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CHARACTER OF THE WORK
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(e) PRACTICAL SIGNIFICANCE. The work possesses theoretical char-
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Univ. Zināt. Raksti 592 (1994), 115–124. MR 96m:54079, Zbl
852.39011.

xvi. A. Reinfelds, Partial decoupling for semidynamical system, Latv.
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1. Introduction

A basic problem of the qualitative theory of differential equations is to clas-
sify the systems of differential equations with respect to some characteristic
properties of solutions. Such a classification allows the investigation of com-
plicated system of differential equations to be replaced with a simpler system
of differential equations from the same class. In a sufficiently small neighbor-
hood of invariant set satisfactorily classification gives the concept of topological
(dynamical) equivalence.

Two systems of autonomous differential equations are topologically equiv-
alent if there is a homeomorphism of phase space mapping trajectories of the
first system of differential equations onto trajectories of the second system of
differential equations preserving the orientation.

If, in addition, the corresponding homeomorphism maps solutions of the first
system of differential equations into solutions of the second system of differential
equations, then the considered systems of differential equations are dynamically
equivalent. If we examine contraction in a small neighborhood of invariant set,
then we have a local topological (dynamical) equivalence.

The source of the concept of topological equivalence of the system of dif-
ferential equations may be found in the papers by H. Poincaré [104]. He con-
sidered the problem of existence of such mapping of phase space that maps an
autonomous system of nonlinear differential equations onto that of linear, or
in modern interpretation, he sought an analytical diffeomorphism which real-
ized dynamical equivalence of a nonlinear and a linear system of differential
equations. In 50–ties S. Sternberg [161, 162] weakened the hypothesis of the an-
alyticity of diffeomorphism and substituted it for the existence of a sufficiently
smooth diffeomorphism. A strong concept of topological equivalence was intro-
duced by A. A. Andronov and L. S. Pontryagin [2] in 1937, in the paper on the
structural stable systems of differential equations.

The problem of finding criteria for topological equivalence of differential
equations systems in the neighborhood of stationary points was set by V. V.
Nemitskĭı [73]. The solution of problem in case of the system of linear au-
tonomous differential equations having only elementary stationary points was
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found by E. M. Vaisbord [163], A. Reiziņa and L. Reiziņš [149] and V. I. Arnol’d
[5]. In the general case, the systems of linear autonomous differential equations
were classified topologically by N. N. Ladis [59].

D. M. Grobman [24, 35, 36, 37, 38, 39] un P. Hartman [43, 44, 45, 46] proved
that the system of autonomous differential equations

dx/dt = Ax+ f(x, y), x ∈ IRn

is dynamically equivalent to the linear system of differential equations

dx/dt = Ax, x ∈ IRn,

if matrix A has no eigenvalues with zero real parts, f is a Lipschitz mapping
with sufficiently small Lipschitz constant and such that cancels at the origin. To
prove his theorem, D. M. Grobman constructed some mapping, with the help
of a formula variation for constants, and then proved that this mapping is a
homeomorphism which realizes dynamical equivalence of nonlinear and linear
system of differential equations. According to P. Hartman’s technique, the given
system of differential equations is reduced to diffeomorphisms and a condition of
their conjugacy is found. Note that in the proof of the equivalence is important
a circumstance that IRn is a local compact space.

In 1962, L. Reiziņš [150, 151, 153] generalized the theorem of Grobman–
Hartman to the neighborhoods of elementary cycles. For this purpose, he in-
troduced into the neighborhoods of cycle pseudolocal coordinates and reduced
the investigation into the topological structure of dynamical system in the cycle
neighborhood to studies of a halfperiodic system of differential equations in the
vicinity of origin. Analogous results were later obtained by M. Irvin [50] with
the help of Hartman’s technique for the Poincaré mappings. Then K. Palmer
[85, 90] generalized the theorems of Vaisbord and Grobman–Hartman for sys-
tems of nonautonomous differential equations, the linear parts of which satisfy
the conditions of exponential dichotomy.

The analog of the Vaisbord theorem in a Banach space was proved by A.
Reinfelds [108]. To prove the Grobman–Hartman theorem in a Banach space
there was needed an essentially fundamentally new proof. By using the ideas
of J. Moser [70] it was done by C. Pugh [102] and J. Palis [83]. A short proof
of the Grobman–Hartman theorem for extensions of dynamical systems in the
Banach space based on Green’s type mappings was given by A. Reinfelds [117].
The corresponding homeomorphism that realizes the dynamical equivalence is
presented as a solution of some functional integral equation. Note that such
an approach was very successful, so later A. Reinfelds developed it and used
for proving the theorems of reduction type for systems of impulsive differential
equations in a Banach space. The Grobman–Hartman theorem and its modi-
fications were proved using different technique by M. A. Boudourides [20, 21],
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I. U. Bronshtein and V. A. Glavan [23], Nguyen Van Minh [65], A. Reinfelds
[105, 110, 139].

L. Reiziņš [153, 154, 155], R. M. Mints [68], N. N. Ladis [56, 57, 58], C.
Coleman [31, 32] and A. Reinfelds [106, 111] investigated dynamical equivalence
of systems of differential equations in the neighborhoods of compound stationary
points and cycles that have decoupled truncation.

In studying topological equivalence for systems of differential equations the
reduction theorem occupies a significant part. According to this theorem there
is a Lipschitz mapping v such that the nonlinear system of differential equations{

dx/dt = Ax+ f(x, y),
dy/dt = By + g(x, y)

is dynamically equivalent to the partially linearized system of differential equa-
tions {

dx/dt = Ax
dy/dt = By + g(v(y), y),

if matrix A has no eigenvalues with zero real part, while all real parts of ma-
trix B eigenvalues are equal to zero; f and g are Lipschitz mappings with a
sufficiently small Lipschitz constant and such that vanish at the origin. The
proof of the theorem in case y is onedimensional vector and under additional
constraints was given by L. Reiziņš [152]. In general case, the theorem for sys-
tems of differential equations with C2 smooth right–hand side was announced
by A. N. Shoshitaishvili [6, 159] (the proof was published only in 1975 [160]).
A. Reinfelds [107, 109], using a different method, proved the reduction theorem
for the case when mappings f and g are Lipschitzian with a sufficiently small
Lipschitz constant. K. Palmer [55, 86, 87, 88, 89, 91] applied slightly varying
method and proved this theorem and its modifications in space IRn. For nonau-
tonomous systems of differential equations the reduction theorem was proved
also by Nguen Van Minh [66].

Various criteria of topological equivalence in the neighborhood of a normal
hyperbolic set, including those in the neighborhood of an invariant torus were
given by G. S. Osipenko [76, 77, 78, 79, 80, 81, 82], J. Palis and F. Takens
[84], M. Hirsh, C. Pugh and M. Shub [49], C. Pugh and M. Shub [103] and
A. Reinfelds both in IRn [112, 113, 114, 115, 116] and in the Banach space
[118, 119].

In Banach space the dynamical equivalence was studied by K. Lu [63] and
P. W. Bates with K. Lu [16] for systems of differential equations whose linear
part is an unbounded closed operator.

Investigations into the topological equivalence for discrete dynamical sys-
tems in IRn begin with papers by P. Hartman [43, 44, 45, 46] and M. Irvin [50].
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U. Kirchgraber [53, 54, 55] proved the reduction theorem for discrete dynami-
cal systems in IRn. G. Papaschinopoulos [95] proved this theorem for difference
equations.

In 1991–1993, B. Aulbach and B. M. Garay [9, 10, 11] published the first
papers on the equivalence of noninvertible mappings in a Banach space. Such
mappings arise in case we investigate solutions of evolutionary partial equations
continuing in one direction. B. Aulbach and B. M. Garay introduced a hypoth-
esis about reduction of noninvertible mappings and proved it for a special case.
A. Reinfelds [129, 132, 137] did this for the general case.

In the second summary chapter of the habilitation work the main concepts
are defined including the topological equivalence of dynamical (semidynamical)
systems. It is considered a discrete dynamical system generated by homeomor-
phism in the Decart product of two complete metric spaces. The corresponding
homeomorphism satisfies the given metric inequalities. Such inequalities are
valid for mappings satisfying the conditions of the Grobman–Hartman theorem
or the reduction theorem in the space IRn. Analogous inequalities were used by
Yu. I. Nĕımark [71, 72] and V. A. Pliss [100, 101] for proving the existence of in-
variant manifold. In the reduction theorem, important place are taken by global
Lipschitz mappings whose graphs are invariant sets. For such a type of Lipschitz
mappings the properties of uniqueness are fulfilled. In mathematical literature
there are many papers devoted to existence of invariant sets for mappings and
for systems of differential equations, both in IRn and Banach space. Given in the
summary necessary and sufficient conditions generalize and specify the results
of J. Hadamard [40] and other mathematicians [3, 17, 18, 19, 25, 28, 30, 34,
41, 42, 47, 48, 49, 51, 52, 61, 62, 69, 92, 94, 97, 164, 165]. The obtained results
allow one to specify the statements of the reduction theorem. The new original
technique makes it possible to prove the reduction theorem and its different
modifications under various conditions both in the complete metric space and
in the Banach space. Note that quite often the conditions of the theorem cannot
be improved. Besides, the reduction theorems for semidynamical systems gen-
erated by noninvertible mappings has been proved. Therefore the hypothesis of
B. Aulbach and B. M. Garay is valid.

In the third chapter the results of the previous chapter are generalized for
dynamical extensions. They are natural generalization of systems of nonau-
tonomous differential equations.

In the fourth chapter we studied the dynamical equivalence of systems of
impulsive differential equations in Banach space. On the one hand they cover
the systems of nonautonomous differential equations, on the other – those sys-
tems of differential equations with solutions which are continuable only in one
direction. The systems of impulsive differential equations provide an adequate
mathematical model of evolutionary processes that suddenly change their state
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at certain moments. The first investigators of impulsive differential equations
were A. D. Mishkis and V. D. Mil’man [67]. In monographs by V. Lakshmikan-
tham, D. D. Bainov and P. S. Simeonov [60] and A. M. Samŏılenko and N. A.
Perestyuk [156] there is systematic presentation of the theory for systems of
impulsive differential equations.

