSM algorithm the equivalence between structural elements is detected allowing

substitution of elements. The equivalence is a set of protein pairs, where each pair consists

of elements from the first and the second structure that are compared and defines matching

of elements or substitution of elements. To define elements as matched or as substituted

elements a number of conditions concerning elements types, size, order in protein chain and

location in space have to be satisfied. On the bases of the found equivalence the alignment of

structural elements is created. Insertions/deletions of elements are reconstructed from the

obtained alignment. A number of scores are calculated for the evaluation of evolutionary

relationship between compared proteins.

If structures and/or sequences of proteins are similar enough (values of scores measure

the similarity), found structural mutations can be classified as biologically relevant.

The structure of the ESSM algorithm is shown on Figure 4.1. The algorithm can

be divided into three stages – the construction of 3D graphs, the detection of the largest

common subgraph, the analysis of the detected subgraph. As a separate module the ESSM

includes the computation of similarity between two protein sequences.

In the following subsections each part of the ESSM algorithm presented on Figure 4.1

is discussed in details.
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Figure 4.1: Structure of ESSM algorithm The ESSM algorithm consists of three parts: 1.

3D Graph construction. 3D graph is constructed for each considered protein using structural

elements obtained by the SSE prediction tools (DSSP or Promotif) and atoms coordinates ob-

tained from PDB files. 2. Largest common subgraph. The largest common subgraph of two

given 3D graphs is detected using CSIA algorithm. 3. Subgraph analysis. The alignment of

structural elements, ESSM score, number and types of fold mutations are computed based on

the detected largest common subgraph. To calculate the superimposition of structures and the

RMSD score, atoms coordinates obtained from PDB files are used together with the detected

common subgraph.

4.1.1 3D Graph Construction

The corresponding 3D graph for a given protein structure is a complete undirected graph

G = (V,E), where the set of vertices V corresponds to the set of structural elements

(SSEs and structural motifs) and the i-th element (according to their order from N - to C-

termini) is represented by the vertex vi.

As elements for 3D graph construction 3 different types of SSEs are used: β-strands

(E), α-helices (H) and 310-helices (G). The experiments with different SSE prediction tools

shows that the most problematic SSE type for prediction is 310-helix ((Kurbatova et al.,

2007)). Motivation for distinguishing between α-helices and 310-helices is the improvement

of accuracy of results for fold mutations which includes helices.

Additionally, two structural motifs are also used as elements for the construction of 3D

graph: 3-β-meanders (3) and β-hairpins (2)

The input data for the 3D graph construction are:
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• PDB file of protein translated into a form of a set P = {p1, ..., pN}, where each pi
represents 3D coordinates of Cα atom for the protein residue with number i;

• Results of any SSEs prediction programme that can be translated into a form of set:

S = {S1, ..., SL}, where each element Si is a list

< Ti, p
1
i , ..., p

li
i , r

1,2,3
i > (4.1)

. In this list: i is the serial number of the element according to their order from N -

to C- termini of protein; Ti ∈ {H, G, E, 2, 3} is the type of the element; p1,...,l
i ∈ P

represents coordinates of Cα atoms from which the element consists; r1,2,3
i are defined

only for structural motifs (3-β-meanders and β-hairpins) and represent serial numbers

of β-strands from which the structural motif consists.

During the construction of the set S two requirements have to be satisfied: elements

are numbered in accordance with their position in the protein structure from N - to

C- termini; structural motifs are placed after β-strands from which they consists.

In experiments with the ESSM algorithm two SSEs prediction programmes were used for

the construction of the set S namely PROMOTIF (Hutchinson and Thornton, 1996) and

DSSP (Kabsch and Sander, 1983) to evaluate the impact of accuracy of SSE predictions.

Unfortunately, some ”prediction noise” is characteristic for both of these programmes. The

results of SSEs prediction programmes based on multiple sequence similarity like PSIPRED

(Jones, 1999) is much more accurate. However, the process of SSEs prediction in them

is time consuming (in comparison with PROMOTIF and DSSP) and needs a database of

homologous proteins. For these reasons PSIPRED and analogous programmes can not be

used for processing of great volumes of the data.

Each structural element is represented by vertex in 3D graph. Vertices for structural

motifs are called ”virtual vertices”, because their elements consists of β-strands which are

already represented in the 3D graph by vertices of SSEs. Description of such ”virtual

vertex” includes references to non-virtual vertices for β-strands. In addition, to model the

fold mutation ”β-hairpin flip/swap”, for β-hairpin element is constructed another vertex

that represents a flipped form of β-hairpin (F) (Section 2.4.1). In the result each β-hairpin

has two ”virtual” vertices in 3D graph: β-hairpin (2) and flipped β-hairpin (F).

Vertex vi ∈ V in 3D graph is a vector vi in 3D space that has label:

< Ti, Li, Ni, r
1,2,3
i > (4.2)

where Ti ∈ {H,G,E, 2, F, 3} is the type of the vertex; Li specifies the number of residues

in the corresponding element, Ni is the serial number of the element, r1,2,3
i are used for

references between ”virtual vertices” and corresponding non-virtual vertices for β-strands

(vr1,2,3i
∈ V ).
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Figure 4.2: Construction of vector

Vectors for a β-strand with length more than 2 residues and for a α-helix with length

more than 4 residues are constructed using equations developed for the SSM algorithm

(Krissinel and Henrick, 2004b) according to recommendations from (Singh and Brutlag,

1997). Vectors for all other types of elements are constructed using equations developed

specially for the ESSM algorithm.

Vectors are constructed using substraction of radius vectors in 3D space that locates

the initial and the terminal points of the element (Figure 4.2):

v = r′′i − r′i (4.3)

In all equations presented in the given section, Rk is the radius vector of Cα atom of

the residue k in protein, but indices p and q denote serial numbers of the first and the last

residue in the SSE (Figures 4.3, 4.4).

1. Vertices for helices

Vector for α-helix with length more than 4 residues passes through the middle of

a helix from one end to another (Equation is adapted from the SSM algorithm)

((Krissinel and Henrick, 2004b)):

r′′i =
(0.74Rqi−3 +Rqi−2 +Rqi−1 + 0.74Rqi)

3.48

r′i =
(0.74Rpi +Rpi+1 +Rpi+2 + 0.74Rpi+3)

3.48
(4.4)

Vector for 310-helix and α-helix with length less than 4 residues connects the first

and the last residue in the SSE:

r′′i = Rqi

r′i = Rpi (4.5)

Labels for such vertices (Equation 4.2) consists of: Ti ∈ {H,G}; Li = qi − pi + 1,

where indices p and q denote the serial numbers of the first and last residue in the

helix; Ni is the serial number of the vertex; references are not defined.
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Figure 4.3: Construction of vector for α-helix. See details in the text.

Figure 4.4: Construction of vector for β-strand. See details in the text.

2. Vertices for β-strands

Vector for β-strand with length more than 2 residues passes through the stretch

of residues from one end to another (Equation is adapted from the SSM algorithm

(Krissinel and Henrick, 2004b)):

r′′i =
(Rqi−1 +Rqi)

2

r′i =
(Rpi +Rpi+1)

2
(4.6)
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The equation 4.5 is used for the construction of vector for β-strand with length less

than 3 residues.

As to labels: the type is always equals to ”E” (Ti = E); the length is defined in the

same way as length of helix’s vertices Li = qi − pi + 1; Ni is the serial number of the

vertex; references are defined only if β-strand is a part of 3-β-meander or β-hairpin.

If β-strand i is a part of 3-β-meander j (Tj = 3) then r1
i = Nj and other references

are not defined. If β-strand is a part of β-hairpin j (Tj = 2) then r1
i = Nj. In the last

case for every vertex j another vertex f is constructed to represent β-hairpin flipped

form (Tf = F ). The reference to this vertex f also is stored in the label for β-strand’s

vertex i (r2
i = Nf ), the third reference is not defined.

3. Vertices for β-hairpin

β-hairpin consists of two β-strands a and b, with corresponding vertices in 3D graph

(va, vb). Together with vertex vi for β-hairpin another vertex vf is constructed to

represent β-hairpin flipped form. Vector for β-hairpin vi connects the starting point

of vector va with the starting point of vector vb:

r′′i = r′b

r′i = r′a (4.7)

Vector for flipped β-hairpin vf connects the endpoint of vector vb with the endpoint

of vector va:

r′′f = r′′a

r′f = r′′b (4.8)

Label for β-hairpin’s vertex i is constructed in the following way: the type Ti = 2;

the length is the sum of lengths of two β-strands from which the motif consists

Li = La + Lb; Ni is the serial number of the vertex; serial numbers of vertices for

β-strands a, b and the serial number of the vertex for β-hairpin flipped form f are

stored in references (r1
i = Na, r

2
i = Nb, r

3
i = Nf ).

Label for vertex vf that represents flipped form of β-hairpin is similar to the label

of vertex i with three differences: the type Tf = F ; Nf is the serial number of the

vertex i plus one; serial numbers of vertices for β-strands a, b and the serial number

of the vertex for β-hairpin i are stored in references (r1
f = Na, r

2
f = Nb, r

3
f = Ni).

4. Vertices for 3-β-meander

3-β-meander consists of three β-strands a, b and c with corresponding vertices in 3D

graph (va, vb and vc). Vector for 3-β-meander vi connects the starting point of vector
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Figure 4.5: Construction of 3D graph. Vertices are represented by vectors: vi and vj. The

vector eij which connects middle points of two vectors of vertices represents the edge. αij1 is the

angle between vectors vi and eij; α
ij
2 is the angle between vectors vj and eij; α

ij
3 is the angle

between vectors vi and vj. α
ij
4 is the torsion angle between two planes: {vi, eij} denoted by blue

color and {vj, eij} denoted by pink color.

va with the endpoint of vector vc:

r′′i = r′c

r′i = r′a (4.9)

Label for such vertex i consists of: the type Ti = 3; the length is the sum of lengths

of three β-strands from which the motif consists Li = La + Lb + Lc; Ni is the serial

number of the vertex; serial numbers of vertices for β-strands a, b and c are stored

in references (r1
i = Na, r

2
i = Nb, r

3
i = Nc).

After vertices of the 3D graph are created the following step is a construction of edges.

The edge eij between vertices vi and vj can be represented as a vector eij between the

middle points ri and rj of vectors vi and vj (Figure 4.2):

eij = rj − ri =
(r′′j + r′i)

2
−

(r′′j + r′j)

2
(4.10)

Each edge eij is labelled with a distance represented by length of a vector |eij|, three

angles αij1 , αij2 , αij3 and a torsion angle αij4 . Such labeling is needed to describe the relative

orientation of graph’s vertices in 3D space (Figure 4.5).

< |eij|, αij1 , α
ij
2 , α

ij
3 , α

ij
4 > (4.11)

Typically, data including two vectors, a distance between their middle points and three

angles are sufficient to define a rigid structure in 3D. However, a torsion angle αij4 is also

used in the ESSM in order to simplify graphs comparison procedures.
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Angles αij1 , αij2 , αij3 are defined on the interval [0, π], but a torsion angle αij4 is defined

on the interval [−π, π].

The following equations are used to calculate values of angles:

αij1 = arccos
vi · eij

|vi||eij|

αij2 = π − arccos
vj · eij

|vj||eij|

αij3 = arccos
vi · vj

|vi||vj|

αij4 = sign((v⊥i × v⊥j ) · eij) arccos
v⊥i · v⊥j
|v⊥i ||v⊥j |

(4.12)

where perpendicular components of vector eij are:

v⊥i = vi − êij(vi · êij)
v⊥j = vj − êij(vj · êij) (4.13)

and êij is a unit vector êij =
eij

|eij|
.

