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Rostoks, N. 1999. Rafinozes katabolisma operona promotera struktura un regulacija,

Latvijas Universitate, RIga, 58 lpp.

KOPSA VILKUMS

Escherichia coli enteropatogenitates plazmIdu rafinozes operons kode

proteinus, kas nepieciesami trisaharida rafinozes aktivam transportam un saskelsanai

monosaharidos, To veido rafA (o.-galaktozidazes), rajB (permeazes) un rajD

(invertazes) geni, kuru transkripciju regule rafP promoters. Ja barotne nay skelsanai

piemerotu cukuru, promotera aktivitati bloke rajrepresors (RafR). Vienigais zinamais

raj operona induktors ir disaharids melibioze, ko veido invertaze, atskelot fruktozi no

rafinozes molekulas.

Promocijas darba petita E. coli raj operona promotera rafP DNS un DNS -

proteinu kompleksu struktiira, topologija un lorna transkripcijas regulacija.

Darba izmantotas EMSA, DNazes I protekcijas (futprintinga) un proteinu-

DNS kompleksu topologijas petisanas metodes ir raksturotas pirmaja publikacija,

Sekvences atkarigas un proteInu inducetas DNS topologijas noskaidrosanai butiski

svariga bija rafP fragmentu klonesana tieso atkartojumu (tandem a dimeru) veida, ka

an rnutagenezes metodes attaluma mainisanai starp dazadiem proteinus

piesaistosajiem DNS rajoniem.

Otraja publikacija apkopoti petijumi, kas pierada E. coli cAMP receptora

proteIna (CRP) piedalisanos rafP regulacija. lzmantojot genetiskas un biokirniskas

metodes, atrasta CRP proteina saistisanas vieta rafP sekvence un izmerits promotera

aktivacijas limenis. Izpetitas CRP mijiedarbibas ar rafP DNS un RafR. CRP un RafR

spe] vienlaikus saistit rafP DNS, veidojot kompaktu nukleoproteinu strukturu, kura

CRP piedalas ka raj operona korepresors, kas nodrosina gan represijas, gan

aktivacijas efektivitati.

Siinam augot dabiskajos substrates, vairaku oglek]a avotu maisijuma

klatbutne, ne RafR, ne CRP nevaretu saistit rafP. Promotera aktivitate sados apstaklos

(bazalais ekspresijas Iirnenis) raksturota tresaja publikacija, kas sagatavota zurnalam

FEMS Microbiology Letters. Pirmo reizi paradits, ka rafP bazala ekspresijas lirnena

nodrosinasanai lIdztekus -35 secIbai nepieciesams an NT bagats rajons no -59 lidz -

39 nukleotidam, kura funkcijas ir analogas bakteriju konstitutivo promoteru UP

Department of Microbiology and Biotechnology
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elementam. Iegutie rezultati norada uz promotera DNS topologijas lomu transkripcijas

regulacija,

Plazrnidu replikonu topologijas ietekme uz genu ekspresijas un rekombinacijas

procesu aktivitati paradita an divos zinojumos Baltijas valstu genetikas kongresos,

kuru tezes pievienotas promocijas darbam.

Darba raksturotas an rajP mijiedarbThas ar RNS polimerazi (RNSP), ka an

CRP un Rafk, transkripcijas iniciacijas procesa, CRP ne tikai stimule RNSP - rafP

slegta kompleksa veidosanos, kas atbilst zinarnajam transkripcijas regulacijas

rnehanismam I. klases CRP aktivetajos promoteros, bet an module slegta kompleksa

izomerizesanu par atverto kompleksu. Represora un RNSP vienlaiciga saistisanas pie

promotera ir lidz sim maz raksturots fenomens. Lai gan RafR inhibe RNSP - rajP

atverta kompleksa veidosanos, tomer proteinu vienlaiciga saistisanas var nodrosinat

strauju rajoperona ekspresiju, ja barotne paradas melibioze vai rafinoze.

Darba rezultati ir apkopoti 3 rakstos, no kuriem viens ir sagatavosana un zinoti

2 starptautiskas konferences ka an vairakas Latvijas Universitates Zinatniskajas

konferences.
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Rostoks, N. 1999. Structure and regulation of the raffinose catabolism operon

promoter, University of Latvia, Riga, 58 pp.

ABSTRACT

The plasmid-borne raffmose catabolism operon of Escherichia coli encodes

proteins necessary for inducible uptake of the trisaccharide raffinose and its

breakdown to monosaccharides. The operon includes rajA (a-galactosidase, a-Gal),

rajB (permease) and rajD (invertase) genes, which are transcribed from a common

promoter rajP. In the absence of inducer, raj repressor, RafR, inhibits the promoter

activity upon binding to two operator sites within rajP. The only known inducer of

the raj operon is disaccharide melibiose, which is produced from raffinose by

invertase.

This doctoral thesis deals with the structure and topology of the E. coli

raffinose operon promoter DNA and rafP - protein complexes, as well as their role in

regulation of the transcription.

The EMSA and DNase I footprinting techniques, as well as the approaches to

characterize the topology of protein - DNA complexes, are described in the

Publication 1. The cloning of tandem dimers of the rajP DNA fragments and site-

directed mutagenesis were critically important for characterization of sequence

dependent and protein - induced DNA bending and topology.

Publication 2 summarizes the studies on the role of cAMP receptor protein,

CRP, in the regulation of rajP activity. CRP dependent activation and localization of

the CRP site within the raj? are determined by combination of genetic and

biochemical approaches. CRP interactions with rafP and RafR are characterized as

well. CRP and RafR. can bind to raj? simultaneously. Thus a compact nucleoprotein

complex is formed, where CRP serves as a co-repressor and ensures both efficient

repression and rapid activation of the rajP.

The growth of cells in natural environments in presence of mixture of different

carbon sources should prevent both CRP and RafR from binding to the rafP. The

activity of rajP under such conditions (basal expression level) has been characterized

in the Publication 3, which is prepared for FEMS Microbiology Letters. For the first

time it has been shown that along with the -35 element, an AfT-rich DNA sequence.

Department of Microbiology and Biotechnology 3
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which is positioned between -59 and -39 in respect to mRNA start point, IS

indispensable for the basal level of rajP expression. This sequence functionally

resembles the UP element of some constitutively transcribed bacterial promoters. The

results show the importance of DNA topology in regulation of transcription.

The influence of the replicon topology on gene expression and recombination

events has also been reported at the 151 and 2nd Genetical Congresses of the Baltic

States and the corresponding abstracts are appended to this thesis.

The interactions of the RNA polymerase, RNAP, with the rajP and the role of

CRP and RafR in the transcription initiation are characterized as well. CRP stimulates

the formation of the RNAP - rajP closed complex in compliance with the model of

the transcription activation at the class I CRP-dependent promoters. In addition, CRP

modulates the formation of the open promoter complex. The simultaneous binding of

RNAP and repressor to the promoter is insufficiently documented phenomenon.

Although RafR inhibits the formation of the RNAP - promoter open complex,

simultaneous binding may ensure the mechanism of a rapid expression of raj operon,

if raffinose or melibiose become available in the growth environment.

The results of the work are reflected in three papers and reported at two

international workshops, as well as at the Scientific conferences of the University of

Latvia.

4 Department of Microbiology and Biotechnology



University of Latvia, Faculty of Biology

1. INTRODUCTION

The experimental work presented in this doctoral thesis focuses on DNA

elements, protein-DNA interactions and on spatial structure of protein-DNA

complexes, which are involved in the regulation of promoter of bacterial raj operon,

rajP.

Expression of sugar catabolism genes in bacteria has served as a paradigm for

transcription regulation mechanisms. The transcription initiation even in such a

relatively simple organism as E. coli is a complex multistage process, which involves

RNAP and a number of auxiliary proteins. Induction or repression of certain mRNA

synthesis, growth, cell division and sporulation are regulated by intracellular signals,

which are generated in response to the changes in environmental conditions. The role

of proteins and protein binding DNA sequences in the regulation of transcription is

well documented. The significance of the three-dimensional structure of the

transcription initiation complex is not so well understood.

The initiation of transcription and its regulation by protein factors and

promoter topology in bacterial cells will be described in the following chapters. The

structure and regulation of the plasmid-borne raj operon will be discussed as well.

1.1. Transcription initiation in Escherichia coli

The transcription process in E. coli is initiated by the binding of RNAP to the

promoter region of DNA molecule. E. coli RNAP core enzyme, which is capable of

transcription elongation, has a following subunit structure a2~~' (reviewed by

Ishihama, 1981). The core enzyme is further joined by one of the 7 different o (sigma)

subunits (Lonetto & Gross, 1996) to form the holoenzyme capable of transcription

initiation.

The transcription initiation process is extensively reviewed by Record et al.,

1996. Briefly, initiation event can be divided into 4 classes of events according to

their key intermediates as depicted in Figure 1:

Class I. Reversible initial specific binding. RNAP holoenzyme binds to the

dsDNA of the promoter to form a "closed" complex. The promoter DNA remains

completely double stranded.

Department of Microbiology and Biotechnology 5
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Class II. Reversible conformational change. The key event of this step is the

reversible DNA melting at the start site of transcription, which is driven by the free

energy ofRNAP binding.

Class III. Reversible binding of initiating NTPs. The NTP, which is

complementary to the first nucleotide of template strand, binds at the position +1 of

the open complex thus forming the first of several possible initiation complexes. Any

of these may be advanced by binding of the next NTP and formation of

phosphodiesther bound or, alternatively, may be reversed by either cleavage of a

terminal NTP or by release of the short RNA chain, which is called abortive

transcript.

Class IV. Transition to elongation (promoter clearance/escape). Once the

length of the nascent RNA chain in the initiating complex has reached 7 - 12

nucleotides, the cr subunit is released and RNAP is irreversibly switched to elongation

phase.

I II III IV
R1\IA

Polymerase

Initial Final NTP .., NTP cr Ternary
(CI d) (0) -, rernarv T ibiPromoter +- ose +- pen ~.·ti ted \. ,. ranscn 109

+ DNA ---+ Blnarv ---+ Binarv r C m a. ~ (Elongating). • omp exesComplex Complex Complexes
Abortive

transcripts

+ Promoter
Dl'iA

Figure 1. A scheme of the transcription initiation process. Adapted from

Record et al., 1996.

The transition from one step to another, except for the step IV, is always

reversible process, which may be characterized by dissociation constant as in the

classic Michaelis-Menten kinetics. Each of the above steps can be further divided

according to the specific intermediates of the process. Both the RNAP and the

promoter DNA undergo structural changes during the transcription initiation

(reviewed by deHaseth et al., 1998).

The most significant structural changes in the RNAP molecule occur during

the holoenzyme building, when cr70 subunit undergoes a structural change, leading to

specific DNA binding propensity (Dombroski et al., 1993; Callaci et al., 1999). The

cr70 subunit alone is not able to bind the promoter due to intramolecular protein -

protein interactions with inhibitory N-terminal domain. Further, during the late stage

6 Department of Microbiology and Biotechnology
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of closed complex, while the promoter DNA remains double stranded, the RNAP

"jaws", which are formed by P and P' subunits, close around the DNA double helix.

This structure of "jaws" is thought to contain the active site of the polymerase and to

be open in the holoenzyme (Darst et al., 1989) and to be initially closed in the core

enzyme (Polyakov et al., 1995; Darst et al., 1998).

Conformational changes in the promoter DNA take place during the open

complex formation. They involve the unwinding of the DNA double helix by half a

turn and strand separation from the -10 region till the start site. The energy for

formation of an open complex is provided by the RNAP binding. RNAP is known to

introduce distortions in the promoter DNA, such as unwinding of double helix (Su &

McClure, 1994) and DNA bending (Heumann et al., 1988), which are believed to

facilitate the strand opening. Once the open complex has formed, it is stabilized by the

specific binding of RNAP to the single stranded DNA of the non-template strand

(Marr & Roberts, 1997; deHaseth & Heimann, 1995). The formation of a functional

open complex from -12 to +2 also requires Mg2+ ions, as well as the binding ofNTPs,

which contribute to stability of open complex even without hydrolysis and synthesis

of phosphodiesther bonds (Zaychikov et al., 1997).

Ternary complexes of promoter, polymerase and NTPs are ready for covalent

linking of the first nucleotides. However, the initiation of the RNA strand synthesis

does not ensure the successful elongation process. A significant fraction of open

complexes repeatedly generate abortive transcripts, RNA oligonucleotides up to IOn

in length. RNAP molecules, which form the open complexes, have a certain

probability either of becoming irreversibly trapped in abortive synthesis or of

proceeding with the transcription in elongation mode (Kubori & Shimamoto, 1996).

Every step in transcription initiation is characterized by a specific reaction rate

and is an eventual subject of regulation. The regulation of transcription initiation is

exerted either by the sequence and structure of promoter DNA or by protein factors.

1.2. DNA sequence elements involved in the regulation of transcription

initiation

The transcription process is initiated at the specific DNA sequences -

promoters. Four sequence elements in RNAP (;70 promoters are known (Figure 2): i)

Department of Microbiology and Biotechnology 7
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hexanuc1eotide centered at position -lOin respect to the transcription start site; ii)

hexanucleotide centered at position -35; iii) spacer region between -10 and -35

elements; iv) AfT rich region between --40 and -60 called UP element or "third

element". Not all of the named sequence elements are necessarily present in every

promoter.

The initial RNAP binding to the promoter involves the specific contacts of o

subunit with both the -35 and -10 regions, although onIy upstream part of -10

element seems to be important for this binding (Dombroski, 1997; Dombroski et al.,

1992). Current kinetic investigations support this mechanism rather than the initial

binding only at the -35 region, where the contacts with --10 region are necessary for

open complex building.

::
17 bp

r--- 1 r+
A/~ r.Lc:h jf.ffGACAi T~ A
UPe]ement -35 I -10 +1

Extended -10

::

Figure 2. Summary of the RNAP (j70 promoter elements (adapted from

deHaseth et al., 1998).

Comparative studies have revealed the consensus sequences of -10 and -35

elements (Figure 2). Generally, the promoters that match the consensus sequence

better are more proficient both in vivo and in vitro. Different affinity of RNAP for the

promoters with different promoter element sequences sets the basal expression level at

widely varying levels.

A consensus spacer of 17 bp in length between -10 and -35 elements has been

established. Tentative model explaining the conserved spacer length has been

proposed (Ayers et al., 1989). The transient alignment of the -10 and -35 regions

upon RNAP binding and torsional strain of the spacer DNA is postulated. The free

energy of the strain facilitates the formation of promoter open complex.

A subclass of E. coli promoters exists without a recognizable -35 element.

Such promoters have been found to have an "extended" -10 region (Figure 2) (Kumar

et al., 1993). The recognition of an "extended" promoter by RNAP involves different

8 Department of Microbiology and Biotechnology
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region of the c subunit (Bame et al., 1997). In absence of any additional factors, their

activity is comparable to the promoters with standard -35 elements.

An additional DNA element, which may significantly increase the promoter

activity, has been identified in several promoters quite recently (Ross et al., 1993).

This promoter module is often called an UP element or "third element". It is NT rich

sequence located between positions -60 and -40 in respect to transcription start.

SELEX procedure has been used to deduce the UP element consensus sequence

(Estrem et al., 1998). UP element functions by contacting the C-terminal domain of

the RNAP a subunit and stabilizing the binding of RNAP to the promoter (Rao et al.,

1994; Ross et al., 1998). The same RNAP a subunit protein surface region is

responsible for contacts with the transcription activating proteins, such as CRP, and

with the DNA of UP element (Gaal et al., 1996; Murakami et al., 1996).

The topology of promoter DNA may also contribute to the regulation of

promoter activity. It has been shown that curved DNA inserts can activate a promoter

by mimicking the CRP induced DNA bending in vivo (Bracco et al., 1989) and in

vitro (Gartenberg & Crothers, 1991). The transcription activation by the curved DNA

is attributed to the facilitated wrapping of the promoter DNA around RNAP

(Gartenberg & Crothers, 1991) or to the preferential binding of the RNAP a subunit

to the NT rich bent DNA sequences (Aiyar et al., 1998). The creation of

transcriptionally competent promoter architecture and the translation of environmental

signals into modulated promoter response are reviewed in Perez-Marin & deLorenzo

(1997).