The dynamical equivalence for systems of impulsive differential equations
were considered first by the author [124, 125, 135, 141, 142, 143, 146, 148] and
L. Sermone [124, 125, 157, 158] and D. D. Bainov, S. I. Kostadinov and Nguyen
Van Minh [14, 15]. In the given chapter, the different modifications for systems
of impulsive differential equations in a Banach space are proved (including those
for noninvertible systems), assuming that the system splits into two parts. In
proving the reduction theorem for systems of impulsive differential equations
of significance are the global Lipschitz mappings whose graphs are invariant
sets [12, 13, 126, 135, 143]. Often it is possible to use the reduction theorems
many times, which allows further simplifications of the given system. By using
standard technique local variants of the reduction theorem are also obtainable.

The sufficient conditions for dynamical equivalence are given using inequal-
ities containing integrals from corresponding evolutionary operators. The ob-
tained results on the one hand precise the known results for systems of ordinary
differential equations in IRn, and on the other they give a technique to solve
analogue problems in functional spaces.

In the last chapter, we consider applications of the technique developed
in the previous chapters. The reduction principle in the theory of stability for
systems of autonomous differential equations was proved by V. A. Pliss [98, 99,
101]. For systems of nonautonomous differential equations it was generalized by
B. Aulbach [7, 8]. To the various modifications of the reduction principle in the
theory of stability papers [14, 15, 26, 64, 69, 96, 156] are devoted. In the given
summary there is given a short proof for semidynamical systems in metric space
by using conjugacy of mappings.

In implicit form the ”shadowing” lemma occurs in connection with dif-
feomorphisms of D. V. Anosov [4]. There is wide mathematical literature on
different modifications of ”shadowing” lemma, both in local compact spaces
[22, 29, 74, 75, 93] and in Banach space [1, 27]. We give a short proof of ”shad-
owing” lemma in metric space using functional equations similar to those we
used for proving dynamical equivalence.

At the end of chapter, we prove the asymptotic equivalence of two nonlin-
ear differential equations that describe the electron trajectories in a gyrotron
resonator [33].
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2. Topological equivalence of discrete
dynamical and semidynamical systems

2.1 Introduction

Consider a discrete dynamical (semidynamical) system generated by a homeo-
morphism (continuous mapping) T

T (x, y) = (f(x, y), g(x, y))

in an arbitrarily complete metric space. We will get the necessary and sufficient
conditions for the existence of global Lipschitz mappings whose graphics are in-
variant sets of a dynamical (semidynamical) system. The obtained intermediate
results allow one to get the sufficient conditions for decoupling and simplifying
a dynamical (semidynamical) system and thus for reducing investigation of the
given system to that of a simpler system. The resultant theorems are generaliza-
tions of the classical Grobman–Hartman theorem and of the reduction principle
in the complete metric space.

2.2 Preliminaries

In this section we set out some basic facts needed for later sections and specify
the form of mapping T .

Let X1 and X2 be complete metric spaces with metrics ρ1 and ρ2, respec-
tively.

Definition 2.1 A mapping T : X1 → X2 is Lipschitzian (with constant k) if,
for all x, x′ ∈ X1,

ρ2(T (x), T (x′)) ≤ kρ1(x, x′).

Definition 2.2 A fixed point of T is any x ∈ X such that T (x) = x.
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Theorem 2.3 Contraction mapping theorem. Let M be a closed subset
of the complete metric space X and let T : M→ X be a Lipschitz mapping with
constant k < 1. If T (M) ⊂M then mapping T has a unique fixed point in M.

Definition 2.4 A homeomorphism is a continuous mapping H: X → X which
is bijective and its inverse mapping is continuous.

Definition 2.5 A one–parameter family {T n}, n ∈ Z of continuous mappings
with T 1 = T : X→ X is a discrete dynamical system if:

(i) T 0 = id, where id is identity mapping.

(ii) T n ◦ T k = T n+k.

If the one–parameter family of mappings is defined only for nonnegative integers,
we have a discrete semidynamical system.

Note that in the case of discrete dynamical systems the mapping T is a
homeomorphism.

Definition 2.6 Two discrete dynamical (semidynamical) systems T n1 , T
n
2 : X→

X are topologically equivalent if there exists a homeomorphism H: X→ X such
that the diagram

-

-

X

X

X

X

??

T n1

T n2

HH

commutes.

Definition 2.7 Two mappings T1, T2: X → X are topologically conjugate if
there exists a homeomorphism H: X→ X such that the diagram

-

-

X

X

X

X

??

T1

T2

HH

commutes.
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It is easily verified that two discrete dynamical (semidynamical) systems T n1
and T n2 , generated by mappings T1 and T2, are topologically equivalent if and
only if mappings T1 and T2 are topologically conjugate.

Let X and Y be complete metric spaces with metrics ρ1 and ρ2, respectively.
The object of this chapter is to study continuous mappings T : X×Y → X×Y
of the type

T (x, y) = (f(x, y), g(x, y)).

We will make the following hypotheses:

(H1) ρ1(x, x′) ≤ αρ1(f(x, y), f(x′, y)), α > 0.

(H2) ρ1(f(x, y), f(x, y′)) ≤ βρ2(y, y′).

(H3) ρ2(g(x, y), g(x′, y′)) ≤ γρ1(x, x′) + δρ2(y, y′), where α(δ + 2
√
βγ) < 1.

(H4) Mapping f(·, y): X→ X is surjective.

Our aim is to decouple and simplify the given mapping T by means of a topo-
logical transformation.

Example 2.8 Let us consider the following mapping in Banach space

x1 = Ax+ F (x, y),
y1 = By +G(x, y), (2.1)

where x ∈ X, y ∈ Y, A and B are bounded linear mappings, A is invertible,
‖B‖ < ‖A−1‖−1, mappings F : X×Y → X, G: X×Y → Y satisfy the Lipschitz
conditions

|F (x, y)− F (x′, y′)| ≤ ε(|x− x′|+ |y − y′|),
|G(x, y)−G(x′, y′)| ≤ ε(|x− x′|+ |y − y′|).

It is easy to verify that this mapping satisfies the hypotheses (H1) – (H4), where
α = (‖A−1‖−1− ε)−1, β = γ = ε, δ = ‖B‖+ ε. The condition α(δ+ 2

√
βγ) < 1

reduces to the inequality

ε <
‖A−1‖−1 − ‖B‖

4
.

The mapping given by formula x1 = Ax + F (x, y) for a fixed y is surjective if
ε‖A−1‖ < 1. Note that ε‖A−1‖ < 1/4.

Remark. Consider a mapping which shows that in the general case the inequal-
ity α(δ+2

√
βγ) < 1 is impossible to replace with an equality. It is easy to verify

that the linear mapping
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x1 = α−1x− βy,
y1 = γx+ δy,

where x ∈ IR1, y ∈ IR1 and α, β, γ, δ > 0, satisfies the hypotheses (H1)–(H4).
If α(δ + 2

√
βγ) < 1, then the given mapping has a fixed point at the origin

and two invariant straight lines – the graphics of Lipschitz mappings. If, on
the contrary, α(δ + 2

√
βγ) = 1, then the given mapping has only one invariant

straight line going through the origin. The characteristic equation of the corre-
sponding linear mapping has a double root, the degree of the elementary divisor
being two. Theorem 2.22 is not valid.

2.3 Auxiliary lemmas

To prove the main results, we use three lemmas. Consider the set of mappings

Lip(k) = {u | u: X→ Y and ρ2(u(x), u(x′)) ≤ kρ1(x, x′)}.

Lemma 2.9 Let αβk < 1 and u ∈ Lip(k). Then the mapping ϕ: X→ X defined
by ϕ(x) = f(x, u(x)) is a homeomorphism.

Next, introduce operator L acting on Lip(k) defined by the equality

(Lu)(f(x, u(x))) = g(x, u(x)).

Lemma 2.10 There exists k ≥ 0 such that L(Lip(k)) ⊂ Lip(k).

Next, let us consider the set of mappings

Lip(l) = {v | v: Y → X and ρ1(v(y), v(y′)) ≤ lρ2(y, y′)}

and let us introduce the operator K acting on Lip(l) by the equality

f(Kv(y), y) = v(g(v(y), y)).

The operator K is well defined, because the mapping f(·, y): X→ X is surjective
and hypothesis (H1) is fulfilled.

Lemma 2.11 There exists an l ≥ 0 such that K(Lip(l)) ⊂ Lip(l).

Later, in Chapters 1 and 2 we assume that

k =
2αγ

1− αδ +
√

(1− αδ)2 − 4α2βγ
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and
l =

2αβ

1− αδ +
√

(1− αδ)2 − 4α2βγ
.

It should be noted that βk = γl, α(γ+δk)(1−αβk)−1 = k, αl(γl+δ)+αβ = l.
αβk = αγl < 1/2 and kl < 1.

Example 2.12 Let us consider the mapping (2.1). We derive

k = l =
2ε

‖A−1‖−1 − ‖B‖ − 2ε+
√

(‖A−1‖−1 − ‖B‖)(‖A−1‖−1 − ‖B‖ − 4ε)

=
‖A−1‖−1 − ‖B‖ − 2ε−

√
(‖A−1‖−1 − ‖B‖)(‖A−1‖−1 − ‖B‖ − 4ε)

2ε
< 1.

2.4 Fixed point

We will give the sufficient conditions for the existence of a fixed point.

Theorem 2.13 If (1− α)(1− δ)− αβγ > 0, then the mapping T has a unique
fixed point T (x0, y0) = (x0, y0).

Example 2.14 Let us consider a mapping of form (2.1). The condition (1 −
α)(1− δ) > αβγ reduces to the inequality

ε <
(‖A−1‖−1 − 1)(1− ‖B‖)
‖A−1‖−1 − ‖B‖

.

Using the relation between geometric and arithmetic means, we obtain

(‖A−1‖−1 − 1)(1− ‖B‖)
‖A−1‖−1 − ‖B‖

≤ ‖A
−1‖−1 − ‖B‖

4
.

2.5 Invariant sets

We will give the necessary and sufficient conditions for the existence of mappings
u: X→ Y and v: Y → X, whose graphs are invariant sets.

