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ABSTRACT

The main topic of the PhD thesis is the analysis of the factors that influence the structure
and stability of magnetohydrodynamic (MHD) flows and shallow water flows. In particular, we
shall concentrate on the effect of roughness of the boundary. Methods of analysis are based on
analytic solutions which are found for some MHD flows over roughness elements in strong
magnetic fields in rectangular ducts. The MHD solutions described in our work facilitate the
investigation of the redistribution of the fluid in a region where the magnetic field is strong ( the
Hartmann number is large). The analysis of the behavior of MHD flows at high Hartmann
numbers is a topic of increasing interest since it is mainly applicable to MHD devices such as
pumps, and MHD generators. The main features of MHD liquid-metal flows at large Hartmann
number are as follows: A ° flat’ velocity profile in the core of a channel and thin boundary layers
near the boundaries. Electric currents induced in the fluid modify the structure of the flow.
Knowing the path of these currents it is possible to predict the flow structure. In our analytical
solution of the MHD problems where wall roughness is taken into account, the length of the
sidewalls of the channel is considered to be infinitely long and the Hartmann number (Ha) is
taken to be sufficiently large and even sometimes the boundary limits approach +oo.

Hydraulic engineers are effectively using Chezy formula to estimate the “lumped” effect
of friction in turbulent flows for computations of flow rate and losses in channels or pipes as well
as for design of open channels. Roughness of the boundary is taken care of by using empirical
friction coefficients. These coefficients are related to the Reynolds number of the flow and
roughness of the boundary by means of several empirical formulas. The coherent structures in
wake flows (flows behind obstacles such as islands) are believed to appear as a final product of
hydrodynamic instability of the flow. Methods of weakly nonlinear theory have been applied in
the past to different flows and usually lead to amplitude evolution equations for the most
unstable mode. One of such equations is the complex Ginzburg-Landau equation. Weakly
nonlinear theory is applied to quasi-two-dimensional flows in [22] with Rayleigh friction
(internal friction is assumed to be linearly related to the velocity distribution). It is shown in [22]
that the coefficients of the Ginzburg-Landau equation for the case where the internal friction is
represented by a linear function of the velocity strongly depend on the shape of the base flow
profile. As a result it was concluded in [22] that weakly nonlinear models cannot be used for
such cases since it is impossible to determine experimentally the base flow velocity distribution
with high accuracy and, therefore, one cannot use reliable values of the coefficients of the
Ginzburg-Landau equation in the analysis. However, in Chapter 5 of our work we show that

small variations of linear stability characteristics do not lead to large changes in the Landau
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constant (the Landau constant is the real part of one of the coefficients of the Ginzburg-Landau

equation) when a nonlinear Chezy formula is used to model bottom friction.

This work consists of five chapters. All of the chapters are theoretical while Chapter 4 is
practical dealing with corrosion of EUROFER steel in the Pb17Li flow and its application to D-T
( Deutrium-tritium ) plasma confinement in a reactor.

Literature review is presented in the Chapter 1. In addition, the structure of the thesis and
the main results are presented.

In Chapter 2 we state the principles of MHD flows and the governing equations that
describe the influence of surface roughness on the MHD flow of a conducting liquid metal. Since
MHD flow problems are widely studied in channels of various forms under different boundary
conditions, the results of such studies have direct applications in different fields of
magnetohydrodynamics [29], [38], and [58]. Since magnetohydrodynamics studies the motion of
electrically conducting fluids in the presence of magnetic fields, it is obvious that the magnetic
field influences the fluid motion. Usually in MHD problems electromagnetic force is added to
the equation of motion and the magnetic field (through Ohm’s law) changes the fluid motion.
We analyze some MHD flow problems in ducts over roughness elements in a strong magnetic
field. Analytical solutions of such problems are obtained using the Dirac delta function (see [2],
[51, [6], [7], [12] and [13]).

Asymptotic analysis of these problems is performed for the case of strong magnetic fields
and graphs of the z-components of the current are shown for different Hartmann numbers.
Different boundary layers for the fluid velocity and for the z-components of the currents at large
Hartmann numbers are analyzed. The MHD problem for fully developed flow is solved for the
cases of a uniform and non-uniform external magnetic field where the surface roughness is taken
into account. The distribution of fluid velocity, induced current and its potential and induced
magnetic field are derived (see the following references for the analysis of similar problems [2],
[5T, [11]-[13], [17], [18], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69], and [71]).

In addition, we examine in Chapter 2 the profiles of induced magnetic fields in order to
get a clearer idea about the behavior of such flows of an electrically conducting fluid through
channels (or ducts). In fact, this problem is directly applicable to other MHD problems such as
MHD generators, pumps, accelerators, and flow meters (in a flow meter, a conducting fluid
passes through an insulating pipe (duct) across which a uniform magnetic field is applied). A
potential gradient is created and it can be measured by probes embedded in the walls of the pipe
(this technique is used to measure the flow of blood in human bodies). In addition, the influence

of the surface roughness on the MHD flow of a conducting liquid metal may be useful for the



techniques used to set up the cooling system of the Tokamak reactor ( Tokamak is an acronym

from the Russian words for toroidal magnetic confinement) .

Chapter 3 of our work is devoted to the calculation of some classes of improper
oscillatory integrals. It is shown that oscillatory integrals in some cases can be transformed to
integrals of non-oscillating functions. Such integrals have direct applications to MHD flows
analyzed in the thesis. These results are applied in order to transform the solution of some MHD

problems arising in half space z >0 with roughness of the surface z=0 (see [3], [4], [6], [7],

[17], [21]).

During my seven year stay in Riga, Latvia (one the main MHD application centers in
Europe), I had the opportunity to visit some interesting sites related to MHD study such as the
Physics Institute in Salaspils where I have seen the three recently planned experimental sessions
(each 2000 hours long) which have been successfully completed. Results gained in these
investigations demonstrated essential influence of magnetic field on the corrosion processes both
in the intensity of corrosion and its character. New results concerning the profile of corrosion are
obtained in [55] and [56]. Such studies have an important implication on how to confine and
control the burning D-T plasmas by a strong drag of magnetic fields inside a reactor [1], [9],
[55], [56], [70] and [73]. In addition, I had the opportunity to participate in some PAMIR MHD
International Conferences (4th , 5™ and 7" PAMIR International Conferences) . As a result of
these activities Chapter 4 of the thesis describing practical aspects related to the effect of surface
roughness on MHD flows ([1], [9], [32]-[37], [39], [40], [48], [49], [55]-[57], [60], [64], [68],
[70] and [73]) was written.

Chapter 5 is devoted to the analysis of shallow water flow in a weakly nonlinear regime
using the complex Ginzburg-Landau equation (CGLE). It is shown in the previous studies [22]
related to weakly nonlinear analysis of quasi-two-dimensional flows (shallow water flow is one
of the examples considered in [22]) that the values of the Landau’s constant differ by a factor of
3 for two different velocity profiles with linear stability characteristics differing by not more that
20%. In other words, the Landau’s constant was found to be quite sensitive to the shape of the
base flow profile. In Chapter 5 of the thesis the bottom friction is modeled by a nonlinear Chezy
formula [66]. The analysis of data presented in Table 3 and Table 4 shows that for a one-
parametric family of shallow wake flows the changes in the linear stability characteristics
resulted in even smaller changes in the coefficients of the CGLE. As a result, it is plausible to

conclude that the complex Ginzburg-Landau equation can be used for the analysis of shallow
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wake flows in a weakly nonlinear regime (see [8], [10], [14]-[16], [19], [20], [22], [24], [26],
[43]-[47], and [67]) as one of the application of weakly nonlinear models to different flows in

fluid mechanics.



ANOTACIJA

Promocijas darba galvenais uzdevums ir analiz&t faktorus, kuri ietekm& magn&tohidrodinamisku
(MHD) un seklu tidens pliismu struktfiru un stabilitati. IpaSa uzmaniba ir veltita negluduma
efektiem uz apgabala robezam. Dazam MHD problemam ar negluduma elementiem stipros
magnétiskos laukos taisnstiirveida kanalos ir konstrugti analitiskie atrisinajumi. Iegtito problému
atrisinajumi palidz labak saprast Skidruma plismas sadalfjumu apgabalos, kuros magnétisks
lauks ir stiprs (Hartmana skaitlis ir liels). MHD pliismu analize gadijumos, kad Hartmana skaitlis
ir liels, izraisa lielu interesi sakara ar pielietojumiem MHD siiknu un MHD generatoru dizaina un
ekspluatésana.

Skidra metala MHD pliismas struktiiru lielo Hartmana skaitla gadfjuma var raksturot §adi:
vienmerigs Skidruma atruma sadalijums kanala kodola un plani robezslani pie apgabala
robezam.

Elektriskas stravas, kas ir inducétas skidruma, maina plismas struktiiru. Ja So stravu sadalijums
ir zinams, tad plusmas struktiiru var aprakstit. Analitiskie atrisinajumi MHD problémam, kuram
kanala sienas negludums ir pemts vera, ir konstruéti gadijuma, kad kanala sanu sienu garums ir
bezgaligi liels.

Hidraulika inZenieri efektivi izmanto Cezi formulu, lai raksturotu “integrétu” berzes efektu
zudumus kanalos un caurul@s, ka arT atklato kanalu dizaina. Sienas negludums ir nemts veéra,
izmantojot empiriskus berzes koeficientus. Sos koeficientus ar pliismas Reinoldsa skaitli un
sienas negludumu saista dazadas empiriskas formulas.

Kogerentas struktiiras plismas aiz SkérSliem (pieméram, aiz salam) rodas ka pliismas
hidrodinamiskas stabilitates gala products.

Vaji nelinearas stabilitates teorijas metodes tika pielietotas dazadam plismam un parasti noveda
pie amplitiidas evolucionariem vienadojumiem, kuri apraksta visnestabilakas perturbacijas
attisttbu. Viens no Siem vienadojumiem ir kompleksais Ginzburga-Landau vienadojums. Vaji
nelineara teorija ir pielietota raksta [22] kvazi-divu dimensiju plismam ar Releja berzes modeli
(ir pienemts, ka iek$€ja berze ir lineari atkariga no Skidruma atruma sadalijuma). Raksta [22] ir
paradits, ka Ginzburga-Landau vienadojuma koeficienti gadijuma, kad iek$gja berze ir lineari
saistita ar Skidruma atruma sadalijumu, ir ievérojami atkarigi no bazes pliismas Skidruma atruma
sadaltfjuma. Rezultata raksta [22] autori secina, ka vaji nelinearus modelus nedrikst lietot $aja

gadijuma, tapec ka nav iesp€jams eksperimentali noteikt bazes pliismas atrumu sadalijumu ar



augstu precizitati. Tas nozime, ka nav iesp&jams izmantot ticamas Ginzburga-Landau koeficientu
vertibas analize.

Promocijas darba 5. nodala ir paradits, ka mazas izmainas linearas stabilitates raksturotaju
vertibas nenoved pie lielam izmainam (Landau konstante ir viena no Ginzburga-Landau
vienadojuma koeficientiem reala dala), ja nelineara Cezi formula ir izmantota, lai modelétu
berzi.

Darbs sastav no piecam nodalam. Visas nodalas (iznemot ceturto) ir teorétiskas. 4. nodalai ir
praktisks raksturs, kura apliikota korozija EUROFER terauda Pb17Li plisma ar pielietojumiem,
kas ir saistiti ar plazmas uzturé$anu reaktora. 1. nodala ir ievada dala, kura ir apliikots literatiiras
apraksts, ka arT analizéta promocijas darba struktiira un galvenie rezultati.

2. nodala ir formuléti MHD plismu pamatprincipi un atbilstoSie veinadojumi. Ir analizéta
virsmas negluduma ietekme uz vadosa skidra metala MHD plaismu.

Problémas par MHD pluasmam ir biezi analiz€tas dazadu viedu kanalos ar dazadiem
robeznosacijumiem, tapéc So pétijumu rezultatus var izmantot magnétiskas hidrodinamikas
pielietojumos [29], [38], [58]. Ta ka magnétiska hidrodinamika péta elektribu vadosa Skidruma
plusmu magnétiska lauka, ir acimredzams, ka magnétisks lauks ietekm& Skidruma kustibas
struktiru. MHD problémas kustibas vienadojumam ir pievienots elektromagnétisko sp&ku
raksturojos$s loceklis un magnétisks lauks (caur Oma likumu) maina Skidruma kustibu.
Promocijas darba analiz€tas dazas MHD plismu problémas kanalos ar negluduma elementiem
stipra magnétiska lauka. Sadu problému analitiskie atrisinajumi ir konstrugti, izmantojot Diraka
delta-funkciju (sk. [2], [5], [6], [7], [12] un [13]). Darba analizéti So problému asimptotiskie
atrisinajumi stipra magnétiska lauka un konstru€ti stravas z-komponentes grafiki dazadiem
Hartmana skaitliem. Ir analizéti dazi robezslani skidruma atruma sadalfjumam un stravas z-
komponentes sadalijumam gadijuma, kad Hartmana skaitlis ir liels. MHD probléma pilnigi
attistitai plismai ir atrisinata homogéna un nehomogéna magnétisko lauku gadijuma, nemot véra
sienas negludumu. Ir aprékinats Skidruma atruma sadalijums, inducétas stravas sadalijums kopa
ar potencialu un inducéts magnétisks lauks (lidzigas problémas ir analiz€tas rakstos [2], [5], [11]-
[13], [17], [18], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69] un [71]).

1. nodala analiz&ti arT induc€ta magnétiska lauka profile, kas lauj labak saprast elektriski vadoSas
pliismas struktiiru kanalos (vai caurulés). Sis problémas analize var palidz&t citu MHD problému
analizei, pieméram, MHD plasmas generatoros, stknos, paatrinatajos vai plismas skaititajos
(plusmas skaititaja vadoss Skidrums tek caur izol€tu cauruli (vai kanalu) homogéna magnétiska
lauka). Tas izraisa potenciala gradientu, kuru var novertét ar caurules siena iebiivétu skaititaja

palidzibu (S0 metodi izmanto arT, lai analiz&tu asins plismu cilvéka kermend).



Virsmu negluduma ietekme uz MHD $kidra metala plismu ir svariga pielietojumos (pieméram,
atv€sinasanas sist€mas dizains reaktora Tokamak).

Promocijas darba 3. nodala ir veltita vienas klases ascil€joSo integralu aprékinasanai. Ir paradits,
ka dazos gadijumos oscil&joSo integrali var parveidot par integrali, kuram zemintegrala funkcija
nav oscilgjosa. Sada veida integralus var izmantot pielietojumos (viens no tiem ir aplikots
promocijas darba un atticas uz MHD pliismam). legiitos rezultatus var pielietot, lai transformé&tu
dazu MHD problému risinajumu pusplakné z > 0ar negludumu uz robezas z =0(sk. [3], [4],
[6], [71, [17], [21]).

Septinu gadu laika, kad es stud€ju Riga (viena no galvenajiem MHD pétijumu centriem Eiropa),
man bija iesp&ja apmeklet dazas vietas, kas ir saistitas ar MHD pétijumiem (pieméram, Fizikas
Institits Salaspilt), kur es redz&ju tris eksperimentus (katrs ir 2000 stundu gars), kuri ir jau
veiksmigi pabeigti. So eksperimentu rezultati rada, ka magnétisks lauks ietekmé gan korozijas
intensitati, gan ar1 korozijas raksturu. Jaunie rezultati, kas ir saistiti ar korozijas paraugiem, ir
iegiiti rakstos [55] un [56]. Sada veida pétfjumi ir svarigi pielietojumos (pieméram, ka kontrolét
D-T plazmas degSanas procesu reaktora (sk. [1], [9], [55], [56], [70], [73])). Es arT piedalijos
PAMIR MHD starptautiskajas konferencés (4., 5. un 7. PAMIR konferenc@s). So aktivitasu
rezultatd ir uzrakstita darba 4. nodala, kas raksturo praktiskus aspektus, saistitus ar sienu
negluduma efektu uz MHD plasmam (sk. [1], [9], [32]-[37], [39], [40], [48], [49], [55]-[57],
[60], [64], [68], [70] un [73]).

5. nodala ir analizéta sekla tdens plisma vaji nelineara rezima, izmantojot kompleksa
Ginzburga-Landau vienadojumu (KGLV). Raksta [22] ir paradits, ka izmantojot vaji nelinearo
analizi kvazi-divu dimensiju plismam (sekla tidens plisma ir viens no piemériem, kas ir
apliikots raksta [22]), Landau konstantes vértiba diviem Skidruma sadalfjuma profiliem atSkiras
par rezinataju 3, ja divu profilu linearas stabilitates raksturotaji atSkiras ne vairak ka par 20%.
Citiem vardiem sakot, Landau konstante ir diezgan jiitiga attieciba pret bazes plismas Skidruma
sadalfjuma atruma izmainam.

Promocijas darba 5. nodala berzes speks ir modeléts ar nelinearo Cezi formulu [66]. Datu analize
tabulas 3 un 4 rada, ka viena parametra sekla tdens pliismas saimei linearas stabilitates
raksturotaju izmainas izraisa vél mazakas izmainas KGLV koeficientos.