1.3. Regulation of transcription initiation by protein factors

The transcription initiation at the majority of the E. coli promoters is regulated

by different protein factors. If gene expression is switched on or off in response to

appropriate signals, the regulation may be provisionally characterized as positive or

negative control. Proteins additionally regulate even the few inherently strong

promoters, e.g., rrnB PI transcribing the rRNA. The mechanisms of action of the

transcription factors are extremely diverse and may affect any step in the process of

transcription initiation. The same protein factors may participate both in transcription

activation and repression depending on the physiological conditions in the cell.

Department of Microbiology and Biotechnology 9
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1.3.1. Positive control

The typical transcription activator binds to its specific site at or near promoter

DNA and contacts the transcription machinery. Bacterial transcription activators may

facilitate any step in initiation process, although the most common is the stabilization

of initial RNAP binding to promoter and stimulation of closed complex isomerization

to an open complex.

The E. coli cAMP receptor protein, CRP, also referred to as catabolite gene

activator protein, CAP, is one of the best studied transcription activators (reviewed by

Kolb et al., 1993; Busby & Ebright, 1997). In response to increased cAMP level,

which serves as a co-activator, CRP activates transcription initiation at more than 30

E. coli promoters by binding to its cognate sites located at various distances upstream

from core promoter sequences. CRP is a specific DNA binding protein consisting of

two identical subunits, whose C-terminal domains contain HTH DNA binding motifs

(Schultz et al., 1991). HTH motif of each subunit of CRP binds to one half site of the

palindromic DNA sequence (Gunasekera et al., 1992). The X-ray analysis of CRP -

consensus site DNA co-crystals has revealed two major kinks of ca. 40° each

contributing to overall ca. 90° DNA bending induced by CRP and DNA wrapping

around CRP (Schultz et al., 1991).

Promoters activated by CRP are classified according to the distance between

the center of CRP site and the transcription start site. Promoters with CRP site

centered at position -61.5 are termed Class I CRP-dependent promoters. At Class I

CRP-dependent promoters, e.g., lacP 1of the lactose catabolism operon, CRP binds

adjacent to RNAP and exerts its activating effect through contacting the C-terminal

domain of the RNAP a subunit (Figure 3A). The surface exposed loop on CRP

molecule (activating region 1 or AR1) formed by amino acids 156-162 is responsible

for contacts with RNAP, which result in improved RNAP binding to the promoter and

more stable closed complex. Although CRP is a homodimer, only the AR 1 of the

promoter - proximal subunit contacts RNAP (Zhou et al., 1993). CRP also activates

promoters from positions upstream the -61.5, e.g., -71.5, -82.5 and -92.5 (Gaston et

al., 1990; Ushida & Aiba, 1990). The flexibility of the interdomain linker of the

RNAP a subunit is likely to enable the C-terminal domain of the a subunit to contact

CRP located at different distances (Jeon et al., 1997). The action of CRP bound to

Class I promoter is an example of transcription activation by recruitment of RNAP to

10 Department of Microbiology and Biotechnology
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the promoter. This strategy is successfully used by a number of prokaryotic and

eukaryotic transcription factors (Dove et al., 1997; reviewed by Ptashne & Gann,

1997).

L

A

I
CRP
-61.5

-35 -]0 +1

B

I
CRP -35
-41.5

-10 +1

Figure 3. A scheme of CRP-mediated transcription activation at A, Class I

and B, Class II CRP-dependent promoters. "a" denotes the a subunit of RNAP,

which is connected to its Caerminal domain "C" via flexible interdomain linker "L".

"o, ~ and ~'" denote the respective subunits of RNAP. At the Class I promoters

transcription activation is mediated by protein - protein interactions between AR I of

the downstream subunit of CRP and the C-terminal domain of the RNAP a subunit.

At the Class II promoters transcription activation is achieved by 2 different protein -

protein contacts: i) interactions between AR 1 of the upstream subunit of CRP and the

C-terminal domain of the RNAP a subunit; ii) interactions between AR2 of the

downstream CRP subunit and the N-terminal domain of the RNAP a subunit

(transparent in the drawing). Adapted from Busby & Ebright, 1997.

Department of Microbiology and Biotechnology 11
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The promoters, where CRP binds to the sites centered at position -41.5 as in

the case of gat promoter P1, are named Class II CRP-dependent promoters. In

contrast to Class I promoters, RNAP contacts DNA both upstream and downstream of

CRP bound at position -41.5 (Attey et al., 1994; Belyaeva et al., 1996) (Figure 3B).

Two contacts of the CRP with RNAP a subunit are responsible for activation, each

contact influencing a different step in transcription initiation (Savery et al., 1998). The

contact of the C-terminal domain of a subunit with AR1 improves the formation of

closed complex. However, only the ARIon the upstream CRP subunit is contacted

and a different subset of amino acid residues is essential (Zhou et al., 1994).

Additional positively charged activating region on the CRP surface opposite the DNA

binding domain has been identified comprising amino acids 19, 21 and 101 and is

denoted as AR2. Only the AR2 of the downstream CRP subunit is involved in the

contacts with negatively charged region on the N-terminal domain ofRNAP a subunit

(Niu et al., 1996). This contact is implicated in stimulation of closed complex

isomerization into open promoter complex (Rhodius et al., 1997).

The a subunit of RNAP is a target not only for CRP, but also for other

transcription activating proteins, e.g., OxyR (Tao et al., 1995) and FIS (Bokal et al.,

1997) (reviewed by Ishihama, 1993), although the different amino acid subset on a

subunit is contacted in each case (Ebright, 1993; Bokal et al., 1995).

The contacts with transcription activators are not limited only to the RNAP a

subunit. For instance, a subunit contacts with UP element DNA are critical in initial

binding of RNAP to ada and aidB promoters (adaptive response genes). For further

steps in transcription initiation the contacts between transcription activator Ada and

C-terminal region of the (570 subunit of RNAP are required (Landini et al., 1998).

Another example of (570 being a target for transcriptional activator is the interaction of

Ad protein with C-terminal region of (570 at APRM, where the isomerization to open

complex is stimulated (Kuldell & Hochschild, 1994; Li et al., 1994).

RNAP ~' subunit, which is primarily involved in the catalytic activity of the

polymerase (Zaychikov et al., 1996), may also be a target for transcriptional activator.

The bacteriophage N4 single stranded DNA binding protein (SSB) interacts with the

highly conserved C-terminal region of ~' subunit of promoter-bound RNAP (Miller et

al., 1997). The DNA binding activity of SSB is not required for activation.

12 Department of Microbiology and Biotechnology
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The activators may exert their function by contacting different subunits or

different domains of a single subunit of RNAP. The steps of transcription initiation

influenced by each of these contacts also may be different. The activator may bind to

the multiple sites in vicinity of the promoter and act synergistically on transcription

activation. Moreover, different activators may bind together to the promoter and

activate the transcription by contacting RNAP at several positions, e.g., CRP and FNR

(Scott et al., 1995), eRP and Ad (Joung et al., 1994).

The transcription activation provided by promoter UP element may also be

further increased by binding of an activator protein upstream from UP element, as

exemplified by binding of FIS protein to the rrnB PI (Newlands et al., 1992).

1.3.2. Negative control

The term negative control is often applied to global silencing events as DNA

methylation, transcription attenuation, etc., which will not be discussed here. Several

mechanisms of the transcription repression by the proteins are known (reviewed by

Choy & Adhya, 1996). The typical molecular approaches to achieve the protein-

mediated repression of promoter activity in bacterial cells will be outlined here.

Steric hindrance seems to be the most straightforward way to bring about

repression, i.e., binding of repressor protein to its cognate site(s) overlapping the

promoter. This leads to the competition in binding of repressor and RNAP, and since

the affinity of repressor for its site is usually higher, the RNAP binding is occluded.

Although the most obvious strategy for repression, this is not as widely applicable as

could be expected. Ad action at the APR promoter is one of the rare experimentally

established systems, where the co-operative binding of Ad to adjacent sites blocks the

formation of closed promoter complex (Hawley et al., 1985).

Protein - protein interactions contribute to the transcription repression by

affecting the steps beyond the initial binding of RNAP. This implies simultaneous

binding of repressor and RNAP to the promoter. Direct protein - protein interactions

may be responsible for the repression of any of steps of transcription initiation beyond

the RNAP binding to promoter.

RNAP caging may occur at some promoters, when RNAP makes additional

contacts with DNA upstream the -35 element and downstream the transcription start

site. This should eventually lead to DNA wrapping around RNAP (polymerase
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caging) (Rees et al., 1993). The transcription activator proteins may participate in

building of RNAP caging structures. The repressors may prevent the critical RNAP -

DNA contacts.

Multipartite operators and DNA looping. Transcription control by a

repressor binding to a single operator site is relatively rare event. Instead, several

operator sites are often used by repressor, located even at a great distance from

promoter (Collado- Vides et al., 1991; Gralla & Collado- Vides, 1996). These

operators may have different affinities for their repressors with correspondingly

variable effects on transcription initiation. Overlapping of multiple operators with

promoter sequences usually leads to the expectable result - repression by steric

hindrance. However, in cases when operator sites are located at a distance from

promoter and from each other, different strategy seems to be responsible for

repression. The ability of repressor proteins to interact may generate a loop in the

DNA, where the RNAP becomes trapped (Ptashne, 1986), or cause the promoter

DNA to undergo structural changes, which do not permit RNAP binding.

Repression by antiactivation is a common strategy in eukaryotic systems,

although it is known to occur also in bacteria. Repressor may interact with the

transcription activating proteins at the intrinsically weak promoters and impair their

ability to bind the DNA or interact productively with RNAP. The classic example is

the regulon of nucleoside transport and biosynthetic operons, which is negatively

controlled by CytR repressor and activated by CRP. CytR action at promoters of deo,

cdd and tsx operons consists of preventing CRP from activation (Valentin-Hansen et

al., 1996). Since CytR itself has only weak DNA binding ability, the co-operative

binding with two CRP molecules is required to occlude RNAP from binding to deo

P2 (Pedersen et al., 1991; Mollegard et al., 1993).

As paradoxical as it may be, the involvement of activator proteins in the

repression complexes, seems to be rather rule than exception. CRP, FNR

(transcription factor homologous to CRP), OxyR and TyrR may all act as activators or

repressors depending on particular promoter and physiological conditions of the cell

(Gralla & Collado-Vides, 1996). FNR and OxyR autoregulate the expression of their

respective genes by binding to the promoters around the transcription start site. CRP,

for instance, acts as a repressor at the galactose operon promoter gal P2 by binding to

the sequence corresponding to the -35 region of the P2 and switching thus the

transcription almost completely to gal PI (Weickert & Adhya, 1993).
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The most popular and probably the best-studied transcription repressors

belong to the family of regulators homologous to Gal and Lac repressors (Weickert &

Adhya, 1992). The mechanism of action of these repressors has been extensively

studied and detailed models have been proposed (Lewis et al., 1996; Aki et al., 1996),

although these models have already been questioned (Perros & Steitz, 1996).

The lactose operon repressor Lad controls the transcription from lac promoter

PI by binding to its operator sites centered at positions + 11 (01), +400 (02) and -82

(03) relative to the transcription start site (Reznikoff et al., 1974). The principal

operator site is 01, which also has the highest affinity for Lad. The co-operative

binding of Lad to 01 and O2 or 03 provides highly efficient repression by forming a

DNA loop (Oehler et al., 1990). The ability to introduce loop in the promoter DNA

depends on the capacity of Lad to form tetrameric structures, although the DNA

binding form for all the repressors from Lac and Gal family is the dimer. The ability

of dimers to interact resides in the specific amino acid sequences at the C-terminus of

Lad (Alberti et al., 1991). The different experimental approaches have yielded

several explanation of the mechanism of repression by Lad, including inhibition of

open promoter complex formation (Straney & Crothers, 1987) and prevention of

RNAP from promoter clearance (Lee & Goldfarb, 1991). The recent kinetic studies

indicate, however, that Lad affects the initial binding of RNAP and formation of

closed complex (Schlax et al., 1995). The current repression model by Lewis et al.

(1996) does not allow to decide in favor of any of these theories. It does, however,

include CRP in repression complex as a tool to facilitate the DNA loop formation

between 01 and O2, which is supported by co-operative binding of CRP and Lac! to

their sites at the lac promoter (Hudson & Fried, 1990).

GalR is one of the two repressors controlling the gal regulon of E. coli

(Weickert & Adhya, 1993), which encodes enzymes for galactose transport and

catabolism. Two overlapping promoters of gal regulon P1 and P2 are repressed by

binding of repressor GalR to two operator sites centered at -60.5 (OE) and +53.5 (01)

(Irani et al., 1983). The necessity of DNA looping by GalR for full repression of PI

and P2 has been demonstrated (Haber & Adhya, 1988; Choy & Adhya, 1992). The

DNA looping and full repression, however, was achievable in vivo only, but not in

vitro (Mandal et al., 1990). Since GalR lacks the leucine minizipper region at the C-

terminal domain of protein, which is responsible for Lad tetramerization (Alberti et

al., 1991; Weickert & Adhya, 1992), some additional factor must be responsible for
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GalR tetramerization. Recently E. coli histone-like protein HU was identified as an

auxiliary factor necessary for loop formation and complete repression of gal

promoters (Aki et al., 1996). HU is a basic heterodimeric protein in E. coli with the

molecular weight around 19 kDa, which is capable of non-specific DNA binding and

bending (Schmid, 1990). The occupation of both operator sites by GalR is required

for HU binding to gal promoters around the transcription start and is necessary for

building a higher order nucleoprotein structure responsible for repression of open

complex formation (Aki et al., 1996; Aki & Adhya, 1997).

The raffinose operon repressor RafR also belongs to the Lac and Gal repressor

family (Weickert & Adhya, 1992).

1.4. Structure of the plasmid-borne raffinose operon of E. coli

The raffinose catabolism operon, which is subject of this study, originated

from the natural E. coli strain D1021 (Orskov & Orskov, 1973) harboring plasmid

pRSD2 (Burkardt et al., 1978). The organization of the operon is shown in the Figure

4. Structural genes raJA, rajB and rajD, which encode a-galactosidase, raj permease

and invertase, respectively, are co-transcribed from a common promoter rajP

(Aslanidis et al., 1989).

rafP

raft H__rafA_--,,)--1 raft ~ __ rafD~>-

-60.5 -42.5 -21.5

-f~
, , ,

B CRP s:- O, ::>c: O2 :::;,
-35 -10 +1

>-----1 rafA II-
I

Figure 4. A, Schematic representation of the structure of raffinose catabolism

operon and B, of the rajR - raJA intergenic region containing the rajP and regulatory

elements.

The regulation of the operon expression is achieved by the raj repressor, RafR.

The repressor is encoded by rajR gene, which is located immediately 5' to rajP. RafR

binds to two 18 bp palindromic operator sites 01 and O2 centered at the positions _

42,5 and -21.5 in respect to raj mRNA start point (Aslanidis & Schmitt, 1990).
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RafR binds the DNA as a homodimeric molecule. Although the evidence for

RafR tetramerization has been presented (Jaenicke et al., 1990), the unassisted in vivo

formation of RafR tetramers is not plausible due to the lack of the C-terminal leucine

minizipper domain.

Binding of RafR to its cognate operator sites is successive and there is no

preference in binding affinity for each of the operator sites (Aslanidis et al., 1990).

Binding to the operator sites occurs in two consecutive steps, first being RafR binding

to anyone of the operators and second being the complete occlusion of both operator

sites. Since the both operator sites are nearly equivalent in binding affinity, the first

RafR dimer is suggested to "oscillate" between two operator sites (Muiznieks &

Schmitt, 1994). The binding of the second RafR dimer is hampered ca. 13-fold, which

can be explained by steric hindrance (Muiznieks & Schmitt, 1994), because the

centers of operator sites are separated by only 2 helical turns and located on the same

side of the DNA double helix. The occupation of both operator sites is required for

complete ca. 1200-fold repression in vivo. The 0\, which is located upstream the -35

element, alone yields only ca. 70-fold repression (6%). The O2 alone, which is located

between -35 and -10 elements, has much more significant impact on promoter

activity providing ca. 550-fold repression (45%) (Muiznieks & Schmitt, 1994). The

successive binding of RafR to rajP obviously provides a tool for step-wise down-

regulation of the promoter.

