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                                                    ABSTRACT 
 

The main topic of the PhD thesis is the analysis of the factors that influence the structure 

and stability of magnetohydrodynamic (MHD) flows and shallow water flows. In particular, we 

shall concentrate on the effect of roughness of the boundary. Methods of analysis are based on 

analytic solutions which are found for some MHD flows over roughness elements in strong 

magnetic fields in rectangular ducts. The MHD solutions described in our work facilitate the 

investigation of the redistribution of the fluid in a region where the magnetic field is strong ( the 

Hartmann number is large). The analysis of the behavior of MHD flows at high Hartmann 

numbers is a topic of increasing interest since it is mainly applicable to MHD devices such as 

pumps, and MHD generators. The main features of MHD liquid-metal flows at large Hartmann 

number are as follows: A ‘ flat’ velocity profile in the core of a channel and thin boundary layers 

near the boundaries. Electric currents induced in the fluid modify the structure of the flow. 

Knowing the path of these currents it is possible to predict the flow structure. In our analytical 

solution of the MHD problems where wall roughness is taken into account, the length of the 

sidewalls of the channel is considered to be infinitely long and the Hartmann number ( Ha ) is 

taken to be sufficiently large and even sometimes the boundary limits approach  +∞ .  

Hydraulic engineers are effectively using Chezy formula to estimate the “lumped” effect 

of friction in turbulent flows for computations of flow rate and losses in channels or pipes as well 

as for design of open channels. Roughness of the boundary is taken care of by using empirical 

friction coefficients. These coefficients are related to the Reynolds number of the flow and 

roughness of the boundary by means of several empirical formulas. The coherent structures in 

wake flows (flows behind obstacles such as islands) are believed to appear as a final product of 

hydrodynamic instability of the flow. Methods of weakly nonlinear theory have been applied in 

the past to different flows and usually lead to amplitude evolution equations for the most 

unstable mode. One of such equations is the complex Ginzburg-Landau equation. Weakly 

nonlinear theory is applied to quasi-two-dimensional flows in [22] with Rayleigh friction 

(internal friction is assumed to be linearly related to the velocity distribution). It is shown in [22] 

that the coefficients of the Ginzburg-Landau equation for the case where the internal friction is 

represented by a linear function of the velocity strongly depend on the shape of the base flow 

profile. As a result it was concluded in [22] that weakly nonlinear models cannot be used for 

such cases since it is impossible to determine experimentally the base flow velocity distribution 

with high accuracy and, therefore, one cannot use reliable values of the coefficients of the 

Ginzburg-Landau equation in the analysis.  However, in Chapter 5 of our work we show that 

small variations of linear stability characteristics do not lead to large changes in the Landau 
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constant (the Landau constant is the real part of one of the coefficients of the Ginzburg-Landau 

equation) when a nonlinear Chezy formula is used to model bottom friction.   

 
 This work consists of five chapters. All of the chapters are theoretical while Chapter 4 is 

practical dealing with corrosion of EUROFER steel in the Pb17Li flow and its application to D-T 

( Deutrium-tritium ) plasma confinement in a reactor.  

Literature review is presented in the Chapter 1. In addition, the structure of the thesis and 

the main results are presented.  

In Chapter 2 we state the principles of MHD flows and the governing equations that 

describe the influence of surface roughness on the MHD flow of a conducting liquid metal. Since 

MHD flow problems are widely studied in channels of various forms under different boundary 

conditions, the results of such studies have direct applications in different fields of  

magnetohydrodynamics [29], [38], and [58]. Since magnetohydrodynamics studies the motion of 

electrically conducting fluids in the presence of magnetic fields, it is obvious that the magnetic 

field influences the fluid motion. Usually in MHD problems electromagnetic force is added to 

the equation of motion and the magnetic field (through Ohm’s law) changes the fluid motion. 

We analyze some MHD flow problems in ducts over roughness elements in a strong magnetic 

field. Analytical solutions of such problems are obtained using the Dirac delta function (see [2], 

[5], [6], [7], [12] and [13]).  

Asymptotic analysis of these problems is performed for the case of strong magnetic fields 

and graphs of the z-components of the current are shown for different Hartmann numbers. 

Different boundary layers for the fluid velocity and for the z-components of the currents at large 

Hartmann numbers are analyzed. The MHD problem for fully developed flow is solved for the 

cases of a uniform and non-uniform external magnetic field where the surface roughness is taken 

into account. The distribution of fluid velocity, induced current and its potential and induced 

magnetic field are derived (see the following references for the analysis of similar problems [2], 

[5], [11]-[13], [17], [18], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69], and [71]). 

  In addition, we examine in Chapter 2 the profiles of induced magnetic fields in order to 

get a clearer idea about the behavior of such flows of an electrically conducting fluid through 

channels (or ducts). In fact, this problem is directly applicable to other MHD problems such as  

MHD generators, pumps, accelerators, and flow meters (in a flow meter, a conducting fluid 

passes through an insulating pipe (duct) across which a uniform magnetic field is applied). A 

potential gradient is created and it can be measured by probes embedded in the walls of the pipe 

(this technique is used to measure the flow of blood in human bodies). In addition, the influence 

of the surface roughness on the MHD flow of a conducting liquid metal may be useful for the 
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techniques used to set up the cooling system of the Tokamak reactor ( Tokamak is an acronym 

from the Russian words for toroidal magnetic confinement) . 

   

Chapter 3 of our work is devoted to the calculation of some classes of improper 

oscillatory integrals. It is shown that oscillatory integrals in some cases can be transformed to 

integrals of non-oscillating functions. Such integrals have direct applications to MHD flows 

analyzed in the thesis. These results are applied in order to transform the solution of some MHD 

problems arising in half space 0≥z  with roughness of the surface z=0 (see  [3], [4], [6], [7], 

[17], [21] ). 

  

During my seven year stay in Riga, Latvia (one the main MHD application centers in 

Europe), I had the opportunity to visit some interesting sites related to MHD study such as the 

Physics Institute in Salaspils where I have seen the three recently planned experimental sessions 

(each 2000 hours long) which have been successfully completed. Results gained in these 

investigations demonstrated essential influence of magnetic field on the corrosion processes both 

in the intensity of corrosion and its character. New results concerning the profile of corrosion are 

obtained in [55] and [56]. Such studies have an important implication on how to confine and 

control the burning D-T plasmas by a strong drag of magnetic fields inside a reactor [1], [9], 

[55], [56], [70] and  [73]. In addition, I had the opportunity to participate in some PAMIR MHD 

International Conferences (4th , 5th and 7th PAMIR International Conferences) . As a result of 

these activities Chapter 4 of the thesis describing practical aspects related to the effect of surface 

roughness on MHD flows ([1], [9], [32]-[37], [39], [40], [48], [49], [55]-[57], [60], [64], [68], 

[70] and  [73]) was written. 

 

Chapter 5 is devoted to the analysis of shallow water flow in a weakly nonlinear regime 

using the complex Ginzburg-Landau equation (CGLE). It is shown in the previous studies [22] 

related to weakly nonlinear analysis of quasi-two-dimensional flows (shallow water flow is one 

of the examples considered in [22]) that the values of the Landau’s constant differ by a factor of 

3 for two different velocity profiles with linear stability characteristics differing by not more that 

20%. In other words, the Landau’s constant was found to be quite sensitive to the shape of the 

base flow profile. In Chapter 5 of the thesis the bottom friction is modeled by a nonlinear Chezy 

formula [66]. The analysis of data presented in Table 3 and Table 4 shows that for a one-

parametric family of shallow wake flows the changes in the linear stability characteristics 

resulted in even smaller changes in the coefficients of the CGLE. As a result, it is plausible to 

conclude that the complex Ginzburg-Landau equation can be used for the analysis of shallow 
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wake flows in a weakly nonlinear regime (see [8], [10], [14]-[16], [19], [20], [22], [24], [26], 

[43]-[47], and  [67]) as one of the application of weakly nonlinear models to different flows in 

fluid mechanics. 
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                                      ANOTĀCIJA 

 
Promocijas darba galvenais uzdevums ir analizēt faktorus, kuri ietekmē magnētohidrodinamisku 

(MHD) un seklu ūdens plūsmu struktūru un stabilitāti. Īpaša uzmanība ir veltīta negluduma 

efektiem uz apgabala robežām. Dažām MHD problēmām ar negluduma elementiem stipros 

magnētiskos laukos taisnstūrveida kanālos ir konstruēti analītiskie atrisinājumi. Iegūto problēmu 

atrisinājumi palīdz labāk saprast šķidruma plūsmas sadalījumu apgabalos, kuros magnētisks 

lauks ir stiprs (Hartmaņa skaitlis ir liels). MHD plūsmu analīze gadījumos, kad Hartmaņa skaitlis 

ir liels, izraisa lielu interesi sakarā ar pielietojumiem MHD sūkņu un MHD ģenerātoru dizainā un 

ekspluatēšanā.  

Šķidra metāla MHD plūsmas struktūru lielo Hartmaņa skaitļa gadījumā var raksturot šādi: 

vienmērīgs  šķidruma ātruma sadalījums kanāla kodolā un plāni robežslāņi pie apgabala 

robežām. 

Elektriskās strāvas, kas ir inducētas šķidrumā, maina plūsmas struktūru. Ja šo strāvu sadalījums 

ir zināms, tad plūsmas struktūru var aprakstīt. Analītiskie atrisinājumi MHD problēmām, kurām 

kanāla sienas negludums ir ņemts vērā, ir konstruēti gadījumā, kad kanāla sānu sienu garums ir 

bezgalīgi liels.  

Hidraulikā inženieri efektīvi izmanto Čezī formulu, lai raksturotu “integrētu” berzes efektu 

turbulentās plūsmās ar mērķi aprēķināt šķidruma plūsmu caur kanāla šķērsgriezumu vai novērtēt 

zudumus kanālos un caurulēs, kā arī atklāto kanālu dizainā. Sienas negludums ir ņemts vērā, 

izmantojot empīriskus berzes koeficientus. Šos koeficientus ar plūsmas Reinoldsa skaitli un 

sienas negludumu saista dažādas empīriskas formulas.  

Kogerentas struktūras plūsmās aiz šķēršļiem (piemēram, aiz salām) rodas kā plūsmas 

hidrodinamiskās stabilitātes gala products. 

Vāji nelineārās stabilitātes teorijas metodes tika pielietotas dažādām plūsmām un parasti noveda 

pie amplitūdas evolucionāriem vienādojumiem, kuri apraksta visnestabilākās perturbācijas 

attistību. Viens no šiem vienādojumiem ir kompleksais Ginzburga-Landau vienādojums. Vāji 

nelineārā teorija ir pielietota rakstā [22] kvazi-divu dimensiju plūsmām ar Releja berzes modeli 

(ir pieņemts, ka iekšējā berze ir lineāri atkarīga no šķidruma ātruma sadalījuma). Rakstā [22] ir 

parādīts, ka Ginzburga-Landau vienādojuma koeficienti gadījumā, kad iekšējā berze ir lineāri 

saistīta ar šķidruma ātruma sadalījumu, ir ievērojami atkarīgi no bāzes plūsmas šķidruma ātruma 

sadalījuma. Rezultātā rakstā [22] autori secina, ka vāji nelineārus modeļus nedrīkst lietot šajā 

gadījumā, tāpēc ka nav iespējams eksperimentāli noteikt bāzes plūsmas ātrumu sadalījumu ar 
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augstu precizitāti. Tas nozīme, ka nav iespējams izmantot ticamas Ginzburga-Landau koeficientu 

vērtības analīzē. 

Promocijas darbā 5. nodaļā ir parādīts, ka mazas izmaiņas lineārās stabilitātes raksturotāju 

vērtībās nenoved pie lielām izmaiņām (Landau konstante ir viena no Ginzburga-Landau 

vienādojuma koeficientiem reālā daļa), ja nelineārā Čezī formula ir izmantota, lai modelētu 

berzi.  

Darbs sastāv no piecām nodaļām. Visas nodaļas (izņemot ceturto) ir teorētiskās. 4. nodaļai ir 

praktisks raksturs, kurā aplūkota korozija EUROFER teraudā Pb17Li plūsmā ar pielietojumiem, 

kas ir saistīti ar plazmas uzturēšanu reaktorā. 1. nodaļa ir ievada daļa, kurā ir aplūkots literatūras 

apraksts, kā arī analizēta promocijas darba struktūra un galvenie rezultāti.  

2. nodaļā ir formulēti MHD plūsmu pamatprincipi un atbilstošie veinādojumi. Ir analizēta 

virsmas negluduma ietekme uz vadoša šķidra metāla MHD plūsmu.  

Problēmas par MHD plūsmām ir bieži analizētas dažādu viedu kanālos ar dažādiem 

robežnosacījumiem, tāpēc šo pētījumu rezultātus var izmantot magnētiskās hidrodinamikas 

pielietojumos [29], [38], [58]. Tā kā magnētiskā hidrodinamika pēta elektrību vadošā šķidruma 

plūsmu magnētiskā laukā, ir acīmredzams, ka magnētisks lauks ietekmē šķidruma kustības 

struktūru. MHD problēmās kustības vienādojumam ir pievienots elektromagnētisko spēku 

raksturojošs loceklis un magnētisks lauks (caur Oma likumu) maina šķidruma kustību. 

Promocijas darbā analizētas dažas MHD plūsmu problēmas kanālos ar negluduma elementiem 

stiprā magnētiskā laukā. Šādu problēmu analītiskie atrisinājumi ir konstruēti, izmantojot Diraka 

delta-funkciju (sk. [2], [5], [6], [7], [12] un [13]). Darbā analizēti šo problēmu asimptotiskie 

atrisinājumi stiprā magnētiskā laukā un konstruēti strāvas z-komponentes grafiki dažādiem 

Hartmaņa skaitļiem. Ir analizēti daži robežslāņi šķidruma ātruma sadalījumam un strāvas z-

komponentes sadalījumam gadījumā, kad Hartmaņa skaitlis ir liels. MHD problēma pilnīgi 

attistītai plūsmai ir atrisināta homogēna un nehomogēna magnētisko lauku gadījumā, ņemot vērā 

sienas negludumu. Ir aprēķināts šķidruma ātruma sadalījums, inducētas strāvas sadalījums kopā 

ar potenciālu un inducēts magnētisks lauks (lidzīgas problēmas ir analizētas rakstos [2], [5], [11]-

[13], [17], [18], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69] un [71]).  

1. nodaļā analizēti arī inducēta magnētiska lauka profile, kas ļauj labāk saprast elektriski vadošas 

plūsmas struktūru kanālos (vai caurulēs). Šīs problēmas analīze var palīdzēt citu MHD problēmu 

analīzei, piemēram, MHD plūsmas ģenerātoros, sūkņos, paātrinātājos vai plūsmas skaitītājos 

(plūsmas skaitītājā vadošs šķidrums tek caur izolētu cauruli (vai kanālu) homogēnā magnētiskā 

laukā).  Tas izraisa potenciāla gradientu, kuru var novērtēt ar caurules sienā iebūvētu skaitītāja 

palīdzību (šo metodi izmanto arī, lai analizētu asins plūsmu cilvēka ķermenī).  
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Virsmu negluduma ietekme uz MHD šķidra metāla plūsmu ir svarīga pielietojumos (piemēram, 

atvēsināšanas sistēmas dizains reaktorā Tokamak).  

Promocijas darbā 3. nodaļa ir veltīta vienas klases ascilējošo integrāļu aprēķināšanai. Ir parādīts, 

ka dažos gadījumos oscilējošo integrāli var pārveidot par integrāli, kuram zemintegrāļa funkcija 

nav oscilējoša. Šāda veida integrāļus var izmantot pielietojumos (viens no tiem ir aplūkots 

promocijas darbā un atticas uz MHD plūsmām). Iegūtos rezultātus var pielietot, lai transformētu 

dažu MHD problēmu risinājumu pusplaknē 0≥z ar negludumu uz robežas 0=z (sk. [3], [4], 

[6], [7], [17], [21]).  

Septiņu gadu laikā, kad es studēju Rīgā (vienā no galvenajiem MHD pētījumu centriem Eiropā), 

man bija iespēja apmeklēt dažas vietas, kas ir saistītas ar MHD pētījumiem (piemēram, Fizikas 

Institūts Salaspilī), kur es redzēju trīs eksperimentus (katrs ir 2000 stundu garš), kuri ir jau 

veiksmīgi pabeigti. Šo eksperimentu rezultāti rāda, ka magnētisks lauks ietekmē gan korozijas 

intensitāti, gan arī korozijas raksturu. Jaunie rezultāti, kas ir saistīti ar korozijas paraugiem, ir 

iegūti rakstos [55] un [56]. Šāda veida pētījumi ir svarīgi pielietojumos (piemēram, kā kontrolēt 

D-T plazmas degšanas procesu reaktorā (sk. [1], [9], [55], [56], [70], [73])). Es arī piedalījos 

PAMIR MHD starptautiskajās konferencēs (4., 5. un 7. PAMIR konferencēs). Šo aktivitāšu 

rezultātā ir uzrakstīta darba 4. nodaļa, kas raksturo praktiskus aspektus, saistītus ar sienu 

negluduma efektu uz MHD plūsmām (sk. [1], [9], [32]-[37], [39], [40], [48], [49], [55]-[57], 

[60], [64], [68], [70] un [73]).  

5. nodaļā ir analizēta sekla ūdens plūsma vāji nelineārā režimā, izmantojot kompleksā 

Ginzburga-Landau vienādojumu (KGLV). Rakstā [22] ir parādīts, ka izmantojot vāji nelineāro 

analīzi kvazi-divu dimensiju plūsmām (sekla ūdens plūsma ir viens no piemēriem, kas ir 

aplūkots rakstā [22]), Landau konstantes vērtība diviem šķidruma sadalījuma profiliem atšķiras 

par rezinātāju 3, ja divu profiļu lineārās stabilitātes raksturotāji atšķiras ne vairāk kā par 20%. 

Citiem vārdiem sakot, Landau konstante ir diezgan jūtīga attiecībā pret bāzes plūsmas šķidruma 

sadalījuma ātruma izmaiņām.  

Promocijas darba 5. nodaļā berzes spēks ir modelēts ar nelineāro Čezī formulu [66]. Datu analīze 

tabulās 3 un 4 rāda, ka viena parametra sekla ūdens plūsmas saimei lineārās stabilitātes 

raksturotāju izmaiņas izraisa vēl mazākas izmaiņas KGLV koeficientos. 

Rezultātā var secināt, ka KGLV var izmantot sekla ūdens plūsmas analīzei aiz šķēršļiem vāji 

nelineārā režīmā (sk. [8], [10], [14]-[16], [19], [20], [22], [24], [26], [43]-[47] un [67]) kā vienu 

no vāji nelineāru modeļu pielietojumiem šķidruma mehānikā. 
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                                     Chapter 1 

                                Introduction 
Magnetohydrodynamics is a part of fluid mechanics which analyzes the dynamics of 

electrically conducting fluids and their interactions with magnetic fields. Examples of such fluids 

include plasmas and liquid metals. 