Rezultata var secinat, ka KGLV var izmantot sekla tidens plismas analizei aiz SkérSliem vaji
nelineara rezima (sk. [8], [10], [14]-[16], [19], [20], [22], [24], [26], [43]-[47] un [67]) ka vienu

no vaji nelinearu modelu pielietojumiem Skidruma mehanika.
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Chapter 1

Introduction

Magnetohydrodynamics is a part of fluid mechanics which analyzes the dynamics of
electrically conducting fluids and their interactions with magnetic fields. Examples of such fluids
include plasmas and liquid metals.

The main set of equations which describes magnetohydrodynamics (MHD) is a
combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of
electromagnetism (see [28], [50], [53], [54]). The corresponding differential equations have to be
solved simultaneously. In fact, this is too complex to be done symbolically at all, except for the
most trivial cases. For real world problems, numerical solutions are found using super
computers. Since MHD is a fluid theory, it cannot treat kinetic phenomena (see [50], [53]). The
interaction of a flow of an electrically conducting fluid with external magnetic field results in
changes in the flow characteristics. These changes depend on the structure of the flow, the
presence of conducting or non-conducting walls, the orientation of the magnetic field with
respect to the flow and some other factors. For example, the presence of a magnetic field leads to
larger pressure losses since in this case the pressure drop depends mainly on the Hartmann
number (see [28], [53], [54]).

Some studies of MHD problems in liquid metal flows have concentrated on the determination of
the pressure drop in the flows in straight pipes perpendicular to the magnetic field (see [50],
[59]). One of the main problems in MHD that is important in applications is the estimation of
pressure losses in pipe bends. Some local variations in pipe bend and special conditions of fluids
are used to reduce such pressure losses (see [50], [53], and [59]).

It is known that the velocity distribution in a liquid metal blanket exerts a decisive
influence on heat and mass transport. Therefore, since knowledge of this distribution is required,
studies in the corrosion and tritium transport field have been conducted (see [1], [55] and [56]).
We mention here the latest study of MHD problems in liquid metal blankets of fusion reactor
done by I. Micheal [52] and the very recent one done by the European Fusion Development
Agreement ( EFDA) concerning the European fusion research programme that outlooks the
infra-structures needed towards DEMO [37].

Other experiments were conducted to investigate the single phase convective heat
transfer in a compact heat sink consisting of 26 rectangular microchannels of 300 p m width and
800 u m depth. The relative roughness is estimated to be 4-6 %. Dionized water was used as the
working fluid. Tests were performed with the Reynolds number range of 162 and 1257. The inlet
liquid temperature of 30, 50, and 70°C and the heating powers of 140 to 450 w were investigated

11



(see [57] and [65]). The platform area was5.0x1,53 cm’. It is found that the friction factors
significantly depart from those of conventional theories, possibly attributable to the surface
roughness. The temperature is actually dependent on the fluid physical properties which also
influences the heat transfer characteristics to some extent. Correlations were provided for the
friction factors. Such pressure losses have also been analyzed in pipe bends and in magnetic field
subject to local variations. For instance, in both of the papers [57] and [65] channel flows with
transverse magnetic field were considered. As can be seen from the cited references, it is
important to know the influence of surface roughness on the structure of MHD flows.

The main results obtained in this thesis are briefly summarized below. The principles of
MHD flows are described in Chapter 2. The governing equations are presented for the case of a

conducting fluid moving in a magnetic field perpendicular to the flow of the form:
B°—B,g, (1.1)
with the boundary Z = 0 along with the governing equations of magnetohydrodynamics (MHD).

These equations represent a combination of the Navier-Stokes equations of fluid dynamics and

the Maxwell’s equations of electrodynamics:

W Wy =—Lvprar+ L (jxB) (12)
ot p p

Z—?:curl(ﬁx I§)+val§ (1.3)
divii =0 (1.4)
divB =0 (1.5)

Previous works concerning linear approximation to the flow over roughness elements in a strong
magnetic field [28], [50] are generalized in [2] for the case of the roughness of the surface
considered in the form

7 = y,cos(zX/2L) (1.6)
where the conducting fluid is located in the half space Z > 0,—o0 < X,y <+ and the external

magnetic field is of the form B = Bje, and the boundary Z =0 is non conducting. We assume a

steady current flow with the density j = j,& in the direction of the X -axis. In this case, if the

X
surface Z =0 is ideally smooth then the flow is absent because electromagnetic force F = J x B

is constant and rotF = 0. Suppose that roughness on the surface Z = 0 has the rectangular form:
Yo, —L<X <L,

0, [>L, (7

7=7, F®) = Z,In(x + L)—U(Y—L)]={
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In the beginning of Chapter 1 of our work we describe the result obtained in monograph [75]
where MHD flow of an incompressible fluid in an infinitely long plane channel with the
constant cross section with the walls parallel to the y-axis is considered. The problem discussed
in [75] is generalized in our work for the case of surface roughness of the form:

- ?(Y),—LS X <L,~0 <Y<+,
=9 " (1.8)
0,X ¢ (=L, L).

It is shown in Chapter 2 that dimensionless MHD equations for the fluid velocity V, (y,z), and

the potential for the induced current ®©(Y,Z) have the form:

od
AV, —Ha%V, +Ha&=0, (1.9)
v,
Ao =Ha (1.10)

where Ha denotes the Hartmann number.

A fully developed MHD flow is considered in the direction of the Y -axis while the external
magnetic field and the given external current have only X and z components which do not
depend on the y variable. In fact, it is proved in Chapter 2 that if the external magnetic field has

the form (1.1) and the flow is fully developed with the velocity

V, =V, (Y,7)e, (1.11)

then the induced magnetic field is of the form

B' =B'(X,7)8, (1.12)
Roughness in the form of an infinitely long prism is considered in the thesis. An analytical
solution of the problem about MHD flow of a conducting fluid in the half space ( z> 0 ) with
a special form of roughness on the boundary z =0 is obtained (see [2], [12], [13]). Besides, the

results of numerical calculations and streamlines of induced current are presented. We

investigate the asymptotic of the functionsV, (X, Z) , J,(X,2) J,(X,z) in more detail. As a result,
several boundary layers for the functions V (X,z) and j,(X,z) as Ha — oo are obtained. The

results obtained by exact formula and asymptotic formula for the distribution of the component

J,(X,z) are compared for different Hartmann numbers. For Hartmann numbers Ha >10 the

results obtained by exact formula and asymptotic formula practically coincide. The calculations

are done with “Mathematica”.

The streamlines of the current j(X> Z) are calculated by the formula:
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)

dx TX’Z) (1.13)
Calculations are done for the Hartmann numbers Ha =5 and Ha =10 and for various values of
initial conditions Z(0).

The solutions of certain problems in MHD flow of a conducting fluid in the half space (

z>0 ) are expressed in terms of improper integrals of the product of some meromorphic
function and the function exp(-av A’ +b* cos Acos Ax ) wherea>0, b>0 and x> 0. It is difficult

to calculate these integrals numerically since the integrands are strongly oscillating at the large

X . Methods of calculation of such integrals are discussed in Chapter 3 of our work.

We consider the improper integral having the form:

]'3 Pn(/lz) . cos/icosz/lxd/1 (1.14)
) Q. (1) i
4

It is assumed that all the zeros of the polynomial Q(A*) are simple and have the form:

A =-a’, k=12,-3,.,n. (1.15)
The following theorem (see [4]) is used to calculate the integral.
Theorem.

If F,(1)and ® (1) are the Fourier cosine transforms of functions f(x)and ¢(X), respectively,

then
o0 1 0
[F.()®, (4)cos AxdA =5j¢(§)[f (x—g)+ f(x+&)]de. (1.16)
0 0
The functions @ (4)and F_(A) are defined by the formulas
2
P“(’iz) COMZ =0 (1), e ZF (4). (1.17)
Qm (/1 ) /12 o
4

The inverse Fourier cosine transforms of the functions @ (A1) and F (1) are given by

P.(4’) cosAcos Ax dA
\/7‘[Q (212 Z_Lz _¢(X)7

4

r(je-a P cosaxdio |2 @YX (1.18)
T Jar+x?

Each of the integrals in (1.18) is evaluated separately and then formula (1.16) is used to
transform the integral of oscillatory function to the integral of a monotonic function.

Hence, it is shown in Chapter 3 of the thesis that integrals (1.14) are transformed into integrals of

monotone functions using the convolution theorem for product of two Fourier cosine transforms
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and the formulas (1.17) and (1.18). Such a transformation is quite useful in solving some MHD
problems (see [6], [7], [13] and [17]).

Linear approximation to the flow over roughness elements in a strong magnetic field is a
subject of increasing interest nowadays especially due to the fact that this study is directly linked
to other MHD phenomena such as the MHD studies on the EUROFER corrosion of Pb17-Li at
550°C. Three experimental sessions had been recently completed in the Physics Institute in
Salaspils. The surface of the corroded metal on the wall is described by a simplest periodic
structure of the form
Z=2Z(y)=y,cos(my /L) (1.19)
where y,and L represent the scales of the considered roughness ([2], [13], [55] and [56]).

Results gained in these investigations demonstrated essential influence of magnetic field on the
corrosion processes both in the intensity of corrosion and its character. New results concerning
the profile of corrosion are obtained [55], [56]. Note that the results of this study can be used to
decide how to control the Deuterium-Tritium (D-T) burning plasmas by a strong magnetic field
drag inside of a reactor [1], [55], [56], [70] and [73]. Recent results are reported in Chapter 4 of
this work.

The Deuterium-Tritium (D-T) cycle is described by the relationship

D+T >n+a+17.58MeV (1.20)
The components of this equation are briefly explained in the following papers ( [1], [9], [28]
,[32]-[37], [40], [49], [56], [64], [70] and [73]).
Many works and experiments were done with the purpose of reducing pressure losses in MHD
duct flows. Two concepts are considered ideally practical for diminishing the pressure losses.
The first is determined by an advantageous channel routing and the other relies on the reduction
of the electrical conductivity of the channel. Because of the fact that an advantageous channel
routing is depending mainly on the corrosion rate of the channel’s wall, for this reason in
Chapter 4 of our work we consider the investigation of corrosion phenomena in EUROFER steel
in Pb17-Li stationary flow exposed to a magnetic field as for being one of the candidate
materials used for fusion reactors (see [1], [9], [28], [32]-[37], [40], [49], [51], [55], [56], [62],
[70] and [73]).

Chapter 5 is devoted to the analysis of shallow water flow in a weakly nonlinear regime
using the Ginzburg-Landau equation (CGLE). One of the major reasons that led to the study of
this part is the analysis performed in [22] for different quasi-two-dimensional flows (one of the
examples of such flows is shallow water flow). Calculations presented in [22] showed that the
values of the Landau’s constants differ by a factor of 3 for two different velocity profiles with

very similar linear stability characteristics. The analysis in [22] is performed under the
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assumption that the internal friction is a linear function of the velocity. In particular, for quasi-
two-dimensional flows the internal friction was modelled in [22] by means of the Rayleigh’s

formula

—

fo=—AgU (1.21)

In our work we show that for the case where the friction force is a nonlinear function of
the velocity the changes in the linear stability characteristics resulted in even smaller changes in
the coefficients of the CGLE. As a result, it is plausible to conclude that the complex Ginzburg-
Landau equation can be used for the analysis of shallow wake flows in a weakly nonlinear
regime ( [8], [10], [14], [15], [16], [19], [20], [26], [43]-[47], [67]).

It is assumed here that the CGLE can be used to describe spatio-temporal dynamics of shallow

wake flows. We consider the base flow of the form

U =U(y).0) (1.22)
where
Uy)=1- 2R : (1.23)

1-R cosh’(ay)
The profile of the base flow which is described in [19] after careful analysis of available
experimental data for deep water flows behind circular cylinders is adopted in the present study..

The parameterRis the velocity ratio: R=U_ -U,)/(U_ A +U,), where U is the wake

centerline velocity and U is the ambient velocity, and « =sinh™'(1). It is shown in [19] that

under the rigid-lid assumption the linear stability of wake flows in shallow water is described by

the following eigenvalue problem:

¢, "U —c+SU)+SU g '+(k2 ~U, —kU —%kU)(pl =0 (1.24)

@, () =0, (1.25)
where the perturbed stream function of the flow, w (X, y,t), is assumed to be of the form
w(X,Y,t) =@ (y)exp[ik(x—ct)]+c.c. (1.26)
We use the collocation method based on Chebyshev polynomials to solve (1.24) — (1.25)
numerically.

The collocation points r; are

r :cos%, j=01,..,N. (1.27)

]

Applying the collocation method we obtain the following equation:
(B-1C)a=0 (1.28)
where B and C are complex-valued matrices and
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a=(aa,..a,) .
The generalized eigenvalue problem (1.28) is solved numerically by means of the IMSL routine

DGVCCG. The critical values of the stability parameters k,S and c for different values of R are

given in Table 3 (here S, =mkaXS). Next, we perform weakly nonlinear analysis in the

neighborhood of the critical point. As a result, calculations presented in our paper demonstrate
that the coefficients of the CGLE are not so sensitive to the variation of the parameter R of the
base flow and not only the Landau constant is not so sensitive to the changes in the profile but all
the coefficients of the CGLE do not vary too much. The results that support such conclusions are
shown in Tables 3 and 4. Our results contradict the conclusions in [22] that it would be
impossible to apply methods of weakly nonlinear theory in practice since the base flow profile
cannot be determined very precisely in experiments, and the coefficients of the CGLE are found

to be quite sensitive to the variation of the base flow profile.
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Chapter 2

FLOW OVER ROUGHNESS ELEMENTS IN A STRONG MAGNETIC FIELD
2.1 PRINCIPLES OF MHD FLOWS

The main MHD equations can be derived from the Navier-Stokes equations of fluid
dynamics and the Maxwell equations. These MHD equations describe the complex couplings
between the flow variables, i.e. the density, the velocity, the total energy, the pressure tensor, the
gravitational force, and the magnetic field. As a matter of fact, MHD ( magnetohydrodynamics)
has a vast range of practical applications such as control over motion of liquid metal in ducts and
creation of new MHD pumps which do not contain movable elements. In addition to that, MHD
has also important applications in astrophysics for the explanation of the nature of the earth’s

magnetic field [21].

The main principles that govern MHD flows are:
1. Electric eddy currents flow in a plane perpendicular to the main direction of the flow.
They cause the thickness of the wall boundary layer to decrease and wall friction to
increase, i.e. the Hartmann effects.
2. If the channel wall is electrically conducting, the eddy currents are back-circuited via this
wall. This gives rise to the electromagnetic volume forces contracting the fluid motion.
Note that electrically insulating walls are considered in our work.
3. When the channel flow enters and leaves the homogeneous magnetic field zone, i.e., the
field boundary zones, eddy currents are generated which likewise cause pressure losses
counteracting the flow.
4. Another effect occurring both in the fluid flowing transversally and in the fluid flowing
parallel to the magnetic field causes turbulence suppression. This laminarization leads to
a big increase in the critical Reynolds number. Here we add some comments on how to
reduce the MHD pressure losses.
The first concept is guaranteed when the coolant flow is transformed from the poloidal flow
direction characterized by slow velocity to a toroidal flow in narrower channels surmounting the
original channels and characterized by a higher velocity . The flow in the poloidal direction is
almost perpendicular to the direction of the magnetic flux density of the plasma holding field and
is associated with MHD pressure losses. The higher flow velocity guarantees a good heat
transfer. The abrupt change of flow direction (poloidal-toroidal-poloidal) in the magnetic field
has two characteristics. Firstly, this elbow constitutes the point of the maximum loading of the

first wall. Secondly, the sharp deflection in the elbow might cause de-attachement of flow
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accompanied by the formation of hot spots. To counteract this process, guide plates of baffles
could be installed in the deflection zone (see [29], [57] and [65]).

The second concept is based on insulation between liquid and wall. Both the required pumping
power and the mechanical stresses in the channel wall might become inadmissibly high.
Reduction in stress by increasing the wall thickness is not possible because in non-insulated
walls the pressure loss in a first approximation increases linearly with the wall thickness. A way
out of this problem could consist in providing an electric insulation between the liquid metal and
the supporting wall. Two methods are eligible. The most obvious idea would be to coat the inner
side of the channel wall with an insulating material. However, no suitable material and coating
technique have been found till this day to achieve an adequate service life if wall is in contact
with the liquid metal. Therefore, the second method is more promising under which the wall is
given a sandwich structure. The liquid metal is in contact with a thin (about 1 mm thick) wall
supported via an electric insulator by the load carrying channel wall. This technique is applied
above all for the supply and return manifolds of the blanket because the radiation exposure of the
insulator is negligibly small in these manifolds. Two mathematical models for MHD-flows in a
fusion reactor blanket have been considered. The first one describes fully-developed flows and
the second governs non-uniform and non-steady-state flows. This model is derived from 3-D
Navier-Stokes-Maxwell equations by their integration along the direction of the applied

magnetic field (see [1], [29], [55], [56], [57] and [65]) .