Peculiarity of the raj system is its specific inducer melibiose, which results

from raffinose breakdown (Aslanidis et al., 1990). The inducer is produced by the

invertase, which is encoded by the third gene in operon, rajD, and splits the raffinose

into melibiose and fructose. This implies that in spite of tight repression ensured by

RafR, some basal expression level of the operon should exist. The transport of

raffinose into the bacterial cell may be assisted by lac permease as well. The invertase

has higher affinity for raffinose as the first enzyme in operon - a-Gal (K=4 roM for

invertase and K=60 roM for a-Gal) (Schmid & Schmitt, 1976). Translation coupling

of rajB and rajD genes is another adaptation, which may facilitate initial level of

raffinose breakdown to achieve subsequent induction (Aslanidis et al., 1989).

Similarly to other sugar catabolism operons, raj operon is not only repressed

in absence of appropriate substrate or induced by its availability. After the induction

has taken place, it can be activated in response to the low glucose level in the growth
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media. Genetic studies have indicated the involvement of cAMP-CRP complex in the

regulation of raffinose operon (Su et al., 1989).

The previous investigations have shown that the rajP of E. coli raj operon

may be considered as a representative example of bacterial sugar catabolism operon

promoters. Although extensively studied, similar promoters from lac and gal operons

still deliver exciting information and unexpected facts about the mechanism of the

transcription regulation. Detailed study of rajP could be useful in supplying further

knowledge on the universal principles of the regulation of gene expression and in

disclosing individual molecular adaptations to solve particular tasks of metabolism.

In order to understand the determinants of control of the raffinose

operon expression, a study was initiated with an aim to characterize the

structure and regulation of transcription initiation of the plasmid-borne

raffinose catabolism operon promoter rajP.

The following specific tasks were set for this study:

1. Investigation of the interactions of rajP with specific transcription regulating

proteins RafR and CRP.

2. Studies ofRafR and CRP interactions on rajP DNA.

3. Investigation of RNAP interactions with rajP and the influence of RafR and CRP

on these interactions.

4. Determination of the role of different rajP modules in establishing the basal level

of promoter activity.
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2. MATERIALS AND METHODS

2.1. Strains and plasm ids

Strains and plasmids used throughout the work are listed in the Table 1.

Table 1. Strains and plasmids

Strain / Purpose / relevant genotype Reference

Plasmid

CA8000 a-Gal activity measurements / crp +, cya+ Sabourin &

Beckwith (1975)

CA8306 a-Gal activity measurements / crp", cya "

DHI RafR induction experiments with melibiose / lac+ Hanahan (1983)

XA3DI a-Gal activity measurements / crp, cya + Breul et al. (1993)

XLI-Blue General cloning and plasmid DNA preparation Bullock et al.

(1987)

pBG2 Overexpression of CRP Breul et al. (1993) I

pRU984 I Overexpression of RafR Aslanidis et a/.

(1990)

pRU130] ~ Different length deletions of the 5' portion of wt Muiznieks et a/.,

pRU1305 rajP sequence in pRUI307 I ]999
I

pRU1307 wt rajP and rajA gene cloned in pUC8 Muiznieks &

Schmitt, 1994

pRU1307B; Mutagenesis of ~35 promoter element in Manuscript 3 I

pRU1307C pRU1307 rajP sequence

pRU1307E, I Mutagenesis ofpRU1307 raj? sequence creating Muiznieks et a/.,
I

I M,N,X
I

I restriction enzyme sites 1999

pRU1324; Plasmids carrying rajR-rajP-rajA gene cluster Muiznieks &

pRU1327 with mutagenesis-inactivated O. and O2 sites Schmitt, 1994

,I
respectively

pRU1341 ~ pRU1307M derivatives with different distances Muiznieks et al.,

I pRU1344 between CRP and O2 1999
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pRU1340; Mutagenesis of 0\ region in pRU1307 to disclose Manuscript 3

pRU1350-1; the location of the UP element in rajP

pRU1360-1

pRU1369; Oligonucleotide substitutions of the rajP upstream Manuscript 3

pRU1369+4; region from position -133 till -28

pRU1371;

pRU1371+5;

pRU1372

pSA508 In vitro transcription assay Choy& Adhya

(1993)

pSA508rajP In vitro transcription from rajP N. Rostoks,

unpublished data

2.2. Bacterial growth media

Bacterial cells were cultured either in liquid 2 x TY or on agarized LB media,

which were supplemented with antibiotics and 0.1% melibiose or fructose (Maniatis

et al., 1989).

2.3. Chemicals and enzymes

Radiochemicals were from Amersham Pharmacia Biotech Europe GmbH

(Freiburg, Germany).

DNA restriction and modification enzymes were from MBl Fermentas

(Vilnius, Lithuania), New England Biolabs (Beverly, MA, USA) and from Boehringer

Mannheim (Mannheim, Germany), and were used according to manufacturers'

recommendations.

E. coli RNAP holoenzyme was from Amersham Pharmacia Biotech AB

(Uppsala, Sweden).

2.4. Plasmid construction and mutagenesis

The standard cloning procedures followed Maniatis et al. (1989). Site-directed

mutagenesis was done by Amersham Sculptor in vitro mutagenesis kit (Amersham
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Pharmacia Biotech Europe GmbH, Freiburg, Germany) or according to the

QuickChange™ Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA).

2.5. a-Gal activity measurements

The determination of enzymatic activity of rajA gene product a-Gal was

performed as described in Muiznieks & Schmitt (1994). Activity is expressed as the

maximum increment in specific activity during the exponential growth of bacterial

cultures. One arbitrary unit of enzyme activity corresponds to a change of 0.01 OD420

(absorption maxnnum for p-nitrophenol liberated by hydrolysis of p-

nitrophenyl-a-D-galactopyranoside) per min per 1.0 OD6oo. The relative plasmid

dosage in bacterial cultures was determined according to Stueber & Bujard (1982) and

enzyme activity values were normalized accordingly. At least three independent

assays were performed for each experiment. Estimated error is ca. 20%.

2.6. DNA sequencing

Dideoxy DNA sequencing was carried out usmg Thermo Sequenase

Radiolabelled Terminator Cycle Sequencing Kit (Amersham Pharmacia Biotech

Europe GmbH, Freiburg, Germany).

2. 7. Protein preparations

Preparation of RafR and CRP has been described in Muiznieks & Rostoks

(1998). Briefly, RafR was overexpressed in the form of inclusion bodies in E. coli

XLI-Blue harboring plasmid pRU984 and was purified as described in Aslanidis et

al. (1990). RafR inclusion bodies were solubilized in 0.1% SDS or 0.3% N-

lauroylsarcosine and 1:100 till 1:1000 dilutions were used directly for EMSA and

DNase I footprinting. Protein preparations were typically more than 90% pure as

judged by SDS-PAGE. Presence of solubilizing agent in the protein dilutions did not

measurably interfere with subsequent protein-DNA binding assay.

CRP was overexpressed in E.coli XLI-Blue harboring plasmid pBG2. Both

crude cell lysates and affinity purified CRP (Ghosaini et al., 1988) were used for

EMS A and DNase I footprinting with no noticeable difference in DNA binding. It
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was necessary, however, to use a binding buffer without Mg2
+ when employing CRP-

enriched crude cell lysates due to the presence of Mg dependent endo- and

exonucleases and proteases.

Protein concentrations were determined according to Bradford (1976).

2.8. Electrophoretic mobility shift assay

EMSA was carried out by a modified method of Fried & Crothers (1981) as

described in Muiznieks & Rostoks (1998). The most significant modification included

the composition of the protein - DNA binding buffer. The optimal buffer for both

CRP and RafR binding included 10 roM Tris-HCI (pH 8.0), 10 roM KCI, 1 mM

EDTA, 1 mM DIT, 50 ug/ml BSA, 3% glycerol and 0.01% Nonidet P-40. When E.

coli RNAP binding to rajP DNA was desired, alone or together with CRP or RafR,

the following buffer was used: 20 mM Tris-acetate (pH 8.0), 3 mM Mg acetate, 50

mM KCI, 1 roM DIT, 50 ug/ml BSA and 0.05% Nonidet P-40.

The protein - DNA complexes were formed at 20° C in the total volume of 20

III for 20 min. and reactions mixtures were immediately loaded onto the gel without

the addition of dye markers.

Gel electrophoresis was carried out as described in Muiznieks & Rostoks

(1998) except that 0.5 x TAE buffer or 1 x TE buffer (pH 8.0) was used as

electrophoresis buffer. These buffers were changed after pre-electrophoresis to

prevent buffer exhaustion. Buffers were supplemented with 20 IlM cAMP, if binding

reactions included CRP.

2.9. DNase I footprinting

DNase I protection assay was performed as described previously (Aslanidis et

al., 1990; Muiznieks & Rostoks, 1998).

Protein - DNA complexes were formed as for EMSA in the reaction mixture

of 100 Ill. The amount of DNase I was determined empirically for every DNA

preparation. Footprinting reactions were run on 8% sequencing gel along with the A

and G or C and G chemical sequencing reactions, in order to localize the protected
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bases. A and G sequencing reactions were prepared by a simplified approach (Muro et

al.,1993).

2.10. Hydroxyl radical footprinting

Hydroxyl radical footprinting was performed essentially according to the

procedure developed by Tullius & Dombroski (1986), which is described in details by

Dixon et al. (1991). Protein - DNA binding reactions were formed as described for

DNase I footprinting, except that glycerol was excluded from binding reactions,

because of its ability to quench hydroxyl radicals.

2.11. Potassium perm angan ate probing of DNA structure

Potassium permanganate probing of open promoter complexes was performed

as described by Gralla et al. (1993) and McCarthy et al. (1990) under the same

conditions as described below for in vitro transcription assay.

2.12. In vitro run-off transcription assay

In vitro transcription assay was performed using a technique described by

Garges et al. (1995) on supercoiled plasmid template carrying the raj? and

downstream located transcription terminator. For this purpose raj? region was PCR-

amplified and cloned between the EcoRI and PstI sites of the plasmid vector pSA508

(Choy & Adhya, 1993; pSA508 was a kind gift from Dr. H.E. Choy). The reaction

conditions were as described in Garges et al. (1995).

2.13. Estimation of DNA curvature

Sequence dependent DNA curvature of raj? and its derivatives was

characterized by the analysis of DNA fragment electrophoretic mobility in native

polyacrylamide gels (PAAG) as described in Muiznieks & Rostoks (1998).

Intrinsically bent DNA fragments migrate in PAAG electrophoresis slower than

straight molecules of identical sequence length. Coefficient KR is calculated as a ratio

of apparent fragment length estimated in PAAG electrophoresis versus its sequence
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length. KR is inversely correlated to the fragment end-to-end length and may be used

to estimate the angle of DNA bending (Thompson & Landy, 1988).

2.14. Processing of the images

All the autoradiographs were scanned and the resulting images were inserted in

the figures further processed in the Corel Draw 6.0. No filters were applied to scanned

images and no other modifications were made, except in some instances the irrelevant

parts ofthe images were cropped (Figures 6,10,12,13).
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3. RESULTS AND DISCUSSION

The rajP promoter of E. coli plasmid-borne raffinose operon is a uruque

example of compact placement of diverse regulatory sequences within a short, 70 bp

DNA sequence.

We have analyzed CRP, RafR and RNAP interactions with the rajP (sections

3.1. - 3.7.). DNA sequence elements and topology constraints of the rajP upstream

region, which are required for basal level expression of the promoter, are described in

section 3.8.

3.1. Localization of the CRP site in the rajP

Preliminary results have shown the involvement of CRJP ill regulation of

plasmid-borne raj operon in E. coli (Su et al., 1989).

The alignment of the raj? (Aslanidis & Schmitt, 1990) with the consensus

sequence ofCRP (Ebright et aI., 1984) revealed 64% sequence match upstream of the

OJ site (Figure 5B). The putative CRP site exhibited incomplete dyad symmetry with

a canonical right half-site and imperfect left half-site. For functional mapping of the

site, a set of deletion derivatives of the rajP was constructed (Figure 5A; Table I) and

the promoter activity was tested in different genetic backgrounds (Table I in

Muiznieks et al., 1999).

These experiments delimited the boundaries of CRP site. Deletion upstream of

the position -72 (pRUI304) does not significantly influence the activity of promoter,

since the construction retains more than 90% of the wt activity. Deletion of the right

half-site of the putative CRP site (pRU 1303) reduces the activity of promoter by 80%.

Deletion of the whole CRP site (pRU1302) leaves ca. 1% of the wt rajP activity.

Further decrease in a-Gal accumulation is observed, if the basic promoter elements

are eliminated (pRU1301 and pRUI300).

The plasmids with wt rajP sequence and their deletion derivatives, where the

putative CRP site was eliminated, produced comparable a-Gal amounts in the mutant

bacterial strains, which were deficient in CRP (XA3D 1) or adenyl ate cyclase

(CA8306). On the average, functional CRP activated the wt rajP ca. 30- to 50-fold.

Genetic and biochemical evidence suggested the involvement of cAMP-CRP complex
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in activation of rajP by binding to its sequence between positions -72 and -50

(Muiznieks et al., 1999).

A IJRUI307
pRUI304
pRU1303
pRUI302

I I'RUI305

,
- pRU1301

;:; I I-
'§~, t;9
~::. c:l:l

rajP
rafR CRP

B • • •ATTTTTTATCCAGATCACACAACCGAAACGTTTTGGTTGATGTTCGAAACGTTTCGGATCAACAGTAAGACA
* * *** ******** **** '* * *

TAATGT~ATCTAGATCACAT consensus TTGACA
-7] -35

TATAAT
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Figure 5. Structure of the wt rajP region and the promoter derivatives. A,

Map of the 170 bp PstI fragment containing the rajP and the fragments of adjacent

rafR and ralA genes. CRP - CRP binding site; 01 and 02 - raloperator sites; -35 and

-10 - rajP promoter elements; +1 - transcription start site; SD - Shine - Dalgamo

sequence. The rajP sequences retained in the plasmids with truncated promoter

(pRU1300 - pRU1305) and the plasmid with complete wt rajP (pRUI307) are

indicated above the map. Description of the plasmids is given in Table 1. Relevant

restriction sites are shown, those introduced by site-directed mutagenesis are in

parentheses. B, The nucleotide sequence encompassing CRP and both operator sites.

Inverted arrows indicate dyad symmetry of RafR binding sites and filled diamonds
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show the symmetry axes of the protein binding sites. Consensus sequences of CRP

site and basic promoter elements are given below the sequence. Asterisks indicate

identical nucleotides in the consensus and rajP sequences. C, Nucleotide substitutions

and one insertion of A are shown above and below the sequence. The plasmids, which

carry respective mutations are denoted (see also Table 1).

The sequence bound by CRP was further defined by DNase I (Figure 2 in

Muiznieks et al., 1999) and hydroxyl radical footprinting techniques (Figure 6), which

yielded similar results. As expected, the sequences protected by protein are shorter at

hydroxyl radical than at DNase I probing due to the ability of the radicals to penetrate

DNA - protein complexes more deeply than it is possible for the bulky enzyme.

Hydroxyl radical footprinting delineates also the boundaries of the left CRP half site,

which is composed of a run of T residues and, therefore, is intrinsically resistant to

DNase I attack. Two hypersensitive sites are observed in DNase I footprinting at

positions -64 and -55 corresponding to two kinks introduced by CRP binding. CRP

site in raj? is centered at the position -60.5 in respect to transcription start site. More

pronounced protection of the right half site, as well as the downstream extension of

the protection, may be explained by higher homology of the raj? CRP right half site

to the consensus sequence.

DN ase I footprinting demonstrated also the simultaneous binding of CRP and

two RafR dimers to their cognate sites on raj? DNA (Muiznieks et al., 1999). Two

RafR dimers cover the region between positions -53 and -7 containing both operators

and -35 promoter element. RafR introduces a new DNase I hypersensitive site at the

5' boundary of 0]. The distance between the centers ofCRP and 0\ sites is 18 bp and

between centers of 0\ and 02 sites - 21 bp. Therefore, two RafR dimers bind the same

face of DNA double helix, whereas the center of the CRP site is rotated by 1030 in

respect to the centers of RafR binding sequences.

Addition of specific inducer melibiose reverses the operator binding of RafR.

The simultaneous binding of CRP and RafR, however, stabilizes RafR against the

induction. This suggests that CRP may act as a co-repressor under these conditions.

