

MDA: Correctness of Model
Transformations.

Which Models Are Schemas?

Karlis PODNIEKS
Institute of Mathematics and Computer Science, University of Latvia,

29 Raina Boulevard, Riga, LV-1459, Latvia

Abstract. How to determine, is a proposed model transformation correct, or not? In
general, the answer may depend on the model semantics. Of course, a model
transformation is “correct”, if we can extend it to a “correct” instance data
transformation. Where should model semantics be defined? Assume, model syntax
and semantics are defined in the same meta-model. Then, how to separate syntax
from semantics? The answer could be the definition of model schemas proposed in
the paper.

Outline

The paper is structured as follows. Section 1 discusses the correctness of model
transformations that are solving the UML to RDBMS transformation problem. Section 2
introduces an extension of this problem, in which model syntax and semantics are defined
in the same meta-model. Section 3 is the core of the paper – it proposes a general definition
of model schemas. Section 4 applies this definition to XML-schemas. Section 5 considers
the relationship between schemas and model constraints. Finally, Section 6 discusses the
related work.

1. Which UML to RDBMS Transformations Are Correct?

The Object Management Group (OMG) has issued a Request for Proposal for a
Query/Views/Transformations (QVT) language that would allow defining of mappings
between different information models [1]. “In defining mappings from model to model, the
question of correctness of the mapping arises. ... The more complex form of correctness is
that of semantic correctness; does the result of transformation mean the same thing as the
input?“ [2].

Indeed, let us consider a fragment of the example problem used by MOF QVT
submitters, the so-called UML to RDBMS transformation problem ([3], Section 5.1.6).
Figure 1 represents fragments of the input and output meta-models. Figure 2 represents an
example input model – an interpretation of the UML meta-model.

The transformation problem is expressed as follows. The input model is an
interpretation of the input meta-model. It consists of persistent and transient classes owning
attributes. Attributes may be primitive (having a primitive data type), or complex (having a
transient class as a type). The output model is an interpretation of the output meta-model. It
consists of tables owning columns. The transformation in question must: a) Transform each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-resource repository of the University of Latvia

https://core.ac.uk/display/71747125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

persistent class into a single table. b) Transform each class attribute of a primitive type into
a column of the corresponding table. c) “Drill down” class attributes of complex types to
leaf-level primitive attributes; transform these primitive attributes into columns of the
corresponding table.

How to determine, is a proposed transformation of this kind “correct”, or not?

Attribute
Name: STRING

Class
Kind: (Persistent,Transient)

Classifier
Name: STRING

PrimitiveDataType Column
Name: STRING

Table
Name: STRING

Owner 1

 *

Owner1
 *

Type

 *

 1

Figure 1. Fragments of UML and RDBMS meta-models

:Class

Name = C1
Kind = Persistent

:Class

Name = C2
Kind = Transient

:Attribute

Name = A1

:Attribute

Name = B1

:Attribute

Name = A2

:Attribute

Name = B2

:PrimitiveDataType

Name = STRING
:PrimitiveDataType

Name = INTEGER

Owner Owner

TypeTypeType

Type

Owner Owner

Figure 2. Example input model – an interpretation of the UML meta-model

Let us consider two different transformations that are transforming (uniformly) any

UML model into a RDBMS model. These transformations will be demonstrated for the
example input model represented in Figure 2. The generalization is obvious.

“Absolutely lossless” transformation. The following trivial transformation T1
should be regarded as “absolutely lossless” – it transforms Figure 1 into Figure 3:

a) T1 transforms a persistent class named C1 into a table named t_C1_Persistent.
b) If the class C1 owns an attribute A1, and the type of A1 is a transient class C2,

and C2 owns an attribute B1 of a primitive type STRING, then T1 creates a column named
c_A1_C2_Transient_B1_STRING.

c) Similarly, in all the other situations.

T1 is an “absolutely lossless” transformation, because it is reversible – no
information gets lost during the transformation. Indeed, having an output model, generated
by T1, we can restore all elements of the input model.

Note. Of course - with the exception of the transient classes that are not used as
attribute (or sub-attribute) types in persistent classes.