Theorem 2.15 Let the hypotheses (H1)–(H4) hold. For the existence of map-
pings u: X→ Y and v: Y → X that satisfy the functional equations
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u(f(x, u(x))) = g(x, u(x)), (2.2)

f(v(y), y) = v(g(v(y), y)) (2.3)

and the Lipschitz conditions

ρ2(u(x), u(x′)) ≤ kρ1(x, x′), (2.4)

ρ1(v(y), v(y′)) ≤ lρ2(y, y′), (2.5)

it is necessary and sufficient that the mapping T has a fixed point T (x0, y0) =
(x0, y0).

Let us note that if αδ + 1 ≤ 2α, then

βk + δ =
1− αδ −

√
(1− αδ)2 − 4α2βγ

2α
+ δ <

1− αδ
2α

+ δ ≤ 1.

In the case αδ + 1 ≥ 2α we get

α(1 + γl) = α +
1− αδ −

√
(1− αδ)2 − 4α2βγ

2
< α +

1− αδ
2

≤ 1.

Lemma 2.16 If βk+ δ < 1 and α(1 + γl) < 1, then (1−α)(1− δ) > αβγ, and
conversely, if (1− α)(1− δ) > αβγ, then βk + δ < 1 and α(1 + γl) < 1.

Theorem 2.17 Let the hypotheses (H1)–(H4) hold, and let there be βk+δ < 1.
For the existence of a mapping u: X→ Y that satisfies the functional equation
(2.2) and the Lipschitz condition (2.4) it is necessary and sufficient that there
exists a mapping u0 ∈ Lip(k) such that

sup
x
ρ2(u0(f(x, u0(x))), g(x, u0(x))) < +∞. (2.6)

Theorem 2.18 Let the hypotheses (H1)–(H4) hold, and let there be α(1+γl) <
1. For the existence of a mapping v: Y → X that satisfies the functional equation
(2.3) and the Lipschitz condition (2.5) it is necessary and sufficient that there
exists a mapping v0 ∈ Lip(l) such that

sup
y
ρ1(v0(g(v0(y), y)), f(v0(y), y)) < +∞. (2.7)

Remark. It is easy to verify the following estimates
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ρ2(u(f(x, y)), g(x, y)) ≤ ρ2(u(f(x, y)), u(f(x, u(x))))

+ρ2(g(x, u(x)), g(x, y)) ≤ (βk + δ)ρ2(u(x), y)

and
ρ1(v(y), x) ≤ αρ1(f(v(y), y), f(x, y))

= αρ1(v(g(v(y), y)), f(x, y)) ≤ αρ1(f(x, y), v(g(x, y))) + αγlρ1(v(y), x).

It follows that

ρ1(v(y), x) ≤ α(1− αγl)−1ρ1(v(g(x, y)), f(x, y)).

Example 2.19 Let us consider the mapping (2.1). The condition (2.6) is fulfilled
if

sup
x
|G(x, 0)| < +∞,

and (2.7) is fulfilled if
sup
y
|F (0, y)| < +∞.

Lemma 2.20 Let T be a homeomorphism and let there be a mapping v: Y → X
satisfying (2.3) and (2.5). Then the mapping ψ: Y → Y, defined by ψ(y) =
g(v(y), y), is a homeomorphism.

Corollary 2.21 Let T be a homeomorphism and let the mappings u: X → Y
and v: Y → X satisfy (2.2)–(2.5). Then the mapping S: X×Y → X×Y defined
by the equality S(x, y) = (f(x, u(x)), g(v(y), y)) is a homeomorphism.

2.6 Conjugacy of homeomorphisms. 1

We now consider the case when the mapping T is a homeomorphism having a
fixed point.

Theorem 2.22 Let the hypotheses (H1)–(H4) hold and let T be a homeomor-
phism with a fixed point. Then there exists a homeomorphism H: X×Y → X×Y
such that the diagram

-

-

X×Y

X×Y

X×Y

X×Y

??

T

S

HH
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commutes, where S(x, y) = (f(x, u(x)), g(v(y), y)).

Proof. The proof of the theorem consists of several steps.
Step 1. Mapping p: The functional equation

f(p(x, y), u(p(x, y))) = p(T (x, y))

has a unique solution p ∈M1, where

M1 =
{
p

∣∣∣∣∣ p: X×Y → X is continuous and sup
x,y

ρ1(p(x, y), x)
ρ2(u(x), y)

< +∞
}

is the complete metric space.
Step 2. Mapping π: The functional equation

g(v(π(x, y)), π(x, y)) = π(T (x, y))

has a unique solution π ∈M2, where

M2 =
{
π

∣∣∣∣∣ π: X×Y → Y is continuous and sup
x,y

ρ2(π(x, y), y)
ρ1(v(y), x)

< +∞
}

is the complete metric space.
Step 3. Mapping q: The functional equation

f(q(x, z), z) = q(f(x, u(x)), g(q(x, z), z))

has a unique solution q ∈M1(l), where

M1(l) =
{
q ∈M1

∣∣∣∣∣ sup
x,y

ρ1(q(x, y), x)
ρ2(u(x), y)

≤ l and ρ1(q(x, z), q(x, z′)) ≤ lρ2(z, z′)
}

is the complete metric space.
Step 4. Mapping θ: The functional equation

θ(S(x, y)) = g(q(x, θ(x, y)), θ(x, y))

has a unique solution θ ∈M3, where

M3 =
{
θ

∣∣∣∣∣ θ: X×Y → Y is continuous and sup
x,y

ρ2(θ(x, y), y)
ρ1(q(x, y), v(y))

< +∞
}

is the complete metric space.
Step 5. Mapping P : The functional equation
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P (S(x, y)) = f(P (x, y), u(P (x, y)))

has a unique solution P ∈M4, where

M4 =
{
P

∣∣∣∣∣ P : X×Y → X is continuous and sup
x,y

ρ1(P (x, y), x)
ρ2(θ(x, y), u(x))

< +∞
}

is the complete metric space and

P (x, y) = p(q(x, θ(x, y)), θ(x, y)) = x.

Step 6. Mapping Π: The functional equation

Π(S(x, y)) = g(v(Π(x, y)), Π(x, y))

has a unique solution Π ∈M3, where

Π(x, y) = π(q(x, θ(x, y)), θ(x, y)) = y.

Step 7. Mapping Q: The functional equation

Q(T (x, y), g(Q(x, y, z), z)) = f(Q(x, y, z), z)

has a unique solution Q ∈M5, where

M5 =
{
Q

∣∣∣∣∣ Q: X×Y ×Y → X is continuous,

ρ1(Q(x, y, z), Q(x, y, z′)) ≤ lρ2(z, z′) and sup
x,y,z

ρ1(Q(x, y, z), x)
max (ρ2(u(x), y), ρ2(z, y))

<∞
}

is the complete metric space. We have Q(x, y, z) = q(p(x, y), z). It is easily
verified that Q(x, y, y) = x. Therefore q(p(x, y), y) = x.

Step 8. Mapping Θ: The functional equation

Θ(T (x, y)) = g(Q(x, y, Θ(x, y)), Θ(x, y))

has a unique solution Θ ∈M2, where

Θ(x, y) = θ(p(x, y), π(x, y)) = y.

We obtain that the mappings H, Γ : X×Y → X×Y defined by

H(x, y) = (p(x, y), π(x, y))

and
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Γ (x, y) = (q(x, θ(x, y)), θ(x, y))

are inverse to each other and H is a homeomorphism establishing conjugacy of
the mappings T and S. The theorem is proven.

Example 2.23 Assume in addition that the mapping (2.1) is a homeomorphism
having a fixed point. Using Theorem 2.22 we obtain that the homeomorphism
(2.1) is topologically conjugate to

x1 = Ax+ F (x, u(x)),
y1 = By +G(v(y), y).

2.7 Conjugacy of noninvertible mappings

We consider the case when the mapping T has an invariant set.

Theorem 2.24 Let the hypotheses (H1)–(H4) hold and let there be a mapping
u: X→ Y that satisfies (2.2) and (2.4). Then there exists a continuous mapping
q: X×Y → X, which is Lipschitzian with respect to the second variable, and a
homeomorphism H: X×Y → X×Y such that the diagram

-

-

X×Y

X×Y

X×Y

X×Y

??

T

R

HH

commutes, where R(x, y) = (f(x, u(x)), g(q(x, y), y)).

Theorem 2.25 Let the hypotheses (H1)–(H4) hold, and let there be a home-
omorphism f0: X → X such that f−1

0 satisfies the Lipschitz conditions with a
constant less than 1. If α(1 + γl) < 1 and

sup
x,y

ρ1(f(x, y), f0(x)) < +∞,

then there exists a continuous mapping q: X × Y → X, which is Lipschitzian
with respect to the second variable, and a homeomorphism H: X×Y → X×Y
such that the diagram
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-

-

X×Y

X×Y

X×Y

X×Y

??

T

N1

HH

commutes, where N1(x, y) = (f0(x), g(q(x, y), y)).

Example 2.26 In the general case of noninvertible mappings using Theorem
2.24 we have that (2.1) is topologically conjugate to

x1 = Ax+ F (x, u(x)),
y1 = By +G(q(x, y), y).

2.8 Conjugacy of homeomorphisms. 2

We consider the case, when T is a homeomorphism without fixed points.

Theorem 2.27 Let the hypotheses (H1)–(H4) hold, and let there be a mapping
v: Y → X that satisfies (2.3) and (2.5). If T is a homeomorphism, then there
exists a continuous mapping θ: X×Y → Y, which is Lipschitzian with respect
to the first variable, and a homeomorphism H: X×Y → X×Y such that the
diagram

-

-

X×Y

X×Y

X×Y

X×Y

??

T

N

HH

commutes, where N(x, y) = (f(x, θ(x, y)), g(v(y), y)).

Theorem 2.28 Let the hypotheses (H1)–(H4) hold, and let there be a homeo-
morphism g0: Y → Y such that satisfies the Lipschitz condition with a constant
less than 1. If T is a homeomorphism, βk + δ < 1 and

sup
x,y

ρ2(g(x, y), g0(y)) < +∞, (2.8)

then there exists a homeomorphism H: X×Y → X×Y such that the diagram
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-

-

X×Y

X×Y

X×Y

X×Y

??

T

R0

HH

commutes, where R0(x, y) = (f(x, u(x)), g0(y)).