The main set of equations which describes magnetohydrodynamics (MHD) is a 

combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of 

electromagnetism (see [28], [50], [53], [54]). The corresponding differential equations have to be 

solved simultaneously. In fact, this is too complex to be done symbolically at all, except for the 

most trivial cases. For real world problems, numerical solutions are found using super 

computers. Since MHD is a fluid theory, it cannot treat kinetic phenomena (see [50], [53]). The 

interaction of a flow of an electrically conducting fluid with external magnetic field results in 

changes in the flow characteristics. These changes depend on the structure of the flow, the 

presence of conducting or non-conducting walls, the orientation of the magnetic field with 

respect to the flow and some other factors. For example, the presence of a magnetic field leads to 

larger pressure losses since in this case the pressure drop depends mainly on the Hartmann 

number (see [28], [53], [54]). 

 Some studies of MHD problems in liquid metal flows have concentrated on the determination of 

the pressure drop in the flows in straight pipes perpendicular to the magnetic field (see [50], 

[59]). One of the main problems in MHD that is important in applications is the estimation of 

pressure losses in pipe bends. Some local variations in pipe bend and special conditions of fluids 

are used to reduce such pressure losses (see [50], [53], and [59]). 

It is known that the velocity distribution in a liquid metal blanket exerts a decisive 

influence on heat and mass transport. Therefore, since knowledge of this distribution is required, 

studies in the corrosion and tritium transport field have been conducted (see [1], [55] and [56]). 

We mention here the latest study of MHD problems in liquid metal blankets of fusion reactor 

done by I. Micheal [52] and the very recent one done by the European Fusion Development 

Agreement ( EFDA) concerning the European fusion research programme that outlooks the 

infra-structures needed towards DEMO  [37]. 

Other experiments were conducted to investigate the single phase convective heat 

transfer in a compact heat sink consisting of 26 rectangular microchannels of 300 µ m width and 

800 µ m depth. The relative roughness is estimated to be 4-6 %. Dionized water was used as the 

working fluid. Tests were performed with the Reynolds number range of 162 and 1257. The inlet 

liquid temperature of 30, 50, and 70ºC and the heating powers of 140 to 450 w were investigated 
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(see [57] and [65]). The platform area was 53,10.5 × cm2. It is found that the friction factors 

significantly depart from those of conventional theories, possibly attributable to the surface 

roughness. The temperature is actually dependent on the fluid physical properties which also 

influences the heat transfer characteristics to some extent. Correlations were provided for the 

friction factors. Such pressure losses have also been analyzed in pipe bends and in magnetic field 

subject to local variations. For instance, in both of the papers [57] and [65] channel flows with 

transverse magnetic field were considered. As can be seen from the cited references, it is 

important to know the influence of surface roughness on the structure of MHD flows. 

 The main results obtained in this thesis are briefly summarized below. The principles of 

MHD flows are described in Chapter 2. The governing equations are presented for the case of a 

conducting fluid moving in a magnetic field perpendicular to the flow of the form:  

  
z

e BB e0=

 z
e eBB rr

0=                                                                                                  (1.1) 

with the boundary 0~ =z  along with the governing equations of magnetohydrodynamics (MHD). 

These equations represent a combination of   the Navier-Stokes equations of fluid dynamics and 

the Maxwell’s equations of electrodynamics: 

( )Bjp
t

rrrrr
r

×+∆+∇−=∇+
∂
∂

ρ
νν

ρ
ννν 11)(        (1.2) 

( ) BBcurl
t
B

m

rrr
r

∆+×=
∂
∂ νν          (1.3) 

0=ν
rdiv            (1.4) 

0=Bdiv
r

           (1.5) 

Previous works concerning linear approximation to the flow over roughness elements in a strong 

magnetic field [28], [50] are generalized in [2] for the case of the roughness of the surface 

considered in the form  

)2/~cos(~~
0 Lxz πχ=                                (1.6) 

where the conducting fluid is located in the half space +∞<<−∞> yxz ~,~,0~  and  the external 

magnetic field is of the form z
c eBB 0=  and the boundary 0~ =z  is non conducting. We assume a 

steady current flow with the density xejj rr
0

~
=  in the direction of the x -axis. In this case, if the 

surface 0z~ =  is ideally smooth then the flow is absent because electromagnetic force BjF
rrr

×= ~  

is constant and 0=Frot
r

. Suppose that roughness on the surface 0z~ =  has the rectangular form: 

 [ ]
⎩
⎨
⎧

>

<<−
=−−+==

,~,0
,~,~

)~()~(~)~(~ ~~ 0
00 Lx

LxL
LxLxxfz

χ
ηηχχ   ( 1.7 ) 
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In the beginning of Chapter 1 of our work we describe the result obtained in monograph [75] 

where  MHD flow of an incompressible fluid in an infinitely long plane channel with the 

constant cross section with the walls parallel to the y-axis is considered. The problem discussed 

in [75] is generalized in our work for the case of surface roughness of the form: 

⎩
⎨
⎧

−∉
+∞<<−∞≤≤−

=
).,(~,0

,~,~),~(
~

~
LLx

yLxLxfz          (1.8) 

It is shown in Chapter 2 that dimensionless MHD equations for the fluid velocity ),( zyVy , and 

the potential for the induced current ),( zyΦ have the form: 

,02 =
∂
Φ∂

+−∆
x

HaVHaV yy         (1.9) 

,
x

V
Ha y

∂

∂
=∆Φ        (1.10) 

where Ha  denotes the Hartmann number.  

A fully developed MHD flow is considered in the direction of the y -axis while the external 

magnetic field and the given external current have only x  and z  components which do not 

depend on the y  variable. In fact, it is proved in Chapter 2 that if the external magnetic field has 

the form (1.1) and the flow is fully developed with the velocity  

 yyy ezyVV
rr

)~,~(
~

=       (1.11) 

then the induced magnetic field is of the form  

                                      y
ii ezxBB

rr
)~,~(

~~
=                                                                              (1.12) 

Roughness in the form of an infinitely long prism is considered in the thesis. An analytical 

solution of  the problem about MHD  flow of  a  conducting fluid in the half space ( z > 0 ) with 

a special form of roughness on the boundary 0=z  is  obtained (see [2], [12], [13]). Besides, the 

results of numerical calculations and streamlines of induced current are presented. We 

investigate the asymptotic of the functions ( )zxVy ,  , ),( zxjx  ),( zxjz in more detail. As a result, 

several boundary layers for the functions ),( zxVy  and ),( zxjz  as ∞→Ha  are obtained. The 

results obtained by exact formula and asymptotic formula for the distribution of the component 

),( zxjz are compared for different Hartmann numbers. For Hartmann numbers 10≥Ha  the 

results obtained by exact formula and asymptotic formula  practically coincide. The calculations 

are done with “Mathematica”. 

The streamlines of the current ( )zxj ,  are calculated by the formula:  
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( )
( )zxj

zxj
dx
dz

x

z

,
,

=
                                                                                            ( 1.13 ) 

Calculations are done for the Hartmann numbers 5=Ha  and 10=Ha  and for various values of 

initial conditions ( )0z . 

The solutions of  certain  problems  in  MHD  flow of  a conducting  fluid in  the  half space ( 

0>z  ) are expressed  in terms of improper integrals of the product of some meromorphic 

function and the function exp( xba λλλ coscos22 +− ) where 0>a , 0>b  and 0>x . It is difficult 

to calculate these integrals numerically since the integrands are strongly oscillating at the large 

x . Methods of calculation of such integrals are discussed in Chapter 3 of our work. 

 

We consider the improper integral having the form: 

∫
∞

+−

−0
2

2
2

2

4

coscos
)(
)( 22

λ
λλ

λλ
λ
λ λ dxe

Q
P ba

m

n                                          ( 1.14 ) 

It is assumed that all the zeros of the polynomial )( 2λQ  are simple and have the form: 
22

kk a−=λ , nk ,...,3,2,1 L= .        ( 1.15 ) 
The following theorem (see [4]) is used to calculate the integral.  
Theorem. 

If )(λcF and )(λcΦ are the Fourier cosine transforms of functions )(xf and )(xϕ , respectively, 

then 

[ ] ξξξξϕλλλλ dxfxfxdF cc ∫∫
∞∞

++−=Φ
00

)()()(
2
1cos)()( .                              (1.16) 

The functions )(λcΦ and )(λcF are defined by the formulas 

                    )(

4

cos
)(
)(

2
2

2

2

λ
πλ

λ
λ
λ

c
m

n

Q
P

Φ=
−

,   )(
22

λλ
c

ba Fe =+− .                                                 (1.17) 

 
The inverse Fourier cosine transforms of the functions  )(λcΦ and )(λcF are given by 

)(

4

coscos
)(
)(2

0
2

2
2

2

1 xdx
Q
P

I
m

n ϕ
πλ

λλλ
λ
λ

π
=

−
= ∫

∞

, 

)(
)(2cos2

22

22
1

0
2

22

xf
xa

xabK
dxeI ba =

+

+
== ∫

∞
+−

π
λλ

π
λ  .                                                       (1.18) 

Each of the integrals in (1.18) is evaluated separately and then formula (1.16) is used to 
transform the integral of oscillatory function to the integral of a monotonic function.                                    
 
Hence, it is shown in Chapter 3 of the thesis that integrals (1.14) are transformed into integrals of 

monotone functions using the convolution theorem for product of two Fourier cosine transforms 
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and the formulas (1.17) and (1.18). Such a transformation is quite useful in solving some MHD 

problems (see [6], [7], [13] and [17]).  

 Linear approximation to the flow over roughness elements in a strong magnetic field is a 

subject of increasing interest nowadays especially due to the fact that this study is directly linked 

to other MHD phenomena such as the MHD studies on the EUROFER corrosion of Pb17-Li at 

550 ° C. Three experimental sessions had been recently completed in the Physics Institute in 

Salaspils. The surface of the corroded metal on the wall is described by a simplest periodic 

structure of the form 

cos()( 0χ== yZZ π y  ⁄ L )                       (1.19)  

where 0χ and L  represent the scales of the considered roughness ([2],  [13],  [55] and [56]).   

Results gained in these investigations demonstrated essential influence of magnetic field on the 

corrosion processes both in the intensity of corrosion and its character. New results concerning 

the profile of corrosion are obtained [55], [56]. Note that the results of this study can be used to 

decide how to control the Deuterium-Tritium (D-T) burning plasmas by a strong magnetic field 

drag inside of a reactor [1], [55], [56], [70] and  [73]. Recent results are reported in Chapter 4 of 

this work.  

The  Deuterium-Tritium (D-T) cycle is described by the relationship 

 MeVnTD 58.17++→+ α                                                                          ( 1.20 ) 

The components of this equation are briefly explained in the following papers ( [1], [9],  [28] 

,[32]-[37], [40], [49], [56], [64], [70] and  [73]). 

Many works and experiments were done with the purpose of reducing pressure losses in MHD 

duct flows. Two concepts are considered ideally practical for diminishing the pressure losses. 

The first is determined by an advantageous channel routing and the other relies on the reduction 

of the electrical conductivity of the channel. Because of the fact that an advantageous channel 

routing is depending mainly on the corrosion rate of the channel’s wall, for this reason in 

Chapter 4 of our work we consider the investigation of corrosion phenomena in EUROFER steel 

in Pb17-Li stationary flow exposed to a magnetic field as for being one of the candidate 

materials used for fusion reactors (see [1], [9], [28], [32]-[37] , [40] , [49] , [51], [55], [56] , [62], 

[70] and  [73]).  

Chapter 5 is devoted to the analysis of shallow water flow in a weakly nonlinear regime 

using the Ginzburg-Landau equation (CGLE). One of the major reasons that led to the study of 

this part is the analysis performed in [22] for different quasi-two-dimensional flows (one of the 

examples of such flows is shallow water flow). Calculations presented in [22] showed that the 

values of the Landau’s constants differ by a factor of 3 for two different velocity profiles with 

very similar linear stability characteristics. The analysis in [22] is performed under the 
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assumption that the internal friction is a linear function of the velocity. In particular,  for quasi-

two-dimensional flows the internal friction was modelled in [22] by means of the Rayleigh’s 

formula  

uf RR
rr

λ−=                                                                                                                        (1.21)  

In our work we show that for the case where the friction force is a nonlinear function of 

the velocity the changes in the linear stability characteristics resulted in even smaller changes in 

the coefficients of the CGLE. As a result, it is plausible to conclude that the complex Ginzburg-

Landau equation can be used for the analysis of shallow wake flows in a weakly nonlinear 

regime ( [8], [10], [14], [15], [16], [19], [20], [26], [43]-[47], [67]). 

It is assumed here that the CGLE can be used to describe spatio-temporal dynamics of shallow 

wake flows. We consider the base flow of the form 

)0),(( yUU =
r

                                                                                                                      (1.22) 

where  

2

2 1( ) 1
1 cosh ( )

RU y
R yα

= −
−

.                                                                                                  (1.23) 

The profile of the base flow which is described in [19] after careful analysis of available 

experimental data for deep water flows behind circular cylinders is adopted in the present study.. 

The parameter R is the velocity ratio: )/()( amam UUUUR +−= , where mU is the wake 

centerline velocity and aU is the ambient velocity, and )1(sinh 1−=α . It is shown in [19] that 

under the rigid-lid assumption the linear stability of wake flows in shallow water is described by 

the following eigenvalue problem: 

2 2
1 1 1''( ) ' 0

2y yy
SU c SU SU k U k U kUϕ ϕ ϕ⎛ ⎞− + + + − − − =⎜ ⎟

⎝ ⎠
                              (1.24) 

,0)(1 =±∞ϕ                                                                                               (1.25) 

where the perturbed stream function of the flow, ( , , )x y tψ , is assumed to be of the form 

1( , , ) ( ) exp[ ( )] . .x y t y ik x ct c cψ ϕ= − +                                                                                     (1.26) 

We use the collocation method based on Chebyshev polynomials to solve (1.24) – (1.25) 

numerically. 

The collocation points jr  are 

cosj
jr

N
π

= , .,...,1,0 Nj =                                                 (1.27)                 

Applying the collocation method we obtain the following equation: 

( ) 0B C aλ− =                                                                                                (1.28)                 
where B  and C  are complex-valued matrices and  
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1 2( ... ) .T
Na a a a=  

The generalized eigenvalue problem (1.28) is solved numerically by means of the IMSL routine 

DGVCCG. The critical values of the stability parameters ,k S and c for different values of R  are 

given in Table 3 (here SS
kc max= ). Next, we perform weakly nonlinear analysis in the 

neighborhood of the critical point. As a result, calculations presented in our paper demonstrate 

that the coefficients of the CGLE are not so sensitive to the variation of the parameter R of the 

base flow and not only the Landau constant is not so sensitive to the changes in the profile but all 

the coefficients of the CGLE do not vary too much. The results that support such conclusions are 

shown in Tables 3 and 4. Our results contradict the conclusions in [22] that it would be 

impossible to apply methods of weakly nonlinear theory in practice since the base flow profile 

cannot be determined very precisely in experiments, and the coefficients of the CGLE are found 

to be quite sensitive to the variation of the base flow profile. 
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                                      Chapter 2 

 FLOW OVER ROUGHNESS ELEMENTS IN A STRONG MAGNETIC FIELD 

   2.1 PRINCIPLES OF MHD FLOWS 

The main MHD equations can be derived from the Navier-Stokes equations of fluid 

dynamics and the Maxwell equations. These MHD equations describe the complex couplings 

between the flow variables, i.e. the density, the velocity, the total energy, the pressure tensor, the 

gravitational force, and the magnetic field. As a matter of fact, MHD ( magnetohydrodynamics) 

has a vast range of practical applications such as control over motion of liquid metal in ducts and 

creation of new MHD pumps which do not contain movable elements. In addition to that, MHD 

has also important applications in astrophysics for the explanation of the nature of the earth’s 

magnetic field [21]. 

 

 The main principles that govern MHD flows are: 

 1. Electric eddy currents flow in a plane perpendicular to the main direction of the flow.  

     They cause the thickness of the wall boundary layer to decrease and wall friction to  

     increase, i.e. the Hartmann effects. 

 2. If the channel wall is electrically conducting, the eddy currents are back-circuited via this  

     wall. This gives rise to the electromagnetic volume forces contracting the fluid motion.  

     Note that electrically insulating walls are considered in our work. 

  3. When the channel flow enters and leaves the homogeneous magnetic field zone, i.e., the 

      field boundary zones, eddy currents are generated which likewise cause pressure losses 

      counteracting the flow. 

  4. Another effect occurring both in the fluid flowing transversally and in the fluid flowing 

      parallel to the magnetic field causes turbulence suppression. This laminarization leads to  

      a  big increase in the critical Reynolds number. Here we add some comments on  how to  

      reduce the MHD pressure losses.  

The first concept is guaranteed when the coolant flow is transformed from the poloidal flow 

direction characterized by slow velocity to a toroidal flow in narrower channels surmounting the 

original channels and characterized by a higher velocity . The flow in the poloidal direction is 

almost perpendicular to the direction of the magnetic flux density of the plasma holding field and 

is associated with MHD pressure losses. The higher flow velocity guarantees a good heat 

transfer. The abrupt change of flow direction (poloidal-toroidal-poloidal) in the magnetic field 

has two characteristics. Firstly, this elbow constitutes the point of the maximum loading of the 

first wall. Secondly, the sharp deflection in the elbow might cause de-attachement of flow 
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accompanied by the formation of hot spots. To counteract this process, guide plates of baffles 

could be installed in the deflection zone (see [29], [57] and [65]). 

The second concept is based on insulation between liquid and wall. Both the required pumping 

power and the mechanical stresses in the channel wall might become inadmissibly high. 

Reduction in stress by increasing the wall thickness is not possible because in non-insulated 

walls the pressure loss in a first approximation increases linearly with the wall thickness. A way 

out of this problem could consist in providing an electric insulation between the liquid metal and 

the supporting wall. Two methods are eligible. The most obvious idea would be to coat the inner 

side of the channel wall with an insulating material. However, no suitable material and coating 

technique have been found till this day to achieve an adequate service life if wall is in contact 

with the liquid metal. Therefore, the second method is more promising under which the wall is 

given a sandwich structure. The liquid metal is in contact with a thin (about 1 mm thick) wall 

supported via an electric insulator by the load carrying channel wall. This technique is applied 

above all for the supply and return manifolds of the blanket because the radiation exposure of the 

insulator is negligibly small in these manifolds. Two mathematical models for MHD-flows in a 

fusion reactor blanket have been considered. The first one describes fully-developed flows and 

the second governs non-uniform and non-steady-state flows. This model is derived from 3-D 

Navier-Stokes-Maxwell equations by their integration along the direction of the applied 

magnetic field (see [1], [29],  [55], [56], [57] and [65]) . 