This assumption is corroborated by finding that a-Gal synthesis is repressed more

efficiently in crp+, cya+ cells than in their mutant counterparts (Table 1 in Muiznieks

et al., 1999, pRU1324).
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Figure 6. Hydroxyl radical footprinting of

CRP - wt rajP complex. Lane "A+G" is chemical

sequencing reaction; lane "~" denotes the reactivity

of the free DNA; lane "+" shows the reactivity of

CRP - wt rajP DNA. The sequence involved in

CRP binding is shown on the left, with the bases

specifically protected by CRP marked with

asterisks.CRP

3.2. Binding of CRP and RajR to the rajP

EMSA of CRP and RafR complexes with rajP DNA demonstrated that CRP,

0\ and O2 sites can be occupied simultaneously by their cognate proteins (Figure 3 in

Muiznieks et al., 1999). Five predictable combinations of protein - DiNA complexes

are formed with the wt rajP, namely CRP- rajP, RafR - rafl", CRP - RatR - rajP,

2xRafR - rajP and CRP - 2xRafR - rajP. Formation of the last two complexes is less

favored, however, since binding of two RafR dimers is mutually obstructive

(Muiznieks & Schmitt, 1994). Neither interference, nor co-operativity was observed

between CRP and RafR ibinding both on the wt DNA, as well as on promoter mutants.

lacking anyone of operator sites (Figure 3 in Muiznieks et a/., 1999). Obviously, the

positioning of CRP site 103° out of the plane respective to operator sites supports

mutually independent binding of CRP and RafR, whereas the binding of two RafR

dimers at the same face of the double helix is hindered and protein-induced bending is

required to accommodate both repressor molecules (Muiznieks & Schmitt, 1994).
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3.3. Intrinsic and CRPlRajR-induced bending of the rajP DNA

Sequence-dependent DNA curvature is known to participate in regulation of

transcription initiation at various promoters mainly by influencing the formation of

transcription-competent nucleoprotein complexes (Perez-Martin & de Lorenzo, 1997).

The affinity of CRP binding also depends on pre-existing curvature and CRP tends to

stabilize and enhance DNA bending (Kahn & Crothers, 1992).

The topology of the rajP promoter region was assessed by circular

permutation assay (Wu & Crothers, 1984) of the 170 bp Psti fragment (Figure SA).

The results are presented in the Figure 4 in Muiznieks et al. (1999) and suggest that

the center of ca. SOo sequence-dependent DNA curvature is located 40 bp upstream

from the center of the CRP site. This structure, however, has no detectable role in

regulation of CRP-dependent activity of the rajP, since in the plasmids with the

deletion of region upstream from CRP site (PRU1304) the production of a-Gal is not

affected (Table 1 in Muiznieks et al., 1999).

EMSA of circularly permutated rajP fragments complexed with CRP of RafR

was employed to determine the extent of the protein-induced DNA bending. The

results are shown in the Figure 5 in Muiznieks et al. (1999). The protein-induced

DNA bending angles were estimated according to Thompson & Landy (1988) and

Kim et al. (1989).

The angles of the CRP- and RafR-induced bending in the rajP DNA are

following (Muiznieks et al., 1999):

1. One RafR dimer bends DNA by 9So±So,which is comparable to the value reported

for GalR-induced bent (Zwieb et al., 1989).

2. CRP bends rajP DNA by 7So±So, which is somewhat lower than 96° reported by

Kim et al. (1989) for CRP - lacP1complex and 90° derived from X-ray structure

(Schultz et al., 1991). The lower bending angle, nevertheless, is plausible by

taking into account the non-canonical left half site of the rafCRP site compared to

the lac counterpart.
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3.4. Direction of DNA bending by CRP and RajR

The relative direction of CRP- and RafR-induced DNA bends was determined

according to Salvo & Grindley (1987) by changing the spacing between the CRP site

and the O2 (01 being non-functional). EMSA of the protein - DNA complexes

showed that the mobility of CRP, RafR and rajP DNA ternary complexes fluctuated

according to the phasing of CRP and O2 site (Figure 6 in Muiznieks et al., 1999).

Placing of the CRP and O2 sites on the same face of the DNA double helix resulted in

smaller mobility shift than placing them on opposite faces. After normalization to

exclude the effects of spacer length and nucleotide composition, the mobilities of

ternary complexes were plotted against the phasing of the two binding sites. The

results imply that the bends imposed by CRP and RafR have opposite directions.

Since CRP wraps the promoter DNA around itself, RafR will bend the DNA away

from itself, similarly to the other Lac - Gal family repressors (Schumacher et aI.,

1994; Lewis et aI., 1996).

3.5. Interactions ofCRP with RNAP

The mechanism of CRP activation of the rajP was studied. CRP site at the

rajP is centered at position -60.5, similar to its position at the lac? 1. This suggests

also the similar activation mechanism by recruitment of RNAP and facilitated

formation of closed promoter complex (Ebright, 1993).

Highly purified CRP and E. coli RNAP proteins were used do demonstrate the

CRP activation of the rajP in an in vitro transcription assay on supercoiled plasmid

DNA template. The level ofCRP-dependent transcription activation in vitro (64-fold)

was comparable to 30- to 50-fold increase of a-Gal activity in vivo (Figure 7 and

Muiznieks et al., 1999). This indicates that no additional cellular components are

required for activation to occur.

Further on, the interactions of the CRP with RNAP at the rajP were studied

using EMSA (Figure 8) and DNase I protection assay (Figure 9A).
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Figure 7. In vitro transcription from raj?

with cAMP titration. DNA concentration is 2.5

nM; RNAP is 16.7 nM; CRP is 20 nM (lanes 1 -

4) and 0 nM (lane 5). Lane 1 - 0.2 IlM cAMP;

lane - 1.0 JlM cAMP; lane - 5.0 11M cAMP; lane

4 - 25.0 IJlM cAMP; lane 5 - 0 11M cAMP, no

CRP. The rajP-specific 85 n transcript is marked

on the left. For the reference, a 108 n long RNA I

transcript was used. RNA I is involved in the

repression of plasmid replication and its

transcription does not depend upon cAMP-CRP

(Tomizawa et al., 1981). The intensity of rajP-specific transcripts was normalized

against RNA I reference.

Titration of the saturated CRP ~ rajP complexes with RNAP resulted in

enhanced polymerase binding to the promoter (Figure 8, lanes 3-6) as compared to

titration of naked DNA (Figure 8, lanes 7-10), especially at the lower RNAP

concentrations. The titration with RNAP leads also to the appearance of the second,

more retarded band, which is much more pronounced in the presence of CRP. This

band represents the RNAP - promoter open complex, which has significantly lower

mobility due to distorted DNA structure at the transcription start site. If RNAP : DNA

molar ratio exceeds 10, the formation of open promoter complex takes place also in

absence of CRP ( Figure 8, lane 10).

The possibility of non-specific RNAP binding at low RNAP concentrations

seems to be excluded, since in the absence of CRP almost no low mobility band can

be observed (Figure 8, lanes 3-5 and 7-9). The formation of non-specific RNAP -

rajP aggregates at high RNAP concentrations can not be ruled out, especially in the

absence of CRP (Figure 8, compare lanes 6 and 10), which may indicate that CRP sets

the specificity ofRNAP binding. The facilitated formation of open promoter complex

in the presence of CRP is probably due to the enhancement of the initial binding of

RNAP to the rajP, although, as will be shown later (Figure 10), the structure of open

complex is influenced by CRP as well.
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2 3 4 5 6 7 8 9 10 Figure 8.

EMSA of RNAP com-

plexes with rajP and

CRI'-rajP. DNA con-

centration is 0.3 nM.

RNAP concentration is

as indicated above the

figure. CRI' is 2.2 nM

in the lane 1 and 8.8

nM in lanes 2 - 6. Dif-

ferent protein - DNA

complexes are indi-

cated on the left.

CRP
RINAP,nM

+ + + + + -!"

o
-

o 0.48 0.95 1.9 4.77 0.48 0.95 1.9 4.77

Free
DNA

DNase I probing of the CRI' - RNAP ~ rajP ternary complexes was employed

to analyze the CRI'-dependent modulation ofRNAP binding at rajP (Figure 9).

The binding of RNAP to rajP region in presence of CRI', but without cAMP,

seems to be rather weak and there is no clear protection. However, there are several

hypersensitive sites induced by RNAP binding, which are not further influenced by

CRP. Hypersensitive sites are clustered on the non-template strand from position -10

to +10 and at two positions further upstream, -23 and -44. On the template strand

there are only few weak hypersensitive sites at the positions -5, -18, -40 and -58,

which become less pronounced, when cAMP is added. If cAMP is present in the

reaction, hypersensitive sites at the positions -56 and -66 of template strand and at

the positions -54 and -63 of non- template strand can be detected. The protection by

CRP of its cognate site is strongly decreased in the presence of RNAP, although the

location of the CRP-induced hypersensitive sites is not changed. However, CRI'

induced hypersensitive sites at the right half site of recognition sequence are less

pronounced indicating close interactions between RNAP and CRI'. These

observations may reflect the differences in DNA bending and nucleoprotein structure

formed by individual CRI' and RNAP proteins and their complex. Several

hypersensitive sites as far upstream as -120 to -130, which exhibit some dependence
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on the concentration of cAMP, can be observed in the presence of both RNAP and

eRP.

Bottom strand
o 0 0.4 10 50 50 cAMP, I,lM

- - + + + + CRP, 20 nM

RNAP, 38.2 nM I

A

To strand
o 0 0.4 10 50 50
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CTGCAGATAACCTGGACACCGATATTTTACCCTGGTAGCACGGTTCATTCTCCTTCCTTCTGATTTTTTATIIIG
GACGTCTATTGGACCTGTGGCTAT~_~TGGGACCATCGTGCCAAGTAAGAGGAAGGAAGACT~~GII

• • •
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Figure 9. DNase I probing of RNAP - CRP - rajP ternary complexes. A,

DNase I footprinting was carried out as described in the "MATERIALS AND

METHODS", except that the reactions were supplemented with 1 mM ATP and 1

mM UTP. Structure and extent ofRNAP - CRP - rajP complexes were examined in

the presence of increasing concentrations of cAMP. Both strands of the rajP DNA

were probed, "Top strand" being non-template and "Bottom strand" being template

strand. Concentrations of RNAP, CRP and cAMP are indicated above the figure.

DNA concentration is 1.8 nM for top strand and 1.2 nM for bottom strand. The

enumeration of the rajP sequence in respect to transcription start site for top strand is

given in left and for bottom strand - in right margin. The hypersensitive sites

introduced in the rajP structure by RNAP binding are marked with triangles on both

sides of the figure. Their size reflects the relative intensity of the band. Hypersensitive

sites introduced by CRP are marked by diamonds. The sites protected by RNAP are

bracketed on both sides of the figure. Chemical sequencing reactions specific to

purine residues are designated as "A+G". B, Schematic representation of the rajP

DNA interactions with RNAP and CRP. Sites hypersensitive to DNase I digestion in

the presence of RNAP are marked by triangles and those hypersensitive in the

presence of CRP - by diamonds. Nucleotides specifically protected by RNAP are

marked by filled circles and those protected by CRP are indicated by shaded boxes.

Titration with cAMP facilitates the binding of RNAP to rajP, since the clear

protection can be observed in several regions both on template and non-template

strands. In particular, regions from -16 till-19, from -24 till-28 and from -33 till-

38 on non-template strand, and a whole region from about +1 till about -50 on
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template strand are protected from DNase I digestion (Figure 9). These results

indicate that CRP facilitates the RNAP binding to rajP and closed complex formation.

Intriguingly, there is also clear protection around positions -72, -73 and 79 on

non-template and around position -70 on template strands, which becomes more

pronounced upon increase in cAMP concentration. This may indicate the wrapping of

the promoter DNA around RNAP in the presence of CRP. The hypersensitive and

protected regions located far upstream between -120 and -130 on both strands

(Figure 9) may represent the DNA region, which contacts the back ofRNAP.

The formation of the open complex at the rajP was investigated using the

chemical probing with KMn04, which preferably reacts with pyrimidine residues,

especially timines, in single stranded DNA regions (McCarthy et al., 1990). The

RNAP opening of the rajP region was investigated in the presence of CRP and

increasing concentration of cAMP (Figure 10).

A 0.25 5.0 100
+ + +
+ +

cAMP, JlM
CRP, 20 nM

AP, 38.2 nM

*T
*A

A
G
A
c

+1 r--A
.• * T

*A
*c
*c
*T

G
A
A
A

~

B 1.5 6.0 25 101 cAMP, ~M
+ + + + CRP. 20 nM
+ + + + RNAP, 38.2 II

2 3 4 5

Figure 10. KMn04 probing of the rajP open complex formation on A, top

strand and B, bottom strand, RNAP, CRP and cAMP concentrations are indicated

above the pictures. DNA concentration is 1.2 nM. DNA sequence of reactive region is

shown on left, with hypersensitive nucleotides marked by asterisks.
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On the top strand opening of the promoter DNA was detected from the

position -6 till +4 already at 0.25 flM concentration of cAMP. Increase in cAMP

concentrations leads to DNA melting further downstream, up to the position +6.

Meanwhile, the reactivity of the upstream nucleotides decreased significantly.

On the bottom strand week hypersensitive sites were detected at low

concentrations of cAMP. Higher than 6 flM cAMP concentrations resulted in major

hypersensitive site at +1 position and the additional sites at the positions -9, -8, -6, -3,

-2, +3 and +5. KMn04 hypersensitive site at -13 vanished with increasing cAMP

concentrations.

CRP clearly stimulates the RNAP binding at the rajP promoter (Figures 8 -

10). Both the KMn04 hypersensitivity and DNase I protection probing demonstrate

that at low cAMP-CRP concentrations RNAP preferably interacts with the top strand

of rajP. Under those conditions the bottom strand reflects almost no change in DNA

structure, with the exception of one weak KMn04 reactive nucleotide at the position -

13 (Figure lOB) and a few weak DNase I hypersensitive sites at positions -5, -18, -40

and -58 (Figure 9B). Increase in cAMP concentration leads to tighter and more

extended RNAP interactions with rajP. DNA of the bottom strand gets distorted

around the transcription start site, while RNAP is tightening the binding to the

upstream part of the rajP. The interactions between CRP and RNAP may promote

also the wrapping of DNA around the polymerase. The changes in DNA topology

may permit RNAP to make contacts with the rajP at further upstream (-70, -120,

Figure 9A) regions and may facilitate the DNA opening at the transcription start site

up to position +6 on top strand and up to position +5 on bottom strand (Figure 10).

The fact that not only pyrimidines are hypersensitive to KMn04 modification suggests

extremely distorted DNA structure in the open complex.

cAMP concentration-dependent changes in the pattern of KMn04 reactivity of

rajP suggest that CRP participates in the formation of open promoter complex. The

results shown in Figure lOA imply the downward melting of DNA in the presence of

CRP.

CRP apparently stimulates the RNAP binding to the promoter as corroborated

by EMSA and DNase I footprinting (Figures 8 and 9). In addition CRP influences the

steps beyond the formation of closed complex. The changes introduced in the pattern

of KMn04 reactivity by titration with cAMP suggest involvement of CRP in
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modification of open promoter complex. The results presented in the Figure lOA
- -

imply the downward melting of DNA in the presence of CRP.

3.6. Interactions of RajR with RNAP

The mechanism of RatR repression was examined by investigating the

interactions of RafR with the RNAP.

The transcription assay was carried out to study the rajP repression in vitro

(Figure 11). Purified components of the transcription reaction were sufficient: for the

RafR to exert its function even in the presence of CRP. The in vitro transcription

assay also confirmed melibiose as a raffinose operon inducer.

rafP
85 n

4 5

Rl'\'A I
108 n

Figure 11. In vitro transcription

from rajP using purified components

with RafR titration. RNasin at the

concentration of 5 u is added to each

reaction and reaction time is reduced to 3

min., in order to minimize the enzymatic

degradation of nascent RNA molecules.

DNA concentration is 2.5 nM; RNAP is

16.7 nM; CRP is 20 nM. cAMP is 20 :I-lM.

The lane 1 contains no RafR,

lane 2 - 2.5 ng RafR, lane 3 ~ 5 ng RafR, lane 4 ~ lOng RafR, lane 5 - 20 ng RafR,

lane 6 ~ 20 ng RafR + 10 mM melibiose. The rajP-specific 85 n transcript is marked

on the left, along with the 108 D long reference transcript RNA 1.