2.2 THE FORM OF MAGNETIC FIELD AND MHD EQUATIONS FOR FULLY DEVELOPED
MHD FLOW CAUSED BY ROUGHNESS OF THE BOUNDARY

The MHD flow of an incompressible fluid in an infinitely long channel with the constant

cross section when the wall is taken parallel to the Y axis is considered in [5]. It is proved that

the velocity of a fully developed flow in such channel is:
V=V, (x2)ey, (2.1)

and the magnetic field g is of the form

B =B.(x2)+B,(XY,2)§, , (2.2)
where
B.(X,2)= B (X,2) €x +B,(X,2)€, (2.3)
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Substituting (2.2) into the equation div B = 0, we obtain

oB, _
W =0 ,ie. B, =B (X,2)=b(x,2) + yO(x,2) (2.4)

at the condition that

divB. =-0(x,2) (2.5)
Further analysis shows that

f(x,z)=C=const, C=0or C#0 (2.6)

and that B, (x,z) ey is the induced magnetic field, B.(X,z) is the given external magnetic field.

We consider a similar problem about the MHD flow in half-space Z > 0 caused by roughness of

the boundary Z =0 . In contrast to what is done in monograph [75] it is assumed here at the first

that the induced magnetic field B' has the x, y and z components. After that the symmetry of
the flow is used and it is proved that the induced magnetic field has a single y -component, i.e.

has the form (2.4) with € =0. We consider uniform external magnetic field in subsection 2.2.1

and non uniform magnetic field in subsection 2.2.2.

2.2.1 THE PROBLEM IN THE CASE OF A UNIFORM EXTERNAL MAGNETIC FIELD

The geometry of the flow is given in Fig. 1.

A

7=7%, T(X)=7,[nX+L)-n&X-L)]

AZ

V(x,2) =V, (X, 2)E,
%

T@e ~10,0,8,]

\ 4

| [ (] y
L
A

Figure 1. The geometry of the flow.
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The conducting fluid is located in the half-space Z >0 , —o0 < X,y < 4. The external magnetic

field is of the form :

B°=B,E, . (2.7)

—

A steady current flows with the density j, = j, €, in the direction of the X -axis. If the surface

> o

Z =0 is ideally smooth, then the flow is absent because the electromagnetic force F = jx B® is
constant and rot F = 0. Suppose further that roughness of the surface 7=0 isofthe form:

F(O-L<X<L—-0<V
?:{f(x), L<X<L,—0<Yy<+ono, 2.8)

0,X ¢ (-L,L).

In this case the full current is equal to I = ]0 + j(f, 7) and the flow of the fluid with velocity

~

V, =V, (y,2)e, (2.9)
arises in the direction opposite to the Y -axis (see Fig.1).

—

We will prove that the induced magnetic field B' in this case has the form

B'=B'(X,2)e, (2.10)
and the MHD equations for the fluid velocity V, (Y, z) and for the potential of the
induced current ®(y, z) have the following dimensionless form
oD
AV, - Ha2Vy + Ha& =0, (2.11)
oV
AD = Ha—~, (2.12)
OX

where A=0°/0x*+0°/0z°, Ha=B,LJo/pv is the Hartmann number and o, p,v are,

respectively, the conductivity, the density and the viscosity of the fluid. We use the MHD
equation of incompressible fluid and the Ohm’s law (see [29], [50] and [58]) :

(VV)Q :—lgradﬁwA\? +1(Txéj, (2.13)
p p
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J::G(EJF\?XIE):G(— grad® +\7x§), (2.14)

2 2 2 ~
where A= 8~2+ 82+ 82, VV:VXi+Vyi+VZi.
ox:- oys oz OX oy 0z
In our case
V =V, (X,2)€,, (2.15)
B=B'(X,Z)+B", (2.16)

where B' is the induced magnetic field.

First , we prove that

W

'(X,7)=B'(X,7)e, (2.17)
at the condition that the vector of the induced current has the form
J®.D) = j,(KDE, + [,(R.D)8, (2.18)
It will be shown as the corollary that the vector of fluid velocity is given by (2.15). For this

purpose we use the Bio-Savare’s law, according to which the induced magnetic field vector dB

created by an element dl of infinitely thin wire directed along the current I is equal to

(2.19)

where T, is a radius vector connecting the point M'(X,¥',7)edl and the point of

observation M (X,Y,7) (see Fig. 2):

fum =X =XE, +(V-Y)E, +(Z-7),. (2.20)
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Figure 2. Magnetic induction dB caused by elementary current Idl .

Without loss of generality we can choose the point of observation M (0, 0, 0) in the origin. For

~l ~ ~

each point M'(X',¥',Z")in the fluid we always can choose the symmetric point N'(X',-y’,Z")
with respect to point M (0, 0, 0). We consider the magnetic induction dB caused by elementary
current Idl passing through the point M'(X,¥’,Z") and by elementary current |1dr passing
through the symmetric point N'(X',—y',Z") (see Fig. 3). Here | and I, are the currents with
density J;(Y, 7) given by formula (2.18).

~

Since vector j(X,Z) does not depend on variable ¥ we have 1, =1 .

Using formula(2.19) we obtain

dI§‘M = Ddl x(F,y, + Fypy ) 2.21)
where D =1]r,,,| ", dI =dI.g, +dL,§,, (2.22)
P = (X6, + V'8, + 75, ), Ty =—(X'6, — V'8, + 76, ). (2.23)

or
dB = D(2Z'dl, —2%'dl, ), . (2.24)

Summing formula (2.24) over the whole elements dl in the fluid we obtain formula (2.17),
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which completes the proof.

~

In order to obtain equations (2.11), (2.12) we substitute vectors V and gi from (2.15), (2.16)
and (2.17) into equations (2.13) and (2.14). We have :

V =V, (x,2)€,, B(X,Z)=B, +B'(X,2)E,. (2.25)
Consequently,

V xB =V, (x.2)8, x(B,&, + B'(X,2)8, )= BV, (x. 2)§, . (2.26)

, (2.27)
(x?v)v: ~0

Substituting (2.27) and (2.28) into (2.13) and projecting the resulting equation on the y axis we

(2.28)

Az

SN (X,-y, 2 oM (X, Y, 2)
\ N
> N,

Mwm

-‘
z
4

M (0,0,0) y

X

Figure 3. Symmetric representation needed to the proof of formula (2.24).

obtain

__1oPRY.D) BED) o s
0= » 5 (8?2 )V X,2)+ { = Vy(x,z)}. (2.29)

Since all of the terms in equation (2.29) except the term oP/ oy do not depend on the variable Y

then the term P / 0y also does not depend on the variable Y, i.e.
—=RED=>P=FREDJ+FXI), (2.30)

where F and F, are arbitrary functions.
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Substituting (2.30) and (2.27) into (2.13) and projecting the resulting equation on the X and z

axes we obtain the following two equations:

0= _YyoR _10R E@B' (2.31)
p X pX pd

0= —JHF 1 i 2 gy, (2.32)
p 07T p T ox y

Since all the terms on the right hand sides of equations (2.31) and (2.32) except the first ones do

not depend on Y, then the first terms in these equations also do not depend on Y, i.e.

F_y F_oo F, = C = const. (2.33)
oX 0z

Consequently, equations (2.30)-(2.32) are of the form:

i =C (Cis a constant) (2.34)
oy
= P(XZ)=Cy +F,(X2), (2.35)
R (X2) _ 09 i (2.36)

OX ~

0z

oF,(X,z O ~
—éz Lo C B, (2.37)

In our problem the external pressure gradient is absent. As a result, then it follows from

(2.34) and (2.35) that

C=0, P(X,7) = F,(X,7). (2.38)

Thus, equation (2.29) can be written as follows:

2 20\
12+ & N5+ 2] s, oB(R,7) _ B,V,(X.7)|=0. (2.39)
oX~ gz72 yo, oX
We use the dimensionless quantities by taking the values

L,v/L,B,, V\/ pv/ a,v\/ pv/o /L’ as the scales of length, velocity, magnetic field, potential

and current, respectively.
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To obtain equation (2.12), it is sufficient to apply operation of divergence to equation (2.14)

and use the equation of continuity div ] =0 and equation (2.26):

0= -AD + B,divV (X, 7)E, , (2.40)
1.e.
~ oV,
AD =B, —~. (2.41)
ay

Passing in formulae (2.41) to the dimensionless variables, we obtain equation (2.12).

To obtain pressure P(X,Z) we need to know the function F,(X,Z),i.e. we should use a

system of nonlinear equations (2.36) and (2.37). First, we can solve the linear system (2.11),

(2.12) with the corresponding boundary conditions and obtain the functions\7y (X,Z)and &)(Y, 7).

After that we can obtain the induced magnetic field B', using equations rotB' = grad&),

divB' =0. As a result, the right hand sides of equations (2.36) and (2.37) will be known

functions and we get the function 5(?, Z) =F, (X,7) from the system (2.36) and (2.37) up to

an arbitrary constant.

2.2.2 THE PROBLEM IN THE CASE OF A NON UNIFORM EXTERNAL MAGNETIC FIELD

Assume that the external magnetic field can be represented in the form:

- -

B®=B'. (X,7)=B,(X,Z)e,+B,(X,.2)€, . (2.42)

Since vector B® does not depend on the variable y, the formula for B' (;(, E)has the same form as

in section 2.2.1:
B' (X,2)=B' (X,7) €, . (2.43)
In this section only the MHD equations and pressure 5(?, 7)are changed.

We have
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V=V, (¥,2)8,, (2.44)

B =B'(X,7) +B,(X,2)6, +B,(X,7)8,. (2.45)
Consequently

VxB=V, (X, z){ B,(X,7)€, +B,(X,7)6, |, (2.46)

J>< B = o(-grad® +V x B)x B, (2.47)

(2.48)

Substituting (2.44), (2.45) and (2.48) into (2.13) and projecting the resulting equation on the Yy

axis, we obtain:

2 20\ ~
Oz_ﬂw(a L0 ]V+_B£B _gﬁs @B 2.49)
X VA

As in section 2.2.1, it follows from (2.49) that

oP

5 —=F,(X,7) = P= F.(X,2)y+F,(X,2), (2.50)

where F; and F, are arbitrary functions. Substituting (2.44), (2.45) and (2.50) into (2.13) and

projecting the resulting equations on the X and z axes, respectively, we obtain:

0=y R 8il’+av B, (2.51)
ox  oX oz

~oF, 0oF, oD oD >~

Yy -t 40| =B,-“=B,-[B,| V, | 2.52

% & [ax & . VJ (2:52)

It follows from (2.51) and (2.52) that
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oF oF
2 =0,—2=0=F, =C =const. (2.53)
OX 0z

Consequently, equations (2.50)-(2.52) are of the form

C —C=P(X.7)=Cy+F,(X7), (2.54)
oy
F o aiE)+BX\7 B', (2.55)
OX 07 y

iy T —> 2 ~
F_, ‘L?BZ—‘L'PBX—Bl , | (2.56)
0z OX 0z

As in section 2.2.1 the constant C =0, i.e.

P(X,7)= F, (X.7). 2.57)

Equation (2.49) can be rewritten in the form

2 2\ = T -
V[a + 2 jvym{aifsz-ail’sx—(sxuszzw:o. (2.58)

ox?> 0z° X 0z

To obtain the second equation it is sufficient to apply the operation of divergence to equation

~

(2.14) and use the equation of continuity divj =0:

0=-AD+ div{ﬁy(sz §,— B, &, ﬂ (2.59)

or

- ov. N~ B
ab-8, g, Sy [ B B
OX OX 0z

= (2.60)

The linear system (2.58)-(2.60) with corresponding boundary conditions on the boundary Z =0

has a unique solution. For a certain form of the given functions B (X,Z) and B, (X,Z) one can

find an analytic form of this solution. In general case, this solution may be obtained only by
numerical methods. In this section we have considered the fully developed MHD flow in the

direction of the y axis. The external magnetic field and the given external current has only X

and z components, which do not depend on the variable y. The pressure gradient is absent in
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the y -direction. It is proved using the symmetry of the flow in this case that induced magnetic
field has only a y -component. The system of MHD equations for the velocity of the fluid and

for the potential of the induced current is obtained. Also the equations for the X and z
components of pressure gradient are obtained. It is also proved that the pressure of fluid in the

given case is a function depending on the X and z variables.

2.3 ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER

ROUGHNESS ELEMENTS USING THE DIRAC DELTA FUNCTION

In the designing of the present reactor Tokamak the value of the Hartmann boundary layer in a
strong magnetic field becomes commensurable with the size of roughness of the surface of a
channel’s wall. Therefore, there is a practical need to study the influence of roughness of the
surface on the MHD flow of the conducting metal, which is planned to use in the system of the
cooling of the reactor.

The MHD problem describing the flow of a conducting fluid in the half space arising due

to roughness of the surface in the form 7 = %, fN(Y) with the conditions that the values ‘fN(Y)‘
and ‘?’(7)‘ are small is solved in [2]. These assumptions allow one to transfer the boundary

condition for potential of the current ®(X,7) from the surface Z = Zo fN(Y) to the plane 7 =0
and neglect the term fN'(Y)(?CT)(Y,O)/ X in the boundary condition. Without this simplification
one obtains an integral equation for an unknown function 6&)(%0)/ 0X which can be solved only
numerically. In this section this problem is solved for the case when the roughness of surface
=Y, ?(Y) has the rectangular form: 7 = y,, if Xe(-L,L) and 7 =0, if X ¢[-L,L]. As a
result the derivative fN'(Y) in the boundary condition is expressed through the Dirac delta
function and instead of an integral equation for the function ?’(Y)@&D(Y,O)/a)? an unknown
constant d®(L,0)/ X appears in the process of solution. This fact allows one to solve this

problem analytically and estimate the error due to the neglected term ?'(7)6(5(7,0) /&X in above

mentioned boundary condition. In addition, the asymptotic of this problem in a strong magnetic

field is obtained.

29



2.3.1 THE STATEMENT OF THE PROBLEM

The geometry of the flow is shown in Fig.1. The conducting fluid is located in the half

space Z >0, —oo <X,y < +oo. The external magnetic field has the form

2.61)

~
-

The boundary 7Z =0 is not conducting. A steady current flows with the density j = j,€, in

X

the direction of the X -axis. If the surface Z =0 is ideally smooth then the flow is absent because

the electromagnetic force F = j;x B is constant and rotF =0. Suppose that roughness of the

surface Z =0 has the rectangular form (see Fig.1):

5 o~ fNN ~[ T+ L ~ L] ?0’_L<Y<L’ 262
7= X) = X+L)-n(X-L)|= :
Zo T(X) =7, [n(X+L)=n(X-L) 0. [%>L. (2.62)
where 77(X) is the Heaviside step function:
(%) = 0,X <0, (2.63)
= L, X >0. .

In this case the full current is equal to | = 170 + J(X,7) and the flow of the fluid with the velocity
V =V, (V,7)€, arises in the direction opposite to the y axis (see Fig.1).
We will deduce the boundary condition for the potential ®(X,y) of an electrical field on the

surface 7 = y, fN(Y). The normal component of the current on this surface must be equal to zero

because the boundary 7 = ¥, fN(Y) is not conducting, i.e. it must be j-fi =0 on the surface (i is

the unit normal to the surface).

Using formula i = grad[Z - %, fN(Y)]/ﬁl + ;?02 f2 (X) we obtain

A = [— 7, F/(X)E, +8, ]/1/1 +7,. 7720, (2.64)

where
() =[6(X+L)-6(X-L)], (2.65)

and o6(X) is the Dirac delta function.
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Substituting fi from (2.64) and ] =(j, +,(X.2))&, + ] ,(X.2)€, into ]-Ai=0 and using

formula J:: J[grad(f +V x é), ie. J, = —c 0D /X, 7, = —o0® /&7 on the surface, where

V =0, we obtain the boundary condition for the potential ®(X,7):

o oD | .= oD =,
(X): _0-8_7:750|:Jof (X) _O-a_if (X)}, (2.66)

!

7= 0
where function fN'(Y) is given by (2.65).
The only approximation which is made in this section is the following: we transfer the boundary

condition (2.66) from the surface Z = ¥, fN(Y) to the plane Z =0, i.e. we only assume that the
value ;?0‘ fN(Y)‘ is small. As a result, we obtain the boundary condition for the potential in the

form

7=0: 0B/07=7,[ jyo " +0®/0% | [sX+L)-5X-L)]. 2.67)

We do not neglect the term o® /X in the boundary condition (2.67) and as a result we obtain
the new coefficient in the solution used in paper [13].