 

2.2 THE FORM OF MAGNETIC FIELD AND MHD EQUATIONS FOR FULLY DEVELOPED      

MHD FLOW CAUSED BY ROUGHNESS OF THE BOUNDARY 

The MHD flow of an incompressible fluid in an infinitely long channel with the constant 

cross section when the wall is taken parallel to the y~ axis is considered in [5]. It is proved that 

the velocity of a fully developed flow in such channel is: 

yy ezxVV
rr

),(= ,     (2.1) 

and the magnetic field  
→

B   is of the form     

B
r

 = yy ezyxBzxB
rr

),,(),( +⊥ ,    (2.2) 

where                                                                                 

),( zxB⊥

r
= ),( zxBx xe

r
zz ezxB
r

),(+      (2.3) 
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Substituting (2.2) into the equation div 0=
→

B , we obtain 

θ=
∂

∂

y
By  , i.e. == ),( zxBB yy ),(),( zxyzxb θ+     (2.4) 

at the condition that  

),( zxBdiv θ−=⊥

→

.                          (2.5) 

Further analysis shows that 

,),( constCzx ==θ   0=C  or  0≠C    (2.6) 

and that yy ezxB
→

),(   is the induced magnetic field, ),( zxB⊥

→

 is the given external magnetic field.   

We consider a similar problem about the MHD flow in half-space 0~ ≥z  caused by  roughness of 

the boundary 0~ =z  . In contrast to what is done in monograph [75] it is assumed here at the first 

that the induced magnetic field 
→

iB has the x , y  and z  components. After that the symmetry of 

the flow is used and it is proved that the induced magnetic field has a single y -component, i.e. 

has the form (2.4) with .0=θ  We consider uniform external magnetic field in subsection 2.2.1 

and non uniform magnetic field in subsection 2.2.2. 

2.2.1 THE PROBLEM IN THE CASE OF A UNIFORM EXTERNAL MAGNETIC FIELD 

The geometry of the flow is given in Fig. 1. 

 

L

j
r

{ }0,0,0 BBe =
r

x

y

z

-L

[ ])~()~(~)~(~ ~~
00 LxLxxfz −−+== ηηχχ

yy ezxVzxV rr
),(),( =

 
 

Figure 1. The geometry of the flow. 
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The conducting fluid is located in the half-space 0~ >z  , +∞<<∞− yx ~,~ . The external magnetic 

field is of the form  : 

z
e eBB rr

0=  .      (2.7) 

A steady current flows with the density 
→→

= xejj 00  in the direction of the x -axis. If the surface  

0~ =z   is ideally smooth, then the flow is absent because the electromagnetic force 
→→→

×= eBjF  is 

constant and rot 0=
→

F . Suppose further that roughness of  the  surface 0~. =z    is of the form : 

⎩
⎨
⎧

−∉
+∞<<−∞≤≤−

=
).,(~,0

,~,~),~(~
~

LLx
yLxLxfz      (2.8) 

In this case the full current is equal to 0jj
rr

= + )~,~( zxj
r

and the flow of the fluid with velocity   

yyy ezyVV
rr

)~,~(
~

=    (2.9) 

arises in the direction opposite to the y~ -axis (see Fig.1).  

We will prove that the induced magnetic field 
→

iB in this case has the form   

y
ii ezxBB

rr
)~,~(

~~
=     (2.10) 

and the MHD equations for the fluid velocity ),( zyVy  and for the potential of the  

induced current ),( zyΦ have the following dimensionless form 

,02 =
∂
Φ∂

+−∆
x

HaVHaV yy      (2.11) 

,
x

V
Ha y

∂

∂
=∆Φ

    
(2.12) 

where 2222 // zx ∂∂+∂∂=∆ , ρνσ /0 LBHa =   is the Hartmann number and νρσ ,,  are, 

respectively, the conductivity, the density and the viscosity of the fluid.  We use the MHD 

equation of incompressible fluid and the Ohm’s law (see [29], [50] and [58]) : 

⎟
⎠
⎞⎜

⎝
⎛ ×

ρ
+∆ν+

ρ
−=⎟

⎠
⎞⎜

⎝
⎛ ∇ BjVPgradVV

~~1~~1~~ rrrrr
,     (2.13) 
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⎟
⎠
⎞⎜

⎝
⎛ ×+Φ−σ=⎟

⎠
⎞⎜

⎝
⎛ ×+σ= BVgradBVEj

~~~~~~~ vrvrrr
,   (2.14) 

where  2

2

2

2

2

2

~~~ zyx ∂
∂

+
∂
∂

+
∂
∂

=∆ ,    
z

V
y

V
x

VV zyx ~~~
~

∂
∂

+
∂
∂

+
∂
∂

=∇
r

. 

In our case  

yy ezxVV
rr

),(~~
= ,         (2.15) 

 ,)~,~(
~

ei BzxBB
rrr

+=      (2.16) 

where iB
~r

 is the induced magnetic field. 

First , we prove that 

y
ii ezxBzxB

rr
)~,~()~,~(

~
=   (2.17) 

at the condition that the vector of the induced current has the form 

zzxx ezxjezxjzxj
rrr

)~,~()~,~()~,~(
~

+= .  (2.18) 

It will be shown as the corollary that the vector of fluid velocity is given by (2.15). For this 

purpose we use the Bio-Savare’s law, according to which the induced magnetic field vector Bd
r

 

created by an element ld
r

of infinitely thin wire  directed along the current I
r

 is equal to 

3

~

MM

MM

r
rldIBd
′

′×
= r

rr
r

,  (2.19) 

where MMr ′
r

is a radius vector connecting the point ldzyxM
r

∈′′′′ )~,~,~(  and the point of 

observation )~,~,~( zyxM  (see Fig. 2): 

zyxMM ezzeyyexxr
rrrr

)~~()~~()~~( ′−+′−+′−=′ . (2.20) 
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Figure 2. Magnetic induction Bd
r

 caused by elementary current lId
r

. 

 

Without loss of generality we can choose the point of observation M (0, 0, 0) in the origin. For 

each point )~,~,~( zyxM ′′′′ in the fluid we always can choose the symmetric point )~,~,~( zyxN ′′−′′  

with respect to point M (0, 0, 0). We consider the magnetic induction Bd
r

 caused by elementary 

current lId
r

 passing through the point )~,~,~( zyxM ′′′′  and by elementary current ldI
r

1  passing 

through the symmetric point )~,~,~( zyxN ′′−′′  (see Fig. 3). Here I
r

 and 1I
r

  are the currents with 

density )~,~(
~

zxj
r

 given by formula (2.18). 

Since vector )~,~(
~

zxj
r

 does not depend on variable y~ we have  II
rr

=1 .  

Using formula(2.19) we obtain 

( )MNMMM
rrlDdBd ′′ +×=
rrrr

   
(2.21) 

where  3−
′= MMrID , zzxx edledlld

rrr
+= ,                       (2.22)  

( )zyxMM ezeyexr
rrrr ′+′+′−=′

~~~ , ( )zyxMN ezeyexr rrrr ′+′−′−=′
~~~ .       (2.23) 

Substituting (2.22), (2.23) into (2.21) we obtain: 

( ) ( )zxzzxx ezexedledlDBd
rrrrr
′+′×+−= ~2~2   

or 

( ) yzx edlxdlzDBd rr
′−′= ~2~2 .      (2.24) 

Summing formula (2.24) over the whole elements ld
r

 in the fluid we obtain formula (2.17), 

ld
r

M ′

I
r

Bd
r

MMr ′

r

M
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which completes the proof. 

In order to obtain equations (2.11), (2.12) we substitute vectors V
~r

 and iB
~r

  from (2.15), (2.16) 

and (2.17) into equations (2.13) and (2.14).  We have : 

yy ezxVV
rr

),(~~
= ,  y

i
z ezxBeBzxB

rrr
)~,~(~)~,~(

~
0 += .        (2.25) 

Consequently, 

( ) xyy
i

zyy ezxVBezxBeBezxVBV
rrrrrr

),(~)~,~(~),(~~~
00 =+×=× ,      (2.26) 

( ) ( )y
i

zxy eBeBeVBgradBj
rrrvr ~~~~~

00 +×+Φ−σ=× , i.e. 

⎭
⎬
⎫

⎩
⎨
⎧

+−
∂
Φ∂

+
∂
Φ∂

−
∂
Φ∂

=× z
i

yyyx
i

z
i

y eBVBeVBeB
z

eB
x

e
x

BBj rrrrrrr ~~~~
~
~~

~
~

~
~~~

0
2

00σ
,      (2.27) 

0
~~
=⎟

⎠
⎞⎜

⎝
⎛ ∇ VV

rr

.       (2.28) 

Substituting (2.27) and (2.28) into (2.13) and projecting the resulting equation on the y axis we  

Figure 3. Symmetric representation needed to the proof of formula (2.24). 

obtain 

⎥
⎦

⎤
⎢
⎣

⎡
−

∂
Φ∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂

∂
−= )~,~(~

~
)~,~(~

)~,~(~
~~~

)~,~,~(~10 2
002

2

2

2

zxVB
x

zxBzxV
zxy

zyxP
yy ρ

σν
ρ

.  (2.29) 

Since all of the terms in equation (2.29) except the term yP ~/~ ∂∂  do not depend on the variable y~  

then the term  yP ~/~ ∂∂  also does not  depend on the variable y~ , i.e.  

),~,~(~)~,~(~)~,~(~
~

211 zxFyzxFPzxF
y
P

+=⇒=
∂
∂    (2.30) 

where 1F  and 2F  are arbitrary functions.  

),,( zyxN ′′−′ ),,( zyxM ′′′

MNr ′
r

MMr ′
r

)0,0,0(M

x

y

z
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Substituting (2.30) and (2.27) into (2.13) and projecting the resulting equation on the x  and z  

axes we obtain the following two equations: 

0 = 
ρ
y~ ,~

~
~

1
~

21 iB
zx

F
x
F

∂
Φ∂

+
∂
∂

−
∂
∂

ρ
σ

ρ
 (2.31) 

0 =  ).~
~

(~
1

~
~

0
21

y
i VB

x
B

z
F

z
Fy

+
∂
Φ∂

−+
∂
∂

−
∂
∂

ρρ
  (2.32) 

Since all the terms  on the right hand sides of equations (2.31) and (2.32) except the first ones do 

not depend on y~ ,  then the first terms in these equations also do not depend on y~ , i.e.  

,0~
1 =

∂
∂

x
F    ⇒=

∂
∂ 0~

1

z
F    .1 constCF ==  (2.33) 

Consequently, equations (2.30)-(2.32) are of the form: 

C
y
P
=

∂
∂

~
~

 (C is a constant)        (2.34) 

)~.~(~)~.~(
~

2 zxFyCzxP +=⇒ ,     (2.35) 

iB
zx

zxF
~

~
~

)~,~(2

∂

∂
=

∂
∂ ϕσ , (2.36) 

).
~

~
~

(~
)~,~(

0
2

y
i VB

x
B

z
zxF

−
∂
Φ∂

=
∂

∂
ρ   (2.37) 

In our problem the external pressure gradient is absent. As a result,  then it follows from  

(2.34) and (2.35) that 

C = 0, ).~,~()~,~(
~

2 zxFzxP =  (2.38) 

Thus, equation (2.29) can be written as follows: 

.0)~,~(
~

~
)~,~(

~
)~,~(

~
~~

2
002

2

2

2

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

∂
Φ∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂
∂ zxVB

x
zxBzxV

zx yρ
σν

          

(2.39) 

We use the dimensionless quantities by taking the values 
2

0 /,,,/, LBLL σρννσρννν as the scales of length, velocity, magnetic field, potential 

and current, respectively.  
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To obtain equation (2.12), it is sufficient to apply operation of divergence to equation (2.14)  

and use the equation of continuity 0
~
=jdiv

r
 and equation (2.26): 

yy ezxVdivB
r

)~,~(
~~

0 0+Φ∆−= , (2.40)

  

i.e. 

y

V
B y

~

~
~

0

∂

∂
=Φ∆ . (2.41) 

Passing in formulae (2.41) to the dimensionless variables, we obtain equation (2.12). 

To obtain pressure )~,~(
~

zxP  we need to know the function ),~,~(2 zxF i.e. we should use a 

system of nonlinear equations (2.36) and (2.37). First, we can solve the linear system (2.11),  

(2.12) with the corresponding boundary conditions and obtain the functions )~,~(
~

zxVy and ).~,~(
~

zxΦ  

After that we can obtain the induced magnetic field iB , using equations ,
~
Φ= gradrotBi  

.0=idivB  As a result, the right hand sides of equations (2.36) and (2.37) will be known 

functions and we get the function  2)~,~(
~

FzxP = )~,~( zx from the system  (2.36) and (2.37) up  to 

an  arbitrary constant. 

2.2.2 THE PROBLEM IN THE CASE OF A NON UNIFORM EXTERNAL MAGNETIC FIELD 

   Assume that the external magnetic field can be represented in the form: 

→

⊥

→

= ie BB )~,~( zx = zzxx ezxBezxB
rr

)~,.~()~,~( + . (2.42)  

Since vector 
→

eB does not depend on the variable y, the formula for 
→

iB ),(
.~.~
zx has the same form as 

in section 2.2.1:  

iB
r

)~,~( zx = iB )~,~( zx .ye
r

 (2.43) 

In this section only the MHD equations and pressure )~,~(
~

zxP are changed. 

We have  
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yy ezyVV
rr

)~,~(
~~

= , (2.44) 

)~,~(
~

zxBB i
rr

= xx ezxB
r

)~,~(
~

+ + .)~,~(
~

zz ezxB
r

 (2.45)

  

Consequently 

yVBV
~~~

=×
rr

)~,~( zx ,)~,~(
~

)~,~(
~

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+− xzzx ezxBezxB

rr
 (2.46) 

,
~

)
~~~

(
~~

BBVgradBj
rrrrr

××+Φ−=× σ  (2.47) 

i.e. 

Bj
~~ rr

× = ( ) .
~

~
~~

~
~

~
~~~

~
~

22
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⎩
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⎨
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⎟
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⎜
⎜
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⎥
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∂
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+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
Φ∂

z
i

zyyzxxzx
i

yx eB
x

BeVBBB
z

B
x

eBVB
z

rrr
σ

 (2.48) 

Substituting (2.44), (2.45) and (2.48) into (2.13) and projecting the resulting equation on the y  

axis, we obtain: 

.
~

)(~
~

~
~

~~~
~

10 22
.~

2

2

2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

∂
Φ∂

−
∂
Φ∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−= yzxxzy VBBB
z

B
x

V
zxy

P
ρ
σν

ρ
 (2.49) 

As in section 2.2.1, it follows from (2.49) that  

)~,~(~
~

3 zxF
y
P
=

∂
∂  ),~,~(~)~,~(

~
43 zxFyzxFP +=⇒  (2.50) 

where 3F  and 4F  are arbitrary functions. Substituting (2.44), (2.45) and (2.50) into (2.13) and 

projecting the resulting equations on the x  and z  axes, respectively, we obtain: 

−=0 ,
~~

~
~

~~
~ 43 i

yx BVB
zx

F
x
F

y ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
Φ∂

+
∂
∂

−
∂
∂

− σ  (2.51)  

z
F

z
F

y ~~
~ 43

∂
∂

−
∂
∂

− .
~

~
~

~
~ 2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
Φ∂

−
∂
Φ∂

+
→

⊥ yxz VBB
z

B
x

σ  (2.52) 

It follows from (2.51) and (2.52) that  
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.0~,0~ 3
33 constCF

z
F

x
F

==⇒=
∂
∂

=
∂
∂

 (2.53) 

Consequently, equations (2.50)-(2.52)  are of the form 

⇒=
∂
∂ C

y
P
~
~

),~,~(~)~,~(
~

4 zxFyCzxP +=  (2.54)  

,
~~

~
~

~
4 i

yx BVB
zx

F
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
Φ∂

=
∂
∂

σ  (2.55)  

.
~

~
~

~
~

~
2

4

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
Φ∂

−
∂
Φ∂

=
∂
∂ →

⊥ yxz VBB
z

B
xz

F
σ  (2.56)  

As in section 2.2.1  the constant C = 0, i.e.  

)~,~(
~

zxP = 4F ).~,~( zx  (2.57)  

Equation (2.49) can be rewritten in the form 

yV
zx

~
~~ 2

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ν + ( ) .0
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~
~

22 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

∂
Φ∂

−
∂
Φ∂

yzxxz VBBB
z

B
x

σ  (2.58)  

To obtain the second equation it is sufficient to apply the operation of divergence to equation 

(2.14) and use the equation of continuity :0
~

=jdiv
r

  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+Φ∆−= zxxzy eBeBVdiv

rr~~
0

,
  (2.59)    

or
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V
B y
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z ~

~

~

~
~

∂

∂
−

∂

∂
=Φ∆ + .~~

~
⎟
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⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

z
B

x
B

V xz
y                                                   (2.60)                          

The linear system (2.58)-(2.60) with corresponding boundary conditions on the boundary  0~ =z  

has a unique solution. For a certain form of the given functions )~,~( zxBx and zB )~,~( zx  one can 

find an analytic form of this solution. In general case, this solution may be obtained only by 

numerical methods. In this section we have considered the fully developed MHD flow in the 

direction of the y  axis. The external magnetic field and the given external current has only x  

and z  components, which do not depend on the variable y . The pressure gradient is absent in 
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the y -direction. It is proved using the symmetry of the flow in this case that induced magnetic 

field has only a y -component. The system of MHD equations for the velocity of the fluid and 

for the potential of the induced current is obtained. Also the equations for the x  and z  

components of pressure gradient are obtained. It is also proved that the pressure of fluid in the 

given case is a function depending on the x  and z  variables. 

 

2.3 ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER  

ROUGHNESS ELEMENTS USING THE DIRAC DELTA FUNCTION 

  

 In the designing of the present reactor Tokamak the value of the Hartmann boundary layer in a 

strong magnetic field becomes commensurable with the size of roughness of the surface of a 

channel’s wall. Therefore, there is a practical need to study the influence of roughness of the 

surface on the MHD flow of the conducting metal, which is planned to use in the system of the 

cooling of the reactor.  