In order to investigate the mechanism of RafR action at the rafP, EMS A of

RNAP - rajP complexes in presence of RafR and KMn04 footprinting of RNAP -

rajP complexes in the presence of RafR were employed (Figures 12 and 13,

respectively). Although the RafR binding sites closely overlap the rajP -35 and -10

elements, which could lead to the most straightforward mechanism of repression by

steric hindrance (Choy & Adhya, 1996), this is not the case with tile rajP. The fact,

that RafR and RNAP protect the same region of rajP in DNase I footprinting assay
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(Figure 2 in Muiznieks et aI., 1999 and Figure 9, this text), does not necessarily imply

mutual exclusion of binding. RNAP contacts with the -10 region, as well as with-35

element, which is not completely protected by RafR (Figure 2 in Muiznieks et al.,

1999), are feasible. The titration of the saturated 2xRafR - rajP complexes with

RNAP (Figure 12) lead to accumulation of the lower mobility band, which should

contain RNAP bound to the 2xRafR - rajP complex. Moreover, the binding of RNAP

to the rajP was significantly enhanced in the presence of RafR., which may result from

protein - protein interactions between RNAP and RafR. Since RafR facilitates the

binding of RNAP to the rajP, it must repress the transcription initiation step other

than formation of closed complex.

RNAP,nM

Ram

12345678
o 0 0.48 0.95 1.9 0.48 0.95 1.9

II 2xRam-raJP
RNAP-rajP

RatR-rajP

Free
DNA

Figure 12. EMSA of

RNAP titration of 2xRafR-

rajP complexes. DNA

concentration IS 0.3 oM.

RNAP concentration IS as

indicated above the figure.

RafR is 0.2 ng (-0.14 oM) in

the lane ] and 1 ng (-0.68

oM) in lanes 2 - 5. Different

protein - DNA complexes are

indicated on the left.

The effect of RafR on formation of the open promoter complexes was

tested by KMn04 probing technique of the rajP non-template strand (Figure 13).

The results presented in the Figure 13 together with the results of JEMSA

(Figure 12) strongly favor the scheme of the simultaneous binding ofRafR and RNAP

at rajP. Meanwhile, they demonstrate the inhibitory effect of RafR on the open

complex formation. RafR repressed the promoter DNA strand separation both in the

presence and absence of cAMP-CRP., which is consistent with data of in vivo

repression in the crp+ genetic background (Table 2 in Muiznieks et al., 1999) and with
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in vitro transcription assay (figure 11). In the presence of cAMP, the repression was

much more pronounced at the low concentration of RafR (Figure 13, compare lanes 2

and 5). At 2 ng concentration (ca. 1.36 nM of RafR and 1.2 nM of rajP DNA) RafR

almost completely inhibited the melting of the DNA around the transcription start site

in the presence of cAMP, whereas the same concentration of RafR had little effect in

the absence of cAMP. The differences in the structure of open complex ill the

presence and absence of cAMP-CRP should be noted (see also Figure 10).

o 2 10 50 2 10 50 RafR,n
+ + + + cAMP

A+GJ/'C*
A
A
c
A
G
T*
A
A
G
A
c
.1\1+1
T* +
A*
c*
c*
T*
G

Figure 13. lrnpact of RafR on

the formation of open complex at the

rafP in the presence and absence of

cAMP as probed by KMn04. RafR

concentrations are indicated above

the picture. RNAP is 38.2 nM. CRP

is included in all reaction at 20 nM.

cAMP is 1O0 ~M, if included. DNA

is 1.2 nM. DNA sequence of reactive

region is shown on right, with

hypersensitive nucleotides marked by

asterisks.

The model of RNAP interactions with CRP and RafR, as well as the building

of different nucleoprotein complexes for repression and activation will be considered

in the next chapter.

3.7. Transcription regulation of the rajP

The transcription initiation at the raj? of E. coli plasmid-borne raf operon is

both repressed and activated in response to the changes in composition and
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concentration of available carbohydrates. If raffinose and melibiose are not present in

the growth environment, the rajP is repressed by RafR. Gradual depletion of

carbohydrates in the environment leads to the rise of intracellular cAMP

concentration, which serves as a cofactor for CRP. RafR and CRP may bind rajP

together, thus facilitating the repression of the rajP in the conditions of increasing

carbon/energy starvation (Figure 148). Induction of the rajP is mediated by the

product of raffinose breakdown, melibiose. The increase of the intracellular melibiose

concentration impairs the ability of RafR to bind to the promoter both in the presence

and absence of CRP. At low level of cAMP the induction leads only to the basal

expression level of the raj operon. The induction at high level of cAMP leads to

activated level of the expression of the operon to ensure the immediate utilization of

the available carbon/energy source.

Our results reveal the following peculiarities in the mechanism of regulation

of gene expression by rajP.

1. Simultaneous binding of CRP and two RafR dimers at the rajP is implicated in the

tight repression of transcription (Muiznieks et al., 1999).

2. RNAP binding to the rajP is enhanced by CRP, which stimulates the formation of

the closed promoter complex and, in addition, influences the formation of open

promoter complex by facilitating the DNA wrapping around RNAP.

3. Not only the simultaneous binding of RNAP and RafR to the rajP has been

suggested by EMSA, but also the clear enhancement of RNAP binding in the

presence of promoter-saturating concentration ofRafR is observed.

4. RatR represses the formation of open promoter complex as proved by the KMn04

probing both in the presence and absence of cAMP-CRP, although the repression

in the presence of CRP is enhanced.

The schematic localization of the different protein factors, which take part in

transcription initiation at rajP, is depicted in the Figure 14A.

The rajP repression complex, which involves both CRP and two RatR dimers,

is shown in Figure 148. Strong DNA bending by protein factors, which bind to their

cognate sites, creates a complex nucleoprotein structure, which ensures 1200-fold

repression of rajP in vivo. The localization of RNAP in the repression complex is not

shown, although the binding of RNAP to the rajP saturated with RatR has been

proven. Together with KMn04 probing data, these results strongly indicate on
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repression of rajP at the stage of formation of open promoter complex. The binding of

RNAP together with RafR may contribute to the maintenance of high local

concentration of RNAP on the silent promoter, which is important for rapid and

efficient induction.

Figure 14. Schematic repre-

sentation of the different protein com-

plexes formed at the rajP and their ef-

fect upon promoter DNA structure. A,

The approximate localization of the

proteins affecting the transcription ini-

tiation at the rafP on the linear

promoter sequence. RafR dimers are

shown on the backside of the DNA

double helix. CRP is rotated by 103° in

respect to RatR because the distance

between the CRP and 01 site is 18 bp.

RNAP location on the promoter is

approximate and the subunit

composition is adapted from Busby &

Ebright, 1997. Prornoter-Bf and -10

elements, the transcription start site and the center of the CRP site are indicated. B,

eRP and two RafR dimers bound simultaneously to the rajP. Each RafR dimer bends

DNA by approximately 90° in the plane of the page. CRP bends DNA by

approximately 80° and the bending direction is ca. 103° out of the plane of the page.

C, RNAP - CRP - rajP activation complex. The shape of RNAP is adapted from

Polyakov et al., 1995. CRP bends DNA away from the plane of the page and contacts

RNAP. Bending ofrajP DNA facilitates the wrapping of DNA around RNAP.

A

CRP
-61.5

RafR-35 RafR -10 +1

B

c

-35 -10 +1

Putative protein configuration and DNA structure for rajP activation is drawn

in the Figure 14C. CRP activation at the rajP involves not only the recruitment of

RNAP to the promoter, but also the modification of the structure of open promoter

complex. This may be achieved by facilitated wrapping of promoter DNA around the

RNAP, as suggested by the extension of RNAP footprints both upstream and
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downstream in the presence of CRP. Promoter DNA contacts with the back of RNAP

are implied by several protected and hypersensitive regions in the upstream region of

the rajP between positions -130 and -110.

3.8. Role of the promoter upstream element in regulation of rafP

The transcription of Escherichia coli raffinose operon in complex natural

environments could occur at the basal level, because of the induction of repressor

RafR by melibiose and exclusion of activator CRP by low level of cAMP. Under

these conditions only the promoter DNA sequence and topology are responsible for

the regulation of rajP. In order to determine the role of upstream promoter region in

regulation of basal rajP activity, the mutagenesis and deletion analysis of the

corresponding region was carried out (Figure 5).

The plasmids carrying rajP derivatives were tested in rafk', crp' and cya

genetic environment in order to assess the basal expression level. The results showing

the activity of rajP derivatives, as measured by a-Gal accumulation, are compiled in

the Table 2 of the Manuscript 3.

The deletion upstream from the position -59 had no effect on promoter

activity (pRUI303). Further consecutive deletions caused decrease in rajP activity by

as much as 9-fold, when sequences upstream from the position -45 were removed.

The deletion extending into -35 element (upstream from -28) diminished promoter

activity 50-fold. The mutations in rajP -59/-39 region, including those, which were

introduced to create the restriction enzyme sites (pRU1307E and pRU1307M), had

detrimental effect upon rajP activity. Promoter proximal mutations and A or T

nucleotide exchanges to G or C were more detrimental. Combination of the

mutagenesis and deletion analyses suggested more than 9-fold activation of rajP by-

52/-39 region.

Replacement of wt rajP upstream sequence with unrelated oligonucleotide in

plasmid pRU1372 resulted in more than 50-fold decrease of a-Gal activity, although

the -35 element of the promoter was not impaired.

Mutations introduced in the -35 box of the rajP (pRU1307B and pRU1307C)

diminished the wt rajP activity 50- to 100-fold. This was comparable with the

promoter activity, where -35 region is deleted (PRU1301).
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The deletion and mutation analysis of the -52/-39 region discloses a distinct

sequence element in rajP. Within this element individual point mutations display

cumulative effect. Thus, the -52/-39 sequence in rafP show functional features of the

promoter UP elements.

UP element and - 35 sequence at rafP act in concert and the promoter activity

is decreased 50- to lOO-fold if any of these elements is impaired. Both the elements

are equally important for the expression of the promoter in the absence of CRP

activation since their defects can not be mutually complemented.

The comparison of the wt rafP upstream region with the consensus sequence

of UP element (Estrem et al., 1998) revealed only vague homology, four nucleotide

matches within 15 defined positions (Figure 15).

UP element consensus 59-NNAAAWWTWTTTTNNAAAANNN-38
(Estrem et al., 1998)

* * * *
wtrafP

(Aslanidis et a/., 1989)

59-GATCACACAACCGAAACGTTTT-38

Figure 15. Comparison of the rajP upstream region with the UP element

consensus sequence. The sequence matches are marked by asterisks.

In order to assess the role of the DNA sequence and topology in the functional

proficiency of UP element in rajP, the wt upstream region was replaced with the

synthetic oligonucleotides containing (T)n(A)n or (A)n(T)n tracts (pRU 1369 and

pRU1371, respectively). Although the number of A and T residues within the UP

element region of these plasmids was increased to 15 and 12 respectively, the match

with the consensus sequence remained low (Figure 2 in Manuscript 3). None of the

constructions displayed significant promoter activity (Table 2 in Manuscript 3).

Mutagenesis and insertion of 4 and 5 nucleotides between the cloned oligonucleotide

sequence and -35 element of rajP generated plasmids pRU1369+4 and pRU1371 +5.

Here the homology with the UP element consensus sequence was improved (10

matches from 15), but the number of A or T nucleotides within UP element region

was reduced (Figure 2 in Manuscript 3). Although both the sequences were identical

in 16 positions out of 22, the pRU 1369+4 still possessed only marginal activity. but
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the activity of pRU1371+5 was increased more than 25-fold in comparison with

pRU137 1.

These results can be interpreted in context of the promoter topology.

According to the theoretical predictions (Ulanovsky & Trifonov, 1987), the

oligonucleotide sequence in pRU1369 and 1369+4 does not contain significant

sequence-directed DNA curvature, while the oligonucleotide in pRU1371 and

pRU1371+5 should be statically bent at 80 - 90°. Electrophoretic mobility analysis in

PAAG of 215 bp restriction fragment spanning rajP region from these p1asmids

confirmed the predictions. KR value for pRU1369 and pRU1369+4 fragments was

1.02 and for pRU1371 and pRU1371+5 - 1.45 (results not shown). The function of

UP element in pRU1371+5 is mimicked by intrinsically curved Aff rich DNA

fragment. The same sequence was not functionally proficient in pRU1371 due to

incorrect phasing of the curved DNA sequence and -35 element of the promoter. Our

data indicate that for the recruitment of RNAP spatial structure of UP element is as

important as the specific sequence determinants.

UP element may stabilize RNAP binding to -35 element of rajP by providing

additional contacts with the C-terminal domain of the a subunit. This assumption is

supported by the fact that the CRP activation of the promoter, which involves the

interactions with the same domain of RNAP a subunit, to large extent abolishes the

need for UP element. Mutations at the positions --40 and --45 of rajP UP element

decreased promoter activity in crp, but not in crp + strain.

The functional significance of the UP element of the rajP should be

considered in context with expression of the raffinose operon in the natural

environments. If raffinose and/or melibiose are present in the growth medium, but the

concentration of glucose is still high, UP element provides cell an opportunity to

metabolize additional carbohydrates, which may offer selective advantages.
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CONCLUSIONS

1. The expression of Escherichia coli raffinose catabolism operon genes is regulated

by raj repressor (RafR) and cAMP receptor protein (CRP), which interact with

RNA polymerase (RNAP) at the rajP promoter. Regulation of the transcription

depends on the protein - DNA complexes of different composition and topology

and not on the mutual exclusion of proteins from the promoter.

2. The rajP promoter belongs to the Class I of CRP-dependent promoters. The

binding site of CRP is centered at the position -60.5 in respect to the mRNA start

site. The 30- to 60-fold activation of rajP transcription is achieved by CRP both

in vivo and in vitro in the absence of any additional protein factors.

3. The mechanism of CRP dependent activation of rajP transcription involves

stimulation of the closed promoter complex formation and wrapping of DNA

around RNAP. The influence of CRP on the open promoter complex formation at

rajP is a novel feature of Class I CRP-dependent promoters.

4. CRP and two RafR dimers bind to rajP simultaneously and with DNA bending.

The direction of DNA bending in CRP-rajP and RafR-rajP complexes is opposite

in respect to the bound proteins, which postulates that RafR dimer bends DNA

away from itself, since CRP wraps the DNA around itself.

5. The binding of RafR to its operator sites, which embrace the -35 promoter

element, does not interfere with the RNAP binding to the rajP even at the

promoter-saturating repressor concentrations. Moreover, the RNAP binding to the

rajP is clearly favored in the presence ofRafR.

6. The rajP activity is repressed by RafR at the step of the open promoter complex

formation. CRP may play the role of co-repressor in the repression complex,

which is formed by RafR and RNAP.

7. The basal expression of the rajP depends on the sequence located between -52

and -39 in respect to the mRNA start. This sequence functionally resembles UP

element and acts in concert with -35 element. The promoter activity is decreased

50- to 100-fold, if any of these elements is impaired. Both the elements are

equally important for the expression of the promoter in the absence of CRP

activation since their defects can not be mutually complemented. The functional

proficiency of UP element at rafl' depends both on the nucleotide sequence and

DNA topology.
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Chapter 5

INDRIKIS MUI=NTEKS < \ AND NILS ROSTOK~

~ Introduction

The central issue in the regulation of genome functions is the
mechanism of sequence-specific protein-nucleic acid interac-
tions. Gene expression) replication) recombination and DNA
condensation in chromatin are steered by binding of regulatory
protein ligands to specific sites in DNA. Numerous methods have
been developed to study protein- DNA interactions. In this chap-
ter we discuss two widely used and straightforward approaches
to address this problem.

Electrophoretic mobility shift assay (EMSA» or gel retarda-
tion) or band shift assay characterize the capability of proteins to
bind DNA fragments and to form the complexes which are stable
in non-denaturing polyacrylamide gels and move slower than
free DNA in electrophoresis.

DNA footprinting or DNA protection against the attack of
degrading agents by the bound proteins allows the identification
of the specific nucleotide sequences which are involved in bind-
ing. Additionally) both methods yield information about the
structure of the complex and quantitative data about the kinetics
of the interactions.