:Column

Name = c_A2_INTEGER
:Column

Name = c_A1_C2_Transient_B1_STRING

:Table

Name = t_C1_Persistent

:Column

Name = c_A1_C2_Transient_B2_INTEGER

Owner

Owner

Owner

Figure 3. Example output model created by the transformation T1

:Column

Name = c_A1_B1
:Column

Name = c_A2

:Table

Name = t_C1

:Column

Name = c_A1_B2

Owner

Owner

Owner

Figure 4. Example output model created by the transformation T2

Practical transformations do not need to be “absolutely lossless”. Of course,

none of the actual MOF QVT proposals is using this “absolutely lossless” transformation
T1 (see, for example, [3]). Instead of T1, they are using another transformation T2, which
transforms Figure 2 into Figure 4, and thus, differs from T1 as follows:

b) If the class C1 owns an attribute A1, and the type of A1 is the class C2, and C2
owns an attribute B1of a primitive type STRING, then T2 creates a column named
c_A1_B1.

When compared to the T1’s version of the column name
c_A1_C2_Transient_B1_STRING, the transformation T2, in its version c_A1_B1, omits the
intermediate class name and attribute (C2_Transient), and the primitive type name
(STRING). Thus, T2 is not completely reversible - the information about names of transient
classes and primitive types gets lost during the transformation. Why should we regard
this widely used T2 as a “correct” transformation? In which sense, the result of T2 “means
the same thing as the input“ [2]?

The intended semantics of the UML to RDBMS transformation is as follows. We do
not need this transformation by itself. We need it as a basis for instance data (database
contents) transformations. The input UML model can be regarded as a schema of an
object-oriented database, and the output RDBMS model – as a schema of a relational
database. Thus, in fact, to solve the UML to RDBMS transformation problem completely,
we must provide not only the model (i.e. database schema) transformation. To make it
useful, we must provide also the instance data (i.e. database contents) transformation that
would allow converting (without loss of information) the contents of any object-oriented
database into the contents of a relational database. The solution of this problem is a well-
known topic described in database textbooks for students.

And, of course, for the above small fragment of the problem (Figure 1), the database
contents transformation D2 extending the schema transformation T2 is trivial. In the
resulting database created by D2, we do not represent the instances of intermediate complex
attributes (like as A1 in Figure 2), and links connected to them. But, nevertheless, D2 is
completely reversible. Indeed, we can restore easily the contents of the input (object-
oriented) database from the contents of the output (relational) database, by using,
additionally, the information contained in the database schemas:

a) For each row of the table t_C1, create an instance of the class C1.
b) For a cell corresponding to the column c_A1_B1, and containing the value

“123”, create (if not created before) an instance of the attribute A1, and link it to the
corresponding Owner instance of C1, create (if not created before) the corresponding Type
instance of the class C2, and create an instance of the attribute B1 containing the value
“123”, and link it to the corresponding Owner instance of C2.

c) Similarly, in all the other situations.
Thus, by referring to database schemas, we can restore all the input database

information, missing in the output database. And thus, the pair T2+D2 can be regarded as a
lossless transformation.

Note. Of course, in the MDA context, many transformations do not need to be
lossless. In MDA, transformations may lose information; they may merge parts of several
models, add new information via user interfaces etc. In MDA, a model transformation is
acceptable, if it performs its task.

2. Where Should Model Semantics Be Defined?

As we now see, it may happen that specifying the correctness of model transformations
may be impossible, if we restrict the problem to the model syntax, and ignore model
semantics.

In [4], after considering several model management operators, the author concludes
(see his Section 3.10): “The model management operators defined in Section 3 are purely
syntactic. That is, they treat models and mappings as graph structures, not as schemas that
are templates for instances… Still, in most applications, to be useful, models and mappings
must ultimately be regarded as templates for instances. That is, they must have semantics.
Thus, there is a semantic gap between model management and applications that needs to be
filled.”