The scheme of the ESSM procedure for the 3D graph construction is presented on

Figure 4.6. The procedure works with two sets: P is a set of 3D coordinates, S is a set

of elements (4.1), where each element si is described by list < Ti, p
1
i , ..., p

li
i , r

1,2,3
i >. li is

number of residues in an element i. The output of the procedure is 3D graph G =< V,E >,

where V is a set of vertices and E is a set of edges. At lines 01–26 vertices for structural

elements from the set S are created. Vectors for vertices are constructed depending on

their types in accordance with equations (4.4, 4.5, 4.6, 4.9, 4.7, 4.8). In the counter f

number of flipped forms of β-hairpins is stored. Each constructed vertex vi ∈ V has a label

VLi (Equation 4.2). At lines 27–35 an edge between each pair of vertices is created. Each

constructed edge eij ∈ E has a label ELij (Equation 4.11).

The time complexity of 3D graph construction procedure is O(n2), where n is number

of structural elements. 3D graphs can be created in advance and stored in the database

or in text files for experiments including all-against-all comparison of proteins from some

great data set.

4.1.2 Search of Largest Common Subgraph

In the ESSM algorithm the search of the largest common subgraph for two given 3D graphs

is done by using the backtracking search algorithm CSIA (3.8) developed by Krissinel and

Henrick for the SSM tool (Krissinel and Henrick, 2004b).

Generally, CSIA is able to work with any type of complete graphs (practically use is

limited only to sizes of graphs), but needs functions specific for a given type of graphs to

detect compatibility of graph vertices and graph edges.
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Figure 4.6: Scheme of ESSM procedure for 3D graph construction. See details in the

text.
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In 3D graphs two vertices i and j representing non-virtual elements (SSEs) of the same

type or different types are compatible if:

&

{
(Ti = Tj) or (Ti 6= Tj and (Ti,j ∈ {H,G,E} or Ti,j ∈ {2, F})),
|Li − Lj| ≤ c1(Li + Lj) + c2

(4.14)

Thresholds c1 and c2 in the condition 4.14 represent the admissible relative and absolute

difference between sizes of protein elements. This equation is adapted from the SSM

algorithm ((Krissinel and Henrick, 2004b)).

In 3D graphs two vertices i and j of different types are compatible if:

&


Ti 6= Tj,

Ti 3 {H,G,E} or Tj 3 {H,G,E},
Ti,j 3 {2, F},
||vi| − |vj|| ≤ c′1(|vi|+ |vj|) + c′2

(4.15)

Thresholds c′1 and c′2 in the condition 4.15 is the admissible relative and absolute difference

between lengths of vectors. Values of these thresholds are less restrictive in comparison

with values of c1 and c2.

In 3D graph two edges (i, j) and (k, l) are compatible if:

&



||eij| − |ekl|| < c3(|eij|+ |ekl|) + c4,

|αij1,2 − αkl1,2| < c5,

|αij3 − αkl3 | < c6,

(sign αij4 = sign αkl4 and |αij,kl1,2,4| > c7) or (|αij,kl1,2,4| < c7),

sign (Ni −Nj) = sign (Nk −Nl)

(4.16)

Thresholds c3 and c4 in the condition 4.16 is the admissible relative and absolute difference

between lengths of edges and c5,6,7 are thresholds for the detection of angles similarity.

Signs of α4 angles are checked to distinguish some part of a structure from its mirror

image. However, if vectors vi and vj are almost collinear with the edge vector between

them eij in both graphs, edges are compatible.

The order of SSEs and motifs in proteins is preserved in the following way: if number

of element i is less than the number of element j in the first graph then the same situation

should be in the second graph (number Ni′ is less than Nj′) to consider edges eij and ekl
as compatible.

Equation for edges compatibility is a simplified version of equation used in the SSM

algorithm.

There are nine constants in equations 4.14,4.15 and 4.16 which values have been ad-

justed experimentally using experiments with biologically confirmed examples of fold mu-

tations.
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Table 4.1: ESSM constants
Constant c1 c2 c′1 c′2 (Å) c3 c4 (Å) c5 (◦) c6 (◦) c7 (◦)

Value 0.3 4 0.35 3 0.5 2.5 45 36 36

Since 3D graph of the ESSM includes ”virtual” and non-virtual vertices referencing to

each other, the matching of some of the vertices can affect availability for the matching

of some others (e.g. if a β-strand from 3-β-meander is matched, 3-β-meander as a whole

can’t be used). For processing of such situations two new procedures have been added to

the CSIA algorithm that locks/unlocks vertices depending from their availability for the

matching in current backtracking state.

The scheme of the ESSM functions for the compatibility checking are presented on

Figure 4.7. These functions work with vertices vi and vj from processed 3D graphs, where

viinV1 and vj ∈ V2, and edges eij, ekl, where eij ∈ E1 and ekl ∈ E2. Each vertex has a label

(Equation 4.2). Each edge has a label (Equation 4.11).

The function for the compatibility detection between vertices “CompareVertices” com-

pares lables of vertices in accordance with Equations 4.14 (lines 01–02) and 4.15 (line 04).

If all conditions are satisfied, the function returns true, otherwise false.

The function for the compatibility detection between edges “CompareEdges” compares

lables of edges in accordance with Equation 4.16. If all conditions are satisfied, the function

returns true, otherwise false.

The scheme of the ESSM procedures that maintain the absence of conflicts between

vertices, which have references to each other are presented on Figure 4.7. These procedures

work with a vertex vi from the set of vertices V and with a set of locked vertices V ′ that

corresponds to V . A vertex has a label (4.2). The procedure that locks vertices that

are referenced by vi “HoldReferences” goes through references of vi and adds vertices

appropriate to references into the set V ′. The procedure that unlocks vertices that are

referenced by vi “ReleaseReferences” goes through references of vi and removes vertices

appropriate to references from the set V ′.

CSIAESSM is modified the CSIA algorithm (see 3.8). Modifications includes new func-

tions (“CompareVerices” and “CompareEdges”) for comparison of vertices and edges; new

procedures to lock/unlock vertices (“HoldReferences” and “ReleaseReferences”) that are

called in the main procedure BACKTRACK after line 05 and 15 correspondingly and mod-

ification of line 04 – a check is added whether the selected vertex is unlocked

”for all wq ∈ Listq and wq ∈ V2 and wq 3 V ′2 do”.
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Figure 4.7: Scheme of ESSM functions and procedures for CSIA. See details in the text.

4.1.3 Subgraph Analysis

The largest common subgraph of two graphs G1 and G2 is found and defined by the set of

pairs M = {< v1, w1 >, ..., < vm, wm >}, where vi ∈ V1 and wi ∈ V2, m - is the size of the
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subgraph. Vertices vi and wi from the set M are called matched vertices, but the set M by

itself is called the set of matched vertices.

The analysis of the detected largest common subgraph includes four parts: alignment

of elements based on matched elements; detection of fold mutations; calculation of ESSM

and RMSD scores.

Elements Alignment

The scheme of the ESSM procedure for the alignment construction is presented on Figure

4.8.

The following information is needed to construct the alignment of elements for two

protein structures: set of matched vertices (M) and sets of graph vertices (V1 and V2).

The alignment A is a set of paired symbols A = {< s1
1, s

2
1 >, ..., < s1

n, s
2
n >}, where

s1,2
i ∈ {“H”,“h”,“E”,“e”,“G”,“g”,“-”}. Symbols in upper case s1,2

i ∈ {“H”,“E”,“G”} de-

note matched elements in the alignment, symbols in lower case s1,2
i ∈ {“h”,“e”,“g”} denote

unmatched elements and gap symbol s1,2
i = {“-”} denote the element insertion/deletion.

For instance, for V1 = {v1, ..., v6}, T 1
1 = E, T 1

2 = H, T 1
3 = E, T 1

4 = E, T 1
5 = H, T 1

6 = E;

V2 = {v1, ..., v5}, T 2
1 = E, T 2

2 = H, T 2
3 = E, T 2

4 = E, T 2
5 = E and M = {< v1

1, v
2
1 >

,< v1
2, v

2
2 >,< v1

4, v
2
4 >,< v1

6, v
2
5 >} the size of alignment is 6 and alignment A = {<

“E”,“E” >,< “H”,“H” >,< “e”,“e” >,< “E”,“E” >,< “h”,“-” >,< “E”,“E” >}:

123456

Structure1: EHeEhE

Structure2: EHeE-E

The basic complication in the construction of alignment is a presence of “virtual”

vertices. Since the set of vertices Vi includes “virtual” and non-virtual vertices referencing

to each other, the matching of some of the vertices excludes some others vertices from

the alignment (e.g. if a vertex of 3-β-meander is matched, vertices representing β-strands

from which 3-β-meander consists can’t be used in the alignment). That is why before the

construction of alignment begins sets of vertices V1 and V2 are cleaned from vertices that

are referenced by some matched vertex i (Figure 4.8 lines 03–04).

The references for vertex i are defined in three cases:

1. Type of vertex is 3 (Ti = 3)

In such case references are serial numbers of vertices for β-strands (a, b, c) from which

3-β-meander consists (r1
i = a,r2

i = b, r1
i = c). If vertex i is matched, corresponding

β-strands a, b and c should not be present in alignment.

2. Type of vertex is 2 or F (Ti ∈ {2, F})
In such case references are serial numbers of vertices for β-strands (a, b) from which
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forms of β-hairpin consists (r1
i = a,r2

i = b). The situation is the same as in previous

case: if vertex i is matched, corresponding β-strands a and b should not be present

in alignment.

3. Type of vertex is E (Ti = E)

In such case references are serial numbers of vertices representing structural motifs

(forms of β-hairpin or 3-β-meander), which consists of β-strand representing by vertex

i.

If β-strand i is a part of β-hairpin, r1
i = n,r2

i = f , where n is vertex number for a

normal form of β-hairpin and f is a vertex number for a flipped form of β-hairpin. If

vertex i is matched, corresponding forms of β-hairpin n and f should not be present

in alignment.

If β-strand i is a part of 3-β-meander, r1
i = m, where n is a vertex number for 3-β-

meander. If vertex i is matched, corresponding 3-β-meander m should not be present

in alignment.

The following equation can be used for calculation of the maximal size of alignment

(Figure 4.8 line 16):

max{(|V SSE
1 | − h1 − 2m1), (|V SSE

2 | − h2 − 2m2)}, (4.17)

where V SSE
i is a set of non-virtual vertices constructed from the set of vertices Vi excluding

all “virtual” vertices with types 2, F and 3 (lines 10–15), hi is number of matched vertices

with types 2 or F in the set i, mi is number of matched vertices with type 3 in the set i

(lines 05–08).

The procedures goes through the matched vertices (lines 17–23) including elements

into the alignment (line 21). Elements whose vertices in graphs are not matched (elements

between matched vertices or before the first pair of matched vertices/after the last pair of

matched vertices) are aligned using procedure “AlignUnmatched” (line 20,25).

Elements whose vertices in graphs are not matched could be represented as two se-

quences of SSEs (s1 = {e11, ..., e1n}, s2 = {e21, ..., e2m}, where e1,2i ∈ {e, h, g}). The following

decisions have been made for accomplishment of the non-trivial task – the alignment of

elements whose vertices are not matched:

1. If lengths of s1 and s2 differ (n 6= m), gap symbol “-” is used to represent inser-

tion/deletion of element. Gaps are placed in the beginning of the shorter sequence

for sequences representing elements between matched vertices or before the first pair

of matched vertices. In turn, gaps are placed at the end of the shorter sequence for

sequences representing elements after the last pair of matched vertices. This is done

because at comparison of parts of proteins (for instance, domains) division into parts

can be not precise, i.e. if some elements are not matched, initial and final elements

will not coincide with the greatest probability.
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Figure 4.8: Scheme of ESSM procedure for alignment construction. See details in the

text.

2. If there are three elements representing β-strands aligned with gaps in the alignment

(< −, e >;< −, e >;< −, e > or < e,− >;< e,− >;< e,− >) and these elements

form 3-β-meander (corresponding vertices have references to the vertex with type

3), this part of the alignment (three elements aligned with gaps) are replaced with

3-β-meander insertion/deletion (< 3,− > or < −, 3 >).
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3. If there are two elements representing β-strands aligned with gaps in the alignment

(< −, e >;< −, e > or < e,− >;< e,− >) and these elements form β-hairpin

(corresponding vertices have references to the vertex with type 2), this part of the

alignment (elements aligned with gaps) are replaced with β-hairpin insertion/deletion

(< 2,− > or < −, 2 >).