While countless modifications of the methods originally
described have been published, appropriate adjustments are
needed in every special case. Here, we would like to introduce
our system that has worked well for th.e studies of the regulation
of bacterial u-galactosidase (raJA) gene promoter Pratr.: Within
80 nucleotide base pairs (bp) Pratr: carries: (1) the binding site for
RNA-polymerase; (2) the recognition sequence for the nOTI-

. Corresponding author: Indrikis Muiznieks, phone: +371-7-322914;
fax: +371-7 -325657; e-mail: indrikistgiacad.latnet]v

~University of Latvia, Faculty of Biology, Kronvalda 4 LV1586 Riaa., . '-...;, ) 0 .

Latvia



,~ Analysis of Specific P!Qteill-Dl'IA Interactions 69

Zl
CD
0. Pstl.11l9 1289. Pst I

C/)
CD
0.

Fig. S.IA-B. Structure of bacterial plasmid-borne raf-operon and PrafA pro-
moter. A The ra.f-operon encodes functions required for the inducible
uptake and utilization of raffinose in Escherichia coli. The expression of
three structural genes is negatively controlled by the product of rajR gene,
the RafR repressor. Homodimers of 36.8 kDa RafR bind to two operator
sites 0, and 02' that flank the - 35 sequence of the raj promoter PraJA (Asla-
nidis 1989, 1990). The raJA gene codes for a-galactosidase, a protein of
estimated M, 81.2 kDa, which is active in tetrameric form. Further mem-
bers of the rafoperon are Raf permease (rajB) and sucrose hydrolase
(rajD). The disaccharide melibiose is a natural inducer of the raj-operon.
The expression of raj-genes is activated by cAMP receptor protein CRP in
absence of glucose. The binding sequence for the CRP protein is immedi-
ately flanking the 0, operator. As in the lacZ gene promoter, the centre of
CRP binding site in PraJA is 61.5 bp 5' to the start point of mRNA synthesis.
B The 170-bp PstI fragment, base pairs 1119 to 1289 of raj operon according
to Aslanidis and Schmitt (1990), which carries the PraJA was cloned in poly-
linker of the phagemid pBS(+) creating plasmid pRU1330. Polylinker sites
are indicated with vertically rotated names of the restriction enzymes. The
polylinker sites were useful in creating differentially labelled DNA ends.
RafR binding operator sequences 0, and O2 are depicted as open ellipses,
the site for CRP protein binding is shown as a shaded box which partially
overlaps with OJ. Banner shows the relative position of mRNA start. In the
same experiment tandem dimer of the PraJA promoter fragment in PstI site
of pBS(+) was obtained. Cutting the tandem dimer with restriction en-
zymes which are indicated within PraJA sequence generated permutated frag-
ments of identical length, but with different positioning of protein-binding
sites within the DNA molecule. The cloning in pBS(+) was intended also to
obtain single-stranded DNA of PrafA for site-directed mutagenesis. The
Amersham Sculptor in vitro mutagenesis system was used to create the
mutations which abrogate binding capacity of either 0, or O2 (Muiznieks
and Schmitt 1994). The sole Hpall site within PrafA is the product of mutage-
nesis. In P rafA derivatives which carry Hpall site the operator sequence 01

has lost the -ability to bind RafR, while CRP and O2 sites are functional
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provide novel insights for the character ization of the role of DN."'-
topology in building protein-Dl-l.A complexes.

This chapter gives detailed protocols for making necessary
protein and DNA preparations and carrying out the EMSA and
DNase I footprinting analysis of a bacterial-gene promoter, Prn("..

Electrophoretic Mobility Shilft Assay (EMSA)

EMSA was developed in the early 1980 s (Fried and Crothers
1981; Garner and Revzin ]981) and since then has undergone
many modifications that allowed it to become a primary tool in
a number of molecular biology applications (for reviews see
Carey 1991; Lane 1992; Kerr ]995).

Advantages of this method are its relative simplicity, ability to
resolve multiple protein-DNA complexes (Fig. 5.2) and the possi-
bility to work with subpicomolar amounts of material. Elv1SA
may be used for a variety of purposes such as: (1) analysing the
ability of a DNA sequence to bind some protein factors; (2) find-
ing an unknown protein factor that binds to a certain DNA
sequence or vice versa; (3) studying structural and topological
changes in protein or DNA caused by the molecular interactions;
(4) exploring the thermodynamic and kinetic parameters of
protein- DNA binding.

EMSA is usually performed in polyacrylamide gels (PAAG).
Modifications of the method for agarose gels are described, but
they are used mostly for observing DNA band shifts 'with very
large protein complexes (Lieberman and Berk 1991). PAAG
resolving power sets the limit for the length of DNA fragments
used in EMSA. Considering the reduced electrophoretic mobility
of protein-DNA complexes, the use of DNA fragments longer
than 400-500 bp should be avoided. The lower limit of the DNA
length for EMSA is within the oligonucleotide range. It is deter-
mined by the size of the specific protein-binding site on DNA, ca.
30bp.
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Fig. S.2A-B. Analysis of protein-DNA complexes by EMSA. A The wt PrafA
may form five different complexes with Ram and CRP. All types of the com-
plexes can be resolved in 20-cm-Iong 4 % PAAG as exemplified by the auto-
radiogram on the left side of the panel. The structure of the complexes is
explained on the right. RafR is shown as filled circle (.), CRP as a filled dia-
mond {.). The line depicts the 221-bp EcoRI/HindIII fragment from
pBS(+) which was isolated and labelled with [a_32P~dATP and Klenow
enzyme. Open ellipses stand for operator sites, the box for the CRP binding
sites. If only one repressor dimer is binding to the DNA, no defined! affinity
for either operator is observed (Muiznieks and Sc!hmitt 1994). Therefore in
the pictogram the repressor is depicted in intermediary position. The dis-
tance between the centres of operator sites is 21 bp, exactly two turns of the
helix in B-DNA. Both RafR dimers interact with the DNA from the same
side of the molecule. The distance between the centres of CRiP and RafR
binding sites is 17- is bp. CRP and RafR are mutually rotated at about
120-150° around the surface of the DNA tube. In the pictograms the pro-
teins are depicted on the opposite sides of DNA. B EMSA with PnifA where 01

has been inactivated by point mutation creating HpaII restriction site. Lane
1 221-bp EcoRIIHindIII fragment bound only with RafR; lane 2 with CRP
and RafR; lane 3 with CRP only. Calculations according to Eq. (1) give the
value of (I) ~ 1, consequently, there is neither interference nor co-
operativity in binding of CRP and RafR to the mutated PralA.Thestructures
of protein-DNA complexes are explained in the right side of t!he panel
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Specific applications of ElvISA that have been important for
our research are: (1) the determination of binding co-operativitv
of protein factors to an individual DN~A...fragment (Fig. 5.2); (2:
the characterization of protein-induced DNp. bending (Fig. 5..3).

Binding Co-operativity. The transcription of the majority of pro-
karyotic promoters is either repressed or activated by some pro-
tein factors. These protein factors may contact their binding sites
independently or they may interact with each other and thus
exhibit some hindrance or co-operativity at binding. In the case
of hindrance the affinity of binding of each individual protein
factor is higher than that of their joint binding. In the case of co-
operativity the affinity of joint binding is higher than that for
any individual protein.

An example for hindrance may be the binding of the n~frepres-
sor to two operator sites in the plasmid-borne raffinose operon
promoter (Muiznieks and Schmitt 1994). Both operator sites are
bound with the same affinity, however, if one of them is already
bound by the repressor the other one is bound with ca. 13-times
lower affinity.

Fig.5.3A-C. Bending of DNA by the regulatory proteins. A Structure of the ~
tandem dimer of the 170-bp Pstl fragment carrying wt and mutant PraTA.

The restriction enzymes which cut only once per Prair. Pstl fragment mono-
mer and were used to obtain perrnutated sequences are given above the fig-
ure. The permutated fragments were end-phosphorylated with PNK and
[y_32p]ATP. For labelling, the Pstl fragment, which has a 51-recessed end,
was substituted by the Seal fragment (blunt end). The distance between
Seal and Pstl sites in the 5'-part of the raJA gene is only 4 bp (Fig. 5.1). The
localization of protein-binding sites within Seal fragment from the Pml".

dimer is nearly the same as in non-permutated sequence of Pstl fragment of
P raJ!\.' The relative localization of the protein-binding sites within the frag-
ments is shown by the same symbols as in Fig. 5.2. The types of permutated
fragments are denoted with letters on the left margin of the figure. B Bend-
ing of P ratA by RafR. EMSA was prepared with 0.2 ng of RafR and permu-
tated Prats. fragments which are denoted above the lanes and in the lett mar-
gin of FIg. 5.3A. The distance in bp between the centre of the binding site
and the fragment midpoint is given below the lanes. The most pronounced
mobility shifts are produced with those DNA fragments where the repressor
binds near the midpoint of the fragment. C Bending of PraiA by CRP. EMSA
was prepared with 0.12 ng of affinity-purified CRP andpermutated P,aTA

fragments. The distance in bp between the centre of the binding site and the
fragment midpoint is given below the lanes. The data show that both Ram.
and CRP bend PraT:.I. DNA upon binding. Using Eq, (2) (see text), we have
estimated that in the P.-aIA sequence the binding or CRP induces an angle of
85°, but the binding of one RafR repressor dimer an angle of 110°
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piified by the binding or CRP and lac repressor to their respeo
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tive urimarv sites in [he lac operon oromoter (Hudson anc Fric ;
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1990; Vossen 19961. However, there are numerous papers '~l"":o

studies of protein binding co-operativiry and protein-proter-
interactions employing the E.MSA (see Pedersen 1992, Sogaarc-
Andersen and Valentin-Hansen 1993, Mao 1994, Kristensen 199c
and references therein). Two approaches have been developed tc
study binding co-operativity of protein factors: (1) protein dis-
tribution analysis (Fried and Crothers 1981); (2) binding com-
petition assay. For detailed calculations and formulae see Hud-
son and Fried (1990) and Senear and Brenowitz (1991).

Both approaches characterize the relative protein-DNA bind-
ing constants through relative probabilities of formation of the
corresponding complex. Since the protein-DNA complexes
resolved in the native PAA gel contain large numbers of mole-
cules, the probability of formation of each complex may be
approximated by the frequency of its occurrence corresponding
to the intensity of the band in autoradiography.

By protein distribution analysis, the co-operativity parameter
WPlP2 may be calculated according to the equation:

WP1P2 (1)

Here, 10,Ipl, In and IplP2 are the intensities of the autoradiogra-
phy bands of free DNA; the Protein I-DNA complex; the Protein
2-DNA complex and the double complex of both proteins with
DNA, respectively. The proteins co-operate at binding DNA if
WplP:~ is >1, behave neutrally if WPlP2 is ~ 1 and interfere with
each others' binding if WPlP2 is <1.

In binding competition assay, the multiple protein-DNA com-
plexes are incubated with competing, non-specific DNA. To
employ this method one of the protein factors must possess
lower binding affinity for its site or, alternatively, the binding
affinity of the same protein for another site must be different.
Because one protein is more weakly bound than another, it is
preferably transferred to competing DNA. In case of binding co-
operativity this transfer is reduced in the presence of the second
protein. To obtain the results one should compare the auto-
radiography band intensities in two binding assays: (1) with [he
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both proteins: and (2) with the protein which is transferred to
the competitor DNA more easily.

Protein-Induced DNA Bending. Protein-induced DNA bending
plays an important role in building the spatial structure of the
transcription complex. In EMSA, the protein binding-dependent
mobility shift of DNA fragments is further increased by protein-
induced DNA bending. Maximal mobility anomaly is observed
when the bend is localized in the centre of the fragment and
minimal when the bend is at the end of the fragment (Kolb 1983;
Wu and Crothers 1984). In the "circular permutation assay"
(Fig. 5.3), a tandem repeat of the DNA fragment containing a
protein-binding site is cleaved with the restriction enzymes
which cut only once per fragment monomer. Thus, a set of DNA
fragments of the same length but with different protein-binding
site location is obtained. The DNA fragments are complexed
with the protein and run on native PAAG. The relative mobilities
of the protein-DNA complexes are plotted against the position of
the restriction sites in the DNA fragment (5~3'). The apex of
the curve indicates the centre of the bend.

The relative bending angles can be calculated according to the
equation:

(2)

where ~lM is the mobility of the complex with protein bound at
the centre of the DNA and IlE=mobility of the complex with the
protein bound at the end (Kim 1989; Thompson and Landy
1988).

Alternatively, DNA bending angles in protein-DNA complexes
may be evaluated by comparing their electrophoretic mobility to
a set of fragments which carry the standard DNA curvature ele-
ments, adenine tract determined bends (Zinkel and Crothers 1990).

DNA Footprinting

EMSA is helpful for characterizing the binding of specific pro-
teins to DNA fragments which carry cognate recognition sites,
but it does not provide sequence information about the structure
of these sites. The analysis of protein-dependent DNA protection
against non-processive degradation, DNA footprinting, is used
to identify the sequences which are directly interacting with pro-
teins. The principle of the method is depicted in Fig. 5.4.
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Fig. 5AA - D. Scheme or the footprinting experiment. A The components •.
needed for DNA tootpr intine: sinziv end-labelled DN-'\. fragment, DNA-

.I.. '-' '-' / c

binding protein, DNase I and chemicals for nucleotide base-specific
dezradation of DN.U•. Their preparation is described in Sections 5.1 to 5.3. B

~ A

The protein-DNA binding reaction and partial degradation of unprotected
part of the DNA fragment (Sect. 5.4). The protein-DNA complex is shown in
the right part of the panel. The protein binding induces DNA bending. In
the control reaction, the protein-unprotected fragment is subjected to
DNase I degradation as shown in the middle part of the panel. To identify
the DNA motif which is interacting with the protein, chemical sequencing
reactions are carried out in parallel with the same fragment. Stochastic
mixture of labelled and unlabelled DNA degradatien products is generated.
The concentration of DNA-degrading agents which are used in the reaction
should produce one or less than one chain break per DNA molecule. Con-
sidering the huge number of molecules in the reaction (range of 109

) this
should result in statistically even distribution of degradation events over all
the accessible sites for degradation. More than one attack of degrading
agents per DNA molecule is depicted in picture just to make clear that
numerous fragments are produced in the reaction. C The reaction is
stopped, partially degraded DNA fragments are extracted, concentrated,
denatured and electrophoresed in sequencing gel (see Sect. 5.4). Only the
fragments which are produced from the labelled chain of the DNA will be
visualized in the gel. The label from the other chain usually is removed by
cutting away terminal 10-20 bases with an appropriate restriction enzyme.
The small labelled fragment which is formed in this reaction does not pro-
duce interfering bands. The electrophoresis is carried out so that the bands
shorter than 25-30 bp leave the gel. D Autoradiography and analysis of the
footprint (Sect. 5.5). The analysis of DNA degradation patterns reveal: (l)
regions of the protein-specific protection of DNA, the "windows", where the
bands are missing due to the presence of DNA binding factor in footprint-
ing reaction; (2) regions of DNA which are poorly cleaved by DNase I also
in the absence of the protein due to some local structural features of the
fragment, e.g. narrowed minor groove in oligo-T tracts; (3) DNase I hyper-
sensitive sites which may be created by protein-DNA interactions usually as
a consequence of protein-induced DNA bending and changing the configu-
ration of the grooves. Poorly cleaved DNA regions are recognized in foot-
prints as empty zones across all the lanes, both in the reactions with DNA
binding proteins and in the controls. They may interfere with precise local-
ization of the borders of the specific footprints. Minute structural rnodifica-
tions may influence the DNA sensitivity to DNase I degradation. The
methylation of C residue in CG dinucleotide enhances the DNase I suscep-
tibility of the neighbouring 5' phosphodiester bond, although the methyl-
group of cytosine is not exposed in the minor groove of the DNA (Kocha-
nek 1993)
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The method was proposed by D.]. Galas and A. Schmitz in 1978.
The founder-fathers of DNA footprinting used DNase I as the
DNA degrading tool. Since then a plenitude of degrading agents
have proven their usefulness in DNA footprinting analysis. They
may be classified into three main groups: (1) DNA degrading
enzymes; (2) chemical and physical agents which produce free
radicals; (3) chemical agents which modify nucleotides and pre-
pare DNA for subsequent cleavage at the places of modification.