Mathematical theories are formalized by using the first order predicate logic, i.e. by
using some first order language, the axioms of predicate logic and by assuming the
necessary specific axioms of a particular theory. The generally acknowledged technique of
exploring the “semantics” of formal mathematical theories is the notion of interpretation
(see any logic textbook: sorts, their interpretation domains, interpretations of constant
letters, function letters and predicate letters, standard interpretations of logical connectives
and quantifiers). In computer science, finite interpretations (i.e. interpretations with finite
domains) are, in general, more important than the infinite ones.

In modeling, usually, the formal aspects of models are specified by using meta-
models. Meta-models are serving here as “theories of models”. Hence, by applying the
widely approved technique of mathematical logic, we could propose to think of models as
interpretations of their meta-models.

Frequently, meta-models are represented as UML class diagrams (together with sets
of constraints written in OCL). Of course, these diagrams (together with their constraints)
can be represented as first order formal theories (if necessary, small subsets of set theory

may be involved). Thus, a correct semantics of meta-model diagrams can be obtained
automatically by applying the above-mentioned standard notion of interpretation.

In [5], the authors argue (at the end of their Section 5.3): “there are many reasons to
avoid stating that “a model is an instance of a meta-model because its elements are
instances of meta-model-elements”. Indeed, the relationship between a theory and its
interpretations is much more complicated than the relationship between a class and its
instance objects.

Note. Sadly enough, in mathematical logic and in computer science, the term
“model” has opposite meanings. In mathematical logic, “a model of a theory” is an
interpretation under which all axioms of the theory become true (i.e. model is a kind of
“reality” modeled in the theory). In computer science, “model” means some formal
structure that can replace a fragment of reality in our reasoning about this fragment (i.e.
model is a kind of “theory” modeling a fragment of reality). In such a situation, speaking of
models is misleading, and to avoid this, the term “interpretation” could be used instead: an
interpretation of a theory (of a meta-model) is an interpretation under which all axioms
(constraints) of it become true.

In many cases, meta-models define mainly the allowed syntax of the corresponding
models, and not their full semantics. Where should model semantics be defined?

As an example, let us consider the models (database schemas) corresponding to the
meta-models represented in Figure 1, and represented in Figures 2, 3, 4. In Figure 4 we see
the “table” t_C1 (what’s a table?), which owns three “columns” – c_A1_B1, c_A1_B2, and
c_A2 (what’s a column?). Of course, we know that, in fact, each table is a collection of
rows (not mentioned in schemas); each row consists of cells (not mentioned in schemas);
each cell carries a value and corresponds to one of the columns (assigned to the table); and,
in each row, each column (assigned to the table) is represented by at most one cell. But, of
course, this knowledge cannot be derived from Figure 4, which represents (according to its
meta-model of Figure 1) only the data specific to the database consisting of a single three-
column table t_C1, and not the general semantics of relational databases.

Table
Name: STRING

Column
Name: STRING

Row Cell
Data: STRING

Owner
 1

 *

Owner
 1

 *

Classifier 1

 *

Classifier 1

 *

Figure 5. Fragment of RDBMS semantics meta-model (compare with Figure 1)

However, this knowledge can be derived from the RDBMS semantics meta-model

represented in Figure 5 (with the following non-graphical constraint added: in each row of a
particular table, each column – of this table - is represented by at most one cell).

Note. The above-mentioned non-graphical constraint can be stated in an OCL-like
language as the following two statements:

Row is Owner of Cell --> Row.Classifier is Owner of Cell.Classifier
 CellA.Owner = CellB.Owner --> CellA.Classifier <> CellB.Classifier

The first statement may be put alternatively as a diagram commutativity condition:
Cell.Owner.Classifier = Cell.Classifier.Owner.

By applying the standard notion of interpretation to Figure 5 we obtain, in fact, “two
in one” – the database schema (i.e. table names with column names assigned to them),
together with the database contents (i.e. cell values arranged in rows, columns and tables).
This corresponds very well to the situation in the popular RDBMSs, where database
schema is regarded as “internals” of each database (“database definition”). For example, in

SQL we do not use CREATE SCHEMA statements; instead, we are using CREATE
TABLE statements (this allows defining of tables and their relationships “on the fly”).