The MHD problem describing the flow of a conducting fluid in the half space arising due 

to roughness of the surface in the form )~(~~~
0 xfz χ=  with the conditions that the values )~(~ xf  

and )~(~ xf ′  are small is solved in [2]. These assumptions allow one to transfer the boundary 

condition for potential of the current )~,~(~ zxΦ  from the surface )~(
~~~

0 xfz χ= to the plane 0~ =z  

and neglect the term xxxf ~/)0,~(~)~(~
∂Φ∂′ in the boundary condition. Without this simplification 

one obtains an integral equation for an unknown function xx ~/)0,~(~ ∂Φ∂  which can be solved only 

numerically. In this section this problem is solved for the case when the roughness of surface 

xfz ~(~~~
0χ= ) has the rectangular form: =z~ 0

~χ , if ),(~ LLx −∈  and ,0~ =z  if ].,[~ LLx −∉  As a 

result the derivative xf ~(~′ ) in the boundary condition is expressed through the Dirac delta 

function and instead of an integral equation for the function xxxf ~/)0,~(~)~(~
∂Φ∂′  an unknown 

constant xL ~/)0,(~ ∂Φ∂  appears in the process of solution. This fact allows one to solve this 

problem analytically and estimate the error due to the neglected term xxxf ~/)0,~(~)~(~
∂Φ∂′  in above 

mentioned boundary condition. In addition,  the asymptotic of this problem in a strong magnetic 

field is obtained. 
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2.3.1 THE STATEMENT OF THE PROBLEM 

 

The geometry of the flow is shown in Fig.1. The conducting fluid is located in the half 

space +∞<<∞−> yxz ~,~,0~ . The external magnetic field has the form  

 
 zeBB rr

0= . (2.61) 
 

The boundary 0~ =z  is not conducting. A steady current flows with the density xejj rr
0

~
=  in 

the direction of the x -axis. If the surface 0z~ =  is ideally smooth then the flow is absent because 

the electromagnetic force BjF
rrr

×= ~  is constant and 0=Frot
r

. Suppose that roughness of the 

surface 0z~ =  has the rectangular form (see Fig.1): 

 

 [ ]
⎩
⎨
⎧

>

<<−
=−−+==

,~,0
,~,~

)~()~(~)~(~ ~~ 0
00 Lx

LxL
LxLxxfz

χ
ηηχχ  (2.62) 

 
where )~(xη  is the Heaviside step function: 

                        
⎩
⎨
⎧

>
<

=
.0~,1
,0~,0

)~(
x
x

xη                                                                                           (2.63) 

 
In this case the full current is equal to )~,~(0 zxjjj

rrr
+=  and the flow of the fluid with the velocity 

yy ezyVV rr
)~,~(~=  arises in the direction opposite to the y~  axis (see Fig.1). 

We will deduce the boundary condition for the potential )~,~(~ yxΦ  of an electrical field on the 

surface )~(~~~
0 xfz χ= . The normal component of the current on this surface must be equal to zero 

because the boundary )~(~~~
0 xfz χ=  is not conducting, i.e. it must be 0=⋅ nj rr

 on the surface ( nr  is 

the unit normal to the surface).  

Using formula )~(~~1/)]~(~~~[ 22
00 xfxfzgradn ′+−= χχr  we obtain 

 
 [ ] )~(~~1/)~(~~ 22

00 xfeexfn zx ′++′−= χχ rrr , (2.64) 
 

where                                       
                                                    [ ])~()~()~(~ LxLxxf −−+=′ δδ , (2.65) 

and )~(xδ  is the Dirac delta function. 
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Substituting nr  from (2.64) and ( ) zzxx ezxjezxjjj rrr
)~,~(~)~,~(~~

0 ++=  into 0
~

=⋅ nj rr
 and using 

formula ⎟
⎠
⎞⎜

⎝
⎛ ×+Φ= BVgradj

~~~~ rrr
σ , i.e. xjx

~/~~ ∂Φ∂−= σ ,  zjz
~/~~ ∂Φ∂−= σ  on the surface, where 

0
~
=V

r
, we obtain the boundary condition for the potential )~,~(~ zxΦ : 

 

 )~(~~~
0 xfz χ= :   ⎥

⎦

⎤
⎢
⎣

⎡
′

∂
Φ∂

−′=
∂
Φ∂

− )~(~
~)~(~~

~
~

00 xf
x

xfj
z

σχσ , (2.66) 

where  function )~(~ xf ′  is given by (2.65). 

The only approximation which is made in this section is the following: we transfer the boundary 

condition (2.66) from the surface )~(~~~
0 xfz χ=  to the plane 0~ =z , i.e. we only assume that  the 

value )~(~~
0 xfχ  is small.  As a result, we obtain the boundary condition for the potential in the 

form  

 0~ =z :   [ ] [ ])~()~(~/~~~/~ 1
00 LxLxxjz −−+⋅∂Φ∂+−=∂Φ∂ − δδσχ . (2.67) 

 

We do not neglect the term x~/~ ∂Φ∂  in the boundary condition (2.67) and as a result we obtain 

the new coefficient in the solution used in paper [13].  

We use the values of L , L/ν , 0B , L//σρνν , 2/ Lρνσν  as  measures of length, velocity, 

magnetic field, potential and current, respectively. Here σ , ρ , ν  are, respectively, the 

conductivity, the density and the viscosity of the fluid. Then the MHD equations and the 

boundary conditions have the form (see [28]): 

 

0/2 =∂Φ∂⋅+−∆ xHaVHaV yy ,  xVHa y ∂∂⋅=∆Φ /  ,                                  (2.68),(2.69) 

:0=z 0=yV , [ ] [ ])1()1()0,(/ 0 −−+⋅+−=∂Φ∂ xxxFAz δδχ , (2.70),(2.71)

 

0,0:22 →Φ→∞→+ yVzx ,         (2.72) 

where 2222 // zx ∂∂+∂∂=∆ , ρνσ /0 LBHa =  is the Hartmann number, )/(2
0 ρνσνLjA = , 

L/~
00 χχ =   and 

0

)0,(
=∂

Φ∂
=

zx
xF .         (2.73) 
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2.3.2 THE SOLUTION OF PROBLEM (2.68)-(2.72) 

 

 In order to solve problem (2.68)-(2.72) we use the symmetry of this problem with respect 

to x : the function ),( zxVy  is an even function, ),( zxΦ  is an odd function with respect to x . 

This means that the functions ),( zxVy  and ),( zxΦ  satisfy additional boundary conditions:

 0)0,(,0:0 =Φ=
∂

∂
= x

x
V

z y . (2.74) 

 Therefore, problem (2.68)-(2.72) can be solved by means of Fourier cosine and Fourier 

sine transforms (see [3]). Namely, we apply the Fourier cosine transform with respect to x  to 

equation (2.68) and to yV   in boundary condition (2.70) and the Fourier sine transform to 

equation (2.69) and to z∂Φ∂ /  in boundary condition (2.71). The transforms are defined as 

follows:  

                              ∫
∞

=
0

cos),(2),( dxxzxVzV y
c

y λ
π

λ ,                                (2.75) 

 ∫
∞

Φ=Φ
0

sin),(2),( dxxzxzs λ
π

λ . (2.76) 

We obtain the following system of ordinary differential equations for unknown functions 

),( zV c
y λ , ),( zs λΦ : 

 02
2

2
2 =Φλ+−+λ− sc

y

c
y

y HaVHa
dz
Vd

V , (2.77) 

 02

2
2 =λ+

Φ
+Φλ− c

y

s
s VHa

dz
d . (2.78) 

We also apply transforms (2.75) and (2.76) to boundary conditions (2.70) and (2.71): 

[ ] λ
π

χ sin2)0,1(,0:0 0 FA
zd

dVz
s

c
y −=

Φ
== ; ,0,: →Φ∞→ sc

yVz  (2.79),(2.80) 

where  
x

F
∂
Φ∂

=)0,1(  at 0,1 == zx  (2.81) 

is an unknown constant. The solution of the problem (2.77)-(2.80) has the form: 

                         [ ] ( )zkzks ekekAFz 12
2120 2

sin)0,1(2),( ++−=Φ
λ
λ

π
χλ  , (2.82) 
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 [ ] ( )zkzkc eeAFzV 21

2
sin)0,1(2),( 0 −+−=
λ
λ

π
χλ ,                                   (2.83) 

 where  

                          )( 22
1 µµλ ++−=k , )( 22

2 µµλ −+−=k , Ha=µ2 .      (2.84)                     

Applying the inverse Fourier sine and cosine transforms to formulae (2.82), (2.83), we obtain the 

solution of problem (2.68)-(2.72), containing unknown constant F(1,0): 

[ ] ( ) λλ
λ
λ

π
χ

xdekekAFzx zkzk sinsin)0,1(),(
0

221
0 12∫

∞

++−=Φ ,  (2.85) 

[ ] ( ) λλ
λ
λ

π
χ xdeeAFzxV zkzk

y cossin)0,1(),(
0

0 21∫
∞

−+−= .                                     (2.86)  

The components xj  and zj  of the induced current density are obtained from the formula  

 

 ⎥⎦
⎤

⎢⎣
⎡ ×+Φ−= BVzxgradj

~~
)~,~(~~ rrr

σ , (2.87) 

 

where yy ezxVV rr
)~,~(~~

= , zy eBezxBB i
y

rrr
0)~,~(~~

+= . (2.88) 

In the dimensionless quantities formula (2.87) has the form  

 

 BVHazxgradj
rrr

×+Φ−= ),( , (2.89) 

 

where yy ezxVV rr
),(= , zy eezxBB i

y
rrr

+= ),( . (2.90)

  

Substituting (2.90) into (2.89) we obtain 

 

 xezxHaVzxgradj y
rr

),(),( +Φ−= . (2.91) 

It follows from (2.91) that 

 ),( zxHaV
x

j yx +
∂
Φ∂

−= ,  
z

jz ∂
Φ∂

−= . (2.92) 

Using formulae  (2.85), (2.86) and (2.84), we obtain 

 ( ) λ
λ

λλ
+−= ∫

∞

dxekekDj zkzk
x

cossin

0
21

21 , (2.93) 
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 ( ) λλλ+−= ∫
∞

xdeeDj zkzk
z sinsin

0

21 , (2.94) 

                                   [ ])0,1(0 FAD −=
π
χ

. (2.95) 

For the evaluation of unknown constants F(1,0) and D in formulae (2.85), (2.86), (2.93) and 

(2.94) it is necessary to use integral (2.85) and evaluate the limit 

 

                                     F(1,0)= ( ) λ
λ

λλ dekekD zkzk

z ∫
∞

+→
+

0
210

cossinlim 12 .                              (2.96)   

Differentiation with respect to x  under the integral sign in (2.85) is correct in the region 

+∞<≤+∞<≤< xzz 0,0 0  because this integral and the corresponding integral (2.96) of partial 

derivative with respect to x  of integrand in (2.85) is majorized in this region. However, if we 

substitute 0=z  under the integral sign in (2.96), we obtain the divergence of the integral, which 

converges only in the sense of Abel (see [3]): 

 

 λ
λ
λµλλ

λ
λµλ δλ

δ
dedI 2sinlim2sin 22

00

22

0
+=+≡ −∞

+→

∞

∫∫  (2.97)  

 

or, after evident transformations 

 

∫∫
∞

−

+→

∞
−

+→
+

++
≡

0
0

0
22

2

0
.2sinlim2sinlim λλλ

λ
λ

λµλ

µ δλ

δ

δλ

δ
dedeI                                           (2.98) 

 

The first integral on the right hand side of (2.98) converges in the usual sense, but the second 

integral converges only in the sense of Abel and equal to ½ (see [3]). However, such a method 

gives the solution, which tends to zero as Hartmann number Ha tends to infinity. The last fact 

contradicts to the physical sense of the problem. Therefore, there is a need to transform integral 

(2.85) to such a form that after passing to the limit as 0+→z  we would obtain the integral 

converging in the usual sense.  For this purpose we use the formulae (see [74]): 
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where 0≥a , 0>z  and  )(zK ν is the modified Bessel function of the second kind of order   ν  

(ν =1, 2). As a result, we obtain (the details are found in [12]): 
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1
22
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tzK
zshzDzxV , (2.101) 

 [ ] ( )zxVxFxFzchDzxj yx ,)1()1(),( µ+−−+µ⋅= , (2.102) 

where  
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Evaluating integral (2.94) we obtain 
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We transform ∂Φ/∂x, using formulae (2.85), (2.99) and (2.100): 
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The integrals on the right hand side of (2.105) diverge if .0=z To overcome this difficulty, we 

perform the following transformation. First, we use the substitution 

 

                                      ξ= zt ,  ξ= zddt .                                                         (2.106) 

 

Then it follows from formula (2.105) that 
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In order to pass to the limit as 0+→z  in  (2.107) we use the formula 
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i.e.                          
z
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zK ≈  at 0+→z .                                           (2.108) 

As a result, we obtain from formula (2.107) that 
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The second limit on the right hand side of formula (2.109) is equal to zero, but the  

first limit gives undefined expression of the form 
0
0  because 
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Consequently, it follows from formula (1.109) that 
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It follows from (2.111) and (2.95) that 

 DF
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We obtain the unknown constant F(1,0) from equation (2.112): 
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Consequently, the coefficient D, which is the unknown coefficient in the (2.101), (2.102)  

and (2.104), is given by 
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We remind that L/~
00 χ=χ  is the single small parameter in our problem. The inequality 

π<χ 20  gives the natural restriction at  which the y -component of the velocity ),( zxVy  in 

formula (2.86) is negative, that is, corresponds to the physical sense of this problem. 

 

 It is important to note that if we would neglect the term x∂Φ∂ /  in boundary condition 

(2.67), the way it was done in paper [2] for function )(xf  of arbitrary form, we obtain the same 

solution of this problem but at the condition that coefficient D  would be equal to πχ /0AD =  

instead of formula (2.114). It gives us the opportunity to evaluate the error which occurs if the 

term x∂Φ∂ /  is neglected in boundary condition (2.67). For example, if 1.02/0 =πχ , then the 

error δ  is equal to 100)19.0/1( ⋅−=δ %, i.e. 11=δ %. 

 

2.3.3 THE ASYMPTOTIC ANALYSIS OF THE PROBLEM AND NUMERICAL RESULTS 

 
 It follows from formula (2.86) that at ∞→Ha   we have −∞→zk1 , 02 →zk  

( everywhere except  the regions 10 −≤≤ Haz  and Haz > , respectively ). 

Consequently, at ∞→Ha  in region HazHa ≤≤−1  we obtain from formula (2.86) that  

  

 ),(lim zxVyHa ∞→
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2 x

xD
xxVc

π
ηηπ  (2.115)  

where cV =constant  is the  core velocity.  

The region 10 −≤≤ Haz  is the Hartmann boundary layer, where the velocity of fluid is 

changed from zero to the velocity of the flow core cV  = constant, but the region  +∞<< zHa  is 

the distant wake, where the velocity is changed from  cV   to zero (see Figure 4). 
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Ha-1 0=xyV

0 y  
 

Figure 4. The regions of the flow in the cross-section 0=x  at ∞→Ha : 

H- the Hartmann layer, 10 −<< Haz ; 

C- the flow core, HazHa <<−1 ; 

W- the distant wake, +∞<< zHa . 

 

It is necessary to note that at large Hartmann numbers the velocity cV   in the core of  flow is 

constant  and does not  depend on  Ha.  At +∞→Ha only the height of core region 

HazHa <<−1  is increased. The asymptotic of the current’s component ),( zxjx in the region 

+∞<<− zHa 1  is obtained from formula (2.93):   

 

 ,0lim =
∞→ xHa

j  +∞<<− zHa 1 . (2.116) 

 

The asymptotic of the current component ),( zxjz  at +∞→Ha   is obtained from the exact 

formula (2.104). For this purpose we use the formula that holds when ∞→µ , 0>z , 0>l : 

 zezch µµ 5.0≈ ,  .)(1
le

l
lK µ

µ
πµ −≈  (2.117) 

Then, according to (2.104), the component ),( zxjz exponentially tends to zero at ∞→µ  

everywhere, except for the two regions, bounded by the parabolas: 

 

 ( ) 11 22 =−−+ zxz µµ  and  ( ) 11 22 =−++ zxz µµ ,  ( 2.118 ) 
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i.e.  bounded  by the parabolas: 

  

 ( )215.0
2
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+=+ xz µ
µ

   and  ( )215.0
2
1

−=+ xz µ
µ

.   ( 2.119 ) 

 

Furthermore, we can put  0
2
1

≈
µ

  at   ∞→µ   in formula (2.119). Inside of the two regions, 

bounded by parabolas (2.119), the component ),( zxjz  tends to infinity as ∞→µ  by the law  

 zjz /µ≈ ,   (2.120)     

since it follows from (2.104), (2.117), (2.118)  that 
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as  ∞→µ . 

The asymptotic of functions of the functions ( )zxVy ,  , ),( zxjx  ),( zxjz  are obtained from 

integrals (2.86), (2.93) and (2.94)  by means of the formulae which hold at  ∞→µ : 
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Substituting (2.123) and (2.124) into integrals (2.86), (2.93), (2.94) and using the Poisson  

integral (see [3]), we obtain the asymptotic formulae which hold for the whole region  

+∞<< z0  as ∞→Ha : 
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It can be seen that at ∞→Ha  the following conclusion can be drawn from formula 

(2.125): 

 1) Component DVy 2
π−

=  is constant   in region HazHa <<−1 .  

 2). Component yV  is changed from 0    to cy VDV =
−

=
2
π  in region 10 −<< Haz . 

 3). Component yV  is changed from cV  to zero in region  +∞<< zHa .   

In addition,  it follows from formula (2.125) that  the component cy VV 5.0→  as ∞→Ha  on 

the lines 1±=x , +∞<< z0 . That means that the two new boundary layers exist in the regions: 

 εβε <
−

<−
z
x1  and  εβε <

+
<−

z
x1 , ( 2.129) 

where ε   is some  small positive number. In these regions component yV  is changed between 

cV−  and zero. It is impossible to get these two new boundary layers from formula (2.86). 

The following conclusions can be drawn from (2.128) that at  ∞→Ha : 

1. Component  zj  exponentially tends to zero everywhere except the two regions, lying inside 

parabolas (2.119), because in this case both exponents in the square brackets of formula 

(2.128) tend to zero. 

2. Component zj  inside the region bounded by the first or second parabola in (2.119), where 

one of the exponents in the square brackets in (2.128) does not equal to zero, is given by 

zjz
µ≈ , i.e. tends to infinity as ∞→µ . 

3. Finally, we see from formula (2.127) that at ∞→Ha  the current component ),( zxjx  tends 

to zero everywhere except the region 10 −<< Haz  because in this region 0)exp( ≠−zHa  

and the function ( )zx,ψ  tends to 2 everywhere except the two regions in formula (2.129). 
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In order to estimate the range of Hartmann numbers at which the asymptotic formulae  

(2.125)-(2.128) are correct we compare the numerical results for the component ),( zxjz , 

obtained by exact formula (2.104) and  asymptotic formula (2.128). These numerical results for 

Hartmann numbers Ha  =10 , 30 , 50 are shown in Fig. 5. For Hartmann numbers 10≥Ha  the 

results obtained by exact formula (2.104) and  asymptotic formula (2.128) practically coincide. 