Theorem 2.29 Let the hypotheses (H1)–(H4) hold, and let there be a home-
omorphism f0: X → X such that f−1

0 satisfies the Lipschitz conditions with a
constant less than 1. If T is a homeomorphism, α(1 + γl) < 1 and

sup
x,y

ρ1(f(x, y), f0(x)) < +∞, (2.9)

then there exists a homeomorphism H: X×Y → X×Y such that the diagram

-

-

X×Y

X×Y

X×Y

X×Y

??

T

N0

HH

commutes, where N0(x, y) = (f0(x), g(v(y), y)).

Example 2.30 Let us consider the mapping (2.1). The condition (2.8) is fulfilled
if

sup
x,y
|G(x, y)−G(0, y)| < +∞

and (2.9) is fulfilled if

sup
x,y
|F (x, y)− F (x, 0)| < +∞.

Let the mapping (2.1) be a homeomorphism and let B be invertible, ‖B‖ <
1, supx,y |G(x, y)| < +∞ and

ε <



‖A−1‖−1 − ‖B‖
4

if ‖A−1‖−1 + ‖B‖ ≤ 2

(‖A−1‖−1 − 1)(1− ‖B‖)
‖A−1‖−1 − ‖B‖

if ‖A−1‖−1 + ‖B‖ > 2.
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Using Theorem 2.28 we obtain that homeomorphism (2.1) is topologically con-
jugate to

x1 = Ax+ F (x, u(x)),
y1 = By.

Now suppose that ‖A−1‖ < 1, supx,y |F (x, y)| < +∞ and

ε <



(‖A−1‖−1 − 1)(1− ‖B‖)
‖A−1‖−1 − ‖B‖

if ‖A−1‖−1 + ‖B‖ ≤ 2

‖A−1‖−1 − ‖B‖
4

if ‖A−1‖−1 + ‖B‖ > 2.

By Theorem 2.29 homeomorphism (2.1) is topologically conjugate to

x1 = Ax,
y1 = By +G(v(y), y).

2.9 Notes

The results of this section are based on [105, 120, 121, 128, 129, 137].
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3. Topological equivalence of discrete
dynamical extensions

3.1 Preliminaries

In this chapter we set out some basic facts needed for later sections and specify
the form of the mapping T .

Let X and Y be complete metric spaces with metrics ρ1 and ρ2, respectively,
and let Λ be a topological space. The object of this chapter is to extend the
reduction theorem for discrete dynamical (semidynamical) extensions generated
by a homeomorphism (continuous mapping) in a complete metric space. We
consider the continuous mapping T defined by

(x, y, λ) 7→ (f(x, y, λ), g(x, y, λ), σ(λ)).

We will propose the following hypotheses:

(H1) ρ1(x, x′) ≤ αρ1(f(x, y, λ), f(x′, y, λ)), α > 0.

(H2) ρ1(f(x, y, λ), f(x, y′, λ)) ≤ βρ2(y, y′).

(H3) ρ2(g(x, y, λ), g(x′, y′, λ)) ≤ γρ1(x, x′) + δρ2(y, y′), where α(δ+ 2
√
βγ) < 1.

(H4) Mapping f(·, y, λ): X→ X is surjective.

(H5) Mapping σ:Λ→ Λ is a homeomorphism.

Our aim is to decouple and simplify the given mapping T by means of a topo-
logical transformation.

Example 3.1 Consider a nonautonomous system of difference equations on ZZ
of the form

x(n+ 1) = A(n)x(n) + F (x(n), y(n), n),
y(n+ 1) = B(n)y(n) +G(x(n), y(n), n),
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where x ∈ X, y ∈ Y, X and Y are Banach spaces, A(n) and B(n) are bounded
linear maps, A(n) is invertible, ‖B(n)‖ < ‖A−1(n)‖−1 and the maps F : X ×
Y × ZZ→ X, G: X×Y × ZZ→ Y satisfy the Lipschitz conditions

|F (x, y, n)− F (x′, y′, n)| ≤ ε(|x− x′|+ |y − y′|),
|G(x, y, n)−G(x′, y′, n)| ≤ ε(|x− x′|+ |y − y′|).

It is easy to verify that this mapping satisfies the hypotheses (H1) – (H5),
where α = ((supn ‖A−1(n)‖)−1 − ε)−1, β = γ = ε, δ = supn ‖B(n)‖ + ε and
σ(n) = n+ 1. The condition α(δ + 2

√
βγ) < 1 reduces to the inequality

ε <
(supn ‖A−1(n)‖)−1 − supn ‖B(n)‖

4
.

The mapping given by formula x1 = A(n)x + F (x, y, n) for fixed n and y is
surjective if ε supn ‖A−1(n)‖ < 1. Let us note that ε supn ‖A−1(n)‖ < 1/4.

3.2 Auxiliary lemmas

In order to prove the main results we use three lemmas. Let us consider the set
of mappings

Lip(k) = {u | u: X×Λ→ Y and ρ2(u(x, λ), u(x′, λ)) ≤ kρ1(x, x′)}.

Lemma 3.2 Let αβk < 1 and u ∈ Lip(k). Then the mapping ϕ: X×Λ→ X×Λ,
defined by ϕ(x, λ) = (f(x, u(x, λ), λ), σ(λ)), is a homeomorphism.

Next, introduce the operator L acting on Lip(k) defined by the equality

(Lu)(f(x, u(x, λ), λ), σ(λ)) = g(x, u(x, λ), λ).

Lemma 3.3 There exists k ≥ 0 such that L(Lip(k)) ⊂ Lip(k).

Next, let us consider the set of mappings

Lip(l) = {v | v: Y ×Λ→ X and ρ1(v(y, λ), v(y′, λ)) ≤ lρ2(y, y′)}

and let us introduce the operator K acting on Lip(l) by the equality

f(Kv(y, λ), y, λ) = v(g(v(y, λ), y, λ), σ(λ)).

The operator K is well defined, because the mapping f(·, y, λ): X → X is sur-
jective and hypothesis (H1) is fulfilled.

Lemma 3.4 There exists an l ≥ 0 such that K(Lip(l)) ⊂ Lip(l).
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3.3 Invariant sets

We will give the necessary and sufficient conditions for the existence of mappings
u: X×Λ→ Y and v: Y ×Λ→ X, whose graphs are invariant sets.

Theorem 3.5 Let the hypotheses (H1) – (H5) hold. For the existence of map-
pings u: X×Λ→ Y and v: Y ×Λ→ X that satisfy the functional equations

u(f(x, u(x, λ), λ), σ(λ)) = g(x, u(x, λ), λ), (3.1)

f(v(y, λ), y, λ) = v(g(v(y, λ), y, λ), σ(λ)) (3.2)
and the Lipschitz conditions

ρ2(u(x, λ), u(x′, λ)) ≤ kρ1(x, x′), (3.3)

ρ1(v(y, λ), v(y′, λ)) ≤ lρ2(y, y′) (3.4)
it is necessary and sufficient that there exist continuous mappings x0:Λ → X
and y0:Λ→ Y such that

f(x0(λ), y0(λ), λ) = x0(σ(λ)) and g(x0(λ), y0(λ), λ) = y0(σ(λ)).

Theorem 3.6 Let the hypotheses (H1) – (H5) hold, and let βk + δ < 1. For
the existence of a mapping u: X×Λ→ Y that satisfies the functional equation
(3.1) and the Lipschitz condition (3.3) it is necessary and sufficient that there
exists a mapping u0 ∈ Lip(k) such that

sup
x,λ

ρ2(u0(f(x, u0(x, λ), λ), σ(λ)), g(x, u0(x, λ), λ)) < +∞. (3.5)

Theorem 3.7 Let the hypotheses (H1) – (H5) hold, and let α(1 + γl) < 1. For
the existence of a mapping v: Y ×Λ→ X that satisfies the functional equation
(3.2) and the Lipschitz condition (3.4) it is necessary and sufficient that there
exists a mapping v0 ∈ Lip(l) such that

sup
y,λ

ρ1(v0(g(v0(y, λ), y, λ), σ(λ)), f(v0(y, λ), y, λ)) < +∞. (3.6)

Lemma 3.8 Let T be a homeomorphism and let there be a continuous mapping
v: Y×Λ→ X satisfying (3.2) and (3.4). Then the mapping ψ: Y×Λ→ Y×Λ,
defined by ψ(y, λ) = (g(v(y, λ), y, λ), σ(λ)), is a homeomorphism.

Corollary 3.9 Let T be a homeomorphism and let the mappings u: X×Λ→ Y
and v: Y×Λ→ X satisfy (3.1)–(3.4). Then the mapping S: X×Y×Λ→ X×
Y×Λ defined by the equality S(x, y, λ) = (f(x, u(x, λ), λ), g(v(y, λ), y, λ), σ(λ))
is a homeomorphism.
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3.4 Conjugacy of homeomorphisms. 1

We now consider the case when mapping T is a homeomorphism.

Theorem 3.10 Let the hypotheses (H1)–(H5) hold and let there exist contin-
uous mappings x0:Λ→ X and y0:Λ→ Y such that

f(x0(λ), y0(λ), λ) = x0(σ(λ)) and g(x0(λ), y0(λ), λ) = y0(σ(λ)).

Then there exists a homeomorphism H: X×Y×Λ→ X×Y×Λ such that the
diagram

-

-

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

??

T

S

HH

commutes, where S(x, y, λ) = (f(x, u(x, λ), λ), g(v(y, λ), y, λ), σ(λ)).

3.5 Conjugacy of noninvertible mappings

Theorem 3.11 Let the hypotheses (H1)–(H4) hold and let there be a mapping
u: X × Λ → Y that satisfies (3.1) and (3.3). Then there exists a continuous
mapping q: X ×Y × Λ → X, which is Lipschitzian with respect to the second
variable, and a homeomorphism H: X×Y → X×Y such that the diagram

-

-

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

??

T

R

HH

commutes, where R(x, y, λ) = (f(x, u(x, λ), λ), g(q(x, y, λ), y, λ), σ(λ)).

Let continuous mapping f0: X×Λ→ X satisfy conditions:

(i) ρ1(x, x′) ≤ c1ρ1(f0(x, λ), f0(x′, λ)) and c1 < 1.