Classifier
Name: STRING

Object DataValue
Data: STRING

AttributeLink

Class
Kind: (Persistent,Transient)

PrimitiveDataType

Attribute
Name: STRING

Instance

Owner 1

 *

Owner 1
 *

Classifier 1

 *

Type

 *

 1

Value

 *

 1

Classifier

 *

 1

Figure 6. Fragment of UML semantics meta-model (compare with Figure 1)

Similarly, we may follow the official UML semantics definition [6], and, to capture

the intended class diagram semantics missing in the UML fragment meta-model of Figure
1, extend it as represented in Figure 6 – with the following two constraints added: a) in each
object of a particular class, each attribute – of this class - is represented by at most one
attribute link, b) each attribute link is linked to its value – an object, or a data value,
depending on the type of the corresponding attribute. After this, by applying the standard
notion of interpretation, we are forced to have, again, “two in one” – classes together with
their instance objects.

Note. The above-mentioned non-graphical constraints can be stated in an OCL-like
language as follows:
Object is Owner of AttributeLink --> Object.Classifier is Owner of AttributeLink.Classifier

AttributeLinkA. Owner = AttributeLinkB.Owner -->
AttributeLinkA.Classifier <> AttributeLinkB.Classifier

Instance is Value of AttributeLink --> Instance.Classifier is Type of AttributeLink.Classifier
Object.Classifier is Class

DataValue.Classifier is PrimitiveDataType
The first and the third of these constraints may be put, alternatively, as diagram
commutativity conditions:

AttributeLink.Owner.Classifier = AttributeLink.Classifier.Owner
AttributeLink.Value.Classifier = AttributeLink.Classifier.Type

If OMG, in its Request for Proposal for QVT language [1], would have used the
Figure 5, 6 style meta-models (instead of the Figure 1 style ones), then the QVT partners
would be forced to demonstrate that their proposed languages are good enough for
simultaneous transformations of models and instance data.

Thus, once again, where should model semantics be defined? Now, we see a
possible solution: we may define model semantics directly in the meta-model.

3. Which Models Are Schemas?

Is there a systematic way allowing to separate, in a meta-model, the “data” elements (boxes
in bold) from the “schema” elements (regular boxes)?

Instances of “schema” elements (in Figures 5, 6 - Table, Column, Class, Attribute,
PrimitiveDataType) are present in databases “by schema”. For example, any relational
database contains exactly those tables that are listed in its schema, and each table contains
exactly the columns listed for it in the schema. Collections of “data” element instances, on
the contrary, may differ in different databases having a common schema. For example, two
common-schema relational databases containing a table named Customers, may contain
different collections of rows of this table.

Under which conditions, a part of a meta-model could be regarded - meaningfully -
as a “schema” for the rest of it?

From the above two examples the following two theses can be derived.
Thesis 1. Schema represents only the information specific to a particular model, and

not the general semantics of the model-type to which it belongs.
Thesis 2. Schema defines a classification of data elements that conforms to the

associations existing between these elements.
Let us try justifying Thesis 2. Simultaneously, its precise meaning will be

elaborated (see Definition 1 below). Let us assume that our meta-models are defined by
means of UML class diagrams with non-multiple generalizations and binary associations
only.

First, the following restriction seems to be reasonable: each data element should be
“named in the schema” or, more precisely, each data element should have a mandatory
many-to-one or one-to-one association with some unique schema element. For data element
instances, such an association defines a kind of classification. Thus, let us always call this
distinguished association Classifier. For example, in Figure 5, rows (data element
instances) are classified by tables (schema element instances), and cells (data element
instances) are classified by columns (schema element instances). If some data element
would not be linked in such a way to a schema element, then, in which sense could we
speak about a “schema”?

In Figure 6, a somewhat more complicated situation appears: the data element class
Instance consists of two subclasses – Object and DataValue. At the schema level, this triple
is represented by the Classifier class consisting of two subclasses – Class and
PrimitiveDataType. Both of these “triades” conform to the classification defined by the
Classifier association in the following sense: Object.Classifier is always Class, and
DataValue.Classifier is always PrimitiveDataType.