The scheme of the ESSM procedure for the alignment of elements whose vertices are not

matched is presented on Figure 4.9. The procedure has five parameters: x and y represent

serial numbers of the last aligned elements vx ∈ V1 and vy ∈ V2, where V1 and V2 are

cleaned sets (from vertices that are referenced by some matched vertex i) in the procedure

GET ALIGNMENT; x′ and y′ represent serial numbers of matched vertices and define

not aligned sequences of SSEs: s1 = {T 1
x , ..., T

1
x′}, s2 = {T 2

y , ..., T
2
y′}. The fifth parameter

“lastPart” is set to true when x′ and y′ define sequences after the last pair of matched

vertices, otherwise “lastPart” is set to false.

The procedure uses two subsets S1 ⊂ V1 and S2 ⊂ V2 to collect not aligned vertices

from V1 and V2 (lines 01,02). The number of gaps is calculated in line 03. At line 04 is

checked which of the sequences (s1 or s2) is shorter and has to be used for gaps insertion.

Gaps insertion and substitution of β-strands aligned with gaps to 3-β-meander or β-hairpin

insertion/deletion if conditions for such substition are satisfied is done in loops (lines 06–14,

23–31). If there are non-aligned elements after gaps insertion, these elements are aligned

in loops (lines 16–19, 33–36), where function “LowerCase” substitutes symbols {E,G,H}
for {e, g, h} correspondingly.

Detection of Fold Mutations

The alignment is used for the detection of fold mutations. The ESSM algorithm is able

to detect all fold mutations from the set described in chapter 1 - “Mutations of protein

structures” (2.4.1), excluding circular permutations. For detection of circular permutations

exists specific algorithms (Jung and Lee, 2001; Peisajovic et al., 2006; Uliel et al., 1999;

Weiner et al., 2005).

The ESSM uses the matrix of fold mutations MFM (4.2) in the following way: pair

of symbols from the alignment defines the pair of fold mutations ¡i,j¿, where i and j are

numbers of fold mutations in the set of fold changes (Section 2.4.1). Two changes are

defined only in case when one of the symbols from an alignment pair is “F”, otherwise one

fold mutation is defined by the matrix MFM. For instance, the alignment A consists of

four pairs of symbols: {< “E”,“E” >,< “E”,“F” >,< “h”,“-” >,< “E”,“H” >}. In such

a case MFM(E,E) =< 0, 0 > – means that there are no fold mutations, MFM(E,F ) =<

6, 10 > – β-strand E is substituted with β-hairpin (fold mutation number 6), at the same

time β-hairpin is in flipped form F (fold mutation number 10), MFM(h,−) =< 2, 0 >
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Figure 4.9: Scheme of ESSM procedure for alignment of unmatched vertices. See

details in the text.
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Table 4.2: Matrix of Fold Mutations – MFM
E,e H,h G,g 2 F 3 -

E,e 0,0 5,0 12,0 6,0 6,10 8,0 1,0

H,h 5,0 0,0 13,0 7,0 7,10 9,0 2,0

G,g 12,0 13,0 0,0 14,0 14,10 15,0 11,0

2 6,0 7,0 14,0 0,0 0,10 1,0 3,0

F 6,10 7,10 14,10 0,10 0,0 1,10 0,0

3 8,0 9,0 15,0 1,0 1,10 0,0 4,0

- 1,0 2,0 11,0 3,0 0,0 4,0 0,0

Figure 4.10: Scheme of ESSM procedure for detection of fold mutations. See details

in the text.

– α-helix is inserted or deleted (fold mutation number 2) and MFM(E,H) =< 5, 0 > –

β-strand is substituted with α-helix (fold mutations number 5).

The scheme of the ESSM procedure for the detection of fold mutations is presented

on Figure 4.10. The procedure works with an alignment A = {< s1
1, s

2
1 >, ..., < s1

n, s
2
n >},

where s1,2
i ∈ {H, h,E, e,G, g,−}, and uses the matrix of fold mutations MFM (Table 4.2).

The output of the procedure is a list FM =< fm1, ..., fm15 >, where fmi is a number of

fold mutations of type i in accordance with the set of fold changes (Section 2.4.1).

The procedure goes through a set A (lines 01–10) and for each pair of symbols receives

from the matrix MFM pair of fold mutations (line 03). Received fold mutations are stored

in appropriate element of a list F in accordance with their serial numbers (lines 05, 08).
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ESSM Score

The accuracy of the alignment and as the result the accuracy of the detection of fold

mutations directly depends on the size of the largest common subgraph. The ESSM score

is calculated to evaluate the success of the matching process or in other words the similarity

of structural elements:

ScoreESSM =
|M |+ h+ 2m

max{|V SSE
1 |, |V SSE

2 |}
, (4.18)

where V SSE
i is a set of non-virtual vertices constructed from the set of vertices Vi excluding

all “virtual” vertices with types 2, F and 3, M is the set of matched vertices, h is number

of matched vertices with types 2 or F (β-hairpins) in the set M, m is number of matched

vertices with type 3 (3-β-meanders) in the set M.

Values of the ESSM score are defined on the interval [0, 1]. Value 1 means that the

largest possible common subgraph has been found. Value 0 means that no one vertex has

been matched. Our experiments on the data set of real biological examples shows that

starting from ScoreESSM = 0.8 the similarity of structural elements is high enough.

However, since the similarity of structural elements is not a sufficient condition for

the similarity of protein structures, ESSM score is not enough for evaluation of biologi-

cal relevance of the result. To convince biologists of a correctness of the received results

concerning number and types of detected fold mutations, the superimposition of 3D coor-

dinates of structures (Section 3.2.3) and the calculation of the RMSD score (Section 3.4)

is needed.

RMSD Score

There are two possibilities to superimpose coordinates of structures using detected matched

elements (the set M) as a seed. The first variant is used in the SSM algorithm ((Krissinel

and Henrick, 2004b)), when lists of matched 3D coordinates of Cα atoms are constructed

on the base of matched SSEs (SSM algorithm does not take into consideration structural

motifs). The method for the construction of such lists is rather complicated and time con-

suming. However, results of the superimposition are precise enough to use SSM algorithm

as a tool for protein structure comparison. The SSM algorithm produces ordered alignment

of SSEs together with RMSD based alignment score Q (Section 3.10).

In a case of the ESSM algorithm RMSD score is used more as a guiding line for biologists

to help answer the question: Are detected fold mutations biologically relevant? Since our

goal is to detect fold mutations and to make sure biologists that mutations can be trusted,

an approximate method is used for the RMSD calculation when coordinates of the initial

and the terminal points of vector that represent matched structural motif are added to

3D coordinates to form a lists of matched coordinates of corresponding protein and then
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Figure 4.11: Scheme of ESSM procedure for RMSD calculation. See details in the text.

RMSD is calculated using the algorithm for structure superimposition (Section 3.9) based

on the singular value decomposition for the best rotation matrix detection (Section 3.10).

The scheme of the ESSM procedure for RMSD calculation is presented on Figure 4.11.

The procedure works with sets of coordinates P1 = {p1, ..., pl1} and P2 = {p1, ..., pl2} and

with a set of matched vertices M = {< v1, w1 >, ..., < vm, wm >}. During the loop (lines

01–08) the equivalence E is constructed E = {< p1
i1
, p2

j1
>, ..., < p1

iN
, p2

jN
>}, where p1

i ∈ P1

and p2
j ∈ P2 by adding pairs of initial points, terminal points and middle points of vectors

for matched elements(line 07). After the construction of the equivalence the algorithm for

the superimposition of two structures and RMSD calculation is called (Section 3.9) (line

09).

4.1.4 Sequence Similarity

Values of the ESSM and RMSD scores provide guidance on structural similarity of proteins

and accordingly allow to estimate how much the found fold changes can be trusted. To get

the full picture about the correlation of proteins, one more necessary estimation is sequence

similarity.

The ESSM has a separate module for the detection of sequence similarity for proteins

which structures have been compared. In general, sequence similarity can be also de-

tected by external software. In that case the integration of results obtained by the ESSM

algorithm and this external software is needed.

Computation of sequence similarity by using a separate ESSM module is based on the
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ends-space free algorithm for the global alignment that uses affine gap penalty function –

ESF algorithm (Section 3.4). This algorithm is a modification of the classical Needelman

and Wunsch algorithm (Section 3.3). As the evaluation of sequence similarity the ESF

algorithm produces the highest score of sequence alignment ScoreAlign. In the ESSM

module for sequence similarity detection sequence similarity between two proteins Pi and

Pj is represented by a normalized score, computed by:

ScoreSeq = ScoreAlign(Pi, Pj)/max{ScoreAlign(Pi, Pi), ScoreAlign(Pj, Pj)}, (4.19)

where ScoreAlign is the highest score of sequence alignment produced by the ESF algo-

rithm by using substitution matrix BLOSUM62 (Section 3.1.1). The score ScoreSeq can be

interpreted as the percentage similarity between two sequences.

4.1.5 ESSM Summary

The overall scheme of the ESSM algorithm is presented on Figure 4.12. To process two

protein structures i and j, the algorithm needs sets of their 3D coordinates P1 and P2;

sets of their structural elements S1 and S2 and optionally files with protein sequences in

Fasta format F1 and F2. At lines 01 and 02 3D graphs G1 = (V1, E1) and G2 = (V2, E2)

are constructed using procedure 3D GRAPH (Figure 4.6). The largest common subgraph

(the set of matched vertices M) is found (line 03) by using CSIAESSM algorithm (Section

4.1.2). M = {< v1, w1 >, ..., < vm, wm >}, where vi ∈ V1 and wi ∈ V2. Procedure

GET ALIGNMENT (Figure 4.8) returns the alignment of structural elements A based

on matched vertices (line 04). In turn, the list of fold mutations F =< fm1, ..., fm15 >

is obtained (line 05) by using procedure GET MUTATIONS (Figure 4.10). At line 06

ScoreESSM is calculated using Equation 4.18. At line 07 RMSD score is calculated using

procedure GET RMSD (Figure 4.11). Sequence similarity is computed only if Fasta files

for proteins are provided (lines 08–10). For the sequence similarity detection the ends-

space free algorithm for the global alignment that uses affine gap penalty function (Figure

3.4) is called at line 09.

The time complexity of the ESSM is estimated as O(mn+1n) (time complexity of CSIA),

where m and n is numbers of elements in 3D graphs.

The running of the ESSM algorithm is exponential, however in practice the results are

obtained within few seconds for comparison of structures containing up to 70 elements

(SSEs and structural motifs). The ESSM algorithm is implemented in C++ language.

4.1.6 ESSM Validation on Known Biological Examples

The ESSM algorithm have been validated on known biological examples of fold mutations

(Grishin, 2001; Kinch and Grishin, 2002). From 15 of such examples fold mutations of
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Figure 4.12: Scheme of ESSM algorithm. See details in the text.

Figure 4.13: ESSM results – β-strands insertion. β-strands insertion between proteins

1fow and 1hcrA. Ribbon-style representations of proteins generated by Pymol software (DeLano,

2002).

different types were successfully found in 13 cases. Some of these examples are shown in

Figures 4.13 and 4.14.

4.2 Fold Space Graphs

Fold space graph is a special type of graphs developed for the exploration of fold evolution.

Vertices in these graphs represent proteins/domains and edges show possibly evolutionary

relations between them:
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Figure 4.14: ESSM results – 3-β-meander substitution with α-helix. 3-β-meander sub-

stitution with α-helix between protein segments 1ldnA (residues A20-A265) and 1npx (residues

149-315). Ribbon-style representations of proteins generated by Pymol software (DeLano, 2002).

Definition 13 (Fold Space Graph).