We use the values of L, v/L, B, VW /L, VW /L* as measures of length, velocity,
magnetic field, potential and current, respectively. Here o, p, v are, respectively, the

conductivity, the density and the viscosity of the fluid. Then the MHD equations and the

boundary conditions have the form (see [28]):

AV, —HaV, +Ha-0®/ox =0, AD=Ha-dV,/ox , (2.68),(2.69)
2=0:V,=0,00/02= y,[- A+ F(x0)] [s(x+1) - 5(x - 1)], (2.70),(2.71)
Vx*+2* 500 V, 50,0 >0, (2.72)

where A=0°/0x> +0°/0z%, Ha=B, Lo/ pv is the Hartmann number, A= j, L’ /(v4/pvo),

Yo =7,/L and F(x,O):%iD . (2.73)
X

z=0
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2.3.2 THE SOLUTION OF PROBLEM (2.68)-(2.72)

In order to solve problem (2.68)-(2.72) we use the symmetry of this problem with respect

to X: the function V (X,z) is an even function, ®(X,z) is an odd function with respect to X.

This means that the functions V, (X,z) and®(X,z) satisfy additional boundary conditions:

oV
2=0: a_y =0, ®(x,0)=0. (2.74)
X

Therefore, problem (2.68)-(2.72) can be solved by means of Fourier cosine and Fourier
sine transforms (see [3]). Namely, we apply the Fourier cosine transform with respect to X to

equation (2.68) and to V, in boundary condition (2.70) and the Fourier sine transform to

equation (2.69) and to 0®/0z in boundary condition (2.71). The transforms are defined as

follows:

V,°(2,2) = \E [V, (x,2)cos Axdx, (2.75)
4 0

®°(4,2) = \/ZT(D(X, Z)sin Axdx . (2.76)
4 0

We obtain the following system of ordinary differential equations for unknown functions
V,"(A,2), ®*(A,2):

2 C

d
-2V, +————HaV ‘ + HaAd® =0, (2.77)
dzZ y

d’o®
dz?

D%+ +Hawv,° =0. (2.78)

We also apply transforms (2.75) and (2.76) to boundary conditions (2.70) and (2.71):

do® 2 . s
z=0: VyC =0, I 7.[A-F(@1,0) ;sm/l; Z—>w :Vyc,(D — 0, (2.79),(2.80)
where  F(1,0) :aaﬁ at x=1, z=0 (2.81)

X

is an unknown constant. The solution of the problem (2.77)-(2.80) has the form:

D (,2) = g, \/%[— F(1,0)+ A]%(klekzz +k,e) (2.82)
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VoL 2) = 704 2] F(10)+A]Sm/1( e _ght), (2.83)
T 24
where

ki =-(WA +u +u), k= +p” —p), 2u=Ha. (2.84)

Applying the inverse Fourier sine and cosine transforms to formulae (2.82), (2.83), we obtain the

solution of problem (2.68)-(2.72), containing unknown constant F(1,0):

8

D(x, z)=7[ F1,0)+ A][ (ke +k,e4? )22 élsm/ixd/l (2.85)

(=]

V,(x,2) = 7;0[ F(1,0)+ A]

O"—:S

( 7 gk )gcos AXdA - (2.86)
The components j, and j, of the induced current density are obtained from the formula
j= 0[— grad®(X,7) +V x é}, (2.87)

~

where V =V, (%,7)g, ., B = BI(X,2)8, + By, . (2.88)

In the dimensionless quantities formula (2.87) has the form
j =—gradd(x,z)+ HaV x B, (2.89)
where V =V, (x,2)8,, B =B} (X,2)§, +§,. (2.90)

Substituting (2.90) into (2.89) we obtain

j =—grad®(x,z) + HaV, (x, 2)§, . (2.91)
It follows from (2.91) that
i =22 Hav J2), , = _oo (2.92)
OX 0z

Using formulae (2.85), (2.86) and (2.84), we obtain

j, =D (ke +k2ekﬂ)wdx, (2.93)
0
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0

j, =-D[(e"* +e"* )sinsinAxda., (2.94)

D=22[A-F(10)]. (2.95)
T

For the evaluation of unknown constants F(1,0) and D in formulae (2.85), (2.86), (2.93) and

(2.94) it is necessary to use integral (2.85) and evaluate the limit

)sin AcosA

F(1,0)=D lim [ke +k,e R (2.96)
0

Differentiation with respect to X under the integral sign in (2.85) is correct in the region
0<2z,<Z<+4,,0<X<+00 because this integral and the corresponding integral (2.96) of partial
derivative with respect to X of integrand in (2.85) is majorized in this region. However, if we
substitute z = 0 under the integral sign in (2.96), we obtain the divergence of the integral, which

converges only in the sense of Abel (see [3]):

=" 2+ Sm” dA = lim [* e |2+ 4’ %dz (2.97)

5—>+0

or, after evident transformations

0 2 . 0
| = lim [e % ——£% S22 47+ 1im [ e sin 24d . (2.98)

54)-%—00 [/12 _I_,uz + A A ba+00

The first integral on the right hand side of (2.98) converges in the usual sense, but the second
integral converges only in the sense of Abel and equal to 4 (see [3]). However, such a method
gives the solution, which tends to zero as Hartmann number Ha tends to infinity. The last fact
contradicts to the physical sense of the problem. Therefore, there is a need to transform integral
(2.85) to such a form that after passing to the limit as z - +0 we would obtain the integral

converging in the usual sense. For this purpose we use the formulae (see [74]):

Teﬂ cosardn = —HE 1(m/z +a ) (2.99)
0

7’ +a’

© 2
Nﬂﬂy%‘zvm cosaldl =~ { e Kz(,u 22+a2)—K1(y 22+a2)}, (2.100)
0

V2P +a? (V72 +a?
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where a>0, z>0 and K, (z)is the modified Bessel function of the second kind of order v

(v=1, 2). As a result, we obtain (the details are found in [12]):

X+1 [52 2
Vy(x,z)z—D-uz-shpzj Kz +t dt, (2.101)
X—1 sz+t2
iy (x,2) =D -chpz[F(1+ x) - F(1-x)]+ Vv, (x,2), (2.102)
where
¢ i ﬂzz 2, 42 2, 42
F(a)= K,\luvz=+t7 -K z° +t }dt. (2.103)
!Jzzuz L/zzjttz 2( ) 1( )

Evaluating integral (2.94) we obtain

uﬁ)(ﬁ)] 0108

j,(X,2)=Dyz -ch
J,(X,2) = Dz uz[ Jzz+(1—x)2 \/zz+(1+x)2

We transform 0®/0x, using formulae (2.85), (2.99) and (2.100):

2

oD 2
Ol :_D{Chﬂzlx/zzﬂﬂz L;zlzﬂz KZ(“ 2 +t2)— Kl(ﬂ z? +t2)}dt+

|
+ 127 shuz [ ——— K 2% +1° bt ! (2.105
U m! = l(ﬂ )1} )

The integrals on the right hand side of (2.105) diverge if z =0.To overcome this difficulty, we

perform the following transformation. First, we use the substitution
t=2z&, dt=zd§. (2.106)

Then it follows from formula (2.105) that

W ChﬂZ!Jlfﬁz Jlﬁzgz ol 67 K i &7 e+

+M-shuzj n K(pzw/1+§2)j§. (2.107)
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In order to pass to the limit as z — +0 in (2.107) we use the formula

Kn(z)z%(n—l)!(éj ,h=123,..atz—>+0,

ie. Kl(z)z%, |<2(z)z32 at 7 —+0. (2.108)
YA

As a result, we obtain from formula (2.107) that
2 2

H:_DZILTOZo[(HgZ) 1+¢ }dg Dhm“Sh“ZI—idé (2.109)

The second limit on the right hand side of formula (2.109) is equal to zero, but the

o : 0
first limit gives undefined expression of the form 0 because

K T2 T
ﬂlﬁ 1+a}da=£mdg—5—o. (2.110)

Consequently, it follows from formula (1.109) that

2
}L%Z;f :—Dzli_)r%% { 22 5 —Hl 2}dé';: =—Dlin% 2 —— 14 (_%]2_2.
- (1+¢) g - (1+42J PR 2
7 z
(2.111)
It follows from (2.111) and (2.95) that
1
F(lO)——ED ie. |:(10)——2 [A-F(1,0)] (2.112)
We obtain the unknown constant F(1,0) from equation (2.112):
Fao=-Yea1 2.113)
2TC 1 XO
21
Consequently, the coefficient D, which is the unknown coefficient in the (2.101), (2.102)
and (2.104), is given by
D=2 [A-F10)]=Z>A >0 if 3, <27. (2.114)
Vs T _Zo
2
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We remind that y, =7%,/L is the single small parameter in our problem. The inequality
Xo <2m gives the natural restriction at which the y-component of the velocity V, (X,z) in

formula (2.86) is negative, that is, corresponds to the physical sense of this problem.

It is important to note that if we would neglect the term 0®/0x in boundary condition

(2.67), the way it was done in paper [2] for function f(X) of arbitrary form, we obtain the same
solution of this problem but at the condition that coefficient D would be equal to D = Ay, /7

instead of formula (2.114). It gives us the opportunity to evaluate the error which occurs if the

termo®d /0X 1s neglected in boundary condition (2.67). For example, if y, /27 = 0.1, then the

error § isequalto 6 =(1/0.9-1)-100%, i.e. 6 =11%.
2.3.3 THE ASYMPTOTIC ANALYSIS OF THE PROBLEM AND NUMERICAL RESULTS

It follows from formula (2.86) that at Ha — o« we have k;z - -, k,z >0

everywhere except the regions 0 <z < Ha™' and z > Ha, respectively ).
ry Y g P y

Consequently, at Ha — o in region Ha™' < z < Ha we obtain from formula (2.86) that

_ X e (-L1)
imV,(x,2) =V, == Z[pA-x)+n1+x)]={ 2 " (2.115)
Ha—o 2
09 X & (_lal)a
where V, =constant is the core velocity.

The region 0 <z < Ha™' is the Hartmann boundary layer, where the velocity of fluid is

changed from zero to the velocity of the flow core V, = constant, but the region Ha<z<+w is

the distant wake, where the velocity is changed from V_ to zero (see Figure 4).
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Yix=0

<y

Figure 4. The regions of the flow in the cross-section X =0 at Ha — «:
H- the Hartmann layer, 0 <z < Ha™;
C- the flow core, Ha' <z < Ha;

W- the distant wake, Ha<z <+o0.

It is necessary to note that at large Hartmann numbers the velocity V. in the core of flow is
constant and does not depend on Ha. At Ha— +ooonly the height of core region

Ha™' <z < Ha is increased. The asymptotic of the current’s component j, (X, ) in the region

Ha™' <z <+ is obtained from formula (2.93):

lim j, =0, Ha' <z <+w. (2.116)

Ha—o

The asymptotic of the current component j,(X,z) at Ha — +oo is obtained from the exact

formula (2.104). For this purpose we use the formula that holds when ¢z —> o, z>0, 1 >0:

chuz ~0.5e%, K, (ul)~ /lleﬂ'. 2.117)
7

Then, according to (2.104), the component J, (X, Z) exponentially tends to zero at x — o

everywhere, except for the two regions, bounded by the parabolas:
Nz +(x=17 —pz=1and u\z> +(x+1)] —pz=1, (2.118)
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i.e. bounded by the parabolas:

z+i=o.5y(x+1)2 and z+l=0.5y(x—1)2. (2.119)
2u 2u

Furthermore, we can put ZL ~0 at u— oo informula (2.119). Inside of the two regions,
7

bounded by parabolas (2.119), the component j,(X,z) tends to infinity as x# — oo by the law
J,=ulz, (2.120)
since it follows from (2.104), (2.117), (2.118) that

(=22 +(1-x) =+ @)z~ u, pl—pz=1, (2.121)
pzchud) K, (i) ~ 0.5ue"" (z)(22)) = ¢ (%)0'5 (% )0‘5 2.122)
as U —> .

The asymptotic of functions of the functions V, (X, z) , 1,(X,2) J,(X,z) are obtained from

integrals (2.86), (2.93) and (2.94) by means of the formulae which hold at x — oo

-k, =(q//12+y2 —y)+2,u=2y+ : z2y+£, (2.123)

N+ +pu 2p
2
—k, = A7+’ —,uz;—ﬂ, 2u=Ha. (2.124)

Substituting (2.123) and (2.124) into integrals (2.86), (2.93), (2.94) and using the Poisson
integral (see [3]), we obtain the asymptotic formulae which hold for the whole region

0<z<+w asHa—> w0

V,(%,2) = —% D(1—e ™ )y (x, 2), (2.125)
w(x,z)=erf {ﬂ%}rerf [ﬂ%} , B=0.5VHa, (2.126)

p
n

i = D{% Hae *y(x,z)+
z

- - (1x) (1}
(1+Ze*“a](l+x)e © +(l-xke ° . (2.127)
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jz=—lDﬂ z(1+ez”a){e z  —e ? (2.128)

-4 (1-x) - (14x)°
2 Z

It can be seen that at Ha — o the following conclusion can be drawn from formula

(2.125):

1) Component V, = % D is constant inregion Ha™' <z < Ha.
2). Component V, is changed from 0 to V, = % D=V, inregion 0<z<Ha™".

3). Component V, is changed from V,  to zero in region Ha <z <+o.
In addition, it follows from formula (2.125) that the component V, — 0.5V, as Ha — o on

the lines x = £1, 0 < Z < 4+00. That means that the two new boundary layers exist in the regions:

—8<ﬂ1_—x<8 and —g<,6’1+—x

V2 V2

where ¢ is some small positive number. In these regions component V, is changed between

<e, (2.129)

—V, and zero. It is impossible to get these two new boundary layers from formula (2.86).
The following conclusions can be drawn from (2.128) that at Ha — oo
1. Component j, exponentially tends to zero everywhere except the two regions, lying inside

parabolas (2.119), because in this case both exponents in the square brackets of formula

(2.128) tend to zero.
2. Component ], inside the region bounded by the first or second parabola in (2.119), where

one of the exponents in the square brackets in (2.128) does not equal to zero, is given by

J, = ,/% , 1.e. tends to infinity as g — o0.

3. Finally, we see from formula (2.127) that at Ha — o the current component j, (X,z) tends

to zero everywhere except the region 0 < z < Ha™' because in this region exp(—zHa) # 0

and the function !//(X, Z) tends to 2 everywhere except the two regions in formula (2.129).
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In order to estimate the range of Hartmann numbers at which the asymptotic formulae

Iz Ha=30

Figure 5. The graphs of the zZ -component of
current by exact formula (2.128) (  ----- y and
by formula (2.104) ( ) fromz=1
(two upper lines) to z = 3.5 (two lower lines)
through Az = 0.5. Function j,(x,z) is odd

with respect to X.

(2.125)-(2.128) are correct we compare the numerical results for the component |, (X,z),

obtained by exact formula (2.104) and asymptotic formula (2.128). These numerical results for

Hartmann numbers Ha =10, 30, 50 are shown in Fig. 5. For Hartmann numbers Ha > 10 the
results obtained by exact formula (2.104) and asymptotic formula (2.128) practically coincide.

Similar conclusions can be drawn by comparing the computed values of the functions V, (X, 2)

and ], (X,2) by exact formulae (2.86), (2.93) and asymptotic formulae (2.125), (2.127).
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i= Ha=30

. Ha=10

0zt

01

0.5
0A1F

02T

I Ha=50
Figure 6. The graphs of the X -component of

oz current by asymptotic formula (2.127) from
Z =1 (the upper lines in region 0<x<1) till
Z = 3.5 (the lower lines in region 0 < x<1)

05 ® through Az =0.5. Function j, (x,z) is even
0.4 - with respect to x.
0z

The numerical results of calculation of the current’s component j,(X,z) by asymptotic

0.1

formula (2.127) for Hartmann numbers Ha =10, 30 and 50 are shown in Fig. 6. We can see that

the sign of the function J,(X,z) is changed in the neighbourhood of the line x=1, 0 <z < +o0.

It means that the streamlines of current j(X, Z) change their direction to the opposite in the

neighbourhood of this line.

It follows from (2.128) that the full current through the cross section z = z,=constant is

equal to

Ijz(x,zo)dx = —@(He‘z"Ha)erf Ha ™ s Hao oo, (2.130)
) 2 22, 2

The same full current flow can be obtained through the cross section X = X, 0 < Z < 4o . This

result follows from (2.127) and also from the equation of continuity:

jjx(xo,z)dz %? as Ha — 0. (2.131)
0

One can see also from (2.127) that at Ha — oo almost all of this full current flow through the

cross section of Hartmann boundary layer x =X, >0, 0<z < Ha™:

42



Ha™' Ha™' Ha™'
J' j (x,.2)dz= ? Ha jw(xo, z)e " dz ~ ? Ha .[e‘ZHadz :?(l—e“ ). (@132
0 0

0
The streamlines of current j(x,z) obtained by formula

dz _j,(x2)
dx - j,(x2) (2.133)

for Hartmann numbers Ha=5 and Ha=10 and for various values of initial conditions z(0) are
shown in Fig. 7. The package “Mathematica” is used for calculations. Since the function

J,(X,2) is equal to zero in the neighbourhood of the point X =1 the results of calculations in

Fig. 7 inregion 0 < X <1 are shown . One can see from Fig. 7 that when Hartmann number
increases then the full current is concentrated near the plane z =0.
For calculations of streamlines in region 1 < X < +o0 we use the differential equation

dx _ j,(x.2)
dz  j,(x.z)

. (2.134)
The streamlines of current in this region are shown in Fig. 8 for the same Hartmann numbers
Ha=5 and Ha=10 . One can see from Fig. 8 that in the neighbourhood of point X =1 the

streamlines change directions to the opposite.