Thus, we have arrived at the following condition for schemas:
Condition 1 (the simplest case, Figure 5). Each data element has a mandatory

many-to-one or one-to-one association (called Classifier) with some unique schema
element (i.e. different data elements are classified by different schema elements).

Condition 1 (the full version, Figure 6). Subclasses of schema elements are schema
elements. Subclasses of data elements are data elements. In the generalization hierarchy,
each top-level data element has a mandatory many-to-one or one-to-one association (called
Classifier) with some unique schema element (i.e. different data elements are classified by
different schema elements). The data element generalization hierarchy is mapped into the
schema element generalization hierarchy in the following sense: a)
Data_Element.Classifier is always Data.Element.Map; b) If Data_Element_1 is a subclass
of Data_Element_2, then Data_Element_1.Map is a subclass of Data_Element_2.Map.

The next step: associations connecting data elements also should be represented in
the schema. For example, in Figure 5, the association Owner connects data elements Cell

and Row. The association Owner between Column and Table, in fact, represents this Cell-
Row-association in the schema part of Figure 5 - because the following constraint holds
(see above):

Row is Owner of Cell --> Row.Classifier is Owner of Cell.Classifier
Indeed, on the one hand, each cell is owned by some row, which is classified by some table.
On the other hand, each cell is classified by some column, which is owned by the same
table that classifies the row.

Thus, we have arrived at the following
Condition 2 (Figure 7). For each Data_Association there is a unique

Schema_Association, to which it conforms in the following sense:
Data_Element_1 is in Data_Association with Data_Element_2 -->

Data_Element_1.Classifier is in Schema_Association with Data_Element_2.Classifier

Schema_Element_1 Schema_Element_2

Data_Element_1 Data_Element_2
Data_Association

Classifier 1 Classifier 1

Schema_Association

Figure 7. Representing a data association in a schema

Here, Data_Association conforms to the classifications of Data_Element_1-s and

Data_Element_2-s: if x is associated with y via Data_Association, then the classifiers of x
and y must be associated via Schema_Association (but not necessarily conversely!).

Some more specific situations are possible:
a) x and y are associated via Data_Association, iff the classifiers of x and y are

associated via Schema_Association. Then, in fact, Data_Association is completely
derivable from Schema_Association. Hence, such a Data_Association can be
removed from the meta-model without loss of information.

b) Data_Association and Schema_Association both are many-to-one. Then Condition
2 may be put equivalently as a diagram commutativity condition:

Data_element_1.Data_Association.Classifier =
 Data_element_1.Classifier. Schema_Association

c) “Table”. Both associations are many-to-one, and, additionally,
x1.Data_Association = x2.Data_Association --> x1.Classifier <> x2.Classifier.
Then, Figure 7 is isomorphic to Figure 5, i.e. we can regard instances of
Schema_Element2 as tables (“table views”), consisting of columns named by
instances of Schema_Element1. Instances of Data element_2 represent rows, and
instances of Data_Element_1 – cells.
Now, what about the associations, connecting data elements and schema elements,

other than the Classifier of Condition 1? First of all, we must reject - as “non-schematic” -
the associations that are connecting one instance of a data element with several instances of
the same schema element. Thus, it remains to consider only many-to-one and one-to-one
associations of data elements with schema elements (as DS_Association in Figure 8). In
fact, each such DS_Association defines a different classification of instances of
Data_Element_1 (than the one defined by the Classifier association).

If DS_Association conforms to the “canonical” classification of Data_Element_1,
i.e. if there is a schema association S_Association such that

Data_Element_1.DS_Association = Data_Element_1.Classifier.S_Association,
then, in fact, DS_Association is completely derivable from S_Association. Such a
DS_Association can be removed from the meta-model without loss of information.

If, on the contrary, DS_Association does not conform to the “canonical”
classification, then we may “refine” this classification by introducing a new
Schema_Element_12 consisting of pairs (Schema_Element_1, Schema_Element_2) and by
re-defining the Classifier association as follows (Figure 8):

(Schema_Element_1, Schema_Element_2) classifies Data_Element_1, iff
Schema_Element_1 classifies Data_Element_1 (in the old sense) &

Data_Element_1 is in DS_Association with Schema_Element_2.
After this, DS_Association becomes completely derivable from the new Classifier
association and S_Association defined as follows (Figure 8):

(Schema_Element_1, Schema_Element_2)
is in S_Association with Schema_Element_2.