DNase 1. High specific activity, stability at storage and reproduc-
ibility of the results obtained still make DNase I the enzyme of
choice for the majority of DNA footprinting experiments (for
recent review see Leblanc and Moss 1994). DNase I is an endo-
nuclease which attacks DNA in the minor groove. The protein of
31 kDa molecular mass is active in the monomer form, and its
structure is stabilized by Ca2+ ions (Lizarraga 1978). The
degradation is non-processive. The enzyme cleaves preferen-
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riallv after pvrimidine bases. Depe!1ding upon subtle .':110Quia-
nons of DNA structure, e.g. minor alternations in the minor
groove width or flexibilitv, DNase I will cleave some nucleotide
motifs more easily J1', on the other hand, less easily (Hogan 1989;
Kochanek 1993). This can be considered as either a drawback of
the method or, vice versa, can be employed to obtain aciditional
information about the quest structures (Fig. 5.5). The molecular
dimensions of DNase I are comparable to those of The proteins
usually involved in DNA binding. This implies that the bound-
aries of the protected regions will be drawn with some exten-
sion. Some nucleotides immediately next to the bound proteins
will remain inaccessible 10 the DNase I action.

Fig. 5.5. DNase I protection experiments (footprinting) of P raTA with RafR ••.
and CRP proteins. The EcoRIIHindIII fragment from pRU1330 was end-
phosphorylated with PNK and subsequently digested with PaeI. The experi-
ments were performed with 0.5 ng of DNase I per reaction. Approximately
one half of the DNA molecules was not cleaved by the nuclease. They build
a thick zone on top of the gel. Lanes 1 and 2 show chemical sequencing reac-
tions with the P rats. fragment using C- and G-specific modification reactions
as denoted below the lanes (Maxam and Gilbert 1980). The left margin of
the panel demonstrates the tracing of specific G and C pattern within the
PraJA sequence (Aslanidis and Schmitt 1990) which permits the precise
localization of the protein-binding motifs. A number "1" below the figure
denotes the presence of lOng of purified RafR or ca. lOng CRP from crude
E. coli cell extract. "0" denotes the absence of the particular protein. Lanes
3 and 9 are controls where the DNA was subjected to DNase I attack without
protein protection. The regions of intrinsic resistance to DNase I attack are
marked with grey blocks in the right margin. In lanes 4 and 8 the DNase
protection patterns with RafR and CRP, respectively, are shown. CRP pro-
duces pronounced bands of DNase I hypersensitivity in the centre of pro-
tected DNA segment, while Ram generates only minor bands of enhanced
cleavage at the outer borders of the binding sequence. DNase 1hypersensi-
tive sites which are generated by the protein binding are marked in the righr
margin of the panel by arrowheads. EMSA (Fig. 5.3) has shown that both
the proteins bend DNA. The differences in the DNase I hypersensitivity pat-
terns imply that the manner of DNA bending by RafR and CRP is different.
Lane 7 demonstrates that both operators and CRP binding sequence of P;'lJ;>'
can be occupied by the cognate proteins simultaneously. Narrow white
block 0.11 the right margin of the panel shows the borders of CRP binding
site. Two broader white blocks span the binding sequences of Rafk. In lanes
:.1 and 6 which are indexed by !VI the inducer of the raf-operon, melibiose,
was added in the binding mixture to final concentration 10mM. As
expected the binding of RafR is weakened in the presence of the inducer (d.
lanes .j and 5). The RafR-CRP-DNA complex is slightiv more stable in the
presence of melibiose than the RatR-DNA complex alone iLanes .3 and 01
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DNase II, Micrococcal Nuclease. DNase II and micrococcal nu-
clease are further enzymes which are employed for DNA foot-
printing. Micrococcal nuclease cuts almost exclusively at pA and
pT bonds showing greater activity at (A-T), than in homopoly-
meric runs of A and T (Fox and Waring 1987). These sequences
are poorly cut by DNase I. The use of both of the enzymes pro-
vides mutually complementary data.

Hydroxyl Radical. The hydroxyl radical, generated by the reduc-
tion of hydrogen peroxide by iron(lI), was first used to cut the
DNA in footprinting assays by D.T. Tullius and B.A. Dombrovski
in ]986. Numerous systems for the generation of free radicals for
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DN?~ structure analysis were developed later: methvdiurnpropyl-
EDTA.Fe(IIi, ortho-pnenanrhroline.Cul, photoinduction, etc.
(Tullius 1991; Macgregor 1992; Baily and ""Waring 1995). In COl1-

trast to the bulky enzymes, the hydroxyl radicals can protrude:
into the closest boundaries of DNA and protein interactions, and
they are less sequence specific than the nucleases, although they
demonstrate some DNA secondary structure specificity. Some
possibility still exists that unspecific denaturation of protein or
protein-DNA complexes may take place during the time when
the reactions which generate free radicals are initiated.

Dimethyl Sulphate. Dimethyl sulphate is the most widely used
chemical for footprinting analysis among the nucleotide base-
modifying reagents. The capability to penetrate through the cel-
lular membranes makes it especially useful for in vivo genomic
footprinting applications (Saluz and lost 1993).

Others. Diethylpyrocarbonate, psoralen, osmium tetroxide and
potassium permanganate can be considered as conformation-
sensitive probes in DNA-degradation analysis (Runkel and
Nordheim 1986; McCarthy and Rich 1991). In the absence of spe-
cific binding proteins these agents will preferably attack the
regions of highly supercoiled, undertwisted DNA, partially
single-stranded, melted DNA regions and four-way junctions.
These agents are esspecially useful in the analysis of promoter
structures.

A further development of the basic DNA-protection analysis
technique is in situ footprinting of protein-DNA complexes fol-
lowing EMSA.

Quantitative analysis of protein-DNA interactions by means of
DNA footprinting is a feasible, although seldom used approach
(Rehfuss 1990) .

• Materials

Equipment - Devices for vertical PAAG electrophoresis, e.g., Iviinigel- Twin
and Maxigel (Biometra)

- Device for horizontal agarose gel electrophoresis GNA 100
(Pharmacia)

- LTV transilluminator B89196 (Bioblock Sci.)
- Microcentrifuge, e.g., Beckman Microfuge E (Beckman

Instruments, Inc. )
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- Sorvall centrifuge RC-3B (Du Pont)
v

- French pressure cell press (American Instrument Co.)
- Ultra Turrax dispersing tool T25 (IKA Labortechnik)- •....

- Beckman scintillation counter L55800 (Beckman Instruments,
Inc. )

- Escherichia coli DNA Polymerase I Large Fragment (Klenow Materials
Fragment) (Boehringer Mannheirn)

- DNase 1, RNase-free or grade I (Boehringer Mannheirn)
- T4 Polynucleotide Kinase (any available commercial vendor,

e.g. New England Biolabs, MBI Fermentas)
- restriction enzymes (any available commercial vendor)
- shrimp alkaline phosphatase (Amersham- USB)
- 100 mIv'I solutions of ultrapure dNTPs (Pharmacia)
- [a_<2p] dNTPs and [y_32p]ATP (at 3000 Ci/rrrM, 10 mCi/ml)

(Amersham)

Note. All the chemicals should be highest purity available!

- NucTrap Probe Purification Columns (Stratagene)
- plasmid DNA purification kits (Qiagen)
- X-ray films - Fuji RX
- intensifying screens for autoradiography - DuPoint Cronex

Lightning Plus

- XLI-Blue Stratagene
Genotype - recAl endAl gyrA96 thi-I hsdR17 supE44 relAllac
[F' proAB lacfJZ~Ml5 TnlO (Tetf)]

Bacterial
Strain

- 2x TY medium
16 gil bacto-tryptone
10 gil yeas t extract
5 gil NaCI

Note. Sterilize by autoclaving for 20 min at 121 DC

Bacterial
Growth
Medium

- Acrylamide stock for EMSA gels
39 % acrylamide
1% bis-acrylamide

Note. Store in dark bottle at 4 DC

Caution. Acrylamide is a neurotoxin and is readily absorbed
through the skin. Always wear gloves when working with acryl-
amide and its solutions!

Solutions
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5.7 % acrviarnice
0.3 % bis-acrvlarnide
7 Ivi ultrapure urea
10% lO)~TBE buffer

Note. Store in dark bottle at ~ DC
- Ammonium acetate

10 M CH3COONHcl, pH 8.0
- Ammonium persulphate (APS)

10% solution

Note. Store in aliquots at - 20 DC as the APS is unstable in aque-
ous solutions. Use the aliquot only once

- Ca2+ /Mg2+ Solution
5mM CaC12

10mM MgCh
- cAIvIP

10 mM Adenosine 3': 5' -Cyclic Monophosphate in IE Buffer

Note. Filter sterilize, store in aliquots at - 20 DC

- Competitor DNA
10 f-tg/ml ofpoly(dI):poly(dC) or poly(dA):poly(dT) in IE Buf-
fer.

Note. Store in aliquots at - 20 DC

- EDTA
0.5 M ethylenediaminetetraacetic acid disodium salt dihy-
drate, pH 8.0

Note. EDTA will not dissolve until the pH 8.0 is set by the NaOH

- Ethanol
100 % and 70 % (v/v) solutions

- Ethidium bromide
10-4~O in 1x IAE

Note. Store in dark bottle at room temperature (20°C)

Caution. Ethidium bromide is a powerful mutagen. Always wear
gloves while handling gels or solutions containing the dye!

- Loading Solution I
50 % glycerol
0.05 % bromphenol blue
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f).oS O1:J xylene cvanol
- Loading Solution II

0.5 M NaOH
50 % formamide
0.1 % bromphenol blue
0.1 % xylene cyanol

- Melibiose
100 mIv! solution in ddH20

Note. Filter sterilize

- PhenolCIA
Phenol:chloroform:isoamyl alcohol (25:24: I)
Store at 4°C

Note. Phenol is preliminarily equilibrated with 0.5 M Tris- HCI
and 0.5 M NaCl!

Caution. Phenol can cause severe burns. Always wear gloves
when working with it. Any areas of skin that come into contact
with phenol should be washed with soap and water. Do not use
ethanol

- SDS
10 % sodium dodecyl sulphate

- Sodium acetate
3 Iv! CH'ICOONa, pH 4.8

- Stop solution
0.5 % SDS
0.13 M NaCl
30 ~g yeast tRNA per ml

- Buffer I Buffers
25 mM Tris- HCl, pH 8.0
SOmM NaCl
I mM EDTA
0.25 mg/ml lysozyme

Note. Prepare buffer without lysozyme and add it to the buffer
just before use

- Buffer II
2 % (v/v) Triton x.ioo
40 mM Tris-HCI, pH 6.5
O.SM NaCl
8m.M EDTA



- Buffer IE
100 mM Iris-Eel, pE 6.5
20 mlvl EDr;"~

- Butter D
50 mM K phosphate, pH 7.S
2mM EDTA
2 mM dithiothreitol (DTT)
5 % (v/v) glycerol

- Buffer S
10 m1VI Na phosphate, pH 6.8
0.1 mM EDTA
0.1 M NaCl
SO% (v/v) glycerol

- Buffer vV
0.5 M K phosphate pH 7.5
2mM EDTA
2mM DTT
5 % (v/v) glycerol

- DNA elution buffer
0.5 M ammonium acetate
10 mM magnesium acetate
1 mM EDTA, pH 8.0
0.1 % SDS

- DNase I stock and dilution buffer
50mM KCl
50 mM Tris-HCl, pH 8.0
1 rnM DTT
100 ~g/ml bovine serum albumin
50 % (v/v) glycerol

- Imidazole buffer, lOx
0.51vl imidazole H Cl, vH 6.4...
180 mM MgClz
50mlVi DTT

- Klenow enzyme buffer, lOx
J

0.5 M Tris-HCL DH 7.6....
0.1 M MgCl~

- Polynucleotide Kinase buffer, 10><
0.5 M Tris-HCl, pH 7.6
0.1 M MgCl2

50 rn.M DTT
1mM spermidine
1 mM EDTA, pH 8.0

- PrOTein-DN.~ binding buffer, l O»;
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1O0 mM Tris-Hel, pE8.0
100 mivl KCl
10 rruvl EDTA
10 mIvI DTT
0.5 mg/ml BSA
30 % (v/v) glycerol
0.1 % Nonidet P-40

Note. If the binding of CRP to the DNA is to be tested, include
2 mIvI cAMP in the lOx binding buffer

- TAE electrophoresis buffer, 50 x
2 M Tris-acetate, pH 8.0
0.05 M EDTA
TBE electrophoresis buffer, lax
0.89 IvI Tris- Borate, pH 8.0
0.02 IvI EDTA
TE buffer
10 mM Tris-HCl, !pH8.0
1 m1\lI EDTA
TE 0.1 buffer
10 mM Tris-HCI, pH 8.0
0.1 m.M EDTA

5.1
Isolation of DNA Fragments

II Procedure

A variety of methods for purifying DNA fragments exist either
from PAAG or agarose gel. In our hands the best results have
been obtained with the modification of the method which is
described by Sambrook (I989).

1. Set up the incubation of 5 flg of Qiagen column-purified plas-
mid DNA which contains P rajA with appropriate restriction
enzyme( s) in 50 ~l total volume of the reaction mixture.

2. While the plasmid DNA is digested, prepare a 5 % PAAG. In a
measuring cylinder mix:
4.0 ml acrylamide stock for EIvlSA, 0.64 rnl 50 x TAE, 0.25 ml
10 % APS, ddH20 to 32 ml.
Add 30 ~l ofTEMED and mix well. Pour a 120x 120x 1.2 mm gel

85

Basic
Protocol
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3. Add 5 ul of Loading Solurion I W the digesreci '::::il\L:i. probes,
mix, and load them into the 2:e~ slots. Continue the electro-. ~
phoresis until the bromphenol blue marker has migrated 2/3. .~ ~
of the ae1 lenzthv 0 ..1. c ..L·

4. Stain the gel with ethidium bromide and visualize the DNA
fragments in reflected LTV light. Cut out the band of interest.~ L

5. Transfer the gel slice into a 1.5-ml Eppendorf tube and add
400 ~l of DNA elution buffer.

6. Incubate the tube overnight at 37 GC, if possible 011 the
rotator.

i. Spin the tube briefly in microcentrifuge to collect the con-
densation from tube walls and collect the elution buffer care-
fully trying not to transfer PAAG pieces.

8. Elute the DNA fragment once more with half the volume of
elution buffer for a couple of hours. Collect the elution buf-
fer as previously and combine with the first one.

9. Precipitate the DNA with isopropanol (1.0 vol) or 100 % eth-
anol (2.5 vol) and collect the DNA pellet by centrifugation in
micro-centrifuge for 15 min at maximal speed.

10. Discard the supernatant, wash the pellet with 70 % ethanol
and centrifuge for 5 min.

11. Dry the pellet at 37 GC and dissolve in 200/-11 of ddH20. Add
25 ",,1 of 3 M sodium acetate, pH 4.8, precipitate, wash and
dryas previously.

12. Dissolve the DNA pellet in water or TE 0.1 buffer.

The procedure should yield ca. 0.2 ~tg (l.5 pM) of 170- 210 bp
fragments. Run a 1/10 aliquot of the fragment preparation in
1.5 % agarose gel and determine the DNA concentration bv com-
paring the ethidium bromide t1uorescence of the fragment with
the fluorescence of the equal length bands containing 10 and
20ng DNA.

Good quality DNA can be recovered also from aaarose aels bvo 0 ,

using e1ectroelution or by centrifugation or- agarose gel slice
through 21ass wool.~ ~
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Numerous reagent kits for purification of DNA fragments
from agarose gels are commercially available, e.g.. QIAquick Gel
Extraction Kit from Qiagen or Sephaglas BandPrep Kit from
Pharmacia.

In some cases, for EMSA, but not for footprinting assays, one
can omit isolation of the DNA fragment and proceed directly
with DNA labelling, if there are no other DNA fragments in the
restriction hydrolysate that might be confused with protein-DNA
complex( es).

It is also possible to label the DNA fragments first, directly in
the restriction mixture and then purify labelled fragments from
agarose or PAAG. DNA bands in the gel can be located by auto-
radiography and purified by any of above-mentioned proce-
dures.