M

Ha=5 = Ha=10

Y (] 0l u
- [ 4] P

0z 0.4 0.6 os

-

0z 0.4 0.6 os 1

Figure 7. The streamlines of current j(x,z) in region 0 < x <lat Ha=5 and at Ha=10.

b Ha=5 * Ha=10
14r 1037

1021
106 F
1.015¢

1.04H
1.01F

1.02 1.005

0.05 0. 0.15 0z
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Figure 8. The streamlines of current j(x,z) in region 1< x <+ at Ha=5 and at Ha=10.

CONCLUSIONS

1.

The analytical solution of the two dimensional problem on the MHD flow in half space

Z > 0 due to the roughness of the boundary of special form is obtained. Roughness of
constant rectangular cross section is located along the Y - axis. In this case the external
current flows parallel to X - axis and the external magnetic field is parallel to z - axis. The

two dimensional MHD flow in the direction opposite to Y - axis arises, only if the

roughness of the boundary is present.

The analytical solution is obtained at the single approximate assumption that the height of

roughness is small .The solutions for the y - component of the velocity of the fluid and for

the x- component of the induced current are obtained in the form of improper integrals of
elementary functions. On the other hand, the z - component of the induced current is

expressed through the Bessel functions.

The asymptotic solution of the problem at Hartmann number Ha — oo is obtained in the
form of elementary functions. For Hartmann numbers Ha > 10 the exact and the asymptotic

solutions practically coincide.

Several boundary layers for the velocity of the fluid and for the X - and z - components of

the current at large Hartmann numbers are found.

The velocity of the fluid in the core at large Hartmann numbers is constant; that means it

does not depend on Ha. Only the height of the core region Ha™' < z < Ha is increased with

the increase of Hartmann number.

Using the package “Mathematica” the streamlines of electrical current are calculated. The

induced current at large Hartmann numbers flow only in Hartmann boundary layer

0<z<Ha™" and along the lines X = +1.
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2.4 ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER
ROUGHNESS ELEMENTS IN THE FORM OF A STEP FUNCTION

In Section 2.3 the MHD problem on the flow of conducting fluid in the half space arising

due to roughness of the surface of the form 7 =Y, fN(Y) with the conditions that the values
‘fN(Y)‘ and ‘F'(?)‘ are small is solved. In this section similar problem for roughness of the form

of a prism with constant cross-section bounded by step-function form is solved [13].

24.1 THE PROBLEM OVER ROUGHNESS ELEMENTS IN A STRONG MAGNETIC
FIELD

In this section we assume that roughness of the surface Z = Ohas the form of the step-

function (see Fig.9):
7. X<l
7=F(®) =17, L <[X|<L (2.135)
0, [X]>L
or 7=F(X) =7, L, +(Z -7, (%), (2.136)
where T.(X)=nX+L)-nX-L), ,X)=n&+L)-nX-L). (2.137)
Z
Xl
A1
—L L 0 L L X

Figure 9. The constant cross-section of roughness.

We will deduce the boundary condition for the potential &)(Y, 7) of an electrical field on the

surface 7 = IE(Y). The normal component of the current on this surface must be equal to zero
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because the boundary 7 = y, fN(Y) is not conducting, i.e. it must be j-fi =0 on the surface (fi is

the unit vector of the normal to the surface).

Using the formula i = grad[Z — F(X)]/+/1+ F2(X) we obtain

i=[F'(%e, +& 1+ F (%), (2.138)

where

F(X) = Z,[6@+ D= 6(X - D]+ (7, - 2@+ L) -6 -L)); (2.139)
and o6(X) is the Dirac delta function.
Substituting the value of i from (2.138) and ] =(j, +J,(X.2))§, + 7, (X.2)§, into ] -fi=0

~

and using formula j;=6|:— grad® +\7><|§}, ie. J,=—cd®/&X, 7], =—co®/7 on the

surface where V = 0, we obtain the boundary condition for the potential &)(Y, 7):

7=FX): —oc==F'(X) l:jo —0‘2%)] (2.140)

where the function F'(X) is given by (2.139).

As in the previous section we transform the boundary condition (2.140) from the surface

7= IS(Y) to the plane 7 =0, i.e. we use the only assumption that the value ‘E(Y)‘ is small. As

a result, we obtain the boundary condition for the potential in the form
7=0: a&wai:[— joa-l+acf>/a§]|5'(i). (2.141)

We do not neglect the term o® /6% in boundary condition (2.140) and as a result, we obtain

the new coefficient in the solution used in paper [2].
We use the values of L, v/L, By, vi/pv/o /L, vy pvo/ L*> as scales of length, velocity,

magnetic field, potential and current, respectively. Here o, p, v are, respectively, the

conductivity, the density and the viscosity of the fluid.
Then the MHD equations and the boundary conditions have the form (see [13]):

AV, ~HaV, + Ha-0d/ox =0, (2.142)

A® =Ha-dV, /ox, (2.143)
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2=0:V, =0 (2.144)

od /87 = [~ A+ F(x,0)]F'(X), (2.145)
F'(X) = xo[o(x+ 1) =X+ D]+ (7, — x)o(X+ L) —(x—L))], (2.146)
x*+2* 50 V, >0,0 -0,

(2.147)

where A=0°/0x*+0°/62°, Ha=B,LJo/pv is the Hartmann number,

A=j,L’ /(vi/pvo), xo=%,/L, 2, =2 /L and

F(x,0) = aai)l() . (2.148)

=0

2.4.2 The solution of the problem over roughness in a strong magnetic field

In order to solve problem (2.142)-(2.147) we use symmetry of this problem with respect to

X : the function V (X,z) is an even function, ®(X,z) is an odd function with respect to X. This

means that functions V, (X,z) and ®(X, z) satisfy additional boundary conditions:

oV
2=0: a—yzo, d(x,0)=0. (2.149)
X

Therefore, problem (2.142)-(2.147) can be solved by means of Fourier cosine and Fourier
sine transforms (see [3]). We apply the Fourier cosine transform with respect to X to equation

(2.142) and to V, in boundary condition (2.144) and the Fourier sine transform to equation

(2.143) and to 0@/ 0z in boundary condition (2.145). The Fourier cosine and sine transforms of

the functions V, (X,z) and ®(X, z) are defined as follows:

V,°(2,2) = \Ejvy(x, Z)cos AXdx , (2.150)
7 0

D°(A,2) = EI@(x,z)sinﬂxdx. (2.151)
0

As a result, we obtain the following system of ordinary differential equations for unknown
functions V,*(%,2), ®°(A,2):

2\ C

d
2 y 2 c S
MV 4= - HalY, 4 Hako® =0, (2.152)
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24 S

VDS +

+Hawv,° = 0. (2.153)

We also apply transforms (2.150) and (2.151) to boundary conditions (2.144) and (2.145):

2=0: V,° dq)s =22D, sin A +~/27D, sin AL, ; (2.154)
z—>o0:V,5,0° -0, (2.155)

where D, :%[A—F(I,O)],Dz :%[A—F(LI,O), (2.156)
F(LI,O):% at x=L,, z=0, F(1,0)=%() at x=1, z=0, (2.157)

are unknown constants.

The solution of the problem (2.152)-(2.155) is represented in the form:

P(L2)=x (ke +k,e4% ) [\27D, sin 1 + /27D, sin AL, ], (2.158)
Ve(A,2) = i(eklz —e"?)[/22D, sin 2 + /272D, sin AL, 1. (2.159)
where

=—(JA* + 1+ p) (2.160)
:—(1/12—{—#2 —Iu), (2161)

and
2u=Ha. (2.162)

Applying the inverse Fourier sine and cosine transforms to formulae (2.158) and (2.159), we

obtain the solution of problem (2.142)-(2.147), containing unknown constants F(1,0) and F(L,,0)

as follows:

sin AxdA +

D(Xx,2) = DIT(klekzz " kzeklz )Si/rllzl
0

D, [ (ke +k et S AL j‘" sin AxdA, (2.163)
0
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V,(x,2) = Dl]g(ek‘Z —ekzz)ycos AXdA +
0

+D, [(e"* —e* )%cos IxdA. (2.164)

0

The components j, and j, of the induced current density are obtained using the formula:

j = 0'[— grad®(x,7) +V x E}, (2.165)
where
V =V, (%,2)8,, (2.166)
B = BI(X.2)§, + By, . (2.167)

In the dimensionless quantities, formula (2.165) can be written in the form :

] = —gradd(x,z) + HaV x B, (2.168)
where
V =V, (x2)8,, (2.169)
B =B, (X, 2)E, +E,. (2.170)

Substituting (2.169) and (2.170) into (2.168) we obtain:

j = —gradd(x,z) + HaV, (x, 2)8, . 2.171)

It follows from (1.168), (1.169) and (1.170 ) that

I = —%4— HaVy(x, Z) (2.172)
and

. 0P

), =T (2.173)

Now using formulae (2.160), (2.161), (2.162), (2.163), (2.164) and (2.172) we get:

j, = —DIT(kle"'Z +k,e

0

k2 )sin A cos AX sin AL, cos AX

di, (2.174
7 (2.174)

di-D, T(kleklz +k,et?)
0

j, = —DIT(e"‘Z +e"% )sin Asin AxdA —D, T(eklz +€%% )sin AL, sin AxdA. (2.175)
0

0
For the evaluation of unknown constants F(1,0), F(L,,0) or D,,D, in formulae (2.163), (2.164)

(2.174) and (2.175) it is necessary to use integral (2.163) and evaluate the limit as follows:
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)Md/l + D, lim (klekzz +k,e"’

z—>+0

F(1,0)= D, lim T(klekﬂ +k,e )4dsm ’1;1 costy,
0
(2.176)
In addition, a similar limit for F(L,,0)should be evaluated. Note that the partial derivatives with
respect to X of (2.163) can be calculated under the integral sign in (2.163) in the region
0<2z,<Z<+,,0<X<+00. This integral is majorized in this region. However, if we substitute
Z =0 under the same integral sign in (2.176), we obtain the divergent integral. In fact this

integral converges only in the sense of Abel (see [3]). For example, for the first integral on the

right hand side in (2.176), we obtain:

L= [" 2+ Smu dA = lim [* e 27+ 4’ Sm;tu dA (2.177)

5—>+0

or, after evident transformations

0 2 . 0
| = lim [e* —# SIN22 47+ lim (e~ sin24d 4. (2.178)

5—>+00 /12 +,L12 +A A é—>+00

The first integral on the right hand side of (2.178) converges in the usual sense, but the

second integral converges only in the sense of Abel and equal to "2 (see [3]). However, such
method gives the solution which tends to zero as the Hartmann number Ha tends to infinity. But
this fact contradicts the physical sense of the problem. Therefore, it is necessary to transform
integral (2.163) to such a form that after passing to the limit as z — +0 we would obtain the
convergence of this integral in the usual sense.

For this purpose we use the following formulae:

J‘e_z‘ﬁ“2 cosardh = ——— 1(m/z +a ) (2.179)
0

7’ +a’

© 2
_[1//12+,uze_z‘“” cosaldl = - { He Kz(,u 22+a2)—K1(,u 22+a2)}, (2.180)
0

V22 +a’ [z +a’
where a>0, z>0 and K, (z)is the modified Bessel function of the second kind of order v

(v=1, 2). As a result, we obtain (for the details see [6] and [7]):

x+1 x+L
V, (x,2) =~z - shuz[D, IM M (2.181)

x—1 z +t L1 2’ +t

iy (x,2) = chyz{D,[F(1+x) - F(1-x)]+ D,[F(L, +X) = F(L, =)} + &V, (x,2), (2.182)
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where

¢ H ,UZZ 2, 42 2, 42
F(a)= K z-+t° -K Z°+t° ||dt. (2.183
(a) !szz sz u -, )} )

The evaluation of integral (2.175) gives:

j,(x,2) = gz -chuz[D,G(x,z,l)+ D,G(x,z,L,)], (2.184)

G(xzL)= Kl(m/f +(L, —x)z)_ Kl(yw/z2 +(L, +x)? ) (2.185)
T V' + (L, —x)? V2P + (L +X%)°

We transform 0®/0x, using formulae (2.175), (2.179), and (2.180) :

o {“M V oz -k )}d
+u’z- shyzzﬁ Kl(,ux/m)jt} —
{chmTi\/z = [\/Z‘fjtz Kz(,u 22+t2)—K1(y 22+t2)}dt+
+ 4’z shyz:jjﬁ Kl(ym)ﬂ} (2.186)

The integrals on the right hand side of formula (2.186) diverge if z =0.
In order to overcome this difficulty, we perform the following transformation. First, we use

the following substitution:

t=2z&, dt=2zdé. (2.187)

It follows from formula (2.186) that

T T = I A g
+,u-shyzj' Kl(,uzx/@)jeE -
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L+l

D, chyzj J1+§ [\/ “Zg K (/JZ 1+§2)—K1(y2 1+§2)d§

L+l

+ u-shuz J.
17‘\/

z

(;z1/1+§ }15} (2.188)

In order to pass to the limit in (2.186) as z — +0 we use the following formula :

K. ()~ %(n - 1)!@) ,n=123,..at z— +0,

ie. K (2)~~, |<2(z)z32 at z — +0. (2.189)
Z Z

As a result, we obtain from formula (2.188) that

2 2
oD 13 2
lim—| =-D, lim— d& - D, 11m/J shpz —df—
7-+0 OX - 12550 ZJ.|:(1+‘§ ) 1+é’f ] J- éf
L+l L+l
-D, lim + 2 dé - D, lim 4~ shuz j —d§ (2.190)
20z 3| (14&2) 1+§ +&?

Z Z

The second and the last limits on the right hand side of formula (2.190) are equal to zero, but

the first and the third limits give undefined expressions of the form % and that is mainly because

of the following equality :

K T2 T
ﬂug e }dg:{mdg—g—o. (2.191)

Consequently, from formula (2.190) we obtain:
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2 L+1
lima;q) =-D, liml 2 = ! ~4dé- D, liml 2 > = ! - dé =
7—+0 OX ‘el za+OZO (1+é;2) 1+§ ze+02£ (1+é;2) 1+§
. 1 . 2 1 L, +1
RELE (_Z_ZJ_DZ 2 Y} [_ z ]+
- 1+— LT
(1+22j P [l+ 122 J 1+ 72
D, lim 2 —— ! - (— le_lj:—ﬂ+ 2D22. (2.192)
2—5+0 (I—l _1)2 I+ (Ll _1) Z 2 1— |_1
1+ > P
. Z -
It follows from (2.156) and (2.192) that
1 2D
F(1,0)=——D+—2%_. 2.193
(10==3D+ =% (2.193)
Similarly, for F(L,,0) we obtain:
2D D
F(L,,0)= L2 (2.194
1 ) I—le 2L1 )
We remind that [see formula (2.156)]
D, =22 [A-F(1,0)], D, =X " 20 [ A F(L,,0)]. (2.195)
Ve Ve

Consequently, formulae (2.193) and (2.194) represent the system of two equations for the two

unknown constants F(1,0) and F(L,,0), i.e. for the two unknown constants D, and D, .

Substituting these constants into formulae (2.163), (2.164), (2.174) and (2.175), we obtain the
solution of problem (2.142)-(2.147).
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Chapter 3
EVALUATION OF IMPROPER INTEGRAL

The solutions of certain problems about MHD flow of conducting fluid in the half space are
expressed in terms of improper integrals of the product of some meromorphic function and the

function exp(-avA> +b*)cosAcosAx. Here a>0 and b > 0 are some parameters, X > 0 is the

x-coordinate in Cartesian coordinate system (see [6], [7]). It is difficult to calculate these
integrals numerically since the integrands are strongly oscillating at large x.
In this chapter these integrals are transformed into integrals of monotone functions using the

convolution theorem for product of two Fourier cosine transforms.

3.1 THE TRANSFORMATION OF INTEGRAL OF PRODUCT OF A MEROMORPHIC

FUNCTION AND THE FUNCTION exp(—-a+vA* +b’)cos A cos Ax

We consider the improper integral of the form

TP e
J- ' ( 2) o cos/lcoszﬂxd/lj (3.1)
o Qn(4) /12_”7

4

where P, (1*), Q, (4’) are polynomials of degrees n and m, respectively, m>n, a>0, b>0,

x>0 are some positive parameters. The point A =7x/2 is the removable singularity of the
integrand in (3.1), because cosA =0 at A =7x/2in the numerator of the integrand. At large X
the integrand in formula (3.1) strongly oscillates so that it is difficult to calculate of this integral

numerically.
We suppose that all zeros of polynomial Q(A°) are simple and have the form: ikz = —ak2 ,
k=1,2,---3,...,n.

Let
F.(1)= \/z]z f (X) cos Axdx (3.2)
a 0

be the Fourier cosine transform of the function f(x).