Undirected graph G =< V,E >, where each vertex vi ∈ V represents protein i and each

edge eij ∈ E represents evolutionary relationship or potential evolutionary relationship

between proteins i and j. Edges are labeled with a list of scores Lij =< s1
ij, ..., s

n
ij > to

characterize the evolutionary relationship.

From the definition follows the basic property of fold space graphs: proteins i and k

represented by two vertices vi and vk that are not adjacent can be detected as evolutionary

related if exists a path P with the start vertex vi and the end vertex vk. This path

P represented as the sequence of vertices’ indices defines non-trivial chain of structures

si, ..., sk.

If biologists would like to explore some set of proteins by using fold space graphs, all-

against-all comparison of proteins have to be done by the ESSM software. The next stage

– the construction of fold space graph consists of three parts: data filtering procedure,

construction of graph and graph visualization.

The implementation of the ESSM algorithm was adapted for the construction of fold

space graphs. Firstly, the ESSM programme receives as input parameter a path to the

directory where data set description files are stored. This directory contains pdb files with

3D coordinates, fasta files with sequences and structure description files with structural

elements – SSEs and structural motifs (β-hairpins and 3-β-meanders) obtained with the

help of SSEs prediction programme in preprocessing stage. Secondly, when the all-against-

all pairwise comparison of proteins is finished, the ESSM programme generates output file

that contains results of all comparisons. These results can be presented in the form of a

set R, where each element is a list of comparison results for the pair of proteins i and j

Rij =< sessmij , srmsdij , sseqij , s
|FM |
ij >. sessm – ESSM score, srmsdij – RMSD score, sseqij – sequence
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Figure 4.15: Structure of fold space graph creation. Set of proteins is described with

the help of pdb files, fasta files and structure description files. The ESSM software compares all

possible pairs of proteins from the set and produces the file with comparison results. The proce-

dure for the fold space graph construction includes three subroutines: data filtering, construction

of graph and graph visualization. Values for thresholds and parameters that are used in these

subroutines are defined by user.

similarity, s
|FM |
ij – number of fold mutations.

The structure of the fold space graph creation is presented on Figure 4.15.

4.2.1 Construction of Fold Space Graphs

The scheme of the procedure for fold space graph construction is presented on Figure 4.16.

Data filtering procedure allows to exclude some results which are not biologically relevant

from the further processing (lines 01–04).

During the graph construction procedure all proteins that are included into the set of

results R are represented as vertices in graph (G =< V,E >), or in other words vi ∈ V :

∃Rij or ∃Rji (lines 07, 08). An edge eij is created only in case if comparison results of

proteins i and j exceed certain thresholds: eij ∈ E : srmsdij ≤ T2, s
seq
ij ≥ T3, s

|FM |
ij ≤ T4.

This means that for proteins i and j conditions allowing to identify them as potentially

evolutionary related are satisfied (lines 09–11). Again the values for the thresholds T2,3,4

are defined by user.

Additionally, vertex and edge labels are used for the identification of proteins in the

frame of a graph and for the classification of connections between proteins (lines 07,08,10).

The graph visualization procedure is based on a graphical visualisation component de-

veloped at Institute of Mathematics and Computer Science (authors K.Freivalds, P.Kikusts

uand A.Zarins). Parameters of the visualization procedure allow to emphasize separate
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Figure 4.16: Scheme of procedure for construction of fold space graph. See details in

the text.

parts of a graph. The details are given in the next section, where experiments with the

CATH database are described.

The strength of such construction method is flexibility in the choice of criterion for the

detection of evolutionary relationships between proteins, where a combination of different

scores is used and user choice defines the thresholds for values of the scores. This means

that the construction and visualization processes could be parameterized so that different

possible evolutionary relations are emphasized.

4.3 Experiments with CATH Fold Space

The experiments involving all-against-all comparisons of CATH (Section 3.3.4) protein

domains have been performed.

The purpose of these experiments was to obtain some estimates about probabilities of

different types of fold changes, to test the reliability with which the ESSM algorithm is

capable to identify particular types of fold changes and finally to explore CATH fold space

by using constructed fold space graphs

The CATH domains were chosen by a number of reasons: CATH domains are classified
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by homologous superfamilies that allow crosschecking of experimental results concerning

evolutionary relationships between CATH domains, CATH database provides all domains

description data which can be easily uploaded (pdb files, fasta files and also results of DSSP

software for the SSEs prediction), previous results in this field – estimation of frequencies of

different types of structural changes (Viksna and Gilbert, 2007) have been obtained using

CATH domains.

4.3.1 Set of CATH Domains

Representative set CATH-95 (latest version 3.1.0) provided by the CATH database (Orengo

et al., 1997) and containing proteins with less than 95% sequence similarity was used

for experiments. Additionally, protein structures obtained with NMR technology and

crystallized structures with resolution greater than 3 Å were removed.

The main reason for using a representative set and not CATH in the whole was to

exclude protein structures that for a number of reasons are overrepresented in CATH

(a more detailed discussion and motivation for using specifically CATH-95 is given in

(Viksna and Gilbert, 2007)). Also the number of protein domains in this study had to be

limited due to computational restrictions (computational time needed to make all-against-

all comparisons).

The obtained representative set for CATH class 1 (CATH1) contains 2502 domains,

for class 2 (CATH2) 3314 domains and representative set class 3 (CATH3) contains 6102

domains.

4.3.2 ESSM Results for CATH Domains

All-against-all comparisons of CATH protein domains have been performed by using the

ESSM software.

Three decisions were made to minimize the number of pairwise comparisons:

• Sets CATH1, CATH2 and CATH3 were treated separately, because few “short” evo-

lutionary relations was to be expected between these groups;

• Only domains with more than three SSEs were considered:

N i
SSE ≥ 4, where NSSE is the number of secondary structure elements in domain;

• Only CATH domain pairs with a difference in the number of SSEs less than or equal

to four were chosen:

N i
SSE −N

j
SSE ≤ 4.

Manual checking of domain pairs with sequence similarity 20% or more (taking in ac-

count also structure similarity these could be expected to be evolutionary related) in 85% of
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Figure 4.17: ESSM results on CATH domains – β-hairpin insertion/deletion. β-

hairpin insertion/deletion in domains 1bjmA01 and 2mcg101. Ribbon-style representations of

proteins generated by Pymol software (DeLano, 2002).

Figure 4.18: ESSM results on CATH domains – α-helix insertion/deletion. α-helix

insertion/deletion in domains 1b98A00 and 1bndA00. Ribbon-style representations of proteins

generated by Pymol software (DeLano, 2002).

cases confirmed the detected fold changes. Not confirmed cases concern insertion/deletion

of structural motifs (3-β-meanders, β-hairpins) and in few cases SSEs. This result could

be explained with not perfect procedure for the detection of such types fold changes when

mutation is detected from the alignment of structural elements. However, at that moment

there are not enough biological knowledge that would allow to model insertion/deletion of

structural elements in the more precise way.

Two examples of the discovered and confirmed fold changes are given in Figures 4.17

and 4.18.

Another noticeable result of this manual checking was ambiguity in structure’s division

in SSEs by using different SSEs prediction software (DSSP and PROMOTIF). The most

problematic SSE for prediction is 310-helix when results of DSSP and PROMOTIF are in

contradiction. Overall differences between obtained results by using DSSP and PROMO-

TIF are in range of 10%. Since prediction of 310-helices can not be fully trustable, fold

mutations with them (number from 11 to 15 according to the fold mutation number in the

section 2.4.1) were excluded from further experiments with fold space graphs.
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In general much more insertions in comparison with substitutions have been obtained.

This result could be explained partly with noise of the ESSM algorithm. From other point

of view pairs of domains have sequence similarities more than 20% and in most of the cases

checked examples with insertions β-strands and α-helices are biologically relevant. Taking

into account all these observations author suggest that SSE addition/deletion happened

more often than SSEs substitution at least in CATH domains.

4.3.3 Distribution of Probabilities

Comparative probabilities of different types of fold mutations were computed for each

CATH class (1, 2 and 3) in order to compare results of the ESSM algorithm with results

obtained in previous studies (Viksna and Gilbert, 2007) and to check the correspondence

between probabilities of fold mutations of particular type and structural features of CATH

classes.

For the computation of probabilities for fold mutation types formulas presented in

(Viksna and Gilbert, 2007) were used: value m(X,d)/n(d) gives the probability distribu-

tions for type X mutation, where m(X,d) is the number of observed mutations of type X

between pairs of proteins that have RMSD score less than 3 Å and sequence similarity d,

and n(d) denotes the total number of protein pairs in a test set with sequence similarity d.

Figure 4.19 represents the probability distributions for the most probable fold mutation

types (Viksna and Gilbert, 2007): insertion/deletion of single β-strands and α-helices. For

CATH1 the overall distribution of probabilities, if only insertion/deletion of β-strands

(Eins) and α-helices (Hins) are considered, is 17% and 83% respectively. For CATH2 this

distribution looks different: 92% for β-strands insertion/deletion and only 8% for α-helices

indels. Finally for CATH3 distribution is almost bisected: 56% for β-strands and 44% for

α-helices insertion/deletion.

The overall probability values for all used fold mutations types were obtained by using

a simple formula:

Pr(Mi) =
Number of pairs of domains with fold mutation of a given type Mi

Total number of pairs of domains
(4.20)

Statistical estimations have been obtained for fold mutation types with number from 1 to

10 (Figure 4.20) according to the fold mutation numbering in the section 2.4.1 separately

for CATH classes 1, 2 and 3.

In general much more insertions were obtained in comparison with substitutions. This

result could be explained partly with noise of prediction programmes and necessarily of

normalization by number of SSEs in protein. From other point of view pairs of domains

have sequence similarities more than 20% and checked examples with insertions at least

M1 and M2 are biologically relevant. Taking into account all these observations the author
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Figure 4.19: Distribution of probabilities for insertion/deletion of β-strands (Eins)

and α-helices (Hins). The values on the x axis represent normalized scores of sequence simi-

larities. The values on the y axis show computed probabilities.

suggests that SSE addition/deletion happened more often than SSEs substitution at least

in CATH classes.

By comparison with previous studies of the distribution of probabilities for fold mu-

tation types (Viksna and Gilbert, 2007), using the ESSM it was possible to estimate the

insertion/deletion of α-helices and obtained results seem to be realistic taking into account

the CATH division into classes.

4.3.4 CATH Fold Space Graphs

For the construction of fold space graphs for CATH domains in initial phase all-against-all

comparisons of domains by using the ESSM programme have been performed.

ESSM results (number of fold mutation of each particular type, RMSD score, ESSM

score and sequence similarity) of pairwise comparisons were stored in files – three differ-

ent files for three CATH classes. Additionally, data concerning CATH classification were

obtained and also stored in these files.

The following sets of possible threshold values for fold space graph construction proce-
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Figure 4.20: Probabilities for different types of fold mutations. See details in the text.

dures were defined: ESSM score for data filtering procedure T1 = 0.8, for graph con-

struction procedure RMSD score T2 ∈ {2 Å , 3 Å , 4 Å , 5 Å }, sequence similarity

T3 ∈ {0, 10, 20, 25, 30} and overall number of fold mutations T4 ∈ {1, 2, 3, 4, 5}.
PDB codes and CATH classification number of homologous superfamily (the first four

numbers delimited by dots) were used for labeling of domains in graphs. List Li =<

sessmij , srmsdij , sseqij , s
fm{1,...,10}
ij > have been used for edge labeling, where sessm – ESSM score,

srmsdij – RMSD score, sseqij – sequence similarity, sfmiij – fold mutation of type number i. For

CATH fold space graphs only types number from 1 to 9 according to the fold mutation

number in the section 2.4.1 were used.