Similar conclusions can be drawn by comparing the computed values of the functions ),( zxVy  

and ),( zxjx  by exact formulae (2.86) , (2.93) and  asymptotic formulae (2.125) , (2.127).   

 

 

 

 

 

Figure 5. The graphs of the z -component of 
current by exact formula (2.128) (             ) and 
by  formula (2.104) (                )     from 1=z  
(two upper lines) to 5.3=z  (two lower lines) 
through .5.0=∆z  Function ),( zxj z  is odd 
with respect to x .  
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The numerical results of calculation of the current’s component ),( zxjx  by asymptotic 

formula (2.127) for Hartmann numbers Ha =10, 30 and 50 are shown in Fig. 6. We can see that 

the sign of the function ),( zxjx  is changed in the neighbourhood of the line 1=x , +∞<< z0 .   

It means that the streamlines of current ( )zxj ,
r

 change their direction to the opposite in the 

neighbourhood of this line.   

It follows from (2.128) that the full current through the cross section 0zz = =constant is 

equal to 

 ( )∫
∞

0
0, dxzxjz  = ( ) →+− −

02
1

2
0

z
HaerfeD Hazπ

2
Dπ

−  as ∞→Ha . (2.130) 

 

The same full current flow   can be obtained through the cross section 0xx = , +∞<< z0 . This 

result follows from (2.127) and also from the equation of continuity:  

 

 
2

),(
0

0
Ddzzxjx

π
→∫

∞

 as ∞→Ha . (2.131) 

One can see also from (2.127) that at ∞→Ha  almost all of this full current flow through the 

cross section of Hartmann boundary layer 00 >= xx , 10 −<≤ Haz :  

Figure 6. The graphs of the x -component of 
current by asymptotic formula (2.127) from 

1=z  (the upper lines in region 10 ≤≤ x ) till 
5.3=z  (the lower lines in region 10 ≤≤ x ) 

through 5.0=∆z . Function ),( zxj x  is even 
with respect  to x. 
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The streamlines of current ( )zxj ,
r

 obtained by formula 

 

( )
( )zxj

zxj
dx
dz

x

z

,
,

=
  (2.133) 

for Hartmann numbers Ha =5 and Ha =10 and for various values of initial conditions ( )0z  are 

shown in Fig. 7. The package “Mathematica” is used for calculations. Since the function 

),( zxjx  is equal to zero in the neighbourhood of the point 1=x  the results of calculations in 

Fig. 7 in region 10 ≤≤ x  are shown . One can see from Fig. 7 that when Hartmann number 

increases then the full current is concentrated near the plane 0=z . 

For calculations of streamlines in region +∞≤≤ x1  we use the differential equation 

 

( )
( )zxj

zxj
dz
dx

z

x

,
,

=
. (2.134) 

The streamlines of current in this region are shown in Fig. 8 for the same Hartmann numbers 

Ha =5 and Ha =10 . One can see from Fig. 8 that in the neighbourhood of point 1=x  the 

streamlines change directions to the opposite.  

 

 
 

Figure 7. The streamlines of current ),( zxj
r

in region 10 ≤≤ x at Ha =5 and at Ha =10. 
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Figure 8. The streamlines of current ),( zxj
r

in region +∞≤≤ x1  at Ha =5 and at Ha =10. 

 

 

CONCLUSIONS 

 

1.  The analytical solution of the two dimensional problem on the MHD flow in half space 

0≥z due to the roughness of the boundary of special form is obtained. Roughness of 

constant rectangular cross section is located along the y - axis. In this case the external 

current flows parallel to x - axis and the external magnetic field is parallel to z - axis. The 

two dimensional MHD flow in the direction opposite to y -  axis arises, only if the 

roughness of the boundary is present. 

 

2. The analytical solution is obtained at the single approximate assumption that the height of 

roughness is small .The solutions for the y - component of the velocity of the fluid and for 

the x -  component of the induced current are obtained in the form of improper integrals of 

elementary functions. On the other hand, the z -  component of the induced current is 

expressed through the Bessel functions. 

 

3.  The asymptotic solution of the problem at Hartmann number ∞→Ha  is obtained in the 

form of elementary functions. For Hartmann numbers Ha  ≥ 10 the exact and the asymptotic 

solutions practically coincide. 

 

4.  Several boundary layers for the velocity of the fluid and for the x - and z - components of 

the current at large Hartmann numbers are found. 

 

5.  The velocity of the fluid in the core  at large Hartmann numbers is constant; that means it 

does not depend on Ha. Only the height of the core region HazHa <<−1  is increased with 

the increase of Hartmann number. 

 

6. Using the package “Mathematica” the streamlines of electrical current are calculated. The 

induced current at large Hartmann numbers flow only in Hartmann boundary layer 
10 −<< Haz  and along the lines 1±=x . 
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2.4 ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER  

      ROUGHNESS ELEMENTS IN THE FORM OF A STEP FUNCTION 

 

In Section 2.3 the MHD problem on the flow of conducting fluid in the half space arising 

due to roughness of the surface of the form )~(~~~
0 xfz χ=  with the conditions that the values 

)~(~ xf  and )~(~ xf ′  are small is solved. In this section similar problem for roughness of the form 

of a prism with constant cross-section bounded by step-function form is solved [13]. 

  

 

2.4.1 THE PROBLEM OVER  ROUGHNESS ELEMENTS IN A STRONG MAGNETIC 

FIELD 

 

In this section we assume that roughness of the surface 0~ =z has the form of the step-

function (see Fig.9): 
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or )~(
~

 )~~()~(
~

 ~)~(~~
20110 xfxfxFz χχχ −+== , (2.136) 

where )~()~()~(
~

 1 LxLxxf −−+= ηη ,  )
~~()

~~()~(
~

 112 LxLxxf −−+= ηη . (2.137) 

 

x1L1L−L− L

0χ

1χ

z

0
 

Figure 9. The constant cross-section of  roughness. 

 

We will deduce the boundary condition for the potential )~,~(~ zxΦ  of an electrical field on the 

surface )~(~~ xFz = . The normal component of the current on this surface must be equal to zero 
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because the boundary )~(~~~
0 xfz χ=  is not conducting, i.e. it must be 0=⋅ nj rr

 on the surface ( nr  is 

the unit vector of the normal to the surface).  

Using the formula )~(~1/)]~(~~[ 2 xFxFzgradn +−=
r  we obtain 

 

 [ ] )~(~1/)~(~ 2 xFeexFn zx ′++′=
rrr , (2.138) 

where  

                   [ ] [ ])~~()
~~()~~()~()~(~)~(

~
11010 LxLxLxLxxF −−+−+−−+=′ δδχχδδχ , (2.139) 

and )~(xδ  is the Dirac delta function. 

Substituting the value of nr  from (2.138) and ( ) zzxx ezxjezxjjj rrr
)~,~(~)~,~(~~