We use the following
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Theorem (see [4]):

If F,(41) and ®_(A) are the Fourier cosine transforms of functions f(x)and ¢(x), respectively,

then

[F.()® (1) cos axd2 =%j P&E[F(x=&)+ F(x+5)]de. (3.3)

We define the functions F_ (4)and @ (1) by the formulae:

2
Pn(/lz) cosﬂu2 (1), e
Qm(/l )/12

=F,(1). (3.4)
4

To obtain the functions ¢(x), f(x) itis necessary to evaluate the integrals:

P.(2*) cosAcosAx dA
\f Iy (( ﬂz) cos °°Sﬂ2 —p(x). (3.5)
2 -
4
1, =\Eje-a“z+bz cos Ax dA = f(X). (3.6)
0

For evaluation of |, we use the integral known in the literature:

2 aa Npors)
[-—— —cos X dA = K, (bva’ +x*), (3.7)
o VAT +

where K,(z) is the modified Bessel function of order 0 of the second kind.

Differentiating formula (3.7) with respect to a we calculate |, :

:\/ZTeamcos/ixd/l 2K (b“a X )_f(x) (3.8)
7[0 T ,‘[

where K, (z) is the modified Bessel function of order 1 of the second kind.

I,

For evaluation of integral |, we use the residue theorem (from [4]):

zl W (Z27) Lo 0 4 @iz
| —J;zRe{(anRagHml}/ezsj—Q 2 )[e ]} (3.9)

where

o@) _ 9(20)

(7)) vz e
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It is assumed here that ¢(z) and w(z) are analytic functions at point z, and in some small

neighbourhood where y(z,)=0, y'(z,) #0. It follows from (3.9), (3.10) that

P a X] -3 (1+x
II:\/ZEZ&[e ff1- ‘s1gn(1—x)+e o )]+
=1Q, (—ay)

+ Em{sm(gl - x|jsign(1 —X)+ sin(%h + x|ﬂ = p(x), (3.11)

where sign(l — X) means the sign of (1-X).
Substituting (3.8) and (3.11) into (3.3), using (3.1) and (3.4) and taking into account that

|1 - x|2 = (1-x)?, we transform integral (3.1) into integral of non-oscillating function:

< P 2 2 2
J'—e” (22) “aVAHT cos A cos AxdA =
o Qn(4?)

=a—b_T§0(§) Kl(b (X_§)2+a2)+ Kl(b (x+§)2+a2)

d&, (3.12)
Ty by(x—&)* +a’ by(x+&)* +a’
where ¢(&) is given by formula (3.11).
Similarly, we can transform each integral of the form
J. F.(A%)e ™% cos A cos Ax dA (3.13)
0

into the right-hand side of formula (3.12) under the condition, that integral (3.13) converges and

\/z].i @(X)cos Ax dx = F_ (A7) (3.14)
7 0

Let us consider the integral

[Z5——cosAcos axda, (220,%20), (3.15)
0 T

with oscillatory function cos AX at large X.

Here x>0, z>0 are some positive parameters. It follows from
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(3.4), (3.8), (3.11) that:

D, (1) = Czos’l , F(h)=e @ (3.16)
L_;f
4
- zjwdﬂzﬁm{zxjﬂl_x):¢(x), (3.17)
Ty T ) V4 2
-}
4
where
1% 1, |x<1 G18)
—X)= .
7 0, [x>1

is the Heaviside step function,

1, :\/%je*“““ cos AxdA = % Kl(m/zz + X2 ): f(x). (3.19)
0

Uz
NZT+ X2

Substituting (3.16), (3.17) and (3.19) into (3.3) we obtain:

aoe—zw/12+/42
; cos A cos AxdA =

0 L_//{Z
4

B L O R S P e o |

= + cos—<&dé. (3.20)
T % 2+ (x= &) 22 +(x+&) 2

Integral (3.20) can be easily evaluated using package “Mathematica” for all values of the
parameters X >0 and z>0. As it can be seen from formula (3.20), the advantages of these
transformations are:

1. The parameter X goes from an argument of oscillatory function cosine into the

argument of the monotone Bessel function K, ;

2. The limits of the integration are changed to the limits in the bounded region 0 <& <1.

3.2 APPLICATIONS TO SOME MHD PROBLEMS

The integrals (3.12) and (3.20) are used to evaluate or transform the solution of problems
about MHD flows arising due to roughness of the surface (see [12], [13]).

Consider the following problem.
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A conducting fluid is located in the half space Z >0, -0 <X,y <+0. The external magnetic

field has the form

B® = B,E,. (3.21)

The boundary Z =0 is not conducting. A steady current flows with the density J = j,& in

the direction of the x axis. If the surface Z =0 is ideally smooth then the flow is absent. Suppose

that roughness on the surface Z =0 has the form

7=7,F®nL-|x]), —0<¥<+o, (3.22)

where the height of the surface J, is small and 7(L —|X|) is the Heaviside step function (see
Fig.10)) where the particular case of fN(Y) given by formula 7 = y, cos(zX /2L)-n(L — |X|) ). In
this case the full current is equal to ] = J, + j(X,Z) and the flow of the fluid with the velocity

V =V, (y,2)€, arises in the direction opposite to the Y axis (see Fig.10).

/i

Tée ={0,0,8,} V. (x.2)
s y

AZ

7 =y, cos(nx/2L)

/ A
L

y

Figure 10. The geometry of the flow in the case of full current.

In the dimensionless quantities the MHD equations and boundary conditions, which we
transform from the surface 7 = fN(Y) to the surface Z =0 at the condition that J, is small, have

the form (see [2]):

AV, —Ha’V, + Ha-d®/ox =0, (3.23)
AD=Ha-dV, /o , (3.24)
2=0:V, =0,00/02=y,[- A+ F(x,0)]-(df /dx), (3.25)
V427 500V, 50,050, (3.26)
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where A=0°/0x*>+0°/0z°, ®(x,z) is the potential of current, Ha=B,L\/c/pv is the
Hartmann number, A= j0L2 I(valpvo), x,=2,/L and o,p,v are, respectively, the
conductivity, the density and the viscosity of the fluid and

me¥§ . (3.27)
z=0

Problem (3.23) — (3.26) is solved in [2] when the product F(x,0)df /dx is neglected in

boundary condition (3.25), i.e. at the assumption that this product is also small. If the function

f(X)is given by
f(X) = x, cos(zx/2) - n(1—|x]) (3.28)

then the solution has the form

o0

B Kz ks )COSAcCOoSAX
v, (X, z)—O.SA;(O'([(e e )mdﬂ, (3.29)
¢ Asin AX
D(x,2) = —0.5A[ (ke +k, ek )2 da, 3.30
(x.2) !h ) (3.30)

where ki =-(JA +u* +p), kK, ==X +p* —p), ©=05Ha. (3.31)

It follows from (3.30) that the components of current | = —grad® + HaV, (x,2)€, have

the form

o0

cos A cos AX

T - kiz k,z
j, = 0.5A;(0£(k1e +k,e* ) e (332)
. ¢ Acos Asin AX

=-0.5A eh? gkt ) 22222, 3.33
Jz ZOV([( ) 22 _72_2/4 ( )

We can transform V (x,2), ], and j, using integral (3.20):

V,(x.2)=—2*% Ay, sh uz[F(x,2,€) cos%ﬁdf, (3.34)
T
where
K1(,u 22+(X_§)2) Kl(ﬂ Zz+(x+§)2)
F(x,2,8) = - + , (3.35)
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. 2 00 Vs p T
i, =;Azoﬂ{chm£5[znx, z,é)]cos;fdf} - ,uzsh;z.([ F(x, Z,é)cos;fdé (3.36)

- 72'
=—Ay,ch j s §ds. (3.37)

0

Integrals (3.34), (3.36), (3.37) are more suitable for calculations using package
“Mathematica”, than integrals (3.29), (3.32), (3.33).

In paper [13] the problem (3.23) — (3.26) is solved taking into account the product
F(x,0)df /dx in boundary condition for the case where

)= 2o [l(x+1) = p(x=1)]. (3.38)
Then
/00 =[s(x+ 1) = 5(x=1)], (3.39)
where 0(X) is the Dirac delta function.

In this case the solution of the problem (3.23) — (3.26) has the form:

V,(%,2) = Dj( gh?)> ‘3’1 cos AxdA | (3.40)
o(x,2) =D ke +k,e" )S‘;f sin AxdA (3.41)
0
where
L A (3.42)
rl-—y,/n’
Components of current j =—grad® + HaV, (x,2)€, have the form
i :_DJ'(kleklz +k2ekzz)wdl’ (3.43)
0
H i k,z kyz )2 .
j, =-DJ(€"* +&"* )sin Asin Axd.. (3.44)

0

In order to transform the given solution it is necessary to use the integral which we obtain by

differentiating formula (3.28) with respect to parameter a and substituting a=z, b=u, x=a:

) 2
J.\//lz +que—z\/z~+;ﬁ cosaldi=——~ HZ Kz(,u 2’ +a’ )— Kl(y z? +a2) (3.45)
0 V2t +a? [V +a?
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where K, (z) is the modified Bessel function of second kind.

Substituting a=t in (3.45) and integrating with respect to t from t=0 to t=a,

we obtain:
2 e SR 4 Ea) (3.46)
) A

where

- :a P " /122
® '!«/z2 +t? L«/z2 +t?

Kz(,u 77 +t° )— Kl(,u 2> +1° )}dt. (3.47)
Similar transformations with formula (3.28) gives:

© . a 2 2
[orn(mur sl g) g [KiNZ 10 g (3.48)

0 A 0 \/Zz+t2

Using formulae (3.46), (3.48) we transform integrals (3.39), (3.43) to the form of integrals of

non-oscillatory functions:

X+1 Kl(ﬂ ¢22 +t2)dt

V. (X,2)=—Duzshuz 3.49
,(%,2) = -Duzshu j = (3.49)
jx(x,2)=Dchuz[F(1+ %) - F(1-X)]+ 4V, (x,2), (3.50)

where F(a) is given by formula (3.47). Using formula (3.28) one can evaluate integral (3.44):

Kl(,m/z2 +(l—x)2j ) Kl(m/z2 +(1+x)2]

Formula (3.51) allows one to obtain the asymptotic of the component j,(X,z) at

J,(x,2)=Duzchuz (3.51)

41 =0.5Ha — . We now use the formulae which hold at # —> o, z>0,1>0:

chuz ~0.5e"*, K, (ul) =~ /2Lme-ﬂ' . (3.52)

Then, according to (3.51), component j,(X,z) decreases at x — oo everywhere, except two

regions bounded by the parabolas:

iG] gz =ty 2+ (1) -z =1, 69

i.e. by parabolas
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2+ LS 05u(x 41’ z4 = 05u(x— 1)’ (3.54)
2u 2u

and we can replace 1/2u~0 at g — oo in formula (3.54). Inside the regions bounded by

parabolas (3.54), the component j,(X,z) tends to infinity in accordance with formula:

J, =yulz, (3.55)

and it follows from (3.51) — (3.53) that:

=\’ +(1-%x)* =(1+m)/ u~z,

,uZCthZ|_1K1(Iu|)zyle”(z_l) L:e‘l T K )
2 2uz 8\z

The convolution theorem for product of two Fourier cosine transforms can be used for
transformation of one class of integrals containing oscillatory functions to integrals of monotonic
functions. These results are applied for transformation of solution of some MHD problems
arising in half space z >0 as a result of roughness of the surface z =0. The various boundary

layers for induced current in a strong magnetic field are found in this problem.
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Chapter 4
CORROSION OF EUROFER STEEL AND MAGNETIC CONFINEMENT
OF PLASMA IN REACTORS

Search of new energy sources draws the increasing attention of scientists of many
countries and that is why they are trying to drag and control the fusion of D-T (Deutrium-
Tritium) plasma inside of a Tokamak reactor (Tokamak is a device used in nuclear fusion
research for magnetic confinement of plasma and it consists of a complex system of magnetic
fields that confine the plasma in a hollow doughnut-shaped container). The D-T reaction and its
related use in reactors are briefly described below.

During my seven year staying period in Riga, Latvia (one of the main MHD application
centers currently existing in Europe), I have had access to some interesting sites related to MHD
study such as the Physics Institute in Salaspils where I have seen the three recently planned
experimental sessions (each 2000 hours long) which have been successfully completed. New
results concerning the profile of corrosion are obtained. I had the opportunity to participate in
some PAMIR MHD International Conferences (4™ and 5™ and the 7" PAMIR International
Conferences). This led to the writing of Chapter 4 illustrating the mentioned above (see [1], [32],
[34], [35], [36], [37], [40], [49], [56] and [64])

4.1 Deuterium-Tritium reaction and its use in reactors.

During this century, the world's population will double from six billion people and it will
rise to ten billions by 2050. More importantly, a lot more energy will be used than we use today,
energy consumption will probably be two times higher by the middle of the century with an even

stronger increase in electricity consumption (see Table 1 below).
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Energy consumption around the world

Table 1. Energy consumption by the year 2007 [Mtoe (Million Tonnes Of Oil Equivalent)]
(The exact values are respectively 3500, 2200, 2100, 1200, 700, and 200)
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Fusion is the nuclear process that powers the sun and other stars. Under the very high
temperature conditions, hydrogen atom becomes separated into its fundamental components-
electrons and nuclei, and form a new state of matter called "Plasma". Finally the nuclei fuse
produces Helium and gives energy. Scientists from all European member states and G8 countries
associated with the EURATOM fusion program have been trying to reproduce this process on
Earth. The fusion of Deutrium and Tritium, two Hydrogen isotopes would need a temperatue of
100 million °C. This procedure can be done inside of a reactor using a Magnetic confinement
that consists of heating on the Plasma by Joule effect and by injection of energetic particle
beams and radio-frequency waves into the plasma and its thermal isolation from the material
walls by strong magnetic fields [1], [32], [33], [57], [49].

Mainly, three types of liquid metal blankets are proposed for this purpose:
1) (SCLL), the Self-Cooled Lithium-Lead blanket

2) (WCLL), the Water-Cooled Lithium-Lead blanket

3) (HCLL), the Helium-Cooled Lithium-Lead blanket [1], [33], [57], [49].

EUROFER-97 steel has been tested as the best structural materials of the blanket in a
reactor. It is supposed to be used as the basic construction material for the production of the

HCLL (Helium-Cooled Lithium-Lead) Blanket (see Fig. 11 below).

Figure 11. HCLL Blanket image.

4.1.1 The Deuterium-Tritium (D-T) reaction and its products

The reaction is represented by the following relation
*H+ H — ;He + jn 4 17.6 MeV @1

and is simply represented in Fig. 12 below.
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Figure 12. Deuterium-Tritium (D-T) reaction and its products

The fusion energy ( 17.6 MeV ) appears as kinetic energy of neutrons (14.1 MeV ) that need to
be saved inside of a reactor using lead, and of Alphas ( 3.5MeV ) that are evacuated as ashes
from the chimney of a certain reactor [1], [36], [37], and [64].

Deutrium is generously present in seawater but Tritium is a radioactive element rarely existent
naturally on Earth. However it can be bred inside the reactor using the reaction of the neutrons in
a blanket containing lithium, an abundant light metal in the nature as:

Li6 +n ---- T + He4 + 4.8 MeV (4.2)
Li7 +n---- T + He4 — 2.5 MeV (4.3)
Ten grams of deuterium which can be extrated from 500 litres of water and 15 gr of tritium
produced from 30 gr the lithium would produce enough fuel for the lifetime electricity needs of a
person in an industrialised country. In other words, these two resources are practically available.

This is another advantage of D-T Fusion (see [1], [32], [39], [35], [49], [55], [56], [64]).

4.1.2 Progress of the D-T plasmas confinement inside of reactors.

Europe, the world leader in this field, has already undertaken several research and development
projects dealing with fusion (as an example, we mention the JET project (the Joint European
Torus)). The largest Tokamak in the world will be constructed in Culham (UK). Despite the
progress continuously achieved on JET, it is clear that a larger and more powerful device would
be necessary to demonstrate the feasibility of nuclear fusion energy on a reactor scale. The future
of fusion lies on ITER (The International Thermonuclear Experimental Reactor) whose purpose
is to produce a detailed, complete, and fully integrated engineering design of ITER and all
technical data necessary for future decisions and results that come out of ITER (see [1], [23],

[33], [34], [37], [57], [49], [64)).
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ITER will be constructed using the results of JET with the same concepts and the same Toroidal

shape but on a much larger scale (see Fig. 13 below).

Figure 13. The relative sizes of JET and ITER devices (see [1]).