Ten different parameters were used for the graph visualization procedure: Vn = {yes/no},
where n = 1,...,11. The first nine parameters have been used to mark out on the graph

fold mutation of specific type. Parameter V1,...,10 = yes means that edge eij will be marked

out on the graph (colored with red) if there is a fold mutation of type n between proteins

i and j. The last parameter have been used to emphasize non-trivial connections between

domains, when domains from different CATH homologous superfamilies are defined as pos-

sibly evolutionary related. V11 = {yes/no}, where ”yes“ means that vertices vi and vj will

be marked out if labels of CATH classification for i and j differ, but there is an edge eij on

the graph.
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As input data for fold space graph construction programme file with PDB codes and

CATH classification number of pairs of domains under examination and their structure

and sequence comparison results was used, as well as list of values for thresholds (T1, T2,

T3, T4) and list of values for visualization parameters (Vn, where n=1,...,11).

In the resulting graphs two vertices i and j are connected if scores for corresponding

domains i and j are in admissible limits. In such a way graphs represents CATH fold space

(respectively for CATH classes 1, 2 and 3), in which possibly evolutionary related domains

are connected.

4.3.5 Evolutionary Relationships Between CATH Domains

In this section three examples of fold space graphs (one example for each CATH class) are

considered (Figure 4.21).

Domain clustering.

The first example (Figure 4.21 part I) shows the partitioning of CATH class 2 domains

into clusters that could be found in the fold space graphs.

A number of fold space graphs were created for CATH2 using T3 = 0 (sequence similar-

ity was out of consideration) and different thresholds T2 (RMSD score) and T4 (number of

fold mutations). Clusters that were found in the fold space graph mainly correspond to the

CATH classification by homologous superfamilies and in all cases correspond to the CATH

topologies. In some cases superfamilies are partitioned into several clusters - each cluster

consists of domains with particular number and types of β-sheets (β-hairpin, β-meander,

n-stranded β-sheet). Such subclusters disappear with the increase of thresholds T2 and T4.

The overall number of superfamilies in the dataset of CATH2 that appear in our fold

space graph is 51 (after the data filtering procedure). The number of obtained clusters is

73 where 27 of them were considered as non-trivial (consisting of more than 2 domains)

clusters.

The size of obtained clusters varies significantly due to different populations in CATH2

homologous superfamilies. For CATH1 and CATH3 the clustering is also corelated with

CATH superfamilies, but often there tend to be several clusters within a single superfamily.

Although at first look this may appear to be hardly surprising, we think that this

observed relation between clusters and superfamilies is quite non-trivial fact. Up to some

extent this shows that are biological reasons for structure division into superfamilies and

they are not just the notion that has been invented for classification convenience.

The second and third examples (Figure 4.21 parts II and III) demonstrate how explo-

ration of the fold space graphs might allow to propose the possible evolutionary mechanisms

employed in the fold space.
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Detection of possible evolutionary mechanisms.

The second example (Figure 4.21 part II) represent the part of the fold space graph for

CATH class 3 concerning CATH homologous superfamily 3.30.500.10 ”Murine Class I

Major Histocompatibility Complex, H2-DB, subunit A, domain 1“. All domains of this

superfamily are connected to three particular domains: 1zt1A01, 1kjvA01 and 1k5nA01,

where each pair (any domain from the superfamily and one from the three listed domains)

could be evolutionary related through two fold mutations: E insertion/deletion and H

insertion/deletion.

These results might reflect the evolutionary mechanisms employed in fold space of the

3.30.500.10 superfamily, where structural domains might have evolved from three particular

domains.

Detection of non-trivial relationships between CATH domains.

The last example (Figure 4.21 part III) demonstrates how the usage of fold space graphs

could help to find non-trivial relationships between CATH domains (connections between

different CATH homologous superfamilies). Connections between different CATH homol-

ogous superfamilies were highlighted for CATH1 using features of our graph construction

and visualization programme which allow accentuation of specific vertices of the graph

(V10 = yes). Figure 4.21 part III shows how domain 1ycsB01 from the homologous super-

family 1.25.40.20 “Cell Cycle,Transcription” is used as a connector between this superfam-

ily and another one - 1.10.220.10 “Protein And Metal Binding Protein”.

Structures of domains from the superfamily 1.10.220.10 which are connected with

1ycsB01 are practically identical to half of this domain structure. At the same time there

are very few sequence similarities between them.

In the fold space graph for CATH2 we found that domains in the superfamily 2.60.40.30

“Fibronectin type III” are in many cases connected to immunoglobulin constant domains

from the superfamily 2.60.40.10 [(Leahy et al., 1992)]. Some domains from the superfamily

2.60.40.760 “Allergens” are also connected to immunoglobulin fold [(Marino et al., 1999)].

It should be noted however, that generally the observed connections between domains

of different superfamilies are somewhat less credible than connections within the same

superfamily – they are the one of the first that dissappear with the increase of the threshold

T3 for sequence similarity. Thus, they generally should be used only for guidance, and the

observed connections require some additional biological verification.

4.3.6 Exploration of β-sheets

The most challenging usage of fold space graphs is the extraction of evolutionary pathways

where every two proteins in a neighborhood are evolutionary related.
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Figure 4.21: Fold space graphs for CATH. In all three parts of the figure edges colored with

red show β-hairpin insertion/deletion. Vertices colored with blue highlight change-overs between

homologous superfamilies. I Part of the CATH2 fold space graph showing the partitioning into

clusters. Thresholds: T2 ≤ 4 Å T4 ≤ 3 and T3 = 0. CATH homologous superfamily 2.60.40.10

defines the largest cluster which contains all domains from this superfamily. At the same time

domains from the superfamily 2.60.120.200 are partitioned into several subclusters. II Part of the

CATH3 fold space graph for homologous superfamily 3.30.500.10. Thresholds: T2 ≤ 3 Å T4 ≤ 5
and T3 = 20. III Part of the CATH1 fold space graph for homologous superfamilies 1.25.40.20

and 1.10.220.10. Thresholds: T2 ≤ 3 Å T4 ≤ 5 and T3 = 0.
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Evolutionary pathway might be defined as a chain of structures F1, ..., FN when N > 2,

such that an evolutionary relationship between structures Fi and Fi+1 is feasible. The

pathway also defines fold mutations between proteins F1 and FN .

CATH class 2 (mainly - beta) has been chosen as a fold space for the exploration of

β-sheet extension scenarios, since this CATH class contains domains with rich β-sheet

structures.

Different possible evolutionary pathways were found in the largest homologous super-

family of CATH2 – 2.60.40.10 “Immunoglobulins”. However, observed fold mutations

mainly belong to two types:

• insertion/deletion of β-strand at the C-termini of domains (Figure 4.22 a ↔ b: β-

strand a; Figure 4.22 b ↔ c: β-strands a and a′);

• insertion/deletion of β-hairpins at the places of cross-overs between two main β-sheets

(Figure 4.22 a ↔ b: β-hairpin c′ c′′; Figure 4.22 e ↔ f: β-hairpin f′ f′′).

The following statistics are obtained for the Immunoglobulins: in 27% of comparison

pairs one domain consists of 4-stranded and 7-stranded β-sheets (Figure 4.22d) and in 50%

of pairs there are 4-stranded and 6-stranded β-sheets (Figure 4.22c).

These results might reflect the process of β-sheet evolution when 2-stranded β-sheet

becomes a part of a larger β-sheet (Figure 4.22 e ↔ d and f ↔ e: 2-stranded β-sheets a′

b′ and a h), at the same time two β-strands are united into the single one (Figure 4.22 e

↔ d and f ↔ e: β-strands b and b′).

In most of the cases domains from the Agglutinin homologous superfamily 2.60.120.200

(95% of explored domains) consists of two large (at least 7-stranded) β-sheets (Figure 4.23b

and Figure 4.23c) and one or two β-hairpins (Figure 4.23b: β-hairpin c b; Figure 4.23c:

β-hairpins c b and c′ c′′).

The pair of domains (Figure 4.23 a↔ b) demonstrates the possible formation/destruction

scenario of two 7-stranded β-sheets:

• β-meander is extended in N-termini with two β-strands and in C- termini with one

β-strand (Figure 4.23b: k′, k′′′ and a′). These changes together with a small β-strand

insertion (Figure 4.23b: e′) on the place of loop between two main β-sheets lead to

the formation of a 7-stranded β-sheet (Figure 4.23b: e′ a′ k′′′ e j k k′).

• The insertion of β-strand between the 2- and 4-stranded β-sheets (Figure 4.23b: k′′)

leads to the formation of 7-stranded β-sheet (Figure 4.23b: a d k′′ f g h i).

The insertion/deletion of β-hairpin is frequently observed fold mutation in the Agglu-

tinin superfamily (Figure 4.23 b ↔ c: β-hairpin c′ c′′).

Scenarios of fold changes concerning extension of β-sheets in others homologous super-

families of CATH2 are similar to the already described ones for superfamily 2.60.40.10.
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Figure 4.22: Representative chain of changes in the CATH2 Immunoglobulin ho-

mologous superfamily (2.60.40.10). a ↔ b: insertion/deletion of β-strand and β-hairpin; b

↔ c and c ↔ d: insertion/deletion of β-strands; e ↔ d and f ↔ e: two β-strands fusion and

formation of 4-stranded β-sheet, 5- and 2-stranded β-sheets unification; f ↔ e: insertion/deletion

of β-hairpin. The most frequently observed folds are c) (4-stranded and 6-stranded β-sheets) and

d) (4-stranded and 7-stranded β-sheets). Ribbon-style representations of domains generated by

Pymol [(DeLano, 2002)].

4.4 Conclusions

The algorithm, called ESSM, for protein structure comparison and detection of evolution-

ary changes has been developed in the frame of the dissertation and described in this

chapter.

The algorithm was found to be efficient and accurate to find evolutionary changes of

different types comparing structures of two proteins. In contrast to topological approach

described in (Viksna and Gilbert, 2007) the ESSM is able to detect arbitrary number of
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Figure 4.23: Representative chain of changes in the CATH2 Agglutinin superfamily

(2.60.120.200). a ↔ b: β-meander extension, 2- and 4-stranded β-sheets unification; b ↔
c: β-hairpin insertion/deletion. Ribbon-style representations of domains generated by Pymol

[(DeLano, 2002)].

fold mutations between two structures and to deal with all fold mutation types excluding

circular permutations (Section 2.4.1). Since the algorithm produces scores that allows to

estimate structural similarity, it has the potential to discover proteins related by structural

change and having small sequence similarity (in contrast to topological approach where dis-

covered fold changes is verifiable only for on the basis of sequence similarity). Experiments

have been performed to validate the ESSM algorithm on biologically confirmed fold changes

and it was able automatically identify 85% of examples given in (Grishin, 2001; Kinch and

Grishin, 2002).

A new combined method based on the ESSM has been developed for visualization and

analysis of evolutionary relationships between protein structures. This method consists of

two stages: detection of fold mutations by using the ESSM and subsequent construction

of fold space graphs.

The method has been applied for the exploration of CATH fold space separately for

classes 1, 2 and 3. The results show that such an approach is a convenient way to explore

evolutionary relations between protein domains and it could be used either for detection of

”interesting” evolutionary relationships between the structures (although most of the ex-

amples that were identified turned out already been studied and recognized as ”interesting”

by biologists, it should be noted that these examples were detected automatically by using

new combined method), or for formulation of more general hypotheses about evolution of

protein folds.

The analysis of CATH protein domains that has been performed allowed to obtain

estimates of the distribution of probabilities for different types of fold mutations, to detect
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several chains of evolutionary related protein domains, as well as to explore the most

probable scenarios of extension of β-sheets.

This chapter is based on the publications of author (Kurbatova et al., 2007; Kurbatova

and Viksna, 2008).



Chapter 5

Local Structural Similarities and
Discrimination of Protein Binding Sites

The scientists at the end of the 19th century had people
coming to them with this weird behavior, and they didn’t
know what was going on but there seemed to be a
similarity. They needed an answer, so they made up one.