(ii) Mapping f0(·, λ): X→ X is surjective.
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Theorem 3.12 Let the hypotheses (H1)–(H4) hold. If α(1 + γl) < 1 and

sup
x,y,λ

ρ1(f(x, y, λ), f0(x, λ)) < +∞,

then there exists a continuous mapping q: X×Y×Λ→ X, which is Lipschitzian
with respect to the second variable, and a homeomorphism H: X × Y × Λ →
X×Y ×Λ such that the diagram

-

-

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

??

T

N1

HH

commutes, where N1(x, y, λ) = (f0(x, λ), g(q(x, y, λ), y, λ), σ(λ)).

3.6 Conjugacy of homeomorphisms. 2

Theorem 3.13 Let the hypotheses (H1)–(H5) hold, and let there be a mapping
v: Y × Λ → X that satisfies (3.2) and (3.4). If T is a homeomorphism, then
there exists a continuous mapping θ: X×Y×Λ→ Y, which is Lipschitzian with
respect to the first variable, and a homeomorphism H: X×Y×Λ→ X×Y×Λ
such that the diagram

-

-

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

??

T

N

HH

commutes, where N(x, y, λ) = (f(x, θ(x, y, λ)), g(v(y, λ), y, λ), σ(λ)).

Let mapping g0: Y ×Λ→ Y satisfy conditions:

(i) ρ2(g0(y, λ), g0(y′, λ)) ≤ c2ρ2(y, y′) and c2 < 1.

(ii) Mapping defined by (y, λ) 7→ (g0(y, λ), σ(λ)) is a homeomorphism.

Theorem 3.14 Let the hypotheses (H1)–(H5) hold, and let there be a mapping
u: X×Λ→ Y that satisfies (3.1) and (3.3). If T is a homeomorphism, βk+δ < 1
and
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sup
x,y,λ

ρ2(g(x, y, λ), g0(y, λ)) < +∞, (3.7)

then there exists a homeomorphism H: X×Y×Λ→ X×Y×Λ such that the
diagram

-

-

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

??

T

R0

HH

commutes, where R0(x, y, λ) = (f(x, u(x, λ), λ), g0(y, λ), σ(λ)).

Let mapping f0: X×Λ→ X satisfy conditions:

(i) ρ1(x, x′) ≤ c1ρ1(f0(x, λ), f0(x′, λ)) and c1 < 1.

(ii) Mapping defined by (x, λ) 7→ (f0(x, λ), σ(λ)) is a homeomorphism.

Theorem 3.15 Let the hypotheses (H1)–(H5) hold, and let there be a mapping
v: Y ×Λ → X that satisfies (3.2) and (3.4). If T is a homeomorphism, α(1 +
γl) < 1 and

sup
x,y,λ

ρ1(f(x, y, λ), f0(x, λ)) < +∞, (3.8)

then there exists a homeomorphism H: X×Y×Λ→ X×Y×Λ such that the
diagram

-

-

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

X×Y ×Λ

??

T

N0

HH

commutes, where N0(x, y, λ) = (f0(x, λ), g(v(y, λ), y, λ), σ(λ)).

3.7 Notes

The results of this section are based on [127, 130, 131, 132, 133, 136, 139, 140,
144, 145, 147].



4. Equivalence of impulsive differential
equations

4.1 Introduction

The dynamical equivalence for systems of impulsive differential equations was
first considered by the author and L. Sermone, and later D. D. Bainov, S. I.
Kostadinov and Nguyen Van Minh. In the present chapter, different modifica-
tions of the reduction theorem for systems of impulsive differential equations in
a Banach space (also for noninvertible systems) are proved assuming that the
systems split into two parts. Often it is possible to use the reduction theorems
many times, which allows further simplification of the given system. Using the
standard technique, local modifications of the reduction theorem are obtainable.

4.2 Preliminaries

Let X and Y be Banach spaces. By L(X) and L(Y) we mean the Banach
spaces of bounded linear operators. Consider the following system of impulsive
differential equations:



dx/dt = A(t)x+ f(t, x, y),
dy/dt = B(t)y + g(t, x, y),
∆x|t=τi = x(τi + 0)− x(τi − 0)

= Cix(τi − 0) + pi(x(τi − 0), y(τi − 0)),
∆y|t=τi = y(τi + 0)− y(τi − 0)

= Diy(τi − 0) + qi(x(τi − 0), y(τi − 0)),

(4.1)

where

(i) the mappings A: IR → L(X) and B: IR → L(Y) are locally integrable in
the Bochner sense;



38 4. Equivalence of impulsive differential equations

(ii) the mappings f : IR × X × Y → X and g: IR × X × Y → Y are locally
integrable in the Bochner sense with respect to t for fixed x and y, and,
in addition, they satisfy the Lipschitz conditions

|f(t, x, y)− f(t, x′, y′)| ≤ ε(|x− x′|+ |y − y′|),

|g(t, x, y)− g(t, x′, y′)| ≤ ε(|x− x′|+ |y − y′|);

(iii) for i ∈ Z, Ci ∈ L(X), Di ∈ L(Y), the mappings pi: X×Y → X, qi: X×
Y → Y satisfy the Lipschitz conditions

|pi(x, y)− pi(x′, y′)| ≤ ε(|x− x′|+ |y − y′|),

|qi(x, y)− qi(x′, y′)| ≤ ε(|x− x′|+ |y − y′|);

(iv) the mappings (x, y) 7→ (x+Cix+pi(x, y), y+Diy+ qi(x, y)), x 7→ x+Cix
are homeomorphisms;

(v) the moments τi of impulse form a strictly increasing sequence

. . . < τ−2 < τ−1 < τ0 < τ1 < τ2 < . . . ,

where the limit points may be only ∓∞.

We now proceed with definitions of the solution for a systems of impulsive
differential equations and dynamically equivalence in the large.

Definition 4.1 By the solution to an impulsive system we mean a piecewise
absolutely continuous mapping with discontinuities of the first kind at the points
t = τi which for almost all t satisfies system (4.1) and for t = τi, satisfies the
conditions of a ”jump”.

Note that condition (iv) implies continuability of solutions of (4.1) in the
negative direction. Furthermore, condition (v), together with the Lipschitz prop-
erty with respect to x and y of the right–hand side, ensures that there is a unique
solution defined on IR.

Let Φ(·, s, x, y) = (x(·, s, x, y), y(·, s, x, y)): IR → X × Y be the solution of
system (4.1), where Φ(s+ 0, s, x, y) = (x(s+ 0, s, x, y), y(s+ 0, s, x, y)) = (x, y).
At the break points τi the values for all solutions are taken at τi + 0 unless
otherwise indicated. For short, we will use the notation Φ(t) = (x(t), y(t)).

Let U be a Banach space. Consider two impulsive differential equations

du/dt = P (t, u), ∆u|t=τi= Si(u(τi − 0)) (4.2)
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and
du/dt = Q(t, u), ∆u|t=τi= Ti(u(τi − 0)) (4.3)

that satisfy the conditions of the existence and uniqueness theorem. We as-
sume that the maximum interval of the existence of the solutions is IR. Let
φ(·, s, u): IR → U and ψ(·, s, u): IR → U be the solutions of the above equa-
tions, respectively. Suppose that there is a function e: U→ IR+ such that

max {|P (t, u)−Q(t, u)|, sup
i
|Si(u)− Ti(u)|} ≤ e(u).

Definition 4.2 The two impulsive differential equations (4.2) and (4.3) are
dynamically equivalent in the large if there exists a mapping H: IR × U → U
and a positive constant c such that:

(i) H(t, ·): U→ U is a homeomorphism;

(ii) H(t, φ(t, s, u)) = ψ(t, s,H(s, u)) for all t ∈ IR;

(iii) max {|H(t, u)− u|, |H−1(t, u)− u|} ≤ ce(u);

(iv) in case the differential equations are autonomous and have no impulse
effect, then the mapping H does not depend on t.

Note that without (iii) and (iv) the concept of dynamical equivalence would
be trivial, since in this case the equality H(s, u) = ψ(s, 0, φ(0, s, u)) gives a dy-
namical equivalence. It is significant that in the case of the classical global
Grobman–Hartman theorem for autonomous differential equations, the corre-
sponding function e(x) = a > 0 and appropriate constant c depend on the linear
truncation only.

4.3 Auxiliary lemmas

Let X(t, τ) and Y (t, τ) be the evolutionary operators of the impulsive linear
differential equations{

dx/dt = A(t)x,
∆x|t=τi = x(τi + 0)− x(τi − 0) = Cix(τi − 0)

and, respectively,{
dy/dt = B(t)y,
∆y|t=τi = y(τi + 0)− y(τi − 0) = Diy(τi − 0).
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Assume that

ν1 = sup
s

∫ s

−∞
|Y (s, t)||X(t, s)| dt+ sup

s

∑
τi≤s
|Y (s, τi)||X(τi − 0, s)|,

ν2 = sup
s

∫ +∞

s
|X(s, t)||Y (t, s)| dt+ sup

s

∑
s<τi

|X(s, τi)||Y (τi − 0, s)|

and
ν = max{ν1, ν2}.

Let PC(IR×X,Y) be a set of mappings u: IR×X→ Y that are continuous
for (t, x) ∈ [τi, τi+1) × X and have discontinuities of the first kind for t = τi.
The set

B1 =
{
u ∈ PC(IR×X,Y)

∣∣∣∣∣ sup
s,x
|u(s, x)| < +∞

}
becomes a Banach space if we use the norm

‖u‖ = sup
s,x
|u(s, x)|.

For k > 0 the set

B1(k) = {u ∈ B1 | |u(s, x)− u(s, x′)| ≤ k|x− x′|}

is a closed subset of B1. Assume that

µ1 = sup
s

∫ s

−∞
|Y (s, t)| dt+

∑
τi≤s
|Y (s, τi)|

 < +∞.

Lemma 4.3 Let u, u′ ∈ B1(k) and let ε(1 + k)ν1 < 1. Then the following
estimate is valid:∫ s

−∞
|Y (s, t)||z(t)− z′(t)| dt+

∑
τi≤s
|Y (s, τi)||z(τi − 0)− z′(τi − 0)|

≤ ν1 (1− εν1(1 + k))−1 (|x− x′|+ εµ1‖u− u′‖) ,

where z: (−∞, s]→ X is the solution of the impulsive differential equation{
dz/dt = A(t)z + f(t, z, u(t, z)), z(s) = x,
∆z|t=τi = Ciz(τi − 0) + pi(z(τi − 0), u(τi − 0, z(τi − 0))).