The plasma volume of JET and ITER are 100 m”and 800 m?, respectively. In the case of
JET, losses of energy are compensated by a source of outside energy. One of the advantages of
ITER that it will not depend on power supply from the outside. The deuterium-tritium (D-T)
experiments on the Tokamak Fusion Test Reactor (TFTR) have yielded unique information on
the confinement, heating and alpha particle physics of reactor scale D-T plasmas as well as the
first experience with tritium handling and D-T neutron activation in an experimental
environment. Toroidal and poloidal field coils are used and these generate strong magnetic field
(typically about 5 tesla, which is about 100,000 times the earth’s magnetic field) that confines
the plasma and stops it touching the walls of the vacuum vessel. The D-T plasmas produced and
studied in TFTR have peak fusion power of 10.7 MW with central fusion power densities of 2.8
MWm™ which is similar to the 1.7 MWm™ fusion power densities projected for 1,500 MW
operation of (ITER). Detailed alpha particle measurements have confirmed alpha confinement
and heating of the D-T plasma by alpha particles as expected. Advanced Tokamak operating
modes have been produced in TFTR which have the potential to double the fusion power to ~20
MW which would also allow the study of alpha particle effects under conditions very similar to
those projected for ITER. TFTR is also investigating two new innovations, alpha channeling and
controlled transport barriers, which have the potential to significantly improve the standard
advanced Tokamak.
This strategy included three steps beyond JET [35], [36], [37], [61]:
1) ITER is a liquid lithium self-cooled breeding blanket aiming at demonstrating the controlled

burn of deuterium-tritium plasmas with steady state as an ultimate goal on a scale of a power
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plant and of a number of key technologies. ITER project will be ready approximately by the end

of year 2050 in Caradache, south of France.

2) DEMO is the water cooled blanket reactor aiming at the final demonstration of all the relevant
technologies, tritium self-sufficiency and electricity production. The design of DEMO suppose

to start in 2035s and its operation in 2060s. A steady-state Tokamak is minimized to have 5.8 m

of major radius with 2.3 GW of fusion power with energy amplification Q exceeding 30.

3) PROTO is the first proto-type power station with complete reactor and ancillary systems that

would include all the remaining technological developments as well as generating electricity on

a commercial scale, under the assumption that its design and construction would be started in

2050s and its operation in 2070s (see [1], [33], [35], [49], [49], [57], [64])).

4.1.3 Major reasons of the use of fusion energy

Maybe at the end of this century, fusion would be considered as a new reliable long-term

energy source that becomes a part of humans’ lives due to such important reasons:
1. The fuels are abundant everywhere and for a much cheaper price in comparison to the present
price.
2. The fusion process is very clean since it does not contribute to the greenhouse effect, to the
spread of acid rain, or to radioactive particles that could take many years to remove.
3. D-T fusion power station can be made very safe due to two main reasons:

(i) a large uncontrolled release of energy would be impossible since the amounts of deuterium

and tritium fuels inside the reactor will be very small;
(i) the fusion reactions can be stopped in a very short time if an accident occurs, since the

fuels are introduced inside the reactor while they are burned.

4.2 Analysis of MHD Phenomena Influence on the Corrosion of EUROFER
Steel in the Pb-17Li Flow

In the second part of this thesis (section 2.2) the MHD flow of a conducting fluid located
in the half space 7 >0,—0 <X,y <+w with the roughness of the surface in the form
7 = y,cos(7X /2L) is considered. The external magnetic field is B =B e,. Corrosion of

EUROFER steel in the Pb-17Li flow can be considered as a consequence of roughness on the
surface of the walls where the Hartmann surfaces flows are perpendicular to the flow as well.

Roughness is modelled by the formula
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L=2(y)=y,cosay, (4.4)
where y, 1s the amplitude, o =7a/L characterizes the scale, L is the width of hills and
depressions, and Ha is the Hartmann number. The value a=3 mm is chosen as a typical

dimension. Here v=1.1x10"m*/s; o =0.73x10°S/m and thus for the mass transfer problem

Dr. = (6.4) x 10°m?/s more than 6x 10”m?/s as it was assumed in [1], [55], and [56]) .

Despite the fact that corrosion of steel in the Pb-17L1 flow is a small but important part of
the reactor work, we notify the importance and newest results obtained on the corrosion process
in the Physics Institute in Latvia [55], [56]. For instance, the first experimental 2000 hours’
session for investigating the influence of magnetic field on the corrosion of EUROFER steel in
the flow of Pb-17Li has been successfully completed. During the whole session the following
conditions were maintained at the experimental facility: the minimum temperature in the cold
part of the loop Tpin = (350 + 20) OC; the temperature in the test section Trs = (550 £ 10) OC; the
mean flow velocity in the test section Upean = (5 £ 0.5) cm/s; the magnetic field strength B = 1.7
T. The residue of the melt in a pure Li melt at the temperature of 400°C was washed off from the
samples removed from the test section and the samples were further weighed. These
measurements showed that mass losses for corroded samples located in the zone with a magnetic
field are approximately over two times greater when compared with those located in the zone
outside the magnetic field (B = 0). This fact shows a significant intensification of the corrosion
by the magnetic field. Moreover, it should be stressed that due to insufficient heat isolation of the
test section the temperature of the molten metal varied over the length of the test section: at the
zone where B = 0 (inlet) it was by ~ 15 °C higher than at the test section (outlet) with the
magnetic field where T = 550 °C. This experiment was performed on different samples with flow
velocities of 2,5 cm/s and Scm/s and magnetic current of 0, 1,5 and 1.7 T. Results gained in these
investigations demonstrated essential influence of magnetic field on the corrosion processes both

in the intensity of corrosion and its character (see Fig. 14).
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Figure 14. Comparison of corrosion rate of EUROFER samples in magnetic field and without magnetic
field.

Visual observations of the test samples showed sufficient distinctions in relief on the
sample surfaces. In particular, samples suffering corrosion from the zone with B = 0 are rather
smooth and, on the contrary, the sample surfaces from the zone exposed to the magnetic field
resemble a regular enough wave-like pattern with furrows oriented in the melt flow direction.
Such pattern is typical only of the Hartmann (perpendicular to the magnetic field) walls. The side
walls remain rather smooth. The same can be attributed to the outer sample surfaces, which
exhibit traces of corrosion caused by the EUROFER interaction with the melt that penetrated the

gaps between the samples and the outer channel.

The second experimental (2000 hours’ session) has been completed successfully and
showed that the magnetic field not only generally enhanced the corrosion rate, but showed that
magnetic field badly influences corrosion. In the case for samples located in zone (B = 0) all
inner surfaces of samples being subjected to the Pb-17Li flow were maintained sufficiently
smooth, then in zone with magnetic field (B = 1.7 T) all Hartman surfaces of samples were
covered with grooved structure oriented in the flow direction (see [1], [49], [55], [56], [64]). The
presence of a magnetic field led to the appearance of regular wave-like patterns on the
corroding surfaces perpendicular to the magnetic field, which were oriented in the melt flow
direction and that the corrosion processes on the EUROFER surfaces washed over by Pb-17Li
and were determined by the surface orientation about the magnetic field direction ([55], [56]),

(see also Fig. 15 below).
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12 mm

Figure 15. Surface relief of EUROFER samples subjected to corrosion in Pb17Li during 2000 hours.

Moreover, in the third experimental session [56] the corrosion rate hy caused by Pb-17Li
on the EUROFER steel was investigated and its results of the corrosion rate are shown in Table
below).

Corrosion rate hy without and with magnetic field.

N | Bo=0 Bo=1.8T
ho, p meter/year

1 523 967

2 | 458 877

3 381 694

4| 293 846

5 388 726

Table 2. Corrosion rate of EUROFER steel by Pb-17Li flow [55], [56]

There is a hope that before the end of this century, scientists with all the technologies and studies
available, would be able to achieve success of the ITER project. This will provide the physical
and technological basis for the construction of a demonstration electrically generating power
plant in the future like DEMO and PROTO . Then a new clean and cheap source of energy
would be a part of humans’ life (see [1], [9], [28], [32]-[37], [40], [49], [51], [55], [56],[62],
[70] and [73]).
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Chapter 5

Ginzburg-Landau equation for stability analysis of shallow water in a

weakly non-linear regime

Losses due to turbulent friction are often described in hydraulics by means of empirical

(or semi-empirical) formulas like Chezy of Manning’s formulas [66]. In particular, the Chezy

formula is used to represent the bottom friction force F in the form

PIA
h

where pis the density of the fluid, g is the acceleration due to gravity, Ais the cross-sectional

F =90 i\

b

area, his water depth, c, is the friction (or roughness) coefficient, V is the velocity vector and

F is the friction force. The coefficient C, is estimated by means of several empirical formulas
which can be found in the literature. One example is Colebrook formula [66] which relates ¢ to

the Reynolds number of the flow.

Chezy formula is effectively used by hydraulic engineers for many years to estimate the
“lumped” effect of friction in a turbulent flow. Examples include computation of flow rate and
losses in channels or pipes and design of open channels. Chezy formula is also widely used in
cases where more detailed knowledge of the flow field is required [50]. The coherent structures
in wake flows are believed to appear as a final product of hydrodynamic instability of the flow
[45]. Classical method of analysis of hydrodynamic stability is the linear stability analysis [26].
Linear theory can be used to find the value of the parameters of the problem for which a
particular flow becomes unstable. However, the development of instability beyond the threshold
cannot be described by the linear theory. Methods of weakly nonlinear theory have been applied
in the past to different flows [8, 10, 14-16, 19, 22, 23, 26, 43, 44, 47, and 67] and usually lead to
amplitude evolution equations for the most unstable mode. One of such equations is the complex
Ginzburg-Landau equation. Weakly nonlinear theory is applied to quasi-two-dimensional flows
in [22] with Rayleigh friction (internal friction is assumed to be linearly related to the velocity
distribution). It is concluded in [22] that small variations of linear stability characteristics (in
particular, small variations in the base flow profile) led to large changes in the Landau constant

(the Landau constant is the real part of one of the coefficients of the Ginzburg-Landau equation).

5.1 Shallow flows behind obstacles

Wake flows are quasi-two-dimensional flows behind obstacles (such as islands) in which

71



the horizontal components of the velocity vector are much larger than the vertical component. A
typical measure of shallowness of the flow is the ratio of the transverse length scale of the
flow, D, and water depth, H. The flow is assumed to be shallow if the ratioD/H is large
enough: D/H >>1. An excellent example of shallow wake flow is discussed in [19] where the
leaking oil from the tanker Argo Merchant shows a von Karman vortex street flow pattern.
Experimentally observed coherent structures in shallow wakes are believed to appear as a result
of flow instability [19], [44]. Linear stability of shallow flows is studied experimentally in [19],
[44], [45]. It is shown in [19] that three different flow regimes can be observed in shallow wake
flows: steady bubble, unsteady bubble and vortex street. It was found in [19] and [44] that flow

patterns behind obstacles depend on shallow wake stability parameter S =c,b/H , where c, is

the bottom friction coefficient and b is length scale (the diameter of the cylinder in [19]).

Theoretical investigation of linear stability of shallow wake flows is performed in [19],
[44], [45]. Linear stability analyses confirm that the stability characteristics of shallow water
flows depend on the magnitude of the stability parameter S . In particular, a flow becomes more
stable as the parameter S increases.

The linear stability theory can be used to determine when a particular flow becomes
unstable. The “fate” of the disturbance just above the threshold cannot be predicted by the linear
theory. Methods of weakly nonlinear theory are often applied to describe the evolution of the
most unstable linear mode when the flow becomes unstable [26], and [67]. Relatively simple
amplitude evolution equations such as the complex Ginzburg-Landau equation (CGLE) are used
in the literature to analyze spatio-temporal dynamics of complex flows [10], [67]. The
popularity of the CGLE is based on the following factors: (1) the model is relatively simple but
includes such physical effects as nonlinearity and diffusion, (2) the CGLE is a scalar equation,
(3) the CGLE can be derived (in some cases) from the equations of motion, (4) the coefficients
of the CGLE can be obtained in closed form (in terms of integrals containing the characteristics
of the corresponding linear stability problem), (5) the CGLE can exhibit a rich variety of
solutions depending on the values of its coefficients.

In many applications the CGLE (or the Landau equation) is used as a phenomenological
model equation. In such cases the coefficients of the CGLE are obtained from experimental data.

On the other hand, the CGLE can be derived from the equations of motion. Examples
include weakly nonlinear analyses of plane Poiseuille flow [67] and problems related to
generation of waves by wind [10], shallow flows behind obstacles such as islands [44], and [45],
rapidly decelerated flows in pipes [43] and channels [46].

Despite the fact that the CGLE was successfully applied in practice to model spatio-

temporal dynamics of complex flows [44], [45], other sources in the literature suggest that the
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use of weakly nonlinear theory should be limited. One such an example is introduced in paper
[22] where linear and weakly nonlinear theory is applied to the stability analysis of quasi-two-

dimensional shear flows such as shallow water flows. It is assumed in [22] that the term
representing friction in fluid system is of the form f, = —A,0 , where A is the coefficient of

Rayleigh friction and U is the velocity vector. The authors compared their theoretical predictions
from the linear stability analysis with experimental data. Reasonable agreement was found. On
the other hand, it is found in [22] that the Landau constant (the real part of one of the coefficients
of the CGLE) is quite sensitive to the shape of the base flow velocity profile. As a result, it is
concluded in [22] that it would be impossible to compare directly the theory with experiments
since it would be difficult to determine the base flow velocity profile with accuracy up to the
third derivative (as it is required by a weakly nonlinear theory). In particular, it is found in [22]
that the values of the Landau constant differ by a factor of 3 for two base flow velocity profiles
whose linear stability characteristics differ by not more than 20%.

In the present section, linear and weakly nonlinear stability of a one-parametric family of
shallow wake flows is investigated [15] and [16]. The parameter used in the study represents a
slow longitudinal variation of shallow wake flow behind obstacles such as islands. In contrast to
[22] where the internal friction is linearly related to the velocity
distribution, a nonlinear Chezy formula [66] is used to model bottom friction. The base flow
profile used in [19] is adopted in our study. Calculations show that the Landau constant as well
as other coefficients of the CGLE are not so sensitive to the shape of the base flow
profile. Thus, it is plausible to assume that the CGLE can be used to describe spatio-temporal

dynamics of shallow wake flows.

5.2 Linear stability analysis

Consider the base flow of the form

U =U(y).0) (5.1)
where
Uyy=1-~ 1 (5.2)

1-R cosh’(ay)
The base flow (5.2) is suggested in [19] after careful analysis of available experimental data for
deep water flows behind circular cylinders. The profile (5.2) is also adopted in the present study.
The parameterRis the velocity ratioo R=U_ -U,)/(U_ +U,), where U is the wake

centerline velocity and U is the ambient velocity, and a =sinh™'(1). It is shown in [44] that
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under the rigid-lid assumption the linear stability of wake flows in shallow water is described by

the following eigenvalue problem:

9,"(U —c+SU)+SU g, '+(k2 -U,, -kU —%kU)(pl =0 (5.3)

@, (£0) =0, (5.4)
where the perturbed stream function of the flow, w (X, y,t), is assumed to be of the form
w (X, Y,t) =@ (y)explik(x—ct)]+c.C. (5.5)
Here ¢,(y)is the amplitude of the normal perturbation, k is the wavenumber, Cis the wave

speed of the perturbation, and C.C. means “complex conjugate”. The linear stability of the base

flow (5.2) is determined by the eigenvalues, c, =cC,, +iC,,, m=12,... of the eigenvalue
problem (5.3), (5.4). The flow (5.2) is linearly stable if c,, <0 for all mand linearly unstable if
C,, >0 for at least one value of m.

The linear stability problem (5.3), (5.4) is solved by means of a pseudospectral collocation
method based on Chebyshev polynomials. The computational procedure is briefly described

below (details of the numerical method can be found in [44]). The interval —oo <y <+o0is

: : 2 .
mapped onto the interval —1<r <1 by means of the transformation r =—arctan y. The solution

V4
to (5.3), (5.4) is sought in the form
N
P (N =Y a (-r*)T(n), (5.6)
k=0

where T, (r) is the Chebyshev polynomial of degree k The collocation points r; are

DO B
r. =cos N’ ]=0,1,..,N. (5.7)

]

The derivatives are transformed by the chain rule:

dy 7 2 dr’

d’ d’ d
P icos4 ”—r—%—isinﬁ—rcos3 2o

dy> 7’ 2. drr 7 2 2 dr

dp _2  e7rde

(5.8)

Substituting (5.6), (5.8) into (5.3), (5.4) and evaluating the function ¢,(r)and its derivatives at

the collocation points (5.7) we obtain the following generalized eigenvalue problem:
(B-4AC)a=0 (5.9)
where B and C are complex-valued matrices and

.
a=(aa,.a,) .
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Problem (5.9) is solved numerically by means of the IMSL routine DGVCCG. The critical

values of the stability parameters k,S and c for different values of R are given in Table 3 ( here

S, = mkaxS).

R k S, C
-0.3 0.892 0.11819 0.69814
-0.4 0.909 0.15689 0.65964
-0.5 0.926 0.19548 0.62394
0.6 0.944 0.23409 0.59083
0.7 0.962 0.27286 0.55925
0.8 0.980 0.31189 0.52882

Table 3. Critical values of of the stability parameter S .

5.3 Weakly nonlinear analysis

Following [67], in this section the main steps of the derivation of the amplitude evolution
equation for the most unstable mode are briefly described. Consider the two-dimensional shallow

water equations of the form :

NNy, (5.10)

oX oy

ou ou ou ap

2 iuE v E T uu? =0, 5.11

AL Py 8x+2 uvu? +v2 (5.11)
c

KoL L PRYCLANEC i BV (Y =0, (5.12)

o ax oy oy 2H

where uand vare the depth-averaged velocity components in the xand VY directions,

respectively, H is water depth, p is the pressure.