Chester Brown

Abstract

Current computational methods for the prediction of function from structure are re-
stricted to the detection of similarities and subsequent transfer of functional anno-
tation. In a significant minority of cases, global sequence or structural similarities
do not provide clues about protein function. In these cases, one alternative is to de-
tect local binding site similarities. These may still reflect more distant evolutionary
relationships as well as unique physicochemical constraints necessary for binding sim-
ilar ligands, thus helping pinpoint the function. The specific graph-matching based
method has been developed for the detection of 3D atomic similarities introducing
some simplifications that allow to extend its applicability to the analysis of large all-
atom binding site models. This method, called IsoCleft, together with different binding
sites models helped to answer the following question up to now remained open: Is it
possible to discriminate within a dataset of non-homologous proteins those that bind
similar ligands based on their binding site similarities?

Ashas been mentioned in the Introduction section of this dissertation the area of bioinfor-

matics that explore protein evolution has three components: well developed sequence

evolution model, quite new and incomplete structure evolution model and the third com-

ponent – still undeveloped evolution model of protein active/binding site regions.

This chapter is devoted to the third listed component of general protein evolution model

– evolution of protein functions that are defined as protein ability to bind specific ligands

(Sections 2.3.3, 2.5). It is possible to detect probable binding sites regions of protein by

using specific algorithms . In turn, the detection of local 3D atomic similarities of such
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binding sites may provide useful clues about protein functionality when sequence similarity

and overall structural similarity are insufficient.

Here the author considers a set of proteins whose sequences and structures are com-

pletely different, but functions are similar trying to answer the following question: Is it

possible, on the basis of binding site 3D atomic similarities, to discriminate binding sites

that bind the same ligand (or equivalent parts in different ligands) from binding sites that

bind different ligands? The answer to this question is not at all obvious and only in the

case of an affirmative answer there can be a hope of being able to predict what ligands

may bind to a given protein binding site and also to extract unique binding site character-

istics that may help us understand what are the atomic requirements necessary for binding

specific small-molecules. These unique binding site characteristics may give a new insight

into evolution of proteins.

Mutations on positions in which specific residues are necessary from a structural or

functional point of view are negatively selected. Thus residue conservation is used to

detect important residues. However, it is worth noting that conserved residues may be

important for a variety of reasons: to maintain the structure, to control dynamic aspect of

the structure (conferring or restricting flexibility), in the interaction with small-molecules

or other proteins, etc. In the context of the dissertation an attempt to answer also the fol-

lowing question has been made: To what extent conservation reflects the need to maintain

specific atoms in specific positions in space relative to the ligand, presumably in order to

satisfy physicochemical constraints?

Methods for the detection of local structural similarities vary primarily in the type

of representation and search method (Section 3.3.5, Najmanovich et al. (2005)). Most of

them are not suited for the processing of large sets of atoms. In contrast graph-matching

based method called IsoCleft is suited to compare large sets of atoms using full atomic

representation and does not require any bonding or sequence alignment information.

The author contribution is implementation and validation of IsoCleft algorithm for

the detection of 3D atomic similarities using different binding sites models and the set of

non-homologous proteins. Besides, author found the most optimal values for algorithm

parameters and produced a series of experiments that allow to analyze IsoCleft usefulness

to discriminate different ligands binding sites based on 3D atomic similarities. The one

more contribution is a family of binding site models with decreasing knowledge about the

identity of the ligand-interacting binding site atoms. Such modeling has been needed to

uncouple the questions of detecting the binding site atoms and predicting binding site

similarities. Furthermore, the individual contributions of binding site size (in terms of

number of atoms), chemical composition and geometry were calculated.
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5.1 IsoCleft Algorithm for Detection of Local Struc-

tural Similarities

IsoCleft algorithm has been developed for the detection of 3D atomic similarities of binding

sites.

Given the sets of atoms defining the clefts under comparison, the question that needs to

be answered is: What is the largest subset of atoms in both clefts in direct correspondence

with each other geometrically as well as chemically? This is a combinatorial optimization

problem where, in principle, each possible set of atom correspondences might be a solution

and the largest such set is the global solution. Graph theory offers a means to solve this

problem via the detection of the maximal clique in an vertex product graph (Section 3.2.2).

Representing each cleft as an atom based graph (Section 3.2.1), the task is to find

the subgraph isomorphism. This is done through the construction of the vertex product

graph (Definition 10). In IsoCleft algorithm, an vertex product graph is a graph with

vertices representing pairs of atoms, one from each cleft that satisfy a condition of chemical

similarity. Edges in the vertex product graph are drawn based on a condition of geometrical

similarity between the two pairs of atoms, one pair from each cleft composing the vertices

of the vertex product graph.

The condition of chemical similarity is implemented through the use of atom types. We

utilize the atom type scheme of (Sobolev et al., 1996). Atoms are classified into 8 atom

types: Hydrophilic, Hydrogen bond (HB) acceptor, HB donor, Hydrophobic, Aromatic,

Netral, Neutral-donor and Neutral-acceptor (Section 2.1.2). Each vertex in the vertex

product graph defines a possible correspondence between a pair of atoms of identical atom

types, one from each cleft under comparison. This condition assures that the final subset

of atoms in common between the two clefts corresponds pairwise to the same atom types.

The condition of geometrical similarity used when creating edges in the vertex product

graph is such that a clique corresponds to a subset of atoms in each cleft in which all

pairwise distances between atoms in one cleft are satisfied by the corresponding atoms in

the other cleft.

The next result of the graph matching is the detection of the largest subset of atoms of

identical atom types in equivalent spatial position, thus making it possible to superimpose

the two clefts based on these atoms.

The combinatorial nature of vertex product graphs can lead to exponentially large

graphs both in terms of number of vertices as well as density of edges. This is a major

drawback when employing vertex product graphs to detect common subgraph isomorphism

since the computational cost of clique detection algorithms increases very rapidly with

the size of the vertex product graph. During the development of IsoCleft an innovation

that allows to overcome this common problem associated with graph matching has been
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Figure 5.1: The structure of the IsoCleft algorithm. IsoCleft algorithm consists of two

stages: in the first stage, an initial superimposition is performed via the detection of the largest

clique in an vertex product graph constructed using only Cα atoms of equivalent residues in the

two clefts; in the second graph matching stage, all non-hydrogen atoms are used and vertices of

vertex product graph are created with the requirement that two atoms, one from each cleft, be of

the same atom type as well as that their spatial distance after the first stage superimposition be

within a certain value. Four thresholds define the conditions for vertices and edges construction

in vertex product graphs.

introduced, namely performance of the graph matching in two stages.

The scheme of the IsoCleft algorithm is presented on Figure 5.1.

In the first stage, an initial superimposition is performed via the detection of the largest

clique in an vertex product graph constructed using only Cα atoms of equivalent residues

in the two clefts (Figure 5.2). A user defined value is used to set the level of allowed

residue similarity based on the rank order of each residues JTT substitution matrix (Section

3.1.1) average probabilities (rank threshold, r). Once the largest Cα clique is obtained its

transformation matrix and translation vectors are used to superimpose all atoms in the

two clefts using the superimposition (Section 3.2.3) with the least square method (Section

3.2.3). The Bron and Kerbosch algorithm has been used (Section 3.2.2) to detect the

largest clique in the vertex product graphs on both stages of the graph matching process.

In the second graph matching stage, all non-hydrogen atoms are used. Vertices of

vertex product graph are created with the requirement that two atoms, one from each

cleft, be of the same atom type as well as that their spatial distance after the first stage
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Figure 5.2: IsoCleft Stage I. Construction of the vertex product graph using only Cα atoms

of equivalent residues in the two clefts.

Figure 5.3: IsoCleft Stage II. Construction of the vertex product graph using all non-hydrogen

atoms with the requirement that two atoms, one from each cleft, be of the same atom type.

superimposition be within a certain value. This distance threshold (cleft vertex radius

threshold, n) is used to decrease the size of the vertex product graph and is the reason

why the initial graph matching stage is performed. The Cα atoms artificially included in

the set of cleft atoms for the first stage are not utilized in the second stage and thus do

not contribute directly to the detection or measurement of similarity.

Four parameters are required for the execution of the algorithm. These are:

• Rank threshold, r = 5 - Used to define how much residue dissimilarity is permitted

when building the Cα vertex product graph. Values range from one (only identical

residues allowed) to twenty (all substitutions allowed). This parameter represents the

rank order of each residues JTT substitution matrix (Section 3.1.1) average proba-

bilities and makes it possible to take in account evolutionary information.
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• Cα distance difference threshold, c = 3.5 Å - Used to define edges in first stage Cα
vertex product graph. A value of zero would mean that the resulting superimposed

Cα atoms would have RMSD = 0 Å , this parameter places an upper bound to the

resulting Cα RMSD.

• Cleft vertex radius threshold, n = 4.0 Å - Used to restrict the creation of vertices

in the second stage vertex product graph to those atoms of the same atom type

and from different clefts that lie within this distance threshold. This parameter is

used to prevent a combinatorial explosion in the number of vertices in the second

stage all-atom vertex product graph and is the main reason for the first stage graph

matching.

• Cleft distance difference threshold, d = 4.0 Å - Used to define edges in the second

stage, all atom vertex product graph. This parameter is equivalent to c in nature but

is applied to all atoms. This parameter places an upper bound on the final RMSD

of the detected cleft atoms in common. This parameter can be used to implicitly

account for the effect of flexibility to some extent.

IsoCleft algorithm uses three measures of similarity to measure the individual contributions

of binding site size, chemical composition and geometry towards prediction accuracy. All

three measures are calculated as Tanimoto scores of similarity of the form:

Similarity =
Nc

NA +NB −Nc

, (5.1)

where NA,B are the total number of atoms in clefts A, B and Nc corresponds to the number

of atoms in common.

The size of the largest detected clique in the second stage vertex product graph cor-

responds in effect to a measure of similarity that takes in account binding site chemical

composition and geometry, as well as, implicitly, binding site size:

Nc = Clique Size (5.2)

One can calculate the number of atoms in common between two clefts irrespective of their

positions in space. For example, if the two clefts contain p and q hydrophobic atoms

respectively, the maximum number of common atoms of this atom type will be min(p, q).

Thus, the number of common atoms considering size and chemical composition alone is

given by:

Nc =
∑

atom types,i

min(N i
A, N

i
B), (5.3)

where N i
A, N i

B represent the number of atoms of atom type i in each cleft.
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Finally, one can ignore the atom types altogether and define a measure of similarity

that reflects exclusively binding site size:

Nc = min(NA, NB) (5.4)

While predictions can be ranked according to their similarities as defined above, an

independent mechanism needs to be defined to determine whether a prediction is successful

or not. Here a true positive (correct prediction) is defined, as a prediction that offers correct

clues about the nature of the ligand that binds a given binding site.

Ligands present in the dataset in several instances share identical, sometimes large,

common scaffolds such as the AMP moiety between {AMP, ATP, FAD, NAD}, the FMN

moiety between {FMN, FAD}, as well as the EST moiety among {AND, EST}. If we were

to find as common between an AMP and a FAD binding sites those atoms that are in

contact to these ligands equivalent atoms, this prediction should be considered successful.

We define a Detected Equivalent Ligand Atom (Ldeq) as an atom in ligand A that is

equivalent to an atom in ligand B and each one of these atoms in turn is in close spatial

proximity to cleft atoms found to be equivalent through the graph matching process. For

example, atom P/2569/AMP/2/X (corresponding to atom name P, atom number 2569,

residue name AMP, residue number 2, chain identifier X) in PDB entry 12as is equivalent to

atom AP/3203/FAD/405/A in PDB entry 1cqx. In other words, the number of equivalent

ligand atoms detected specifically via common binding site atoms is counted. When at

least 70% of the equivalent ligand atoms are detected in this manner, the prediction is

considered successful:

Feq = max

{
1 Leqd/Leq > 0.7;

0 otherwise.
(5.5)

where Leq is the number of equivalent atoms between the two ligand classes being compared.

In other words, if Feq = 1, at least 70% of the equivalent ligand atoms will be within close

proximity when the two clefts are superimposed using the common cleft atoms. Figure 5.4

shows the result of a successful comparison.