And, as such, we can remove DS_Association from the meta-model.

Data_Element_1

Schema_Element_12

Data_Element_1

Schema_Element_1

Schema_Element_1

Schema_Element_2

Schema_Element_2

S_Association
1

Classifier 1

Classifier 1 DS_Association 1

Classifier1 S_Association1

Figure 8. Representing a data-schema association in a schema

Thus, we have arrived at the following
Condition 3. Classifier is the only kind of associations between data elements and

schema elements.
Now, we can formalize the notion of schemas:
Definition 1. Assume a meta-model that is defined by means of a UML class

diagram with non-multiple generalizations and binary associations only. Assume, its classes
are divided in two disjoint subsets - schema elements and data elements in such a way that
the above Conditions 1, 2, 3 hold. Then, let us say that this meta-model defines schemas.

Note. For some of the data associations, the above-mentioned stronger “Table”
version of Condition 2 may be appropriate.

Definition 1 conforms to Thesis 2. Indeed, by this definition, schemas are
classifications of data instances that conform to associations existing between these
elements. Thesis 2 can be used as a guideline when trying to define schemas in new
situations (for an example, see Section 4 below).

Problem A. Does Definition 1 conform to Thesis 1?
Definition 2a. Assume a meta-model that defines schemas. Model (database) is an

interpretation (in the sense of predicate logic) of the meta-model (i.e. an interpretation that
includes both the schema part and the data part).

Definition 2b. Assume a meta-model that defines schemas. Model schema
(database schema) is an interpretation of the schema part of the meta-model (i.e. each
model includes its schema).

Now, in this context, let us consider model transformations. If two meta-models
define schemas, then we may consider two kinds of transformations.

Definition 3a. Assume two meta-models MMA and MMB that define schemas.
Model transformation is an algorithm transforming each MMA-model into an MMB-
model in such a way that the schema part is transformed into the schema part, and the data
part – into the data part.

Definition 3b. Assume two meta-models MMA and MMB that define schemas.
Schema transformation is an algorithm transforming the schema part of each MMA-
model into the schema part of an MMB-model.

To be considered as lossless, model transformations do not need to be reversible
with respect to the schema part of input models. This is not necessary, because schema
element instances belong to the input model “by schema”, i.e. they can be restored from the
meta-data - from the input schema. Thus, we can propose the following uniform definitions
of lossless transformations.

Definition 4a. Assume two meta-models MMA and MMB that define schemas. Let
us consider a model transformation D that converts any MMA-model into an MMB-
model. Then D is called lossless, iff, there is a reverse transformation (algorithm) that
restores, from any of the results of D (i.e., MMB-models), the entire data part of the
corresponding input MMA-model.

Definition 4b. A schema transformation is called lossless, iff it can be extended to
a lossless model transformation.

Both of the UML to RDBMS schema transformations considered above (the
“theoretical” transformation T1 and the “practical” transformation T2) can be extended to
lossless model transformations (see Section 1). Thus, according to the Definition 4b, both
schema transformations are lossless.

Problem B. Which reversible schema transformations (like as the above
“theoretical” transformation T1) can be extended to lossless model transformations?

Problem C. How complicated is the task of detecting, does a lossless model
transformation exist for two model schemas, or not?

4. XML-Schemas

In order to verify the above concept of schemas, let us consider XML and XML-schemas
[7]. The bottom part of Figure 9 represents a simplified meta-model of “unconstrained
XML”, where tagged elements may be mixed up freely without any typing.