Suppose that
TRV (5.13)
oy OX

where (X, Y,t) is the stream function of the flow. Eliminating the pressure and using

(5.13) one can rewrite the system (5.10) — (5.12) in the form

(Ay), +v, (Ay), —w, (Ay), +%AWV/X +y, (5.14)
Cf

- 2 0
th(wyww 2 YWy H VW ) =

Consider a perturbed solution to (4.14) of the form
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lr//:!//O(y)+gl//](x9y:t)+gzl//2(x:y:t)+"' (515)
The parameter ¢ describes a small deviation of the shallow wake stability parameter S from

the critical value S, :
S=S,(1-¢&%) (5.16)

Weakly nonlinear theory is applicable in a small neighborhood of the critical point

(see Fig. 16):

Sc

______

unsftable

Ke K

Figure 16. Neighborhood of the critical point in a weakly nonlinear Region in the (K, S) -plane

(shown as dashed rectangle) where weakly nonlinear theory is applicable.

The amplitude evolution equation for the most unstable mode is derived by means of the
method of multiple scales. Following [67], the following slow time and longitudinal variables

are introduced:

=g, £=g(x—cyt), (5.17)
where C is the group velocity.

The function y, in [15] is sought in the form
v, (%, Y.t) = A 1)@, (¥) explik(x—ct)] + c.c. (5.18)

where A is a slowly varying amplitude.

The linear stability problem (5.3), (5.4) is obtained by substituting (5.15) — (5.18) into (5.14),

collecting the terms containing & and using (5.5). Collecting the terms containing &7 the

following equation is obtained:
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Ly, =Cq(Wiue +Wipe) = 2Wixee = Woy GWie + Wiyye)
Wiy Wi T Wiy ) W Wiy + Wiy ) T W1V 0y
—S[W g + Wiy Wiy +20,:W0y W Wiy — 200, Woy
20, W ]

(5.19)

Here

Ll// =V T l//yyt + l//Oy (l//xxx + l//yyx) - l//Oyyyl//x

C
W+ 20, Wy + 20,00, |

Similarly, the equation of order & has the form

Ly = Cq(Wane + 2Wiiee + Vo) = Vie = Wigye ~ 2Worat
“Wiea —Woy Wage +Wixee) = Wiy W + 30 1)
Yoy Wise FWiy) = Viy Wy —Vicy) = VoyWacy
oW iy TViWiny TV iWony T2V 0V e W0y
oWy TV Wy FWoWoyy
=S[Yyy Wi +Wiyy) + 2050y + 150,077 W4,
HWowWiy T 2W Wiy + 200 Vo WiWoy —ViWoy
=200 Wiy = 200 Wiy W Woy W Way 20000,
2, Wy 200 W + 2000
(5.20)

The function y, is sought in the form

v, = AN 0" (y) + A.py” () explik(x—ct)]

(5.21)
+A’p{P (y)exp[2ik(x—ct)]+c.C.

The function ¢{” (y)is the solution of the following boundary value problem

2S[Uy, @) + Uyl 1= iK[o, 01, — 0,01,

0Py — P Py 1 - SIK 0100, + K20 0, (5.22)
+2¢1*y¢1yy +2(01*yy¢1y]>

93" (+0) = 0. (5.23)

The function ¢{"(y) satisfies the equation

77



(iku, —ikc)gs,, + (ik’c—ik’u, —iku,,, )@!"

+S[2uy05,, + 22Uy, @3, —k 0402“]

(5.24)
= (C, —Uy)@,, +[-2k*c+3K’u, +u,,, —k’c,
—iku,S]e,,
93 (e0) = 0. (5.25)
The function ¢{* () is the solution of the boundary value problem
2(iku, —ike)pS)) + (8ik’c — 8ik’u, —2iku,,, )@
+S[2U,p57, + 2U,, @5 —4k*u Ogo;z’] (5.26)
- Ik((plcolyyy ~ 0, 0y) = SCp, 1, — 3K 00,)),
95" (+0) = 0. (5.27)

The amplitude evolution equation for A is obtained from the solvability condition for equation
(5.20) and has the form of the complex Ginzburg-Landau equation (the equation is derived in
detail in [44]):

oA _ o’ A

5.28
37 (5.28)
The coefficients of equation (5.28) are given by
o
:i, 5:—1, /j:ﬁ’ (5.29)
4 4 4

where
7= [ o (o1, —Kp)dy, (5.30)
o, =S [ of (up,,, + 20,0, —K'Uyp)dy , (5.31)
5 = j o [ply (¢, —Uy) + 9" (—k’c, —2Kk°c
+3ku, +U,,, —2iku,S) + ¢, (2ike, + ke (5.32)

=3iku, —US)]dy,
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= [ oM 61 o), —2ike) i) +3iK ) )
+ik’ g () +9'5)) — ke, (03, + 9%

+ikpy) o, —ikg ol +ikey (05, +0)50) (5.33)
+2ikgy,, 07 —2S[-K* gy () + 9%

+3K°0 05 ~1.5K g /U, + 20, (03] +975)

20,05 + 20, (050, + 0 50 ) + 2050 0/, 13 dy

(0) *(0))

In addition, one needs to calculate the adjoint eigenfunction ¢ of the linear stability problem:

(iku, +2Su, (@) "+ (2iku,, +2Su,, ) ()"

(5.34)

—(ik3U0 + u0k25)¢1a +ike[(o) "~ kz(p1a] =0
@2 (F0)=0. (5.35)
The group velocity ¢ is given by

Il
C, = T (5.36)

2
where

I1 = .[[U0¢71yy _¢1 (3k2u0 +u0yy

—2k’*c - 2iku,S)]epf dy
+00 . 5
L= [ oy, — K00y

Solving boundary value problems (5.22) — (5.27), calculating ¢/ and ¢, and evaluating integrals

in (5.30) — (5.33) numerically, the coefficients of the CGLE (5.28) are obtained for different

values of R . The results are summarized in Table 4.
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R o) o H
03 0.063+0004  0.060—0.206i 4.673 + 13.2941
-0.4 0.078 + 0.0031 0.090 — 0.1951 3.796 + 10.938i
05  0.090+0.000i  0.115—0.184i 3.895 +10.119i
0.6 0.100-0.003i  0.136—0.172i 4375+ 10.109i
-0.7 0.109 — 0.007i 0.153 -0.1611 5.149 + 10.590i
08  0116-0012i  0.167—0.152i 6.302 + 11.448i
TABLE 4

Coefficents of the CGLE (5.28)

One of the major conclusions drawn from
weakly nonlinear analysis applied to quasi-
two-dimensional flows in [22] was the effect of
strong dependence of the Landau constant

u.on the form of the base flow profile.

Calculations presented in [22] showed that the

values of the Landau constant differed by a

factor of 3 for two base flow velocity profiles whose linear stability characteristics differed by

only 20%. As a result, it was concluded in [22] that it would be impossible to apply methods of

weakly nonlinear theory in practice since the base flow profile cannot be determined very

precisely in experiments. In other words, it was concluded in [22] that the problem of

determination of the Landau constant from weakly nonlinear theory is ill-posed so that small

variations of the base flow profile lead to large changes in the Landau constant.

The calculations presented in Table 3 and 4 in our paper demonstrate that the coefficients

of the CGLE are not so sensitive to the variation of the parameter R of the base flow profile (5.2)

as claimed in [22]. In fact, not only the Landau constant is not so sensitive to the changes in the

profile (5.2) but all the coefficients of the CGLE do not vary too much.
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CONCLUSIONS

The thesis is devoted to the analysis of factors that influence the structure and stability of
magnetohydrodynamic (MHD) flows and shallow water flows. In particular, the effects of wall
resistance on the flow can be described locally (taking into account roughness of the boundary)
or globally (using semi-empirical formulas describing the effect of internal friction). Roughness
of the bolundary can occur as a result of corrosion. Experimental results demonstrated essential
influence of magnetic field on the corrosion process both in the intensity of corrosion and its
character. Therefore, it is important from a practical point of view to analyze the effect of
roughness on the structure of magnetohydrodynamic flows. This effect is evaluated in the thesis
by solving the system of magnetohydrodynamic equations analytically (using the Fourier
transform). Several forms of surface roughness are considered in the thesis. Analytical solutions
are found and velocity distribution is analyzed numerically for different Hartmann numbers.
Asymptotical solution for high Hartmann numbers is also found. The solutions are found in
terms of integrals containing oscillatory functions. These integrals are transformed in the thesis

to integrals containing non-oscillatory functions.

Global effect of internal friction is usually taken into account by using empirical resistance
formulas like Chezy formula to estimate the “lumped” effect of turbulent flows for the
computation of flow rate and losses in channels or pipes and design of open channels. These
formulas contain empirical friction coefficients that are directly related to the Reynolds number
of the flow and the roughness of the boundary. The coherent structures in wake flows behind
obstacles are believed to appear as a final product of hydrodynamic instability of the flow.
Methods of weakly nonlinear stability theory have been applied in the past to different flows and
usually lead to amplitude evolution equations for the most unstable mode. One of such equations
is the complex Ginzburg-Landau equation. Weakly nonlinear theory applied to quasi-two-
dimensional flows with Rayleigh friction (internal friction is assumed to be linearly related to the
velocity distribution) led to the conclusion that the coefficients of the amplitude evolution
equation (Ginzburg-Landau equation) for the most unstable mode strongly depend on the shape
of the base flow profile. As a result it was concluded in the literature that weakly nonlinear

models cannot be used for such cases since it is impossible to determine experimentally the base
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flow velocity distribution with high accuracy and, therefore, one cannot use reliable values of the
coefficients of the Ginzburg- Landau equation. It is shown in the thesis that if a nonlinear
formula is used to model bottom friction then the coefficients of the Ginzburg-Landau equation

are not sensitive to the base flow velocity distribution.

Literature review is presented in the Chapter 1. In addition, the structure of the thesis and the
main results are discussed.

In Chapter 2 we state the principles of MHD flows and then we describe the influence of
the surface roughness on the MHD flow of a conducting metal and state the governing equations.
Since MHD flow problems are widely studied in channels of various forms and different
boundary conditions, the results of such studies have direct applications in different fields of
magnetohydrodynamics [29], [38], and [58]. Since magnetohydrodynamics studies the motion of
electrically conducting fluids in the presence of magnetic fields, it is obvious that the magnetic
field influences the fluid motion. Usually in MHD problems electromagnetic force is added to
the equation of motion and the magnetic field (through Ohm’s law) changes the fluid motion.
We describe some MHD flow problems in ducts over the roughness elements in a strong
magnetic field and analytical solutions of such problems are obtained using the Dirac delta
function (see [3], [4], [6], [7], [12], [13], [17], [18]).

Asymptotic analysis of these problems is performed for the case of strong magnetic fields
and graphs of the z-components of the current are shown for different Hartmann numbers.
Different boundary layers for the field velocity and for the z-components of the currents at large
Hartmann numbers are analyzed. The MHD problem for fully developed flow is solved for the
cases of a uniform and non-uniform external magnetic field where the surface roughness is taken
into account. The distribution of fluid velocity, induced current with its potential and external
magnetic field are derived (see the following references for the analysis of similar problems [2],

[5], [11]-[13], [17], [18], [21], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69]).

Chapter 3 is devoted to the calculation of some classes of improper oscillatory integrals.
It is shown that oscillatory integrals in some cases can be transformed to integrals of non-
oscillatory functions. Such integrals have direct applications to MHD flows analyzed in the
thesis. These results are applied in order to transform the solution of some MHD problems
arising in half space z >0 as a result of roughness of the surface z =0 for various boundary

layers (see [3], [4], [6],[7], [17], [72], [74]).
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During my seven year stay in Riga, Latvia (one the main MHD application centers in
Europe), I had the opportunity to visit some interesting sites related to MHD study such as the
Physics Institute in Salaspils where I have seen the three recently planned experimental sessions
(each 2000 hours long) which have been finished successfully. Results gained in these
investigations demonstrated essential influence of magnetic field on the corrosion processes both
in the intensity of corrosion and its character. New results concerning the profile of corrosion are
obtained [55] and [56]. Such studies have an important implication on how to confine and
control the burning D-T plasmas by a strong drag of magnetic fields inside a reactor [1], [9],
[55], [56], [70] and [73]. In addition, I had the opportunity to participate in some PAMIR MHD
International Conferences (4th , 5™ and 7" PAMIR International Conferences) . As a result of
these activities Chapter 4 of the thesis describing practical aspects related to the effect of surface
roughness on MHD flows ([1], [9], [32]-[37], [39], [40], [48], [49], [55]-[57], [60], [64], [68],
[70] and [73]) is written.

Chapter 5 is devoted to the analysis of shallow water flow in a weakly nonlinear regime
using the complex Ginzburg-Landau equation (CGLE). It is shown in the previous studies [22]
related to weakly nonlinear analysis of quasi-two-dimensional flows (shallow water flow is one
of the examples considered in [22]) that the values of the Landau’s constant differ by a factor of
3 for two different velocity profiles with linear stability characteristics (differing by not more
that 20%). In other words, the Landau’s constant was found to be quite sensitive to the shape of
the base flow profile. In Chapter 5 the bottom friction is modeled by a nonlinear Chezy formula
[66]. The analysis of data presented in Table 3 and Table 4 shows that for a one-parametric
family of shallow wake flows the changes in the linear stability characteristics resulted in even
smaller changes in the coefficients of the CGLE. As a result, it is plausible to conclude that the
complex Ginzburg-Landau equation can be used for the analysis of shallow wake flows in a
weakly nonlinear regime (see [8], [10], [14]-[16], [19], [22], [26], [43]-[47], and [67]) for the

application of weakly nonlinear models to different flows in fluid mechanics.
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Appendix 1

NOMENCLATURE

List of Latin Symbols

A The cross-sectional area

B® =Bye, the form of the external magnetic field

B, The potential of the magnetic field

B Complex-valued amplitude magnetic induction vector
B Magnetic induction vector, B = Be ™
¢ Euler conctant, ¢ =0.577215...

C The flow core, Ha" <z<Ha;
cc. Complex conjugate

c; The friction (or roughness) coefficient,

The Chromium element (Atomic Number 24)
CGLE The Complex Ginzburg-Landau Equation

E Complex-valued amplitude electric field vector

E  Electric field vector E - Ee ™

EFDA The European Fusion Development Agreement

X

.2
\/;O

2
erf(x) e > d& The probability integral. ( Gauss error function)
F The bottom friction force of water flows

I?R =—A;U the friction in fluid system g The acceleration due to gravity

K\ (2) The modified Bessel function of the second kind of order (v =1,2)
h  The water depth

H  The Hartmann layer, 0<z<Ha™;
Ha The Hartmann number

ITER The International Thermonuclear Experimental Reactor
j Imaginary unit, j=+/—-1
L  Length scale
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Li The Lithium element ( Atomic number 3)
Pb The lead element ( Atomic number 82)
Ni The Nickel element ( Atomic number 28)
Nu The Nusselt number

i The unit normal vector to the surface
Re The Reinholds number

S  The stability parameter

Sc  The critical stability value

Si  The Silicon Element ( Atomic number 14)
T  The temperature in Kelvin.

U & V Velocity vectors

The velocity scale

The core velocity constant

Real part of Z

v
Vc
X
Y Imaginary part of Z
Y, (s) Bessel function of the second kind of order v
W

The distant wake, Ha<z <+

=%, fN(Y) The roughness of the surface of a channel’s wall

List of Greek Symbols

['(xX) Euler Gamma function

2 2 2
A Laplacian , Af(x,y,2)=a I+5 I+a I

oX oy 0z
1@( 6fj+i<32f o* f

Af(r,¢,2)=——| r— +
(r.¢.2) ror\_or) r* ¢> oz’

6(X)  The Dirac delta function

Ag The coefficient of Rayleigh friction

H Magnetic constant

yo, Density of fluid

v The Viscosity of fluid

o] Charge density

o Conductivity

7% Scalar electric potential intensity

85



W Scalar electric potential, 7 = ye™

0] Frequency

N 0,X<0,
n(x) = LX >0. The Heaviside step function

¢  Potential of current

c 27
vV, (4,2) = \/;J-Vy (X,z)cos AXdX  The Fourier cosine transform
0

2% )
D (4,2) = \/;.[CD(X, z)sin AXAX  The Fourier sine transforms
0

Coordinate systems
( x,y,z) Cartesian coordinates, X,y,z € ‘R
(r, ¢,z) Cylindrical polar coordinates, r >0, 0<¢<2r, zeR
(0,0,9) Spherical coordinates, p>0, 0<0<27,0<¢<r,

Classes of definite integrals

TP i cos/icos/lx P.(A*) cosAcos Ax dA
[ R gl \ﬂ (2> X04_ .
0 Qn(4) /12_71' Qn (A7) 2_L

4
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