It is worth noting that this measure of prediction success is quite stringent in the sense

that it is not sufficient to find common binding site atoms, a large number of these atoms

need to be functionally similar as they must interact with equivalent atoms in the ligands.

Finally, two clefts may have a large number of atoms in common and while all these are

used when calculating Nc, only a fraction of these may be necessary to deem the prediction

successful, as only a fraction of these will in fact be in the vicinity of the ligand.

When analyzing the prediction success of measures that ignore geometry, the ligand

classes as measure of success can be utilized. That is, a true positive is one where the

query and target proteins belong to the same ligand class as defined in the section 5.3.1.

The accuracy of a prediction was calculated as the average area under the Receiver

Operator Characteristic (ROC) Curve, AUC. A ROC curve measures the fraction of true
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Figure 5.4: Detection of similarities. Pairwise comparison of ATP-dependent DNA ligase

from bacteriophage T7 bound to ATP (PDB code 1a0i) used as query (red) and rat short chain

acyl-coa dehydrogenase (PDB code 1jqi) used as target (green). These two proteins are non-

homologous and share 21% sequence identity. Comparison of the OM model for 1a0i to the IM5

model of 1jqi detects 20 binding site atoms in common (spheres) belonging to different residues

(lines). These atoms correctly identify 74% of equivalent ligand atoms, corresponding to the

AMP core common to ATP and FAD. Superimposition of the binding sites based on the detected

binding site similarities places the corresponding ligand atoms at a root mean square distance

(RMSD) of 3.3 Å. Note that the OM model used as query is much larger than the atoms found

in common (red spheres) yet the atoms in common correctly identify the common AMP core.

Furthermore, if the same atoms were found in common but the equivalent ligands would not have

been found, the prediction would be unsuccessful.

positive predictions as a function of the fraction of true negative predictions. Thus, an

AUC value of 0.5 corresponds to the accuracy of a random predictor while, a value of

1.0 corresponds to a perfect prediction. An actual test will fall between these bounds.

Particular AUC values are then averaged within ligand classes as well as over the whole

dataset.

The scheme of the IsoCleft algorithm is presented on Figure 5.5. The algorithm works

with two sets: S1 and S2 are sets of 3D coordinates of atoms that define clefts 1 and 2. Each
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element of S1,2 is a list of 3D coordinates of atom and label representing atom type and

residue type si1,2 =< p1, p2, p3, atomType, residueType >, where atomType ∈ {1, ..., 8}.
Subsets SCα1 ⊂ S1 and SCα2 ⊂ S2 contain only Cα atoms (lines 01–02). The vertex product

graph Ga =< Va, Ea > consists of the set of vertices Va and the set of edges Ea, where

each vertex i is a pair of atoms < s1
i , s

2
i > s1

i ∈ S1 and s2
i ∈ S2.

At lines 03–11 of the IsoCleft algorithm the vertex product graph is constructed by

using only Cα atoms. Rank threshold r is used to check vertices correspondence (lines 03–

06). Cα distance difference threshold c is used to define edges in the vertex product graph

(lines 08–11). The Bron and Kerbosch algorithm (Figure 3.7) is called at line 12. The

result of it is the set E of vertices from the vertex product graph defining maximal found

clique. Sets of atoms are superimposed using defined maximal clique as equivalence (line

13). For that purposes the classical superimposition algorithm is utilized (Figure 3.9), but

for the detection of the best rotation matrix singular value decomposition approach is used

(Figure 3.10). The result of superimposition is RMSD value and transformed set S ′1. In the

second stage another vertex product graph is constructed from the all atoms of clefts (lines

14–22). For the vertices construction Cleft vertex radius threshold n is used (lines 15–18).

In turn, Cleft distance difference threshold d helps to construct the set of edges in the new

vertex product graph (lines 19–22). Again the Bron and Kerbosch algorithm detects the

maximal clique (line 23), but the superimposition algorithm detects the RMSD value and

transformed set S ′1 (line 24). At line 25 the first score is calculated by using Equations 5.1

and 5.2. To found the number of atoms in common by using Equation 5.3 at lines 26–28

the number of common atoms considering size and chemical composition (atom types) is

calculated. The last score by using Equations 5.1 and 5.4 is calculated at line 30.

Default values for the algorithm parameters (r = 5, c = 3.5 Å , n = 4.0 Å , d = 4.0

Å ), were obtained through an extensive heuristic search in parameter space maximizing

the average AUC. For this task a slightly different dataset has been used comprising the

subset of the dataset with the smallest 5 IM models with d = 5 Å from each ligand class

from the original dataset of (Kahraman et al., 2007) as well as 5 examples of proteins

bound the Phosphate. Each point in parameter space involved 1250 pairwise comparisons

and subsequent calculation of average AUC. The parameters obtained were utilized for all

other comparisons.

5.2 Method for Definition of Clefts

While in 83% of proteins, the ligand binding site can be found within the largest cleft

(Laskowski et al., 1996), the accurate detection of binding site atoms within clefts is still

an open question. In the frame of the dissertation the question of predicting the binding

site is not considered, during the experiments it is known in advance which cleft atoms
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Figure 5.5: Scheme of IsoCleft algorithm. See details in the text.
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define the binding site and therefore the question of locating the binding site atoms can

be avoided. Atoms of cleft, which corresponds to binding site are used to define different

models of the binding site. These models simulate varying amounts of knowledge of the

identity of the binding site atoms within the cleft.

Clefts atoms are determined using the Surfnet algorithm (Laskowski, 1995). A cleft is

defined as a set of overlapping spheres. Each sphere is defined in the mid-point between

any two protein atoms as long as its radius lies within the range of 1.5 Å and 4 Å and

does not overlap the van derWaals radius of any atom in the protein. The upper and

lower bounds for surfnet spheres are empirical and designed to prevent the formation of

one single cleft across the whole protein via the union of different clefts by means of very

small or very large volumes that are not biologically relevant. While the surfnet algorithm

defines a cleft volume, here the most interested are atoms in the cleft surface. A cleft is

defined as the atoms that generate the surfnet spheres as well as the corresponding residues

Cα atoms.

5.2.1 Original Cleft Model (OM)

Clefts identified through the presence of the bound cognate ligand are defined using the

Surfnet algorithm as described above. These are referred as original model (OM). The cleft

produced by the strictly geometric Surfnet algorithm is a rough over predicted idealization

of the binding site often containing much more than the atoms within interacting distance

to the bound ligand. In the absence of any more specific information about the location

the binding site in a protein of unknown function, the original model is a suitable cleft

model for function prediction.

5.2.2 Conserved Cleft Model (CM)

Quite often, the function of a protein may not be known but given the wealth of sequence

information amassed in current databases, it is easy to find related proteins and thus detect

which residues within a cleft are highly conserved. As discussed in Introduction section of

this chapter, residue conservation is often taken as a sign of importance but this importance

may not necessarily be related to physico-chemical determinants of ligand binding. Despite

the intrinsic uncertainty behind residue conservations, here the objective was to determine

to what extent the use of such information may improve our ability to hint at what ligand

may bind to a protein. In the experiments the phylogenetic residue conservation scores

from the ConSurf-HSSP database (Armon et al., 2001; Glaser et al., 2005b) were used to

define the conserved cleft model (CM) as the subset of atoms from the original cleft model

that belong to residues with the highest consurf-hssp conservation scores (score ≥ 8).

It is important to note that in principle the atoms in the conserved cleft model could
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interact with the bound ligand, but may not contain all atoms that interact with a ligand, as

not all ligandinteracting atoms need to be highly conserved (Glaser et al., 2006). Likewise,

conserved atoms within a cleft can be found at considerable distances from the ligand

(Section 5.6).

5.2.3 Interaction Cleft Model (IM)

Finally, the interaction models (IM) was defined as means to analyze the relationship

between binding site similarity and ligand binding without the added confounding effect of

the uncertainty in defining the binding site. Atoms in the interaction models contain the

subset of original cleft model atoms within d Å of the bound ligand (5 ≤ d ≤ 15). Thus,

as d increases so does the uncertainty in our knowledge about the identity of the ligand

interacting atoms. The database of IM models with d = 5.0 Å referred as IM5 for short,

is of particular interest as it is the database to which all other cleft models are compared

against.

Figure 5.6 shows the various cleft models used in the present work for one particular

protein.

It is entirely possible that even the IM5 subset of atoms still contains atoms that are not

necessary to bind the ligand in question but this is exactly one of the questions that have

to be answered with the current work. Namely, how unique the set of atoms in contact to

a given type of ligand need to be?

5.3 Experiments with Dataset of Non-homologous Pro-

teins

The experiments involving comparisons of different clefts’ models (OM, CM, IM) from the

set of non-homologous proteins that bind the same classes of ligands have been performed.

5.3.1 Dataset and Ligand Classes

The dataset that have been used during experiments is a subset of the dataset of (Kahraman

et al., 2007) comprising a total of 72 examples of structures of non-homologous proteins

each bound to a cognate ligand (Section 2.5). Here the PDB codes of the entries in each

class are presented, but further information can be found in the original publication.

There are 9 different ligands represented in the dataset:

1. Adenosine monophosphate (AMP): 12as, 1amu, 1c0a, 1ct9, 1jp4, 1qb8, 1tb7, 8gpb;

2. Androsteneolone (AND): 1e3r, 1j99;
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Figure 5.6: Cleft models. Cleft atoms in E. coli Asparagine synthetase (PDB code 12as)

shown as spheres. The ligand (AMP) is shown in orange. Cleft atoms within 5.0 Å of the ligand

are shown in cyan (conserved atoms) and green (non-conserved). Remaining atoms are shown in

blue (conserved) and red (non-conserved). Different cleft models are composed of combinations of

these atoms. The IM5 model corresponds to cyan and green atoms. The CM model corresponds

to cyan and blue atoms. The OM model corresponds to all atoms. Different IM models correspond

to subsets of atoms at varying distances from the ligand. The cyan atoms are referred in the text

as CM5, the subset of conserved atoms within interacting distance from the ligand. The IM or

CM5 cleft models are not available when trying to predict the function of a protein but CM or

OM can be used (see text for more details).

3. Adenosine triphosphate (ATP): 1a0i, 1a49, 1ayl, 1dv2, 1dy3, 1e8x, 1esq, 1kvk, 1rdq,

1tid, 3r1r;

4. 17β-Estradiol (EST): 1fds, 1lhu, 1qkt;

5. Flavin-adenine dinucleotide (FAD): 1cqx, 1e8g, 1hsk, 1iqr, 1jqi, 1jr8, 1k87, 1pox;

6. Flavin mononucleotide (FMN): 1dnl, 1f5v, 1ja1, 1mvl, 1p4c, 1p4m;

7. Glucose (GLC): 1bdg, 1cq1, 1k1w, 1nf5, 2gbp;
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8. Heme (HEM): 1d0c, 1d7c, 1dk0, 1eqg, 1ew0, 1gwe, 1icq, 1naz, 1np4, 1po5, 1pp9,

1qhu, 1qla, 1qpa, 1sox, 2cpo;

9. Nicotinamide-adenine-dinucleotide (NAD): 1ib0, 1jq5, 1mew, 1mi3, 1o04, 1og3, 1qax,

1rlz, 1s7g, 1tox, 1zpt, 2a5f, 2npx.

5.3.2 Discrimination of Protein Binding Sites

The effects of lack of knowledge about the identity of the binding site atoms, i.e., the

ligand-interacting cleft atoms, and the contributions of size, chemical composition and

geometry are interconnected.

To determine these effects and contributions, the various cleft models: IM (with 5.0 ≤ d

≤ 15), CM and OM, were compared against the IM5 database of models. The predictions

were ranked according to the similarities calculated using equation 5.1 together with the

appropriate measure of Nc (Equations 5.2, 5.3 and 5.4). True positive predictions were

marked using the appropriate method and used to calculate average AUC values. These

results are presented in Figure 5.7.