If we wish to obtain here a kind of schemas, then, according to Thesis 2, we must
introduce some classification of XML elements. Of course, the solution is obvious: XML-
tags define the natural XML-element classification. In this way we obtain a simplified
XML-schema meta-model represented in Figure 9 - with the following non-graphical
constraints added:

“For types: no loops are allowed via Parent association.”
XML_Record_Type is Parent of XML_Element_Type <-->

XML_Element_Type is Field of XML_Record_Type
XML_List_Type is Parent of XML_Element_Type <-->

XML_Element_Type is Member of XML_List_Type
XML_ElementA is Parent of XML_ElementB -->

XML_ElementA.Classifier is Parent of XML_ElementB.Classifier
XML_Atom.Classifier is XML_Atom_Type

XML_Sequence.Classifier is XML_ Sequence_Type

This schema constrains XML-documents: now, an element cannot contain arbitrary
sub-elements, it may contain only sub-elements of specific types pre-scribed by the schema.

XML_Atom
Data: STRING

XML_Element

XML_Atom_Type

XML_Element_Type
Tag: STRING

XML_Sequence_Type

XML_List_TypeXML_Record_Type

XML_Sequence

Parent

 *

 0..1

Classifier

 *

 1

Member
 1

 *

Parent

 *

 *
Field

 *

 1..*

Figure 9. Simplified meta-model of XML-schemas

Key
Name: STRING

Table
Name: STRING

Row

Column
Name: STRING

Cell
Data: STRING

Owner
 1

 *

Owner
 1

 *

Classifier 1

 *

Owner

 *

 1 Classifier 1

 *

Key

Column

 *

 1..*

Figure 10. Extended fragment of RDBMS semantics meta-model

5. Constraints

As an example, let us consider key-constraints in relational databases. A table may possess
zero or more keys, each consisting of one or more columns of this table. The corresponding
meta-model is represented in Figure 10 - with the following commutativity constraint
added: Key.Column.Owner = Key.Owner.

The meaning of the key-constraint defined by Key can be expressed as follows: in a
table, if the cell data of two rows coincide for all columns that belong to Key, then these
rows are equal. Or, expressed in an OCL-like language:

For All Table, RowA, RowB:
If RowA.Owner = Table & RowB.Owner = Table & KeysAreEqual(RowA, RowB)
Then RowA = RowB,

where KeysAreEqual(RowA, RowB) is the following expression:

For All Column, CellA, CellB:
If Column.Key = Table & CellA.Owner = RowA & CellB.Owner = RowB &

CellA.Classifier = Column & CellB.Classifier = Column
Then CellA.Data = CellB.Data

Thus, as a schema element, Key can serve only as an “enumerator” of constraints of

a specific kind. The definition of the meaning of these constraints involves more than
schema – it involves data elements and their Data attributes. This is not surprising (see
Thesis 1): relational schemas do not define the general semantics of relational databases.
Each schema represents only the information specific to a particular database.

Note. In a similar way, arbitrary functional dependencies can be specified.

Book
{Row}

Author
{Row}

Library
{Database}

Books
{Table}

Authors
{Table}

Author_Id
{Column}

Title
{Column}

Id
{Column}

Name
{Column}

INTEGER
{Atomic values}

STRING
{Atomic values}

X

X

X

ListOf ListOf

Figure 11. Example database schema according to [12]

6. Related Work

About the significance of diagram commutativity in modeling semantics – see [8].

In [9] an elegant theory of “graph schemas” for unstructured data is developed. An
unstructured set of data may conform to several schemas, each of which, in its way,
constrains data, thus allowing for query optimization. Despite the different setting, in their
Section 5 the authors arrive at a version of the above Thesis 2: “Nodes in a schema have the
potential to classify nodes in a database”.

After the first versions of [10, 11], in [12] an extremely general algebraic definition
of database schemas (called “abstract schemas”) is proposed. To explain the basic idea, let
us define a schema for a relational database Library consisting of two tables Books and
Authors (S means “sort”, see also Figure 11):

S(Library) = Books X Authors;
S(Books) = ListOf(Book); S(Authors) = ListOf(Author);
S(Book) = Author_Id X Title; S(Author) = Id X Name;
S(Author_Id) = INTEGER; S(Title) = STRING;
S(Id) = INTEGER; S(Name) = STRING;

Each named database element is defined here as a sort (i.e. domain) of allowed
values. The last four elements are atomic, the other ones are complex, and their domains are
defined by using a fixed set of type constructors (ListOf constructs lists of values, X –
records of values). A database is defined then as any value of the sort Library.