The set
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N1 =
{
u ∈ PC(IR×X,Y)

∣∣∣∣∣ sup
s,x 6=0

|u(s, x)|
|x|

< +∞
}

becomes a Banach space if we use the norm

‖u‖ = sup
s,x6=0

|u(s, x)|
|x|

.

For k > 0 the set

N1(k) = {u ∈ N1 | |u(s, x)− u(s, x′)| ≤ k|x− x′|}

is a closed subset of N1.

Lemma 4.4 Let u, u′ ∈ N1(k), f(t, 0, 0) = 0, pi(0, 0) = 0 and ε(1 + k)ν1 < 1.
Then the following estimate is valid:∫ s

−∞
|Y (s, t)||z(t)− z′(t)| dt+

∑
τi≤s
|Y (s, τi)||z(τi − 0)− z′(τi − 0)|

≤ ν1 (1− εν1(1 + k))−1
(
|x− x′|+ εν1(1− εν1(1 + k))−1|x|‖u− u′‖

)
,

where z: (−∞, s]→ X is the solution of the impulsive differential equation{
dz/dt = A(t)z + f(t, z, u(t, z)), z(s) = x,
∆z|t=τi = Ciz(τi − 0) + pi(z(τi − 0), u(τi − 0, z(τi − 0))).

Remark. Lemmas 4.3 and 4.4 are also valid for noninvertible impulsive systems
if the condition ε(1 + k)ν1 < 1 is replaced by the stronger condition

ε(1 + k) max{ν1, sup
i
|(idx + Ci)−1|} < 1.

The set

B2 =
{
v ∈ PC(IR×Y,X)

∣∣∣∣∣ sup
s,y
|v(s, y)| < +∞

}

becomes a Banach space if we use the norm

‖v‖ = sup
s,y
|v(s, y)|.

For l > 0 the set
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B2(l) = {v ∈ B2 | |v(s, y)− v(s, y′)| ≤ l|y − y′|}

is a closed subset of B2. Assume that

µ2 = sup
s

(∫ +∞

s
|X(s, t)| dt+

∑
s<τi

|X(s, τi)|
)
< +∞.

Lemma 4.5 Let v, v′ ∈ B2(l) and let ε(1+l)ν2 < 1. Then the following estimate
is valid:∫ +∞

s
|X(s, t)||w(t)− w′(t)| dt+

∑
s<τi

|X(s, τi)||w(τi − 0)− w′(τi − 0)|

≤ ν2 (1− εν2(1 + l))−1 (|y − y′|+ εµ2‖v − v′‖) ,

where w: [s,+∞)→ Y is the solution of the impulsive differential equation{
dw/dt = B(t)w + g(t, v(t, w), w), w(s) = y,
∆w|t=τi = Diw(τi − 0) + qi(v(τi − 0, w(τi − 0)), w(τi − 0)).

Analogously, the set

N2 =
{
v ∈ PC(IR×Y,X)

∣∣∣∣∣ sup
s,y 6=0

|v(s, y)|
|y|

< +∞
}

becomes a Banach space if we use the norm

‖v‖ = sup
s,y 6=0

|v(s, y)|
|y|

.

For l > 0 the set

N2(l) = {v ∈ N2 | |v(s, y)− v(s, y′)| ≤ l|y − y′|}

is a closed subset of N2.

Lemma 4.6 Let v, v′ ∈ N2(l), g(t, 0, 0) = 0, qi(0, 0) = 0 and ε(1 + l)ν2 < 1.
Then the following estimate is valid:∫ +∞

s
|X(s, t)||w(t)− w′(t)| dt+

∑
s<τi

|X(s, τi)||w(τi − 0)− w′(τi − 0)|

≤ ν2 (1− εν2(1 + l))−1
(
|y − y′|+ εν2(1− εν2(1 + l))−1|y|‖v − v′‖

)
,

where w: [s,+∞)→ Y is the solution of the impulsive differential equation
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{
dw/dt = B(t)w + g(t, v(t, w), w), w(s) = y,
∆w|t=τi = Diw(τi − 0) + qi(v(τi − 0, w(τi − 0)), w(τi − 0)).

Later in this chapter we assume that

k = (2εν1)−1(1− 2εν1 −
√

1− 4εν1)

and
l = (2εν2)−1(1− 2εν2 −

√
1− 4εν2).

4.4 Invariant sets

Invariant sets play a significant role in the equivalence theory.

Theorem 4.7 Let 4εν < 1, f(t, 0, 0) = 0, g(t, 0, 0) = 0, pi(0, 0) = 0 and
qi(0, 0) = 0. Then there exists a unique pair of mappings u ∈ N1(k) and v ∈
N2(l) with the following properties:

(i) u(t, x(t, s, x, u(s, x))) = y(t, s, x, u(s, x)) for all t ∈ IR;

(ii) |u(s, x)− u(s, x′)| ≤ k|x− x′|;

(iii)
∫ +∞

s
|X(s, t)||y(t, s, x, y)− u(t, x(t, s, x, y))| dt

+
∑
s<τi

|X(s, τi)||y(τi − 0, s, x, y)− u(τi − 0, x(τi − 0, s, x, y))|

≤ ν2(1− ε(1 + k)ν2)−1|y − u(s, x)|;

(iv) v(t, y(t, s, v(s, y), y)) = x(t, s, v(s, y), y) for all t ∈ IR;

(v) |v(s, y)− v(s, y′)| ≤ l|y − y′|;

(vi)
∫ s

−∞
|Y (s, t)||x(t, s, x, y)− v(t, y(t, s, x, y))| dt

+
∑
τi≤s
|Y (s, τi)||x(τi − 0, s, x, y)− v(τi − 0, y(τi − 0, s, x, y))|

≤ ν1(1− ε(1 + l)ν1)−1|x− v(s, y)|.

Proof. For the functional equations

u(s, x) =
∫ s

−∞
Y (s, τ)g(τ, z(τ), u(τ, z(τ))) dτ
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+
∑
τi≤s

Y (s, τi)qi(z(τi − 0), u(τi − 0, z(τi − 0)))

and
v(s, y) =

∫ +∞

s
X(s, τ)f(τ, v(τ, w(τ)), w(τ)) dτ

+
∑
s<τi

X(s, τi)pi(v(τi − 0, w(τi − 0)), w(τi − 0))

in N1(k) (respectively in N2(l)) there exists a unique solution, where
z: (−∞, s]→ X is the solution of the impulsive differential equations{

dz/dt = A(t)z + f(t, z, u(t, z)), z(s) = x,
∆z|t=τi = Ciz(τi − 0) + pi(z(τi − 0), u(τi − 0, z(τi − 0)))

and w: [s,+∞)→ Y is the solution of the impulsive differential equations{
dw/dt = B(t)w + g(t, v(t, w), w), w(s) = y,
∆z|t=τi = Diw(τi − 0) + qi(v(τi − 0, w(τi − 0)), w(τi)).

Remark. The conditions (i)–(v) of Theorem 4.7 are also valid for noninvertible
impulse systems if we add the condition:

2ε sup
i
|(idx + Ci)−1| < 1 +

√
1− 4εν1.

Theorem 4.8 Let 4εν ≤ 1, supt,x |g(t, x, 0)| < +∞, supi,x |qi(x, 0)| < +∞ and
2εµ1 < 1 +

√
1− 4εν1. Then there exists a unique mapping u ∈ B1(k) with the

following properties:

(i) u(t, x(t, s, x, u(s, x))) = y(t, s, x, u(s, x)) for all t ∈ IR;

(ii) |u(s, x)− u(s, x′)| ≤ k|x− x′|;

(iii)
∫ +∞

s
|X(s, t)||y(t, s, x, y)− u(t, x(t, s, x, y))| dt

+
∑
s<τi

|X(s, τi)||y(τi − 0, s, x, y)− u(τi − 0, x(τi − 0, s, x, y))|

≤ ν2(1− ε(1 + k)ν2)−1|y − u(s, x)|.

Remark. Theorem 4.8 is also valid for noninvertible impulse systems if we add
the condition

2ε sup
i
|(idx + Ci)−1| < 1 +

√
1− 4εν1.
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Theorem 4.9 Let 4εν ≤ 1, supt,y |f(t, 0, y)| < +∞, supi,y |pi(0, y)| < +∞ and
2εµ2 < 1 +

√
1− 4εν2. Then there exists a unique mapping v ∈ B2(l) with the

following properties:

(iv) v(t, y(t, s, v(s, y), y)) = x(t, s, v(s, y), y) for all t ∈ IR;

(v) |v(s, y)− v(s, y′)| ≤ l|y − y′|;

(vi)
∫ s

−∞
|Y (s, t)||x(t, s, x, y)− v(t, y(t, s, x, y))| dt

+
∑
τi≤s
|Y (s, τi)||x(τi − 0, s, x, y)− v(τi − 0, y(τi − 0, s, x, y))|

≤ ν1(1− ε(1 + l)ν1)−1|x− v(s, y)|.

4.5 Dynamical equivalence of invertible systems. 1

Consider now a system of reduced impulsive differential equations
dx/dt = A(t)x+ f(t, x, u(t, x)),
dy/dt = B(t)y + g(t, v(t, y), y),
∆x|t=τi = Cix(τi − 0) + pi(x(τi − 0), u(τi − 0, x(τi − 0))),
∆y|t=τi = Diy(τi − 0) + qi(v(τi − 0, y(τi − 0)), y(τi − 0)).

(4.4)

This system splits into two parts. The first of them does not contain the
variable y, while the second one is independent of x. Let Ψ(·, s, x, y) =
(x0(·, s, x), y0(·, s, y)): IR → X × Y be a solution of system (25), where Ψ(s +
0, s, x, y) = (x, y). For short, we will use the notation Ψ(t) = (x0(t), y0(t)).

Theorem 4.10 Let 4εν < 1 and let there exist mappings u: IR ×X → Y and
v: IR×Y → X satisfying (i) – (vi). Then systems (4.1) and (4.4) are dynamically
equivalent in the large.