In the ideal situation where there is full knowledge of the binding site atoms, d = 5.0 Åin

Figure 5.7, it is possible to discriminate binding sites. The set of atoms in close proximity

to the ligand are more similar for proteins that bind similar ligands that those that bind

dissimilar ligands. These similarities are found at all levels, binding site size, chemical

composition as well as geometry. While this situation is somewhat unrealistic from the

point of view of function prediction, it suggests that binding site atoms are rather conserved

even in the absence of detectable homology and thus it appears that binding similar ligands

introduces physico-chemical constraints on the position and nature of binding site atoms.

As uncertainty on the knowledge of the identity of the binding site grows, d ¿ 5.0 Å in

Figure 5.7, it could be observed that prediction accuracy decreases rather abruptly when

only chemical composition or size are utilized. A decrease is also observed when geometry

is used but this decrease is more moderate. As a matter of fact, in the absence of any

information about the position of the binding site within the cleft, i.e., when utilizing

the OM models, the prediction ability of size and chemical composition is no better than

random while that of geometry is far from ideal but considerably better than random.

Furthermore, as shown in Figure 5.8, different ligands are easier to discriminate than

others. In this dataset, ATP, EST, FAD and HEM can be discriminated with higher

accuracy than others. However, given the small sampling, the error in this averages is

higher. This explains the AUC value below 0.5 for GLC.
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Figure 5.7: Contribution of geometry, chemical composition and size to prediction

accuracy as a function of uncertainty. It is possible to discriminate binding sites in the

absence of uncertainty in the knowledge of the identity of ligand interacting cleft atoms. As

uncertainty in the knowledge of the binding site grows, chemical composition or binding site size

alone are not sufficient to discriminate binding sites. While uncertainty also has an effect on the

contribution of geometry to prediction accuracy, this effect is less drastic. A sufficiently large

value of d would encompass all cleft atoms and therefore corresponds to the OM model. The last

point in the graph shows the values for the OM models but it should be understood that this last

point is not in scale with the rest of the axis. Conserved atoms (CM) are not informative for the

discrimination of binding sites that bind similar ligands.

5.3.3 Conservation and Improvement of Prediction

Figure 5.7 also shows the average AUC values obtained from the comparison of conserved

models (CM) against the database of IM5 models. These values are placed within the

figure in the position that corresponds to the equivalent IM models based on the average

number of atoms present in CM models. The results show that while size and chemical

composition are not too far off from the values obtained with the corresponding IM models,

the average AUC including the contribution of geometry is quite poor compared to that of
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Figure 5.8: Average AUC values for different ligand classes. The average AUC values

from the comparison of OM cleft models against IM5 models shows that different ligands, such

as ATP, EST, FAD and HEM, are easier to discriminate while others (AMP, AND, FMN and

NAD) cannot be easily discriminated.

the corresponding IM models.

The distribution of ligand-cleft atoms for all atoms and conserved atoms (Figure 5.9)

shows that conserved atoms are similarly distributed and make up a fraction of all cleft

atoms at all distances. Clearly, conserved atoms at distances larger than those within which

these atoms could interact with the ligand, while functionally relevant as reflected by their

conservation, cannot be relevant to ligand-protein interactions. The next experiment was

made to determine if the inclusion of these atoms in the conserved models is the reason

why these models perform so poorly.

A new cleft model composed of highly conserved atoms within 5.0 Å of the ligand (CM5)

was defined. Pairwise comparison of the CM5 database against itself, produces average

AUC values of 0.62 when considering geometry, chemical composition and size; 0.62 for

chemical composition and size alone; and lastly, 0.58 for binding site size. Considering

that the CM5 clefts contain less atoms than the IM5 models, and therefore less chances

for spurious similarities, we would expect the average AUC values to be closer to those for

the corresponding IM5 comparison (the left most points in the curves in Figure 5.7) which

are 0.70, 0.75 and 0.76 respectively. This result suggest that, physico-chemical constraints
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Figure 5.9: Distribution of ligand-conserved cleft atom distances. Conserved atoms can

be found at all distances from the ligand, they constitute a fraction of the total number of atoms

at all distances and are approximately equally distributed.

cannot be the sole reason for the conservation of atoms around the ligand. If that was

the case we would expect average AUC values closer, if not higher, than those for the IM5

clefts which contain non-conserved ligandinteracting atoms in addition to those present in

the CM5 model (Figure 5.6).

5.4 Conclusions

A graph-matching method for the detection of local similarities of protein structures have

been described in this chapter. The method detects nearlyoptimal approximate solutions

for the graph-matching problem thus making it possible to compare large sets of atoms such

as those obtained from naive geometric definitions of the binding site. The set of atoms

contains the coordinates, chemical identity and residue identity of the atoms. IsoCleft is

applicable to the comparison of any two protein structures.

The main objective of experiments that have been done by using IsoCleft was to dis-

criminate within a dataset, those proteins that bind similar ligands based on local 3D

atomic similarities. The result was successful. However, the discrimination ability depends
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on how accurately the ligand-interacting atoms are known. While this set of atoms may

not be known in advance when trying to predict the function of a protein, this result

shows that the set of ligand interacting atoms are somewhat unique and thus lends further

support to the use of docking techniques as well as the definition of binding templates.

Uncertainty on the knowledge of which atoms within a cleft interact with the ligand

decreases our discrimination ability but also points out the power of used method in de-

tecting functionally relevant similarities as compared to chemical composition and binding

site size alone. The results point to the need of combining described approach with infor-

mation that help pinpoint which atoms within a cleft may interact with the ligand. Such

information may come from computational methods as well as experimental data.

The most striking result of the experiments is the poor discriminating ability when

using cleft atoms belonging to highly conserved residues, particularly the subset of con-

served atoms within interacting distance from the ligand. One can understand that the

conservation of distant atoms in different families may not be related to the need to satisfy

physico-chemical constraints posed by the ligand. However, the poor discriminatory abil-

ity of conserved atoms within interacting distance from the ligand is surprising. The fact

that one needs to use all atoms around a ligand rather than just those that are conserved

suggest that non-conserved atoms are functionally important.

It is still unclear what is the reason for different patterns of conservation among binding

sites that evolved independently to bind similar ligands. One possibility is that a small

number of crucial atoms are needed to hold a ligand in place and different protein families

either utilize different such subsets or these subsets are too small to be picked out and

used method is unable to detect them. The remaining conserved ligand-interacting atoms

might be present to satisfy other constraints resulting from the different spatial and cellular

contexts in which different proteins evolve. One such constraint is the need to prevent the

competitive binding of similar small-molecules which could potentially interfere with the

action of the given protein. Recently some correlation between binding site similarities

and functional similarities within the Human cytosolic sulfotransferase family were found

(Najmanovich et al., 2007; Allali-Hassani et al., 2007). In these studies also observed that

a small number of binding site differences may in some cases, but not others, have a drastic

effect on protein function.

A single framework may help rationalize the observations presented in the current

work for convergent evolution as well as those for the case of divergent evolution in human

cytosolic sulfotransferase family members. In both cases, binding site differences may be in

place to affect the free energy of binding for competing small-molecules without necessarily

affecting the binding of relevant small-molecules. Therefore molecular recognition, as the

observed result of an evolutionary process, cannot be fully understood outside the spatial

and temporal cellular context.

The work presented in this chapter has been done in collaboration with European
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Bioinformatics Institute. The chapter is based on publication of author and her colleagues

from EBI (Najmanovich, Kurbatova and Thornton, 2008).





Chapter 6

Conclusions

This dissertation makes a number of significant and original contributions in the area of

the exploration of protein evolution and application of graph theory methods. The contri-

butions described in this dissertation can be summarized as the development of algorithmic

method for the detection of structural mutations and method for the exploration of evolu-

tionary relations in the whole set of proteins, construction of protein binding sites’ models

and implementation of algorithm for the local structural similarities detection using full

atomic models of binding sites. With these contributions there are a wide range of future

possibilities for new research.

Four unique contributions to the area of bioinformatics are described in the following

sections. These contributions form a solution to the problems associated with evolution of

protein structures and functions. The introduction to this dissertation contained a number

of research questions and goals. The contributions answer each of these questions.

6.1 Algorithm for Detection of Structural Mutations

The ESSM algorithm for protein structure comparison and detection of evolutionary changes

has been developed in the frame of the dissertation. The algorithm is based on graph the-

ory methods for graph comparison problems. In the ESSM algorithm protein structures

are represented as 3D graphs, where vertices are structural elements. Different designed

equations are used for the construction of vertices and edges of such graphs. Subgraph

isomorphism problem is solved by using adapted version of CSIA algorithm where spe-

cific functions developed by author are used for checking of similarity between vertices and

edges of 3D graphs. Alignment of structural elements is constructed on the base of common

subgraph. In turn, some types of fold mutations are detected during the CSIA procedure

and some other types are detected during the analysis of the constructed alignment.

The algorithm has been successfully implemented and validated on known biological

examples of fold mutations.
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6.2 Method for Exploration of Evolutionary Relations

The exploration method consists of two stages: all-against-all comparison of the protein

structures by using the ESSM algorithm for identification of structural mutations and

construction of specific fold space graph on the basis of discovered mutations.

The method has been applied for the exploration of CATH fold space separately for

classes 1, 2 and 3. The results show that such an approach is a convenient way to explore

evolutionary relations between protein domains and it could be used either for detection of

”interesting” evolutionary relationships between the structures (although most of the ex-

amples that were identified turned out already been studied and recognized as ”interesting”

by biologists, it should be noted that these examples were detected automatically by using

new combined method), or for formulation of more general hypotheses about evolution of

protein structures.

The analysis of CATH protein domains that has been performed allowed to obtain

estimates of the distribution of probabilities for different types of fold mutations, to detect

several chains of evolutionary related protein domains, as well as to explore the most

probable scenarios of extension of β-sheets.

6.3 Construction of Binding Sites Models

Models for binding sites of proteins have been constructed by incorporating different knowl-

edges about ligand-interaction regions of proteins. The first type of model, called original

model, is a full atomic representation of cleft on protein surface that is predicted by using

Surfnet algorithm. The second type of model, called conserved model, contains only data

about conserved fragments of protein sequences. Finally, the last model, called interaction

model, contains data about atoms that interact with ligand. Since apriori we don’t know

which atoms of binding site are interacting with ligand the distance from ligand is used

for the construction of this model. Atoms in the interaction models contain the subset of

original cleft model atoms within dÅof the bound ligand (5 ≤ d ≤ 15).

These models allowed to explore how by using computational methods we can discrim-

inate within a dataset of non-homologous proteins those that bind similar ligands based

on their binding site similarities and to check the individual contributions of binding site

size (in terms of number of atoms), chemical composition and geometry.

6.4 Discrimination of Protein Binding Sites

The specific graph-matching based method has been developed for the detection of 3D

atomic similarities introducing some simplifications that allow to extend its applicability
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to the analysis of large all-atom binding site models. This method, called IsoCleft, together

with different binding sites models helped to analyze the discrimination abilities of binding

sites and to make a number of contributions into the exploration of protein functionality.

6.5 Future Work

There are a number of areas where to perform further research and to improve the contri-

butions made in this dissertation. In order to find the interesting chains of proteins where

proteins on the chain ends are not evolutionary related exploration of the whole CATH

dataset has to be performed. Such experiment involves a million of pairwise comparisons.

Therefore the powerful computational infrastructure like Grid (a service for sharing com-

puter power and data storage capacity over the Internet) has to be used. At the moment

this experiment is in the preparation stage.

The next work that has to be done in the future is the creation of web interfaces for

the ESSM algorithm and combined method for fold space graphs creation.

As to the IsoCleft algorithm and binding sites modeling, here the planned activities

include the creation of web interface that allow to construct binding site models and to

compare two models of arbitrary protein structures by using IsoCleft and the integration of

IsoCleft and binding site modeling scheme with Profunc server (Laskowski et al., 2005a,b)

for the overall analysis of a protein’s 3D structure and functionality prediction.
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