0 ++=  into 0
~

=⋅ nj rr
 

and using formula ⎥⎦
⎤

⎢⎣
⎡ ×+Φ−= BVgradj

~~~~ rrr
σ , i.e. xjx

~/~~ ∂Φ∂−= σ ,  zjz
~/~~ ∂Φ∂−= σ  on the 

surface where 0
~
=V

r
, we obtain the boundary condition for the potential )~,~(~ zxΦ : 
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−
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where  the function )~(
~

xF ′  is given by (2.139). 

As in the previous section we transform the boundary condition (2.140) from the surface 

)~(
~~ xFz =  to the plane 0~ =z , i.e. we use the only assumption that the value )~(

~
xF  is small.  As 

a result, we obtain the boundary condition for the potential in the form  

 0~ =z :   [ ] ).~(
~~/

~~/
~ 1

0 xFxjz ′∂Φ∂+−=∂Φ∂ −σ  (2.141) 

We do not neglect the term x~/~ ∂Φ∂  in boundary condition (2.140) and as a result, we obtain 

the new coefficient in the solution used in paper [2].  

We use the values of L , L/ν , 0B , L//σρνν , 2/ Lρνσν  as  scales of length, velocity, 

magnetic field, potential and current, respectively. Here  σ , ρ , ν  are, respectively, the 

conductivity, the density and the viscosity of the fluid.  

Then the MHD equations and the boundary conditions have the form (see [13]): 

 

0/2 =∂Φ∂⋅+−∆ xHaVHaV yy ,      (2.142) 

  xVHa y ∂∂⋅=∆Φ / ,                                        (2.143) 
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  0:0 == yVz        (2.144)               

),()]0,([/ xFxFAz ′+−=∂Φ∂     (2.145)               

               =′ )(xF )],()()[()]1()1([ 11010 LxLxxx −−+−++−+ δδχχδδχ                        (2.146) 

0,0:22 →Φ→∞→+ yVzx ,                                                                           

(2.147) 

where 2222 // zx ∂∂+∂∂=∆ , ρνσ /0 LBHa =  is the Hartmann number, 

)/(2
0 ρνσνLjA = , L/~

00 χχ = , L/~
11 χχ =   and 

 
0

)0,(
=∂

Φ∂
=

zx
xF .      (2.148) 

2.4.2 The solution of the problem over roughness in a strong magnetic field   

 

In order to solve problem (2.142)-(2.147) we use symmetry of this problem with respect to 

x : the function ),( zxVy  is an even function, ),( zxΦ  is an odd function with respect to x . This 

means that functions ),( zxVy  and ),( zxΦ  satisfy additional boundary conditions: 

 0)0,(,0:0 =Φ=
∂

∂
= x

x
V

z y .        (2.149) 

Therefore, problem (2.142)-(2.147) can be solved by means of Fourier cosine and Fourier 

sine transforms (see [3]). We apply the Fourier cosine transform with respect to x  to equation 

(2.142) and to yV   in boundary condition (2.144) and the Fourier sine transform to equation 

(2.143) and to z∂Φ∂ /  in boundary condition (2.145). The Fourier cosine and sine transforms of 

the functions ),( zxVy  and ),( zxΦ are defined as follows:   

∫
∞

=
0

cos),(2),( dxxzxVzV y
c

y λ
π

λ ,     (2.150) 

∫
∞

Φ=Φ
0

sin),(2),( dxxzxzs λ
π

λ .     (2.151) 

As a result, we obtain the following system of ordinary differential equations for unknown 

functions ),( zV c
y λ , ),( zs λΦ : 

02
2

2
2 =Φλ+−+λ− sc

y

c
y

y HaVHa
dz
Vd

V ,     (2.152) 
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02

2
2 =λ+

Φ
+Φλ− c

y

s
s VHa

dz
d .     (2.153) 

We also apply transforms (2.150) and (2.151) to boundary conditions (2.144) and (2.145): 

,121 sin2sin2,0:0 LDD
zd

dVz
s

c
y λπλπ +=

Φ
== ;                                     (2.154) 

 ,0,: →Φ∞→ sc
yVz       (2.155) 

where  ),0,([)],0,1([ 1
01

2
0

1 LFADFAD −
−

=−=
π
χχ

π
χ

                                                    (2.156) 

 
x

LF
∂
Φ∂

=)0,( 1   at  ,1Lx =  0=z , 
x

F
∂
Φ∂

=)0,1(     at 1=x ,   0=z ,     (2.157) 

are unknown constants.  

The solution of the problem (2.152)-(2.155) is represented in the form: 

( )zkzks ekekz 12
2122

1),( +=Φ
λ

λ  ],sin2sin2[ ,121 LDD λπλπ +     (2.158)  

( )zkzkc eezV 21

2
1),( −=
λ

λ ]sin2sin2[ ,121 LDD λπλπ + ,    (2.159) 

where  

       )( 22
1 µµλ ++−=k   (2.160) 

 )( 22
2 µµλ −+−=k ,    (2.161) 

and 
Ha=µ2 .    (2.162)

   

Applying the inverse Fourier sine and cosine transforms to formulae (2.158) and (2.159), we  

obtain the solution of problem (2.142)-(2.147), containing unknown constants F(1,0) and )0,( 1LF  

as follows: 

( ) ++=Φ ∫
∞

λλ
λ
λ xdekekDzx zkzk sinsin),(

0
2211

12

( ) λλ
λ
λ

xd
L

ekekD zkzk sin
sin

0
2

1
212

12∫
∞

++ ,  (2.163) 
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( ) +−= ∫
∞

λλ
λ
λ xdeeDzxV zkzk

y cossin),(
0

1
21  

+ ( ) .cos
sin

0

1
2

21 λλ
λ
λ

xd
L

eeD zkzk∫
∞

−  (2.164) 

The components xj  and zj  of the induced current density are obtained using the formula:  

  ⎥⎦
⎤

⎢⎣
⎡ ×+Φ−= BVzxgradj

~~
)~,~(~~ rrr

σ , (2.165) 

where    

yy ezxVV rr
)~,~(~~

= , (2.166) 

zy eBezxBB i
y

rrr
0)~,~(~~

+= . (2.167) 

In the dimensionless quantities, formula (2.165) can be written in the form : 

            BVHazxgradj
rrr

×+Φ−= ),( ,   (2.168) 

where  

yy ezxVV rr
),(= ,   (2.169) 

zy eezxBB i
y

rrr
+= ),( .   (2.170) 

Substituting  (2.169) and (2.170) into (2.168) we obtain: 

xezxHaVzxgradj y
rr

),(),( +Φ−= .    (2.171) 

It follows from (1.168), (1.169) and (1.170 ) that  

),( zxHaV
x

j yx +
∂
Φ∂

−=                    (2.172) 

 and  

z
jz ∂

Φ∂
−= .       (2.173) 

Now using formulae  (2.160), (2.161), (2.162), (2.163) , (2.164)  and (2.172) we get:  

                       

         ( ) 2
0

211
cossin

21 DdxekekDj zkzk
x −+−= ∫

∞

λ
λ

λλ ( ) ,
cossin 1

0
21

21 λ
λ

λλ
d

xL
ekek zkzk∫

∞

+  (2.174) 

         ( ) 2
0

1 sinsin21 DxdeeDj zkzk
z −+−= ∫

∞

λλλ ( ) λλλ xdLee zkzk sinsin 1
0

21∫
∞

+ .                    (2.175) 

For the evaluation of unknown constants )0,(),0,1( 1LFF  or 21, DD  in formulae (2.163), (2.164) 

(2.174) and (2.175) it is necessary to use integral (2.163) and evaluate the limit as follows: 
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   =)0,1(F ( ) 2
0

2101
cossinlim 12 DdekekD zkzk

z
++∫

∞

+→
λ

λ
λλ ( ) λ

λ
λλ

d
L

ekek zkzk

z ∫
∞

+→
+

0

1
210

cossin
lim 12  

                                                                                                                                            (2.176) 

In addition, a similar limit for )0,( 1LF should be evaluated. Note that the partial derivatives with 

respect to x  of (2.163) can be calculated under the integral sign in (2.163) in the region 

+∞<≤+∞<≤< xzz 0,0 0 . This integral is majorized in this region. However, if we substitute 

0=z  under the same integral sign in (2.176), we obtain the divergent integral. In fact this 

integral converges only in the sense of Abel (see [3]). For example, for the first integral on the 

right hand side in (2.176), we obtain: 

  λ
λ
λµλλ

λ
λµλ δλ

δ
dedI 2sinlim2sin 22

00

22

0
+=+≡ −∞

+→

∞

∫∫  (2.177) 

or, after evident transformations 

∫∫
∞

−

+→

∞
−

+→
+

++
≡

0
0

0
22

2

0
.2sinlim2sinlim λλλ

λ
λ

λµλ

µ δλ

δ

δλ

δ
dedeI  (2.178) 

The first integral on the right hand side of (2.178) converges in the usual sense, but the 

second integral converges only in the sense of Abel and equal to ½ (see [3]). However, such 

method gives the solution which tends to zero as the Hartmann number Ha  tends to infinity. But 

this fact contradicts the physical sense of the problem. Therefore, it is necessary to transform 

integral (2.163) to such a form that after passing to the limit as 0+→z  we would obtain the 

convergence of this integral in the usual sense.   

For this purpose we use the following formulae: 

 ( )22

0
122

cos
22

azK
az

zdae z +µ
+

µ
=λλ∫

∞
µ+λ− , (2.179) 

( ) ( )∫
∞

+−
⎥
⎦

⎤
⎢
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⎡
+−+
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0

22
1

22
222
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22

22 cos
22

azKazK
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z
az

dae z µµµµλλµλ µλ  ,   (2.180) 

where 0≥a , 0>z  and  )(zK ν is the modified Bessel function of the second kind of order   ν  

(ν =1, 2). As a result, we obtain (for the details see [6] and [7]): 

  

        
( )

+
+

+
⋅−= ∫

+

−

1

1
22

22
1

1[),(
x

x
y dt

tz

tzKDzshzzxV µ
µµ

( )
],

1

1
22

22
1

2 ∫
+

− +

+Lx

Lx

dt
tz

tzK
D

µ  (2.181) 

        

       [ ] ( )zxVxLFxLFDxFxFDzchzxj yx ,)]}()([)1()1({),( 1121 µµ +−−++−−+= , (2.182) 
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where  

        ( ) ( ) dttzKtzK
tz

z
tz

aF
a

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−+

++
=

0

22
1

22
222

2

22
)( µµµµ . (2.183) 

 

The evaluation of integral (2.175) gives: 

  

     [ ]),,()1,,(),( 121 LzxGDzxGDzchzzxjz +⋅= µµ ,   (2.184)                   

                                                                                                                                       

    
( ) ( )
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)(

)(
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)(
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1
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                            (2.185) 

We transform ∂Φ/∂x, using formulae (2.175), (2.179), and  (2.180) :  
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1 µµµ . (2.186) 

 

The integrals on the right hand side of formula (2.186)  diverge if .0=z  

In order to overcome this difficulty, we perform the following transformation. First, we use  

the following substitution: 

 

ξ= zt ,  ξ= zddt .               (2.187) 

It follows from formula (2.186) that  
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( ) ( )
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In order to pass to the limit  in (2.186) as 0+→z we use the following formula : 

 
n

n z
nzK ⎟

⎠
⎞

⎜
⎝
⎛−≈

2)!1(
2
1)( , ,...3,2,1=n  at 0+→z , 

i.e.                          
z

zK 1)(1 ≈ , 22
2)(
z

zK ≈  at 0+→z .                                             (2.189) 

As a result, we obtain from formula (2.188) that 
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The second and the last limits on the right hand side of formula (2.190) are equal to zero, but 

the first and the third limits give undefined expressions of the form 
0
0  and that is mainly because 

of the following equality : 
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Consequently, from formula (2.190) we obtain: 
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It follows from (2.156) and (2.192) that  

  

    DF
2
1)0,1( −= + 2

1

2

1
2

L
D
−

. (2.193) 

 

Similarly, for )0,( 1LF  we obtain: 

 

 =)0,( 1LF .
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                                                            (2.194) 

We remind that [see formula (2.156)]  

 

                  )],0,1([0
1 FAD −=

π
χ

 )].0,([ 1
01

2 LFAD −
−

=
π
χχ

                                       (2.195)   

 

Consequently, formulae (2.193) and (2.194) represent the system of two equations for the two 

unknown constants )0,1(F  and )0,( 1LF ,  i.e. for the two unknown constants 1D  and  ..2D  

Substituting these constants into formulae (2.163), (2.164), (2.174) and (2.175), we obtain the 

solution of problem (2.142)-(2.147). 
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                                              Chapter 3 
               EVALUATION OF IMPROPER INTEGRAL  
 

The solutions of certain problems about MHD flow of conducting fluid in the half space are 

expressed in terms of improper integrals of the product of some meromorphic function and the 

function xba λλλ coscos)exp( 22 +− . Here 0>a  and 0>b  are some parameters, 0>x  is the 

x-coordinate in Cartesian coordinate system (see [6], [7]). It is difficult to calculate these 

integrals numerically since the integrands are strongly oscillating at large x.  

In this chapter these integrals are transformed into integrals of monotone functions using the 

convolution theorem for product of two Fourier cosine transforms. 

 

 

3.1 THE TRANSFORMATION OF INTEGRAL OF PRODUCT OF A  MEROMORPHIC 

FUNCTION AND THE FUNCTION  xba λλλ coscos)exp( 22 +−  

 

We consider the improper integral of the form 

λ
πλ

λλ
λ
λ λ dxe

Q
P ba

m

n

4

coscos
)(
)(

2
20

2

2
22

−

+−
∞

∫ ,                                                                         (3.1) 

where )( 2λnP , )( 2λmQ  are polynomials of degrees n  and m , respectively, 0,0, >>≥ banm , 

0>x  are some positive parameters. The point 2/πλ =  is the removable singularity of the 

integrand in (3.1), because 0cos =λ  at 2/πλ = in the numerator of the integrand. At large x  

the integrand in formula (3.1) strongly oscillates so that it is difficult to calculate of this integral 

numerically. 

We suppose that all zeros of polynomial )( 2λQ  are simple and have the form: 22
kk a−=λ , 

nk ,...,3,2,1 L= . 

 Let  

∫
∞

=
0

cos)(2)( xdxxfFc λ
π

λ                                                                                    (3.2) 

be the Fourier cosine transform of the function )(xf .  

We use the following 
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Theorem (see [4]): 

If )(λcF  and )(λcΦ  are the Fourier cosine transforms of functions )(xf and )(xϕ , respectively, 

then 

[ ] ξξξξϕλλλλ dxfxfxdF cc ∫∫
∞∞

++−=Φ
00

)()()(
2
1cos)()( .                              (3.3) 

We define the functions )(λcF and )(λcΦ by the formulae: 
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To obtain the functions )(xϕ , )(xf  it is necessary to evaluate the integrals: 
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For evaluation of 2I  we use the integral known in the literature: 
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where )(0 zK  is the modified Bessel function of order 0 of the second kind. 

Differentiating formula (3.7) with respect to a  we calculate 2I : 
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where )(1 zK  is the modified Bessel function of order 1 of the second kind. 

For evaluation of integral 1I  we use the residue theorem (from [4]): 
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It is assumed here that )(zϕ  and )(zψ  are analytic functions at point 0z  and in some small 

neighbourhood where 0)( 0 =zψ , 0)( 0 ≠′ zψ . It follows from (3.9), (3.10) that 
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where )1( xsign −  means the sign of )1( x− . 

 Substituting (3.8) and (3.11) into (3.3), using (3.1) and (3.4) and taking into account that  
22 )1(1 xx −=− , we transform integral (3.1) into integral of non-oscillating function: 
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where )(ξϕ  is given by formula (3.11). 

Similarly, we can transform each integral of the form 
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into the right-hand side of formula (3.12) under the condition, that integral (3.13) converges and  

∫
∞

=
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Let us consider the integral  

∫
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with oscillatory function xλcos at large x . 

Here  x>0, z>0 are some positive parameters. It follows from  
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(3.4), (3.8), (3.11) that: 
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is the Heaviside step function, 
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Substituting (3.16), (3.17) and (3.19) into (3.3) we obtain: 
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Integral  (3.20) can be easily evaluated using package “Mathematica” for all values of the 

parameters 0≥x  and 0≥z . As it can be seen from formula (3.20), the advantages of these 

transformations are: 

1. The parameter x  goes from an argument of oscillatory function cosine into the 

argument of the monotone Bessel function 1K ; 

2. The limits of the integration are changed to the limits in the bounded region 10 ≤≤ ξ . 

 

3.2 APPLICATIONS TO SOME MHD PROBLEMS 

 

The integrals (3.12) and (3.20) are used to evaluate or transform the solution of problems 

about MHD flows arising due to roughness of the surface (see [12], [13]). 

Consider the following problem. 
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A conducting fluid is located in the half space +∞<<∞−> yxz ~,~,0~ . The external magnetic 

field has the form  

z
e eBB rr

0= .                                                                                                             (3.21) 

The boundary 0~ =z  is not conducting. A steady current flows with the density xejj rr
0=  in 

the direction of the x axis. If the surface 0~ =z  is ideally smooth then the flow is absent. Suppose 

that roughness on the surface 0~ =z  has the form  

( )xLxfz ~)~(~~~
0 −= ηχ ,  +∞<<∞− y~ ,                                                                  (3.22) 

where the height of the surface 0
~χ  is small and )( xL −η  is the Heaviside step function (see 

Fig.10))  where the particular case of )~(~ xf  given by formula )()2/~cos(~~
0 xLLxz −⋅= ηπχ ). In 

this case the full current is equal to )z,x(jjj ~~
0

rrr
+=  and the flow of the fluid with the velocity 

yy e(y,z)VV rr
=  arises in the direction opposite to the y~  axis (see Fig.10). 
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Figure 10. The geometry of the flow in the case of full current. 

 

In the dimensionless quantities the MHD equations and boundary conditions, which we 

transform from the surface )~(~~ xfz =  to the surface 0~ =z  at the condition that 0
~χ  is small, have 

the form (see [2]): 

 

0/2 =∂Φ∂⋅+−∆ xHaVHaV yy ,                                                                        (3.23) 

xVHa y ∂∂⋅=∆Φ /  ,                                                                                            (3.24) 

:0=z 0=yV , [ ] ( )dxdfxFAz /)0,(/ 0 ⋅+−=∂Φ∂ χ ,                                           (3.25) 

0,0:22 →Φ→∞→+ yVzx ,                                                                       (3.26) 
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where 2222 // zx ∂∂+∂∂=∆ , ),( zxΦ  is the potential of current, ρνσ /0 LBHa =  is the 

Hartmann number, )/(2
0 ρνσνLjA = , L/~

00 χχ =   and νρσ ,,  are, respectively, the 

conductivity, the density and the viscosity of the fluid and  

0

)0,(
=∂

Φ∂
=

zx
xF .                                                                                                  (3.27) 

Problem (3.23) – (3.26) is solved in [2] when the product dxdfxF /)0,(  is neglected in 

boundary condition (3.25), i.e. at the assumption that this product is also  small. If the function 

)(xf is given by 

)1()2/cos()( 0 xxxf −⋅= ηπχ                                                                             (3.28) 

then the solution has the form 
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It follows from (3.30) that the components of current xy ezxHaVgradj rr
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We can transform ),( zxVy , xj  and zj  using integral (3.20): 
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π
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Integrals (3.34), (3.36), (3.37) are more suitable for calculations using package 

“Mathematica”, than integrals (3.29), (3.32), (3.33). 

In paper [13] the problem (3.23) – (3.26) is solved taking into account the product 

dxdfxF /)0,(  in boundary condition for the case where 

[ ])1()1()( 0 −−+= xxxf ηηχ .                                                                         (3.38) 

Then  

[ ])1()1()( −−+=′ xxxf δδ ,                                                                              (3.39) 

where )~(xδ  is the Dirac delta function. 

In this case the solution of the problem (3.23) – (3.26) has the form: 
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Components of current xy ezxHaVgradj rr
),(+Φ−=  have the form 
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In order to transform the given solution it is necessary to use the integral which we obtain by 

differentiating formula (3.28) with respect to parameter a  and substituting za = , µ=b , ax = : 
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where )(2 zK  is the modified Bessel function of second kind. 

Substituting ta =  in (3.45) and integrating with respect to t  from 0=t  to at = ,  

we obtain: 
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Similar transformations with formula (3.28) gives: 
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Using formulae (3.46), (3.48) we transform integrals (3.39), (3.43) to the form of integrals of 

non-oscillatory functions: 
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where )(aF  is given by formula (3.47). Using formula (3.28) one can evaluate integral (3.44): 
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Formula (3.51) allows one to obtain the asymptotic of the component ),( zxjz  at 

∞→= Ha5.0µ . We now use the formulae which hold at ∞→µ , 0>z , 0>l : 

zezch µµ 5.0≈ ,   le
l

lK µ

µ
πµ −≈

2
)(1 . (3.52) 

Then, according to (3.51), component ),( zxjz  decreases at ∞→µ  everywhere, except two 

regions bounded by the parabolas: 

( ) 11 22 =−−+ zxz µµ ;   ( ) 11 22 =−++ zxz µµ , (3.53) 

i.e. by parabolas 
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and we can replace 02/1 ≈µ  at ∞→µ  in formula (3.54). Inside the regions bounded by 

parabolas (3.54), the component ),( zxjz  tends to infinity in accordance with formula: 

zjz /µ≈ , (3.55) 

and it follows from (3.51) – (3.53) that: 
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The convolution theorem for product of two Fourier cosine transforms can be used for 

transformation of one class of integrals containing oscillatory functions to integrals of monotonic 

functions. These results are applied for transformation of solution of some MHD problems 

arising in half space 0≥z  as a result of roughness of the surface 0=z . The various boundary 

layers for induced current in a strong magnetic field are found in this problem. 
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                                     Chapter 4 
CORROSION OF EUROFER STEEL AND MAGNETIC CONFINEMENT 
OF PLASMA IN REACTORS  

     

Search of new energy sources draws the increasing attention of scientists of many 

countries and that is why they are trying to drag and control the fusion of D-T (Deutrium-

Tritium) plasma inside of a Tokamak reactor (Tokamak is a device used in nuclear fusion 

research for magnetic confinement of plasma and it consists of a complex system of magnetic 

fields that confine the plasma in a hollow doughnut-shaped container). The D-T reaction and its 

related use in reactors are briefly described below. 

         During my seven year staying period in Riga, Latvia (one of the main MHD application 

centers currently existing in Europe), I have had access to some interesting sites related to MHD 

study such as the Physics Institute in Salaspils where I have seen the three recently planned 

experimental sessions (each 2000 hours long) which have been successfully completed. New 

results concerning the profile of corrosion are obtained. I had the opportunity to participate in 

some PAMIR MHD International Conferences (4th and 5th and the 7th PAMIR International 

Conferences). This led to the writing of Chapter 4 illustrating the mentioned above (see [1], [32], 

[34], [35], [36], [37], [40], [49], [56] and [64]) 

   

4.1 Deuterium-Tritium reaction and its use in reactors. 

During this century, the world's population will double from six billion people and it will 

rise to ten billions by 2050. More importantly, a lot more energy will be used than we use today, 

energy consumption will probably be two times higher by the middle of the century with an even 

stronger increase in electricity consumption (see Table 1 below). 

 

 

 

 

 

 

 

 

Table 1. Energy consumption by the year 2007 [Mtoe (Million Tonnes Of Oil Equivalent)] 

(The exact values are respectively 3500, 2200, 2100, 1200, 700, and 200) 
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Fusion is the nuclear process that powers the sun and other stars. Under the very high 