Proof. The proof of the theorem consists of several steps.
Step 1. The space

N3 =
{
κ ∈ PC(IR×X×Y,X)

∣∣∣∣∣ sup
s,x,y

|κ(s, x, y)|
|y − u(s, x)|

< +∞
}

equipped with the norm

‖κ‖ = sup
s,x,y

|κ(s, x, y)|
|y − u(s, x)|
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is a Banach space. In N3, there exists a unique solution of the functional equa-
tion

κ1(s, x, y)

=
∫ +∞

s
X(s, τ)(f(τ, Φ(τ))− f(τ, x(τ) +κ1(τ, Φ(τ)), u(τ, x(τ) +κ1(τ, Φ(τ))))) dτ

+
∑
s<τi

X(s, τi)(pi(Φ(τi − 0))

−pi(x(τi− 0) + κ1(τi− 0, Φ(τi− 0)), u(τi− 0, x(τi− 0) + κ1(τi− 0, Φ(τi− 0))))).

Step 2. The space

N4 =
{
λ ∈ PC(IR×X×Y,Y)

∣∣∣∣∣ sup
s,x,y

|λ(s, x, y)|
|x− v(s, y)|

< +∞
}

equipped with the norm

‖λ‖ = sup
s,x,y

|λ(s, x, y)|
|x− v(s, y)|

is a Banach space. In N4, there exists a unique solution of the functional equa-
tion

λ1(s, x, y)

=
∫ s

−∞
Y (s, τ)(g(τ, v(τ, y(τ) + λ1(τ, Φ(τ))), y(τ) + λ1(τ, Φ(τ)))− g(τ, Φ(τ))) dτ

+
∑
τi≤s

Y (s, τi)(qi(v(τi − 0, y(τi − 0) + λ1(τi − 0, Φ(τi − 0))), y(τi − 0)

+λ1(τi − 0, Φ(τi − 0)))− qi(Φ(τi − 0))).

Define the mapping H1 by the equality

H1(s, x, y) = (x+ κ1(s, x, y), y + λ1(s, x, y)).

From the uniqueness of the solution we get for all t ∈ IR that

H1(t, Φ(t, s, x, y)) = Ψ(t, s,H1(s, x, y)).

Step 3. The set

N3(l) = {κ ∈ N3 | |κ(s, x, y)− κ(s, x, y′)| ≤ l|y − y′|}

is a closed subset of the Banach space N3. In N3(l), there exists a unique
solution of the functional equation

κ2(s, x, w)
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=
∫ +∞

s
X(s, τ)(f(τ, x0(τ), u(τ, x0(τ)))−f(τ, x0(τ)+κ2(τ, x0(τ), η(τ)), η(τ))) dτ

+
∑
s<τi

X(s, τi)(pi(x0(τi − 0), u(τi − 0, x0(τi − 0)))

−pi(x0(τi − 0) + κ2(τi − 0, x0(τi − 0), η(τi − 0)), η(τi − 0))),

η(t) = Y (t, s)w +
∫ t

s
Y (t, τ)g(τ, x0(τ) + κ2(τ, x0(τ), η(τ)), η(τ)) dτ

+
∑

s<τi≤t
Y (t, τi)qi(x0(τi − 0) + κ2(τi − 0, x0(τi − 0), η(τi − 0)), η(τi − 0)).

Step 4. The space

N5 =
{
λ ∈ PC(IR×X×Y,Y)

∣∣∣∣∣ sup
s,x,y

|λ(s, x, y)|
|x+ κ2(s, x, y)− v(s, y)|

< +∞
}

equipped with the norm

‖λ‖ = sup
s,x,y

|λ(s, x, y)|
|x+ κ2(s, x, y)− v(s, y)|

is a Banach space. In N5, there exists a unique solution of the functional equa-
tion

λ2(s, x, y) =
∫ s

−∞
Y (s, τ)(g(τ, x0(τ) + κ2(τ, x0(τ), y0(τ)

+λ2(τ, Ψ(τ))), y0(τ) + λ2(τ, Ψ(τ)))− g(τ, v(τ, y0(τ)), y0(τ))) dτ

+
∑
τi≤s

Y (s, τi)(qi(x0(τi − 0) + κ2(τi − 0, x0(τi − 0), y0(τi − 0)

+λ2(τi − 0, Ψ(τi − 0))), y0(τi − 0) + λ2(τi − 0, Ψ(τi − 0)))

−qi(v(τi − 0, y0(τi − 0)), y0(τi − 0))).

The next step is to define the mapping H2 by the equality

H2(s, x, y) = (x+ κ2(s, x, y + λ2(s, x, y)), y + λ2(s, x, y)).

Then the mapping H2 satisfies the functional equation

H2(t, Ψ(t, s, x, y)) = Φ(t, s,H2(s, x, y))

for all t ∈ IR.
Step 5. The space

N6 =
{
κ ∈ PC(IR×X×Y,X)

∣∣∣∣∣ sup
s,x,y

|κ(s, x, y)|
|y + λ2(s, x, y)− u(s, x)|

< +∞
}
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equipped with the norm

‖κ‖ = sup
s,x,y

|κ(s, x, y)|
|y + λ2(s, x, y)− u(s, x)|

is a Banach space. In N6, there exists a unique trivial solution of the functional
equations

κ3(s, x, y) =
∫ +∞

s
X(s, τ)(f(τ, x0(τ), u(τ, x0(τ)))

−f(τ, x0(τ) + κ3(τ, Ψ(τ)), u(τ, x0(τ) + κ3(τ, Ψ(τ))))) dτ

+
∑
s<τi

X(s, τi)(pi(x0(τi − 0), u(τi − 0, x0(τi − 0)))− pi(x0(τi − 0)

+κ3(τi − 0, Ψ(τi − 0)), u(τi − 0, x0(τi − 0) + κ3(τi − 0, Ψ(τi − 0))))).

Step 6. In N5, there exists a unique trivial solution of the functional equa-
tions

λ3(s, x, y) = −
∫ s

−∞
Y (s, τ)(g(τ, v(τ, y0(τ)), y0(τ))

−g(τ, v(τ, y0(τ) + λ3(τ, Ψ(τ))), y0(τ) + λ3(τ, Ψ(τ)))) dτ

+
∑
τi≤s

Y (s, τi)(qi(v(τi − 0, y0(τi − 0) + λ3(τi − 0, Ψ(τi − 0))), y0(τi − 0))

+λ3(τi − 0, Ψ(τi − 0)))− qi(v(τi − 0, y0(τi − 0)), y0(τi − 0))).

Step 7. Notice that the mappings α1: IR×X×Y → X and β1: IR×X×Y → Y
defined by equalities

α1(s, x, y)

= κ2(s, x, y + λ2(s, x, y)) + κ1(s, x+ κ2(s, x, y + λ2(s, x, y)), y + λ2(s, x, y))

and

β1(s, x, y) = λ2(s, x, y) + λ1(s, x+ κ2(s, x, y + λ2(s, x, y)), y + λ2(s, x, y))

also satisfy the functional equations of Steps 5 and 6, respectively. Besides,
α1 ∈ N6 and β1 ∈ N5. Hence α1(s, x, y) = 0 and β1(s, x, y) = 0. It follows that
the identity

H1(s,H2(s, x, y)) = (x, y)

holds true.
Step 8. The space

N7 =
{
κ ∈ PC(IR×X×Y ×Y,X)

∣∣∣∣∣
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sup
s,x,y,w

|κ(s, x, y, w)|
max {|y − u(s, x)|, |y − w|}

< +∞
}

equipped with the norm

‖κ‖ = sup
s,x,y,w

|κ(s, x, y, w)|
max {|y − u(s, x)|, |y − w|}

is a Banach space. The set

N7(l) = {κ ∈ N7 | |κ(s, x, y, w)− κ(s, x, y, w′)| ≤ l|w − w′|}

is a closed subset of N7. In N7(l), there exists a unique solution of the functional
equations

κ4(s, x, y, w)

=
∫ +∞

s
X(s, τ)(f(τ, Φ(τ))− f(τ, x(τ) + κ4(τ, Φ(τ), η(τ)), η(τ))) dτ

+
∑
s<τi

X(s, τi)(pi(Φ(τi − 0))− pi(x(τi − 0)

+κ4(τi − 0, Φ(τi − 0), η(τi − 0)), η(τi − 0))),

η(t) = Y (t, s)w +
∫ t

s
Y (t, τ)g(τ, x(τ) + κ4(τ, Φ(τ), η(τ)), η(τ)) dτ

+
∑

s<τi≤t
Y (t, τi)qi(x(τi − 0) + κ4(τi − 0, Φ(τi − 0), η(τi − 0)), η(τi − 0)).

Step 9. In N4, there exists a unique solution of the functional equations

λ4(s, x, y) = −
∫ s

−∞
Y (s, τ)(g(τ, Φ(τ))

−g(τ, x(τ) + κ4(τ, Φ(τ), y(τ) + λ4(τ, Φ(τ))), y(τ) + λ4(τ, Φ(τ)))) dτ

+
∑
τi≤s

Y (s, τi)(qi(x(τi − 0) + κ4(τi − 0, Φ(τi − 0), y(τi − 0)

+λ4(τi − 0, Φ(τi − 0))), y(τi − 0) + λ4(τi − 0, Φ(τi − 0)))− qi(Φ(τi − 0))).

Step 10. The mappings α2: IR×X×Y×Y → X and β2: IR×X×Y → Y
defined by equalities

α2(s, x, y, w) = κ1(s, x, y) + κ2(s, x+ κ1(s, x, y), w)

and
β2(s, x, y) = λ1(s, x, y) + λ2(s, x+ κ1(s, x, y), y + λ1(s, x, y))
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also satisfy the functional equations of Steps 8 and 9, respectively. Besides,
α2 ∈ N7(l) and β2 ∈ N4. Hence α2(s, x, y, y) = 0 and β2(s, x, y) = 0. We get
that the following identity:

H2(s,H1(s, x, y)) = (x, y)

holds true.
Taking into account Steps 1, 2, 7 and 10, we get that H1(s, ·) is a home-

omorphism establishing the dynamical equivalence of systems (4.1) and (4.4)
in the large. It is easy to verify that if system (4.1) of differential equations is
autonomous and has no impulse effect, then the mappings u, v, H1 and H2 are
independent of s ∈ IR. Note that in our case e(x, y) = ε(|x| + |y|). Thus, the
proof of the theorem is complete.