In general, a database schema of this kind can be defined as an acyclic oriented
graph of the kind represented in Figure 11 (single root, atomic sorts as leafs, accessible
nodes only).

This notion of schema conforms to the above Thesis 1: schema represents only the
data specific to the Library databases, and not the general semantics of “algebraic”
databases (i.e. schemas do not define the meaning of INTEGER, STRING, ListOf and X).
However, if we would restrict our databases to the relational databases only, then
mentioning rows in the schema would become obsolete: all relational tables consist of rows
and cells.

How about Thesis 2? Of course, sorts define a classification of data instances. Since
the data model of “abstract schemas” does not include associations (they are implemented
by using primary and foreign keys and the corresponding constraints), this is enough to
conclude that the notion of “abstract schemas” conforms to Thesis 2.

Acknowledgements

I’m grateful for valuable discussions provided by my colleagues, especially Janis Barzdins,
Audris Kalnins and Martins Opmanis. Science Council of Latvia has funded the work
reported in this paper under project Nr.02-0002. Pictures were prepared by using the
graphical business-modeling tool GRADE (www.infologistik.com, www.gradetools.com).

References

[1] OMG Document ad/02-04-10 (MOF 2.0 Query / Views / Transformations RFP). Available at

www.omg.org.
[2] Gerber A., Lawley M., Raymond K., Steel J., Wood A. Transformation: The Missing Link of MDA. In:

Proceedings of Graph Transformation: First International Conference (ICGT 2002), October 7-12, 2002,
Barcelona, Spain, Lecture Notes in Computer Science, vol. 2505, Springer-Verlag, 2002, pp. 90-105.

[3] QVT Partners. Initial Submission for MOF 2.0 Query / Views / Transformations RFP. Version 1.0
(2003.03.03). Available at qvtp.org.

[4] Bernstein Ph. A. Applying Model Management to Classical Meta-Data Problems. In: Proceedings of the
Conference on Innovative Database Research (CIDR), 2003, pp. 209-220.

[5] Bezivin J., Gerbe O. Towards a Precise Definition of the OMG/MDA Framework. In: ASE’01,
Automated Software Engineering, San Diego, USA, November 26-29, 2001. Available online.

[6] OMG Document - formal/03-03-09 (UML 1.5 chapter 2 - UML Semantics). Available at www.omg.org.
[7] W3C Recommendation - XML Schema Part 1: Structures, May 2, 2001. Available at www.w3c.org.
[8] Johnson M., Dampney C. N. G. On the Value of Commutative Diagrams in Information Modelling. In:

Proceedings of 3rd International Conference on Algebraic Methodology and Software Technology
(AMAST’93), Springer Workshops in Computing, 1993, pp.45-58.

[9] Buneman P., Davidson S. B., Fernandez M. F., Suciu D. Adding Structure to Unstructured Data. In:
Proceedings of 6th International Conference on Database Theory (ICDT'97), Lecture Notes in Computer
Science, vol. 1186, Springer-Verlag, 1997, pp. 336-350.

[10] Diskin Z. Abstract Metamodeling, I: How to Reason about Meta- and Metamodeling in a Formal Way. In:
Proceedings of the 8th OOPSLA Workshop on Behavioral Semantics, Denver, USA, November, 1999.

[11] Alagic S., Bernstein Ph. A. A Model Theory for Generic Schema Management. In: Proceedings of
International Workshop on Database Programming Languages (DBPL '01), Lecture Notes in Computer
Science, vol. 2397, 2002, pp.228-246.

[12] Goguen J. A. Data, Schema and Ontology Integration. In: Workshop on Combination of Logics: Theory
and Applications (CombLog’04), Lisbon, Portugal, July 28-30, 2004. Available online.

	Outline
	1. Which UML to RDBMS Transformations Are Correct?
	“Absolutely lossless” transformation. The following trivial
	Practical transformations do not need to be “absolutely loss
	CellA.Owner = CellB.Owner --> CellA.Classifier <> CellB.Clas
	AttributeLinkA. Owner = AttributeLinkB.Owner --> Attribu
	Acknowledgements

	References