temperature conditions, hydrogen atom becomes separated into its fundamental components- 

electrons and nuclei, and form a new state of matter called "Plasma". Finally the nuclei fuse 

produces Helium and gives energy. Scientists from all European member states and G8 countries 

associated with the EURATOM fusion program have been trying to reproduce this process on 

Earth. The fusion of Deutrium and Tritium, two Hydrogen isotopes would need a temperatue of 

100 million ºC. This procedure can be done inside of a reactor using a Magnetic confinement  

that consists  of heating on the Plasma by Joule effect and by injection of energetic particle 

beams and radio-frequency waves into the plasma and its thermal isolation from the material 

walls by strong magnetic fields [1], [32], [33], [57], [49]. 

 Mainly, three types of liquid metal blankets are proposed for this purpose: 

1) ( SCLL), the Self-Cooled Lithium-Lead blanket  

2) (WCLL), the Water-Cooled Lithium-Lead blanket  

3) (HCLL), the Helium-Cooled Lithium-Lead blanket  [1], [33], [57], [49]. 

 

EUROFER-97 steel has been tested as the best structural materials of the blanket in a 

reactor. It is supposed to be used as the basic construction material for the production of the 

HCLL (Helium-Cooled Lithium-Lead) Blanket (see Fig. 11 below).  

  
 Figure 11. HCLL Blanket image. 

 

4.1.1 The Deuterium-Tritium (D-T) reaction and its products 

The reaction is represented by the following relation 

                                                                         (4.1)  

and is simply represented in Fig. 12 below. 
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Figure 12. Deuterium-Tritium (D-T) reaction and its products 

 

The fusion energy ( 17.6 MeV ) appears as kinetic energy of neutrons (14.1 MeV ) that need to 

be saved inside of a reactor using lead, and of Alphas ( 3.5MeV ) that are evacuated as ashes 

from the chimney of a certain reactor [1], [36], [37], and [64].   

Deutrium is generously present in seawater but Tritium is a radioactive element rarely existent 

naturally on Earth. However it can be bred inside the reactor using the reaction of the neutrons in 

a blanket containing lithium, an abundant light metal in the nature as: 

Li6 + n ---- T + He4 + 4.8 MeV        (4.2) 

Li7 + n ---- T + He4 – 2.5 MeV        (4.3) 

Ten grams of deuterium which can be extrated from 500 litres of water and 15 gr of tritium 

produced from 30 gr the lithium would produce enough fuel for the lifetime electricity needs of a 

person in an industrialised country. In other words, these two resources are practically available. 

This is another advantage of D-T Fusion (see [1], [32], [39], [35], [49], [55], [56], [64]).    

 

4.1.2 Progress of the D-T plasmas confinement inside of reactors. 

Europe, the world leader in this field, has already undertaken several research and development 

projects dealing with fusion (as an example, we mention the JET project (the Joint European 

Torus)). The largest Tokamak in the world will be constructed in Culham (UK). Despite the 

progress continuously achieved on JET, it is clear that a larger and more powerful device would 

be necessary to demonstrate the feasibility of nuclear fusion energy on a reactor scale. The future 

of fusion lies on ITER (The International Thermonuclear Experimental Reactor) whose purpose 

is to produce a detailed, complete, and fully integrated engineering design of ITER and all 

technical data necessary for future decisions and results that come out of ITER (see [1], [23], 

[33], [34], [37], [57], [49], [64]). 



 66

ITER will be constructed using the results of JET with the same concepts and the same Toroidal 

shape  but on a much larger scale (see Fig. 13 below). 

 
Figure 13. The relative sizes of JET and ITER devices (see [1]). 

 

The plasma volume of JET and ITER are 100 m2 and 800 m2, respectively.  In the case of 

JET, losses of energy are compensated by a source of outside energy. One of the advantages of 

ITER that it will not depend on power supply from the outside. The deuterium-tritium (D-T) 

experiments on the Tokamak Fusion Test Reactor (TFTR) have yielded unique information on 

the confinement, heating and alpha particle physics of reactor scale D-T plasmas as well as the 

first experience with tritium handling and D-T neutron activation in an experimental 

environment. Toroidal and poloidal field coils are used and these generate strong magnetic field 

(typically about 5 tesla, which is about 100,000 times the earth’s magnetic field) that confines 

the plasma and stops it touching the walls of the vacuum vessel. The D-T plasmas produced and 

studied in TFTR have peak fusion power of 10.7 MW with central fusion power densities of 2.8 

MWm-3 which is similar to the 1.7 MWm-3 fusion power densities projected for 1,500 MW 

operation of (ITER). Detailed alpha particle measurements have confirmed alpha confinement 

and heating of the D-T plasma by alpha particles as expected. Advanced Tokamak operating 

modes have been produced in TFTR which have the potential to double the fusion power to ∼20 

MW which would also allow the study of alpha particle effects under conditions very similar to 

those projected for ITER. TFTR is also investigating two new innovations, alpha channeling and 

controlled transport barriers, which have the potential to significantly improve the standard 

advanced Tokamak.  

This strategy included three steps beyond JET [35], [36], [37], [61]:  

1) ITER is  a liquid lithium self-cooled breeding blanket aiming at demonstrating the controlled 

burn  of deuterium-tritium plasmas with steady state as an ultimate goal on a scale of a power 
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plant and  of a number of key technologies. ITER project will be ready approximately by the end 

of year 2050 in Caradache, south of France.  

2) DEMO is the water cooled blanket reactor aiming at the final demonstration of all the relevant  

    technologies, tritium self-sufficiency and electricity production. The design of DEMO suppose 

to start in 2035s and its operation in 2060s. A steady-state Tokamak is minimized to have 5.8 m 

of major radius with 2.3 GW of fusion power with energy amplification Q exceeding 30. 

3) PROTO is the first proto-type power station with complete reactor and ancillary systems that 

would   include all the remaining technological developments as well as generating electricity on 

a commercial scale, under the assumption that its design and construction would be started in 

2050s and its operation in 2070s (see [1], [33], [35], [49], [49],  [57], [64]).  

 
 
4.1.3 Major reasons of the use of fusion energy 
 
  Maybe at the end of this century, fusion would be considered as a new reliable long-term 

energy source that becomes a part of humans’ lives due to such important reasons: 

1. The fuels are abundant everywhere and for a much cheaper price in comparison to the present  

price.    

2. The fusion process is very clean since it does not contribute to the greenhouse effect, to the 

spread of acid rain, or to radioactive particles that could take many years to remove. 

3. D-T fusion power station can be made very safe due to two main reasons: 

     (i) a large uncontrolled release of energy would be impossible since the amounts of deuterium  

         and tritium fuels inside the reactor will be very small;  

    (ii) the fusion reactions can be stopped in a very short time if an accident occurs, since the 

fuels are introduced inside the reactor while they are burned.  

 

 

 

4.2 Analysis of MHD Phenomena Influence on the Corrosion of EUROFER 

Steel in  the Pb-17Li Flow  
 In the second part of this thesis (section 2.2) the MHD flow of a conducting fluid  located 

in the half space +∞<<−∞> yxz ~,~,0~  with the roughness of the surface in the form 

)2/~cos(~~
0 Lxz πχ=  is considered. The external magnetic field is z

c eBB 0= . Corrosion of 

EUROFER steel in the Pb-17Li flow can be considered as a consequence of roughness on the 

surface  of the walls where the Hartmann surfaces flows are perpendicular to the flow as well. 

Roughness is modelled by the formula 
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yyZZ αχ cos)( 0== ,          (4.4) 

where 0χ  is the amplitude, α = La /π characterizes the scale, L  is the width of hills and 

depressions, and Ha  is the Hartmann number. The value a =3 mm is chosen as a typical 

dimension. Here v =1.1× sm /10 27− ; mS /1073.0 6×=σ  and thus for the mass transfer problem 

DFe = (6.4) ×  10-9m2/s   more than 6×  10-9m2/s as it was assumed in [1], [55], and [56]) .  

 

 Despite the fact that corrosion of steel in the Pb-17Li  flow is a small but important part of 

the reactor work, we notify the importance and newest results obtained on the corrosion process 

in the Physics Institute in Latvia [55], [56]. For instance, the first experimental 2000 hours’ 

session for investigating the influence of magnetic field on the corrosion of EUROFER steel in 

the flow of Pb-17Li has been successfully completed. During the whole session the following 

conditions were maintained at the experimental facility: the minimum temperature in the cold 

part of the loop Tmin = (350 ± 20) 0C; the temperature in the test section TTS = (550 ± 10) 0C; the 

mean flow velocity in the test section Umean = (5 ± 0.5) cm/s; the magnetic field strength B = 1.7 

T. The residue of the melt in a pure Li melt at the temperature of 4000C was washed off from the 

samples removed from the test section and the samples were further weighed. These 

measurements showed that mass losses for corroded samples located in the zone with a magnetic 

field are approximately over two times greater when compared with those located in the zone 

outside the magnetic field (B = 0). This fact shows a significant intensification of the corrosion 

by the magnetic field. Moreover, it should be stressed that due to insufficient heat isolation of the 

test section the temperature of the molten metal varied over the length of the test section: at the 

zone where B = 0 (inlet) it was by ~ 15 °C higher than at the test section (outlet) with the 

magnetic field where T = 550 °C. This experiment was performed on different samples with flow 

velocities of 2,5 cm/s and 5cm/s and magnetic current of 0, 1,5 and 1.7 T. Results gained in these 

investigations demonstrated essential influence of magnetic field on the corrosion processes both 

in the intensity of corrosion and its character (see Fig. 14). 
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Figure 14. Comparison of corrosion rate of EUROFER samples in magnetic field and without magnetic 
field. 

  
Visual observations of the test samples showed sufficient distinctions in relief on the 

sample surfaces. In particular, samples suffering corrosion from the zone with B = 0 are rather 

smooth and, on the contrary, the sample surfaces from the zone exposed to the magnetic field 

resemble a regular enough wave-like pattern with furrows oriented in the melt flow direction. 

Such pattern is typical only of the Hartmann (perpendicular to the magnetic field) walls. The side 

walls remain rather smooth. The same can be attributed to the outer sample surfaces, which 

exhibit traces of corrosion caused by the EUROFER interaction with the melt that penetrated the 

gaps between the samples and the outer channel.  

 

The second experimental (2000 hours’ session) has been completed successfully and 

showed that the magnetic field not only generally enhanced the corrosion rate, but showed that 

magnetic field badly influences corrosion. In the case for samples located in zone (B = 0)  all 

inner surfaces of samples being subjected to the Pb-17Li flow were maintained sufficiently 

smooth, then in zone with magnetic field (B = 1.7 T) all Hartman surfaces of samples were 

covered with grooved structure oriented in the  flow direction (see [1], [49], [55], [56], [64]). The 

presence of a magnetic field  led  to  the  appearance of regular wave-like patterns on the 

corroding surfaces perpendicular to the magnetic field, which were oriented in the melt flow 

direction and that the corrosion processes on the EUROFER surfaces washed over by Pb-17Li 

and were determined by the surface orientation about the magnetic field direction  ([55], [56]),  

(see also Fig. 15 below). 
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a) B = 1,7 T, T = 5500C;  b) B = 0, T = 5700C. 
 

 

 
Figure 15.  Surface relief of EUROFER samples subjected to corrosion in Pb17Li during 2000 hours.  
 

Moreover, in the third experimental session [56] the corrosion rate h0 caused by Pb-17Li 

on the EUROFER steel was investigated and its results of the corrosion rate are shown in  Table 

below).  

Corrosion rate h0 without and with magnetic field. 

N B0=0 B0=1.8T 

h0, µ meter/year 

1 523 967 

2 458 877 

3 381 694 

 4 293 846 

5 388  726 

Table 2. Corrosion rate of EUROFER steel by Pb-17Li flow [55], [56] 

There is a hope that before the end of this century, scientists with all the technologies and studies 

available, would be able to achieve success of the ITER project. This will provide the physical 

and technological basis for the construction of a demonstration electrically generating power 

plant in the future like DEMO and PROTO . Then a new clean and cheap source of energy 

would be a part of humans’ life (see [1], [9], [28], [32]-[37] , [40] , [49] , [51], [55] , [56] , [62] , 

[70] and  [73]).  
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                             Chapter 5 

Ginzburg-Landau equation for stability analysis of shallow water in a  

    weakly non-linear regime  
 

Losses due to turbulent friction are often described in hydraulics by means of empirical 

(or semi-empirical) formulas like Chezy of Manning’s formulas [66]. In particular, the Chezy 

formula is used to represent the bottom friction force F
r

in the form 

                                             vv
h

gAc
F f rrr ρ
= ,                                                                             

where ρ is the density of the fluid, g is the acceleration due to gravity, A is the cross-sectional 

area, h is water depth, fc is the friction (or roughness) coefficient, vr is the velocity vector and 

F
r

is the friction force. The coefficient fc is estimated by means of several empirical formulas 

which can be found in the literature. One example is Colebrook formula [66] which relates fc to 

the Reynolds number of the flow.  

   Chezy formula is effectively used by hydraulic engineers for many years to estimate the 

“lumped” effect of friction in a turbulent flow. Examples include computation of flow rate and 

losses in channels or pipes and design of open channels. Chezy formula is also widely used in 

cases where more detailed knowledge of the flow field is required [50]. The coherent structures 

in wake flows are believed to appear as a final product of hydrodynamic instability of the flow 

[45]. Classical method of analysis of hydrodynamic stability is the linear stability analysis [26]. 

Linear theory can be used to find the value of the parameters of the problem for which a 

particular flow becomes unstable. However, the development of instability beyond the threshold 

cannot be described by the linear theory. Methods of weakly nonlinear theory have been applied 

in the past to different flows [8, 10, 14-16, 19, 22, 23, 26, 43, 44, 47, and 67] and usually lead to 

amplitude evolution equations for the most unstable mode. One of such equations is the complex 

Ginzburg-Landau equation. Weakly nonlinear theory is applied to quasi-two-dimensional flows 

in [22] with Rayleigh friction (internal friction is assumed to be linearly related to the velocity 

distribution). It is concluded in [22] that small variations of linear stability characteristics (in 

particular, small variations in the base flow profile) led to large changes in the Landau constant 

(the Landau constant is the real part of one of the coefficients of the Ginzburg-Landau equation).  

 

5.1 Shallow flows behind obstacles 
 

Wake flows are quasi-two-dimensional flows behind obstacles (such as islands) in which 
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the horizontal components of the velocity vector are much larger than the vertical component. A 

typical measure of shallowness of the flow is the ratio of the transverse length scale of the 

flow, D , and water depth, H . The flow is assumed to be shallow if the ratio HD /  is large 

enough: 1/ >>HD . An excellent example of shallow wake flow is discussed in [19] where the 

leaking oil from the tanker Argo Merchant shows a von Karman vortex street flow pattern. 

Experimentally observed coherent structures in shallow wakes are believed to appear as a result 

of flow instability [19], [44]. Linear stability of shallow flows is studied experimentally in [19], 

[44], [45]. It is shown in [19] that three different flow regimes can be observed in shallow wake 

flows: steady bubble, unsteady bubble and vortex street. It was found in [19] and [44] that flow 

patterns behind obstacles depend on shallow wake stability parameter HbcS f /= , where fc is 

the bottom friction coefficient and b is length scale (the diameter of the cylinder in [19]).  

Theoretical investigation of linear stability of shallow wake flows is performed in [19], 

[44], [45].  Linear stability analyses confirm that the stability characteristics of shallow water 

flows depend on the magnitude of the stability parameter S . In particular, a flow becomes more 

stable as the parameter  S increases. 

The linear stability theory can be used to determine when a particular flow becomes 

unstable. The “fate” of the disturbance just above the threshold cannot be predicted by the linear 

theory. Methods of weakly nonlinear theory are often applied to describe the evolution of the 

most unstable linear mode when the flow becomes unstable [26], and [67]. Relatively simple 

amplitude evolution equations such as the complex Ginzburg-Landau equation (CGLE) are used 

in the literature to analyze spatio-temporal dynamics of complex flows [10], [67].  The 

popularity of the CGLE is based on the following factors: (1) the model is relatively simple but 

includes such physical effects as nonlinearity and diffusion, (2) the CGLE is a scalar equation, 

(3) the CGLE can be derived (in some cases) from the equations of motion, (4) the coefficients 

of the CGLE can be obtained in closed form (in terms of integrals containing the characteristics 

of the corresponding linear stability problem), (5) the CGLE can exhibit a rich variety of 

solutions depending on the values of its coefficients.  

In many applications the CGLE (or the Landau equation) is used as a phenomenological 

model equation. In such cases the coefficients of the CGLE are obtained from experimental data.   

On the other hand, the CGLE can be derived from the equations of motion.  Examples 

include weakly nonlinear analyses of plane Poiseuille flow [67] and problems related to 

generation of waves by wind [10], shallow flows behind obstacles such as islands [44], and [45], 

rapidly decelerated flows in pipes [43] and channels [46].  

Despite the fact that the CGLE was successfully applied in practice to model spatio-

temporal dynamics of complex flows [44], [45], other sources in the literature suggest that the 
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use of weakly nonlinear theory should be limited. One such an example is introduced in paper 

[22] where linear and weakly nonlinear theory is applied to the stability analysis of quasi-two-

dimensional shear flows such as shallow water flows. It is assumed in [22] that the term 

representing friction in fluid system is of the form uf RR
rr

λ−= , where Rλ  is the coefficient of 

Rayleigh friction and ur is the velocity vector. The authors compared their theoretical predictions 

from the linear stability analysis with experimental data. Reasonable agreement was found. On 

the other hand, it is found in [22] that the Landau constant (the real part of one of the coefficients 

of the CGLE) is quite sensitive to the shape of the base flow velocity profile. As a result, it is 

concluded in [22] that it would be impossible to compare directly the theory with experiments 

since it would be difficult to determine the base flow velocity profile with accuracy up to the 

third derivative (as it is required by a weakly nonlinear theory). In particular, it is found in [22] 

that the values of the Landau constant differ by a factor of 3 for two base flow velocity profiles 

whose linear stability characteristics differ by not more than 20%.  

In the present section, linear and weakly nonlinear stability of a one-parametric family of 

shallow wake flows is investigated [15] and [16].  The parameter used in the study represents a 

slow longitudinal variation of shallow wake flow behind obstacles such as islands. In contrast to 

[22] where the internal friction is linearly related to the velocity  

distribution, a nonlinear Chezy formula [66] is used to model bottom friction.  The base flow  

profile used in [19] is adopted in our study. Calculations show that the Landau constant as well 

as other coefficients of the CGLE are not so sensitive to the shape of the base flow  

profile. Thus, it is plausible to assume that the CGLE can be used to describe spatio-temporal 

dynamics of shallow wake flows.    

 

5.2 Linear stability analysis 
 

Consider the base flow of the form 

)0),(( yUU =
r

                                                                                                           (5.1) 

where  

2

2 1( ) 1
1 cosh ( )

RU y
R yα

= −
−

.                                                                                       (5.2) 

The base flow (5.2) is suggested in [19] after careful analysis of available experimental data for 

deep water flows behind circular cylinders. The profile (5.2) is also adopted in the present study.  

The parameter R is the velocity ratio: )/()( amam UUUUR +−= , where mU is the wake 

centerline velocity and aU is the ambient velocity, and )1(sinh 1−=α . It is shown in [44] that 
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under the rigid-lid assumption the linear stability of wake flows in shallow water is described by 

the following eigenvalue problem: 

2 2
1 1 1''( ) ' 0

2y yy
SU c SU SU k U k U kUϕ ϕ ϕ⎛ ⎞− + + + − − − =⎜ ⎟

⎝ ⎠
                                                 (5.3) 

,0)(1 =±∞ϕ                                                                                                                  (5.4) 

where the perturbed stream function of the flow, ( , , )x y tψ , is assumed to be of the form 

1( , , ) ( ) exp[ ( )] . .x y t y ik x ct c cψ ϕ= − +                                                                          (5.5) 

Here 1( )yϕ is the amplitude of the normal perturbation, k  is the wavenumber, c is the wave 

speed of the perturbation, and . .c c means “complex conjugate”. The linear stability of the base 

flow (5.2) is determined by the eigenvalues, ,imrmm iccc += ,...2,1=m  of the eigenvalue 

problem (5.3), (5.4).  The flow (5.2) is linearly stable if 0<imc  for all m and linearly unstable if 

0>imc  for at least one value of m .  

   The linear stability problem (5.3), (5.4) is solved by means of a pseudospectral collocation 

method based on Chebyshev polynomials. The computational procedure is briefly described 

below (details of the numerical method can be found in [44]). The interval y−∞ < < +∞ is 

mapped onto the interval 1 1r− < <  by means of the transformation 2 arctanr y
π

= . The solution 

to (5.3), (5.4) is sought in the form 

2
1

0
( ) (1 ) ( ),

N

k k
k

r a r T rϕ