4.6 Dynamical equivalence of noninvertible systems

For noninvertible impulse systems the condition (iv) is replaced by another one,

(iv’) : the mappings x 7→ x+ Cix are homeomorphisms.

Theorem 4.11 Let 4εν < 1 and let there exists a mapping u: IR × X → Y
satisfying (i)–(iii). Then there is a mapping q: IR × X × Y → X, which is
Lipschitzian with respect to the third variable, such that systems (4.1) and

dx/dt = A(t)x+ f(t, x, u(t, x)),
dy/dt = B(t)y + g(t, q(t, x, y), y),
∆x|t=τi = Cix(τi − 0) + pi(x(τi − 0), u(τi − 0, x(τi − 0))),
∆y|t=τi = Diy(τi − 0) + qi(q(τi − 0, x(τi − 0), y(τi − 0)), y(τi − 0))

(4.5)

are dynamically equivalent for t ≥ s.

Let us give another sufficient condition for the dynamical equivalence of
two impulsive systems. Suppose there exist mappings f0: IR × X → X and
pi0: X→ X locally integrable in the Bochner sense with respect to t for fixed x
and such that

sup
t,x,y
|f(t, x, y)− f0(t, x)| < +∞;

sup
i,x,y
|pi(x, y)− pi0(x)| < +∞;

|f0(t, x)− f0(t, x′)| ≤ ε|x− x′|;
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|pi0(x)− pi0(x′)| ≤ ε|x− x′|.

Theorem 4.12 Let 4εν < 1 and 2εµ2 < 1+
√

1− 4εν2. Then there is a mapping
q: IR×X×Y → X, which is Lipschitzian with respect to the third variable, such
that systems (4.1) and


dx/dt = A(t)x+ f0(t, x),
dy/dt = B(t)y + g(t, q(t, x, y), y),
∆x|t=τi = Cix(τi − 0) + pi0(x(τi − 0)),
∆y|t=τi = Diy(τi − 0) + qi(q(τi − 0, x(τi − 0), y(τi − 0)), y(τi − 0))

(4.6)

are dynamically equivalent for t ≥ s.

4.7 Dynamical equivalence of invertible systems. 2

Theorem 4.13 Let 4εν < 1 and let there exists a mapping v: IR × Y → X
satisfying (iv)–(vi). Then there is a mapping θ: IR × X × Y → Y, which is
Lipschitzian with respect to the second variable, such that systems (4.1) and


dx/dt = A(t)x+ f(t, x, θ(t, x, y)),
dy/dt = B(t)y + g(t, v(t, y), y),
∆x|t=τi = Cix(τi − 0) + pi(x(τi − 0), θ(x(τi − 0), y(τi − 0))),
∆y|t=τi = Diy(τi − 0) + qi(v(τi − 0, y(τi − 0)), y(τi − 0))

(4.7)

are dynamically equivalent in the large.

Suppose there exist mappings g0: IR × Y → Y and qi0: Y → Y locally
integrable in the Bochner sense with respect to t for fixed y and, in addition,
they satisfy the estimates:

sup
t,x,y
|g(t, x, y)− g0(t, y)| < +∞;

sup
i,x,y
|qi(x, y)− qi0(y)| < +∞;

|g0(t, y)− g0(t, y′)| ≤ ε|y − y′|;

|qi0(y)− qi0(y′)| ≤ ε|y − y′|.

Theorem 4.14 Let 4εν < 1 and 2εµ1 < 1+
√

1− 4εν1. If there exists a mapping
u: IR ×X → Y satisfying (i)–(iii) and the mappings y 7→ y + Diy + qi0(y) are
homeomorphisms, then systems (4.1) and
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dx/dt = A(t)x+ f(t, x, u(t, x)),
dy/dt = B(t)y + g0(t, y),
∆x|t=τi = Cix(τi − 0) + pi(x(τi − 0), u(τi − 0, x(τi − 0))),
∆y|t=τi = Diy(τi − 0) + qi0(y(τi − 0)).

(4.8)

are dynamically equivalent in the large.

Theorem 4.15 Let 4εν < 1 and 2εµ2 < 1+
√

1− 4εν2. If there exists a mapping
v: IR×Y → X satisfying (iv)–(vi) and the mappings x 7→ x+ Cix+ pi0(y) are
homeomorphisms, then systems (4.1) and

dx/dt = A(t)x+ f0(t, x),
dy/dt = B(t)y + g(t, v(t, y), y),
∆x|t=τi = Cix(τi − 0) + pi0(x(τi − 0)),
∆y|t=τi = Diy(τi − 0) + qi(v(τi − 0, y(τi − 0)), y(τi − 0))

(4.9)

are dynamically equivalent in the large.

4.8 Notes

The results of this section are based on [107, 109, 117, 122, 123, 124, 125, 126,
135, 141, 142, 143, 146, 148].
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5.1 Applications to the stability theory

We will prove that the asymptotic behavior of a semidynamical system gener-
ated by a continuous mapping T : X×Y → X×Y, where

T (x, y) = (f(x, y), g(x, y))

is determined by a reduced semidynamical system generated by a continuous
mapping ϕ: X→ X, where

ϕ(x) = f(x, u(x)).

Theorem 5.1 Let the hypotheses (H1)–(H4) hold and let the mapping T have
a fixed point T (x0, y0) = (x0, y0). Then for any (x, y) ∈ X × Y there exists a
ξ ∈ X such that

ρ1(xn, x0) ≤ l1(kβ + δ)n(ρ2(y, y0) + kρ1(x, x0)) + ρ1(ξn, x0),

ρ2(yn, y0) ≤ (1 + kl1)(kβ + δ)n(ρ2(y, y0) + kρ1(x, x0)) + kρ1(ξn, x0)

and
ρ1(ξ, x0) ≤ l1ρ2(y, y0) + (1 + kl1)ρ1(x, x0),

where
T n(x, y) = (fn(x, y), gn(x, y)) = (xn, yn)

is the n–th iterate of T and

l1 =
αβ√

(1− αδ)2 − 4α2βγ
.

Corollary 5.2 If βk+ δ ≤ 1 and x0 is a stable fixed point of ϕ, then (x0, y0) is
a stable fixed point of T . If βk + δ < 1 and x0 is an asymptotically stable fixed
point of ϕ, then (x0, y0) is an asymptotically stable fixed point of T .
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Example 5.3 Consider the mapping (2.1) and let there be F (0, 0) = 0,
G(0, 0) = 0. According to Theorem 5.1 we get the estimates

|xn| ≤ l1(kβ + δ)n(|y|+ k|x|) + |ξn|,

|yn| ≤ (1 + kl1)(kβ + δ)n(|y|+ k|x|) + k|ξn|,

where
ξn+1 = Aξn + F (ξn, u(ξn))

and
|ξ| ≤ l1|y|+ (1 + kl1)|x|.

5.2 Shadowing lemma

We shall prove that the mapping T has a shadowing property.

Definition 5.4 A sequence {xn, yn}n∈ZZ is an orbit of T if

(xn+1, yn+1) = T (xn, yn)

for all n ∈ ZZ.

Definition 5.5 A sequence {ζn, ηn}n∈ZZ is a ∆–pseudo–orbit of T if

max{ρ1(f(ζn, ηn), ζn+1), ρ2(g(ζn, ηn), ηn+1)} ≤ ∆

for all n ∈ ZZ.

Definition 5.6 A mapping T is said to have the shadowing property if for every
e > 0 there exists ∆ > 0 such that any ∆–pseudo–orbit {ζn, ηn}n∈ZZ is e–traced
by some genuine orbit {xn, yn}n∈ZZ, i.e.

max{ρ1(xn, ζn), ρ2(yn, ηn)} ≤ e

for all n ∈ ZZ.

Theorem 5.7 Let the hypotheses (H1)–(H4) hold and let there fulfil (1−α)(1−
δ) > αβγ. Then the mapping T has the shadowing property.

Remark. Theorem 5.7 remains valid in the case of a positive orbit and a positive
∆–pseudo–orbit.
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Example 5.8 Consider the mapping (2.1). Using Theorem 5.7 we obtain that
the mapping (2.1) has the shadowing property if

ε <
(‖A−1‖−1 − 1)(1− ‖B‖)
‖A−1‖−1 − ‖B‖

and

e =
max {(‖A−1‖−1 − 1), (1− ‖B‖)}

(‖A−1‖−1 − 1)(1− ‖B‖)− ε(‖A−1‖−1 − ‖B‖)
∆.

5.3 Equation of the gyrotron resonator

The equation which describes the electron motion in a gyrotron resonator has
its standard form

p′ + i(∆+ |p|2 − 1)p = iFf(t). (5.1)

Consider the nonperturbed equation (f(t) ≡ 0)

q′ + i(∆+ |q|2 − 1)q = 0. (5.2)

Definition 5.9 Two differential equations (5.1) and (5.2) are asymtotically
equivalent if there exists a map H: [t0,+∞)× C→ C such that:

(i) H(t, ·): C→ C is a homeomorphism;

(ii) H(t, p(t, t0, p0)) = q(t, t0, H(t0, p0)) for all t ∈ [t0,+∞);

(iii) limt→+∞ |p(t, t0, p0)− q(t, t0, H(t0, p0))| = 0.

Theorem 5.10 Suppose that integrals
∫+∞
t0

f(s) ds and
∫+∞
t0

(s− t0)f(s) ds con-
verge absolutely. Then differential equations (5.1) and (5.2) are asymptotically
equivalent.

Corollary 5.11 There exists the asymptotic expression

p(t, t0, p0) = H(t0, p0) exp
(
i(1−∆− |H(t0, p0)|2)(t− t0)

)
+ δ(t, t0, p0),

where
lim
t→+∞

δ(t, t0, p0) = 0.

5.4 Notes

The 5th chapter has been written after works [134, 137, 138, 33].
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nonlinear oscillations, Gordon and Breach, New York, 1962.
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[29]B. A. Coomes, H. Koçak and K. J. Palmer, A shadowing theorem for ordinary

differential equations, Z. Angew. Math. Phys. 46 (1995), no. 1, 85–106.
[30]E. Cotton, Sur les solutions asymptotiques des équations différentielles, Ann. Sci.
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