=

= −∑                                                                                    (5.6) 

where ( )kT r is the Chebyshev polynomial of degree k .The collocation points jr  are 

cosj
jr

N
π

= , .,...,1,0 Nj =                                                                                    (5.7) 

The derivatives are transformed by the chain rule: 

  

21 1

2 2
4 31 1 1

2 2 2

2 cos ,
2

4 4cos sin cos
2 2 2

d dr
dy dr
d d dr r r

drdy dr

ϕ ϕπ
π

ϕ ϕ ϕπ π π
ππ

=

= −
                                            (5.8) 

 

Substituting (5.6), (5.8) into (5.3), (5.4) and evaluating the function 1( )rϕ and its derivatives at 

the collocation points (5.7) we obtain the following generalized eigenvalue problem: 

( ) 0B C aλ− =                                                                                                                    (5.9) 

where B  and C  are complex-valued matrices and  

1 2( ... ) .T
Na a a a=     
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Problem (5.9) is solved numerically by means of the IMSL routine DGVCCG. The critical 

values of the stability parameters ,k S and c for different values of R  are given in Table 3 ( here 

SS
kc max= ). 

 

 

 
 

 

 

 

Table 3. Critical values of of the stability parameter S . 

 

5.3 Weakly nonlinear analysis 
 

Following [67], in this section the main steps of the derivation of the amplitude evolution 

equation for the most unstable mode are briefly described. Consider the two-dimensional shallow 

water equations of the form : 

,0=
∂
∂

+
∂
∂

y
v

x
u                                                                                                             (5.10) 

2 2 0,
2

fcu u u pu v u u v
t x y x H

∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂
                                                                   (5.11) 

2 2 0,
2

fcv v v pu v v u v
t x y y H

∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂
                                                                   (5.12) 

where u and v are the depth-averaged velocity components in the x and y directions, 

respectively, H is water depth, p is the pressure.  

Suppose that  

,
y

u
∂
∂

=
ψ

x
v

∂
∂

−=
ψ ,                                                                                                   (5.13) 

where ( , , )x y tψ  is the stream function of the flow. Eliminating the pressure and using 

 (5.13) one can rewrite the system (5.10) – (5.12) in the form 

( ) ( ) ( )

( )

2 2

2 2

2 2

2

2 0
2

f
y x x yt x y

f
y yy x y xy x xx

x y

c
h

c

h

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ
ψ ψ

∆ + ∆ − ∆ + ∆ +

+ + + =
+

                                                                     (5.14) 

Consider a perturbed solution to (4.14) of the form 

 

R  k  cS  c  

-0.3 0.892      0.11819            0.69814 
-0.4 0.909      0.15689            0.65964
-0.5 0.926      0.19548            0.62394 
-0.6 0.944         0.23409            0.59083 
-0.7 0.962      0.27286            0.55925 
-0.8 0.980      0.31189            0.52882 
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2
0 1 2( ) ( , , ) ( , , ) ...y x y t x y tψ ψ εψ ε ψ= + + +                                                                (5.15) 

The parameter ε describes a small deviation of the shallow wake stability parameter S from  

the critical value cS : 

2(1 )cS S ε= −                                                                                                        (5.16) 

Weakly nonlinear theory is applicable in a small neighborhood of the critical point  

(see Fig. 16): 

 

 

 

 

 

 

 

 

 

Figure 16.  Neighborhood of the critical point in a weakly nonlinear Region in the ),( Sk -plane 

                   (shown as dashed rectangle) where weakly nonlinear theory is  applicable. 
 

The amplitude evolution equation for the most unstable mode is derived by means of the 

method of multiple scales.  Following [67], the following slow time and longitudinal variables 

are introduced: 

),(,2 tcxt g−== εξετ                                                                                    (5.17) 

where gc is the group velocity.   

   The function 1ψ in [15] is sought in the form 

1 1( , , ) ( , ) ( ) exp[ ( )] . .x y t A y ik x ct c cψ ξ τ ϕ= − +                                                           (5.18) 

where A  is a slowly varying amplitude.  

    The linear stability problem (5.3), (5.4) is obtained by substituting (5.15) – (5.18) into (5.14), 

collecting the terms containing ε  and using (5.5). Collecting the terms containing 2ε the 

following equation is obtained: 

 

kkc

stable S

unstable 

Sc
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2 1 1 1 0 1 1

1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 0 0

1 1

( ) 2 (3 )

( ) ( )

[( ) 2 2

2 ]

g xx yy x t y xx yy

y xxx yyx x xxy yyy yyy

xx yy y x y yy y y yy

x xy

L c

S

ξ ξ ξ ξ ξ

ξ

ξ

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ

= + − − +

− + + + +

− + + + −

+

                                               (5.19)                             

Here  

0 0

0 0

( )

( 2 ) 2 .
2

xxt yyt y xxx yyx yyy x

f
xx yy y y yy

L

c
h

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

= + + + −

⎡ ⎤+ + +⎣ ⎦
 

 

Similarly, the equation of order 3ε has the form 

 

3 2 1 2 1 1 2

1 0 2 1 1 2 1

2 1 1 1 2 1 0 2

2 1 1 1 1 2 1 1 1 2

2 1 1 1 2 0

( 2 ) 2

3 ( ) ( 3 )

( ) ( )

2

g xx x yy xx yy x t

t y xx x y xxx xx

y xxx yyx y yyx yy y yy

x xxy xxy x xxy x xy x yyy

x yyy yyy

L c ξ ξξ ξ τ τ ξ

ξξ ξ ξξ ξ

ξ ξ

ξ ξ

ξ ξ

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

= + + − − −

− − + − +

− + − − −

+ + + + +

+ + +
2

2 1 1 2 1 1 1 0

2 1 1 1 0 2 1 0 1 0

0 1 0 1 1 2 1 2 1 2

1 1 2 1 1 1

[ ( ) 2 1.5 /

2 2

2 2 2

2 2 2 ]

yyy

y xx yy yy y xx x y

xx y x y y x y xx y

yy y y yy yy y y yy x xy

x yy x xy xy

S

ξ ξ ξξ

ξ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

− + + +

+ + + + −

− − + − +

+ + +

 

                                                                                                                            (5.20) 

The function 2ψ is sought in the form 

* (0) (1)
2 2 2

2 (2)
2

( ) ( ) exp[ ( )]

( )exp[2 ( )] . .

AA y A y ik x ct

A y ik x ct c c
ξψ ϕ ϕ

ϕ

= + −

+ − +
                                                                 (5.21) 

The function (0)
2 ( )yϕ is the solution of the following boundary value problem 

(0) (0) * *
0 2 0 2 1 1 1 1

* * 2 * 2 *
1 1 1 1 1 1 1 1

* *
1 1 1 1

2 [ ] [

] [

2 2 ],

y y yy y yy y yy

yyy yyy y y

y yy yy y

S u u ik

S k k

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+ = −

+ − − +

+ +

                                                                   (5.22) 

(0)
2 ( ) 0.ϕ ±∞ =                                                                                                          (5.23) 

The function (1)
2 ( )yϕ satisfies the equation 
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(1) 3 3 (1)
0 2 0 0 2

(1) (1) 2 (1)
0 2 0 2 0 2

2 2 2
0 1 0 0

0 1

( ) ( )

[2 2 ]

( ) [ 2 3

] ,

yy yy

yy y y

g yy yy g

iku ikc ik c ik u iku

S u u k u

c u k c k u u k c

iku S

ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

− + − −

+ + −

= − + − + + −

−

                                                               (5.24) 

(1)
2 ( ) 0.ϕ ±∞ =                                                                                                             (5.25) 

The function (2)
2 ( )yϕ  is the solution of the boundary value problem 

(2) 3 3 (2)
0 2 0 0 2

(2) (2) 2 (2)
0 2 0 2 0 2

2
1 1 1 1 1 1 1 1

2( ) (8 8 2 )

[2 2 4 ]

( ) (2 3 ),

yy yy

yy y y

yyy y yy y yy y

iku ikc ik c ik u iku

S u u k u

ik S k

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

− + − −

+ + −

= − − −

                                                            (5.26) 

(2)
2 ( ) 0.ϕ ±∞ =                                                                                                           (5.27) 

The amplitude evolution equation for A  is obtained from the solvability condition for equation 

(5.20) and has the form of the complex Ginzburg-Landau equation (the equation is derived in 

detail in [44]): 
2

2
2

A AA A Aσ δ µ
τ ξ
∂ ∂

= + −
∂ ∂

                                                                                      (5.28) 

The coefficients of equation (5.28) are given by 

,,, 11

γ
µµ

γ
δ

δ
γ
σ

σ ===                                                                                         (5.29) 

where   

2
1 1 1 1( )a

yy k dyγ ϕ ϕ ϕ
+∞

−∞

= −∫ ,                                                                                         (5.30) 

2
1 1 0 1 0 1 0 1(2 2 )a

yy y yS u u k u dyσ ϕ ϕ ϕ ϕ
+∞

−∞

= + −∫ ,                                                                  (5.31) 

(1) (1) 2 2
1 1 2 0 2

2
0 0 0 1

0

[ ( ) ( 2

3 2 ) (2

3 )] ,

a
yy g g

yy g

c u k c k c

k u u iku S ikc ikc

iku US dy

δ ϕ ϕ ϕ

ϕ

+∞

−∞

= − + − −

+ + − + +

− −

∫
                                                               (5.32) 



 79

3 (2) * * (2) 3 * (2)
1 1 2 1 1 2 1 2

3 (0) *(0) (0) *(0)
1 2 2 1 2 2

(2) * * (2) (0) *(0)
2 1 1 2 1 2 2

* (2) 2 (0) *(0)
1 2 1 2 2

2 *
1

{6 2 3

( ) ( )

( )

2 2 [ ( )

3

a
y y yy y

y y yy y y

y yy yyy yyy yyy

yyy y y

ik ik ik

ik ik

ik ik ik

ik S k

k

µ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

+∞

−∞

= − +

+ + − +

+ − + +

+ − − +

+

∫

(2) 4 2 * (0) *(0)
2 1 1 0 1 2 2

* (2) (0) *(0) (2) *
1 2 1 2 2 2 1

1.5 / 2 ( )

2 2 ( ) 2 ]}
y yy y y

yy y y yy yy yy y

k u

dy

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

− + +

+ + + +

                                                             (5.33) 

In addition, one needs to calculate the adjoint eigenfunction a
1ϕ of the linear stability problem: 

0 0 1 0 0 1

3 2 2
0 0 1 1 1

( 2 )( ) '' (2 2 )( ) '

( ) [( ) '' ] 0

a a
y y

a a a

iku Su iku Su

ik u u k S ikc k

ϕ ϕ

ϕ ϕ ϕ

+ + +

− + + − =
                                                                  (5.34) 

1 ( ) 0aϕ ±∞ = .                                                                                                            (5.35) 

 The group velocity gc is given by 

 

,
2

1

I
Icg =                                                                                                                  (5.36) 

where 

2
1 0 1 1 0 0

2
0 1

[ (3

2 2 )]

yy yy

a

I u k u u

k c iku S dy

ϕ ϕ

ϕ

+∞

−∞

= − +

− −

∫  

2
2 1 1 1( )a

yyI k dyϕ ϕ ϕ
+∞

−∞

= −∫ . 

Solving boundary value problems (5.22) – (5.27), calculating a
1ϕ and gc  and evaluating integrals 

in (5.30) – (5.33) numerically, the coefficients of the CGLE (5.28) are obtained for different 

values of R . The results are summarized in Table 4. 



 80

One of the major conclusions drawn from 

weakly nonlinear analysis applied to quasi-

two-dimensional flows in [22] was the effect of 

strong dependence of the Landau constant 

rµ on the form of the base flow profile. 

Calculations presented in [22] showed that the 

values of the Landau constant differed by a 

factor of 3 for two base flow velocity profiles whose linear stability characteristics differed by 

only 20%. As a result, it was concluded in [22] that it would be impossible to apply methods of 

weakly nonlinear theory in practice since the base flow profile cannot be determined very 

precisely in experiments. In other words, it was concluded in [22] that the problem of 

determination of the Landau constant from weakly nonlinear theory is ill-posed so that small 

variations of the base flow profile lead to large changes in the Landau constant. 

 

The calculations presented in Table 3 and 4 in our paper demonstrate that the coefficients 

of the CGLE are not so sensitive to the variation of the parameter R of the base flow profile (5.2) 

as claimed in [22]. In fact, not only the Landau constant is not so sensitive to the changes in the 

profile (5.2) but all the coefficients of the CGLE do not vary too much. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R  σ  δ  µ  

-0.3 0.063 + 0.004i 0.060 – 0.206i 4.673 + 13.294i 
-0.4 0.078 + 0.003i 0.090 – 0.195i 3.796 + 10.938i
-0.5 0.090 + 0.000i 0.115 – 0.184i 3.895 + 10.119i 
-0.6 0.100 – 0.003i 0.136 – 0.172i 4.375 + 10.109i 
-0.7 0.109 – 0.007i 0.153 – 0.161i 5.149 + 10.590i 
-0.8 0.116 – 0.012i 0.167 – 0.152i 6.302 + 11.448i 

 
TABLE 4 

Coefficents of the CGLE (5.28) 
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                                                     CONCLUSIONS 

       The thesis is devoted to the analysis of factors that influence the structure and stability of 

magnetohydrodynamic (MHD) flows and shallow water flows. In particular, the effects of wall 

resistance on the flow can be described locally (taking into account roughness of the boundary) 

or globally (using semi-empirical formulas describing the effect of internal friction). Roughness 

of the bolundary can occur as a result of corrosion. Experimental results demonstrated essential 

influence of magnetic field on the corrosion process both in the intensity of corrosion and its 

character. Therefore, it is important from a practical point of view to analyze the effect of 

roughness on the structure of magnetohydrodynamic flows. This effect is evaluated in the thesis 

by solving the system of magnetohydrodynamic equations analytically (using the Fourier 

transform). Several forms of surface roughness are considered in the thesis. Analytical solutions 

are found and velocity distribution is analyzed numerically for different Hartmann numbers. 

Asymptotical solution for high Hartmann numbers is also found. The solutions are found in 

terms of integrals containing oscillatory functions. These integrals are transformed in the thesis 

to integrals containing non-oscillatory functions. 

 Global effect of internal friction is usually taken into account by using empirical resistance 

formulas like Chezy formula to estimate the “lumped” effect of turbulent flows for the 

computation of flow rate and losses in channels or pipes and design of open channels. These 

formulas contain empirical friction coefficients that are directly related to the Reynolds number 

of the flow and the roughness of the boundary. The coherent structures in wake flows behind 

obstacles are believed to appear as a final product of hydrodynamic instability of the flow. 

Methods of weakly nonlinear stability theory have been applied in the past to different flows and 

usually lead to amplitude evolution equations for the most unstable mode. One of such equations 

is the complex Ginzburg-Landau equation. Weakly nonlinear theory applied to quasi-two-

dimensional flows with Rayleigh friction (internal friction is assumed to be linearly related to the 

velocity distribution) led to the conclusion that the coefficients of the amplitude evolution 

equation (Ginzburg-Landau equation) for the most unstable mode strongly depend on the shape 

of the base flow profile. As a result it was concluded in the literature that weakly nonlinear 

models cannot be used for such cases since it is impossible to determine experimentally the base 
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flow velocity distribution with high accuracy and, therefore, one cannot use reliable values of the 

coefficients of the Ginzburg- Landau equation. It is shown in the thesis that if a nonlinear 

formula is used to model bottom friction then the coefficients of the Ginzburg-Landau equation 

are not sensitive to the base flow velocity distribution. 

 

     Literature review is presented in the Chapter 1. In addition, the structure of the thesis and the 

main results are discussed.  

In Chapter 2 we state the principles of MHD flows and then we describe the influence of 

the surface roughness on the MHD flow of a conducting metal and state the governing equations. 

Since MHD flow problems are widely studied in channels of various forms and different 

boundary conditions, the results of such studies have direct applications in different fields of 

magnetohydrodynamics [29], [38], and [58]. Since magnetohydrodynamics studies the motion of 

electrically conducting fluids in the presence of magnetic fields, it is obvious that the magnetic 

field influences the fluid motion. Usually in MHD problems electromagnetic force is added to 

the equation of motion and the magnetic field (through Ohm’s law) changes the fluid motion. 

We describe some MHD flow problems in ducts over the roughness elements in a strong 

magnetic field and analytical solutions of such problems are obtained using the Dirac delta 

function (see [3], [4], [6], [7], [12], [13], [17], [18]).  

Asymptotic analysis of these problems is performed for the case of strong magnetic fields 

and graphs of the z-components of the current are shown for different Hartmann numbers. 

Different boundary layers for the field velocity and for the z-components of the currents at large 

Hartmann numbers are analyzed. The MHD problem for fully developed flow is solved for the 

cases of a uniform and non-uniform external magnetic field where the surface roughness is taken 

into account. The distribution of fluid velocity, induced current with its potential and external 

magnetic field are derived (see the following references for the analysis of similar problems [2], 

[5], [11]-[13], [17], [18], [21], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69]). 

   

Chapter 3 is devoted to the calculation of some classes of improper oscillatory integrals. 

It is shown that oscillatory integrals in some cases can be transformed to integrals of non-

oscillatory functions. Such integrals have direct applications to MHD flows analyzed in the 

thesis. These results are applied in order to transform the solution of some MHD problems 

arising in half space 0≥z  as a result of roughness of the surface 0=z  for various boundary 

layers (see  [3], [4], [6], [7], [17], [72], [74]). 
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During my seven year stay in Riga, Latvia (one the main MHD application centers in 

Europe), I had the opportunity to visit some interesting sites related to MHD study such as the 

Physics Institute in Salaspils where I have seen the three recently planned experimental sessions 

(each 2000 hours long) which have been finished successfully. Results gained in these 

investigations demonstrated essential influence of magnetic field on the corrosion processes both 

in the intensity of corrosion and its character. New results concerning the profile of corrosion are 

obtained [55] and [56]. Such studies have an important implication on how to confine and 

control the burning D-T plasmas by a strong drag of magnetic fields inside a reactor [1], [9], 

[55], [56], [70] and  [73]. In addition, I had the opportunity to participate in some PAMIR MHD 

International Conferences (4th , 5th and 7th PAMIR International Conferences) . As a result of 

these activities Chapter 4 of the thesis describing practical aspects related to the effect of surface 

roughness on MHD flows ([1], [9], [32]-[37], [39], [40], [48], [49], [55]-[57], [60], [64], [68], 

[70] and  [73]) is written. 

 

Chapter 5 is devoted to the analysis of shallow water flow in a weakly nonlinear regime 

using the complex Ginzburg-Landau equation (CGLE). It is shown in the previous studies [22] 

related to weakly nonlinear analysis of quasi-two-dimensional flows (shallow water flow is one 

of the examples considered in [22]) that the values of the Landau’s constant differ by a factor of 

3 for two different velocity profiles with linear stability characteristics (differing by not more 

that 20%). In other words, the Landau’s constant was found to be quite sensitive to the shape of 

the base flow profile. In Chapter 5 the bottom friction is modeled by a nonlinear Chezy formula 

[66]. The analysis of data presented in Table 3 and Table 4 shows that for a one-parametric 

family of shallow wake flows the changes in the linear stability characteristics resulted in even 

smaller changes in the coefficients of the CGLE. As a result, it is plausible to conclude that the 

complex Ginzburg-Landau equation can be used for the analysis of shallow wake flows in a 

weakly nonlinear regime (see [8], [10], [14]-[16], [19], [22], [26], [43]-[47], and  [67]) for the 

application of weakly nonlinear models to different flows in fluid mechanics. 
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Appendix 1 
 

NOMENCLATURE 
 

List of  Latin Symbols 
A      The cross-sectional area 

z0
e B eB = .the form of the external magnetic field 

0B    
0Be =B

The potential of  the magnetic field 

B
r

     Complex-valued amplitude magnetic induction vector  

B
r~      Magnetic induction vector, B

r~ jwteB
r

=  

 c      Euler conctant,  c = 0.577215… 

 C     The flow core, HazHa <<−1 ; 

. .c c    Complex conjugate 

fc     The friction (or roughness) coefficient, 

C r     The Chromium element (Atomic Number 24)  

CGLE  The Complex Ginzburg-Landau Equation  

E
r

      Complex-valued amplitude electric field vector 

E
r~       Electric field vector E

r~ jwteE
r

=     

EFDA The European Fusion Development Agreement 

erf(x) = ∫ ξ
π

ξ−
x

0

2
de2     The probability integral. ( Gauss error function) 

F
r

  The bottom friction force of water flows 

uf RR
rr

λ−=  the friction in fluid system g   The acceleration due to gravity  

)(zKν  The modified Bessel function of the second kind of order   ( 1=ν , 2 ) 

h       The water depth 

H      The Hartmann layer, 10 −<< Haz ; 

Ha     The Hartmann number 

ITER The International Thermonuclear Experimental Reactor  

j     Imaginary unit, 1−=j  

L     Length scale 
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Li   The Lithium element ( Atomic number 3) 

Pb   The  lead element ( Atomic number 82) 

Ni    The Nickel element ( Atomic number 28) 

Nu   The Nusselt number 

nr      The unit normal vector to the surface 

Re    The Reinholds number 

S      The stability parameter  

Sc      The critical stability value 

Si      The Silicon Element ( Atomic number 14) 

T       The temperature in Kelvin. 

ur  & vr  Velocity vectors 

v       The velocity scale 

cV       The  core velocity constant 

X        Real part of Z 

Y        Imaginary part of Z 

)(sYν  Bessel function of the second kind of order ν  

W       The distant wake, +∞<< zHa . 

)~(~~~
0 xfz χ=  The roughness of the surface of a channel’s wall 

 

List of  Greek Symbols 
 

)(xΓ  Euler Gamma function 

∆  Laplacian , 2

2

2

2

2

2

),,(
z

f
y

f
x

fzyxf
∂
∂

+
∂
∂

+
∂
∂

=∆  

                  2

2

2

2

2

11),,(
z

ff
rr

fr
rr

zrf
∂
∂

+
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=∆
φ

φ   

)~(xδ    The Dirac delta function 

Rλ        The coefficient of Rayleigh friction  

0µ        Magnetic constant 

ρ         Density of fluid 

ν         The Viscosity of fluid 

ρ~         Charge density 

σ         Conductivity 

ψ         Scalar electric potential intensity 
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ψ~         Scalar electric potential, jwteψψ =~  

ω         Frequency  

⎩
⎨
⎧

>
<

=
.0~,1
,0~,0

)~(
x
x

xη       The Heaviside step function 

,~(~ xΦ

φ       Potential of current 

∫
∞

=
0

cos),(2),( dxxzxVzV y
c

y λ
π

λ    The Fourier cosine transform 

∫
∞

Φ=Φ
0

sin),(2),( dxxzxzs λ
π

λ . The Fourier sine transforms  

Coordinate systems 
 

( x,y,z)  Cartesian coordinates, x,y,z ℜ∈  

 

(r, φ ,z)  Cylindrical polar coordinates , ,0≥r  ,20 r≤≤ φ   ℜ∈z   

 

),,( φθρ  Spherical coordinates , 0≥ρ , πθ 20 ≤≤ , πφ ≤≤0 ,  

 

Classes of definite integrals 

λ
πλ

λλ
λ
λ λ dxe

Q
P ba

m

n

4

coscos
)(
)(

2
20

2

2
22

−

+−
∞

∫ ,    )(

4

coscos
)(
)(2

0
2

2
2

2

1 xdx
Q
P

I
m

n ϕ
πλ

λλλ
λ
λ

π
=

−
= ∫

∞
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