5.2
Preparation of Protein Factors for EMSA

ElVISAis based on specific protein-DNA interactions often simu-
lating the in vivo conditions when only several protein molecules
(~10 as in lac repressor case) specifically bind to a single DNA
site per genome. Consequently, not only highly purified proteins,
but also crude cell extracts may be used in EMSA. The gene clon-
ing approaches allow one to obtain recombinant bacteria which
produce high amounts of the proteins of interest. This allows one
to use dilute crude extracts in binding reactions, thereby pre-
venting the interference of endogenous nucleases and proteases.
Binding buffers without magnesium ions restrict the activity of
most nucleases.

~ Procedure

The repressor of the plasmid-borne bacterial raffinose catabo- Ram
lism operon is encoded by the rafR gene (Aslanidis and Schmitt
1990) which has been subcloned into high copy number plasmid
pUe8 under the control of the lacZ promoter. Repressor protein
expression is induced upon addition of IPTG and protein is
accumulated in the form of inclusion bodies that are easily pre-
pared, purified and reconstituted in the active form (Aslanidis
1990).
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1. Transform the Escherichia coii strain XLI-Biue. witri l.:--,c

nlasmid DRU98~ .Asianidis 1990).
!.. 1. .

'"'l Transfer a single colony into 300 ml of .2>< TY medium SUL'-
,=' .. .•.

plemented with ampicillin Q 100 f-tg/mlJ and IPTC (l rd\r~:
and grow the culture overnight at 37°C with shaking.

3. Harvest the cells by centrifugation for 30 min at 5000 rpm in
the Sorvall centrifuge, discard the supernatant, resuspend
the cells in 5 ml of Buffer I and incubate for 30 min on ice.

4. Disrupt the cells by three passages through the French press.
Allow the lysate to cool down on ice between the passages.

5. Sediment the inclusion bodies by centrifugation for 15min
at 10000 rpm, 4°C and discard the supernatant.

6. Resuspend the inclusion bodies in 5 ml of Buffer II, hornogc-
nize using an Ultra Turrax dispersing tool T25 three times
for 20 s and keep the homogenate on ice for 30 min.

Note. An alternative to the Ultra Turrax dispersing tool may be
sonication three times for 2©s at 22 kHz, however, very strong
foaming is observed due to presence of Triton X-IOO.

7. Repeat step 5.

8. Resuspend the inclusion bodies in 5 ml of Buffer III, homog-
enize three times with Ultra Turrax and keep 30 min on ice.
Repeat the centrifugation/homogenization step three times.

9. Resuspend the inclusion bodies in 0.5 ml of Buffer r without
the lysozyme. Add SDS to the final concentration of 0.1 CJo
and allow the solubilization of the RafR protein to proceed
overnight at 4°C.

10. Pellet the non-soluble inclusion bodies by centrifugation in
the micro-centrifuge for 10 min at maximal speed, dispense
the supernatant containing the functional repressor in 20 ~l
aliquots and store at - 70°C.

Protein preparation is analysed using 10 % PAA-5DS gel as
described in Sambrook 1989. Average concentration of protein
preparation is about 2 ~Lghtl as judged by SDS-PAGE and the
preparation contains onlv minor contaminants (see Fig. l.B in
Aslanidis 1990).
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The gene for eRP is cloned and constitutively overexpressed in a
high copy-number plasmid pBG2 (Brenl 1993).

CRP

L Transform the E. coli strain XLI-Blue with the plasmid pBG2.

2. Transfer a single colony into 300 ml of 2x TY medium supple-
mented with ampicillin (loa ug/ml) and grow the culture
overnight at 37°C with shaking.

3. Harvest the cells by centrifugation for 30 min at 5000 rpm in
the Sorvall centrifuge, discard the supernatant, resuspend the
cells in Buffer I to give OD600 = 100, incubate for 30 min on ice,
freeze at -70°C and thaw on ice.

Basic
Protocol

4. Disrupt the cells by three passages through the French press.
Allow the lysate to cool down on ice between the passages.

5. Centrifuge the lysate for 15min at 10000 rpm, 4°C and dis-
card the pellet containing cell debris. Aliquot the supernatant
and keep at - 70 "C.

ChromatographyThrough the cAMP-Agarose

1. Dialyse 3 ml of the supernatant from the step 5 overnight Option
against two changes of 500 ml of Buffer D. Centrifuge the dia-
lysate at 4°C, 30 min, 15000 rpm to sediment the precipitated
protein.

2. Make a 5 ml column of cAMP-agarose (Pharmacia), pre-wash
it with 5 column volumes of Buffer W + 1M NaCI and equili-
brate with 10vol of buffer D at flow rate 12 ml/h.

3. Load the dialysate to the column at flow rate 3.5 ml/h and
wash with 10 column volumes of Buffer W (12 mlth).

4. Elute CRP with Buffer W +2 mM cAMP at flow rate 2 ml/h,
Collect 0.5 ml fractions and check the protein concentration.
CRP begins to elute at the end of the first column volume and
leaves the column in 1/2 of its volume.

5. Dialyse the peak fractions of CRP overnight at 4°C against
100vol of Buffer 5, aliquot and store at - 70°C.

In our hands, the use of more than 1000-fold diluted crude CRP
extracts and affinity-purified CRP preparations gave similar
results in EM5A and footprinting.
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5.3
Labelling of DNA fragments for ~MSAand Footprintlnq

Although many non-radioactive DNA labellinz methods eXlSI
~ • u

today, radioactive labelling is still a widely used, fast and con-
venient method ensuring the highest quality and sensitivity for
various molecular biology applications. The particles emitted bv
the decaying radioactive isotope penetrate the photographic
film, collide with silver halide crystals and generate precipitates
of silver atoms. The isotope of choice to prepare radioactively
labelled DNA fragments for EMSA is 32pbecause its ~-emission
energy is much stronger than that of other often used isotopes
(1.709 MeV compared to 0.167 MeV for 35S).Particles emitted by
35Scan penetrate the film emulsion only to a depth of 0.25 mm
which is not enough when wet gel is covered with Saran Wrap. In
contrast, 32p generates ~ particles which penetrate water or
plastic to a depth of 6 mm and pass completely through an X-ray
film. This allows us to take autoradiograms of wet gels covered
with Saran Wrap as well as make use of intensifying screens that
enhance the image ca. fivefold.

Several approaches have been developed to produce labelled
DNA fragments with high specific activity but not all of them are
suitable for EMSA or footprinting. Random priming method
yields DNA probe with specific activity> 109 cpm/ug, however,
the label is spread within the fragment and the length of the
fragments is not uniform. We recommend two approaches that
may be used to generate labelled DNA fragments for E~'1SAwith
a specific activity >107 cpm/ug DNA: (1) labelling 3'-recessed
ends with E. coli DNA Polymerase I Klenow fragment and appro-
priate [aJ~P]dNTP; and (2) labelling dephosphorylated 5 '<ends
with T4 polynucleotide kinase and [y_32p]ATP. The choice of
method depends on the ends of the DNA fragment produced by
different restriction enzymes. Only recessed 3'-ends are labelled
by the Klenow enzyme. T4 polynucleotide kinase may be used to
label protruding 5'-ends as well as blunt ends. Recessed 5' -ends
are labelled with Jow efficiency. In this case, the use of imidazole
butter instead of the standard kinase buffer may improve the
efficiency of labelling.
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Procedure

Labelling with the Klenow Enzyme

The Klenow enzyme adds complementary deoxynucleotides to
the hydroxyl groups at the recessed 3' ends of the DNA fragment.
In contrast to E. coli DNA Polymerase I the Klenow enzyme pos-
sesses only 5' to 3' polymerase and 3' to 5' exonuclease activi-
ties. If one of the deoxynucleotides in the reaction is substituted
by its [a- 32p] analogue, the reaction product will be a DNA frag-
ment with one or both ends labelled depending on the restric-
tion enzyme( s) used and on the labelled deoxynucleotide
included in the reaction. In our experiments we labelled both
ends of PrafA carrying the EcoRI/HindIII fragment from the plas-
mid pRU1330 (Fig. 5.l) with [a-32P]dATP.

1. Mix in the Eppendorf tube following reaction components:
up to 1.5 pM of DNA fragment,
2.5 ul of lOx Klenow Buffer,
10 ~tCi (~3.3 pM) of [a-32P]dATP,
1 ul of mix of other dNTPs (2 mM each) to fill the ends of
DNA fragment,
2 U of Klenow enzyme (labelling grade),
ddl-l.O to 25 ul.

2. Incubate for 30 min at 37°C.

3. Increase the reaction volume to 50 ul with ddll-O and add 1 ~l
of 5 M NaCl. Extract twice with PhenoiCIA.

4. Increase the volume of the aqueous phase to 75 ul and add
25 ~l of 10 1'1 ammonium acetate. Precipitate with 250!l1 of
100 % ethanol.

5. Spin for 10 min in micro centrifuge, wash the pellet with 70 %
ethanol, air-dry.

6. Repeat steps 4 and 5. Control the radioactivity of supernatant
with Geiger counter. Two ethanol precipitation/washing steps
in presence of 2.5 M ammonium acetate remove more than
95 % of unincorporated label.

7. Perform the Cherenkov counting of the dry DNA pellet.
Normally, the specific activity of the sample should be
2-Sx 107 cpm/ug.
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Note. ':'0 avoid the loss ;Jf pellet during ethanol precipitation,
place tubes incentrifuae with .::av hinge at the tOD and note the- ~ ~ ~ ~
position of pellet. Draw off ethanol carefully so as not to disturb
..•. - .J

the pellet.

Option A frequently employed method to remove the unincorporated
label from the reaction mix is gel filtration through Sephadex G-
50 columns (Sambrook 1989). Instead of self-made columns it is
recommended to use commercially available NucTrap Probe
Purification Columns from Stratagene and follow the manufac-
turer's instructions.

Labelling with T4 Polynucleotide Kinase

T4 polynucleotide kinase (PNK) catalyses the transfer of the ~I'-

phosphate group of ATP to a S'-OH terminus of the DNA; there-
fore it is possible to label DNA using [y- 32p]ATP. PNK can cata-
lyze either the forward reaction, namely transfer of a phosphate
to a 5' -OH group, or drive the exchange reaction, causing the
transfer of the terminal 51-phosphate group of DNA to ADP and
afterwards the rephosphorylation of DNA by transfer of labell ed
y-phosphate to DNA. ADP must be in excess amount. Here, we
describe only the forward reaction for which the DNA must first
be dephosphorylated. To calculate the concentrations of the ter-
mini of nucleic acid molecules to be labelled use Table 5.1.

Dephospho-
rylation

There are several enzymes that catalyse cleavage of 5' -phosphate
groups from DNA fragments leaving hydroxyl groups necessary
for PNK. Those are bacterial alkaline phosphatase (BAP), calf
intestinal alkaline phosphatase (CAP) and shrimp alkaline phos-

Table 5.1. Size-concentration relationship of linear double-stranded DN.A.

Size of double-stranded
DNA (in base pairs)

Amount of DNA required to contribute
1 pM of 5' termini (in ~lg)

50
100
250
500

1.7xlO-:
3.3 x 10-2

cA~(lO-':
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phatase (SAP). All of them carry out the same reaction, however,
CAP and SAP have an essential advantage over BAP - they can
be completely inactivated by heating, whereas BAP can be inac-
tivated only by multiple phenol/chloroform extractions.

1. Mix the following components in an Eppendorf tube:
DNA fragment to be dephosphorylated (1.5 pM), 5 ul of lOx
SAP buffer (supplied with SAP), 1.0 U of SAP (0.2 U catalyze
removal of phosphate from 1 pM of DNA ends), ddlI-O to
50 ul.

2. Incubate for 1h at 37°C.

3. Heat the reaction mL"'Cfor 15 min at 65°C, then increase the
volume till 100 ul and add 2 ul of 5 M NaCl.

4. Extract twice with PhenolCIA.

5. Precipitate the aqueous phase with 2.5 vol of 100 % ethanol
for 20 min on ice.

6. Spin in a micro-centrifuge for 10 min at maximal speed, wash
the pellet with cold 70 % ethanol and air dry.

1. Add to the dephosphorylated dry DNA (up to 1.5 pM of 5' Labelling
ends; see Table 5.1 to calculate concentration of your DNA
fragment) the following components:
2~tl of lOx PNK buffer, 10~tCi (~3.3pM) of [y_32p]ATP,
20-30 U of PNK, ddH20 to 20 ~tl.

2. Incubate for 30 min at 37°C.

3. Increase the volume of reaction mix to 100 ul, add 2 ~l 5 M
NaCl and extract once with PhenolCIA.

4. Separate the DNA from unincorporated [y_32p]ATP as
described above.

5. Perform the Cherenkov counting of the dry DNA pellet. Nor-
mally, the specific activity of the sample should be
>2-5x 107cpm/ug.

6. Dissolve the sample in IE 0.1 buffer to specific activity
1x 105 cprn/ul.

Note. Ammonium ions are inhibitors of PNK therefore the DNA
fragment after preparation from PAAG according to Sambrook
(1989) must be carefully purified. DNA molecules with blunt or
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5' -recessed ends are labelled less efficientlv than chose witi: -
recessed ends therefore it is recommended to increase cr:.·::
amount of PNK to 30-40 units. To obtain the effective DhoSDi'l~r-. . -

yiation of 5' -recessed ends it is also recommended to use irr.i.ia-
zole buffer and include in the reaction mixture polyethylene: ~l~c-
col (PEG 8000) in concentrations ranging between 4: and 1 0 (~/(;.

Depending on the number of protein-DNA complexes forrneo
in EMSA, good bands on X-ray film will be produced b~.'
500 -1000 cpm of the labelled fragment. To obtain the sufficienrlv
strong signal in autoradiography it is advisable to take for one
ElVISA reaction the amount of labelled DNA corresponding LO

500-1000 cpm, depending on the number of bands expected.

Preparation of the Fragment for Footprinting

Footprinting experiments require a singly end-labelled DNA
fragment. To obtain this by phosphorylation with PNK, the
labelled fragment must be additionally digested with a restric-
tion enzyme which releases a small portion from one end. This
procedure with the PrafA-Carrying plasmid pRU1330 is facilitated
by the flanking sites from pBS( +) polylinker (Fig. 5.1). The frag-
ment was cloned into the PstI site, the EcoRII HindIII fragment
was isolated, labelled with PNK + [y-32PJATP and digested with
Ecl136II or PaeI to remove the label from one end of the frag-
ment.

1. The following reaction was assembled in the microcentrifuge
tube:
20 fll of phosphorylated DNA fragment from above, 5 ul of
lOx appropriate restriction buffer, 40 U of PaeI or Ecl136Il,
ddH20 to 50 ~l

2. Incubate at 37 DC for 1 h. It is important to remove one end of
the fragment completely. This is ensured by excess enzyme in
the reaction.

3. Extract twice with PhenolCIA.

4. Precipitate and wash the DNA with ethanol. Air drv and count
the radioactivity,

5. Dissolve in IE O.} to final specific acnvitv l « loc cprn/ul,
Store at 4 "c.
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For one footprinting reaction ca. 30000 cpm of labelled DNA are
needed.

SA
Protein-ONA Binding Reactions

Protein-DNA complexes are formed by mixing stoichiometric
amounts of the DNA fragment and active protein. If the specific
activity of the DNA is in the range of 3xl 07 cpm/ug, as little as
0.1-1.0 ng or several femtomoles of fragment are used in the
reaction.

The protein concentration in the reaction depends on the
quality of protein preparation and on the number of its binding
sites on the DNA fragment. Usually not all protein molecules
have retained their binding ability after purification. If the DNA
carries more than one binding site, the amount of the cognate
protein must be increased accordingly. In most cases, sub-
saturating protein concentrations when the band of free DNA is
still visible in the gel are optimal for the interpretation of EMSA.
The right protein amount for binding reactions can be found
only empirically by titration of labelled DNA fragments with
series of dilutions of the protein preparation.

Efficiency of the formation of protein-DNA complexes is
strongly influenced by the composition of binding buffer. In our
work addition of DTT, BSA and 0.1 % Nonidet P-40 to the bind-
ing reaction favoured protein-DNA interactions. Glycerol in the
binding buffer not only had a positive effect on protein binding
but also allowed direct loading of the incubations' mix on PAAG
without much mixing/pipetting. On the other hand, addition of
Mg2+ ions in the binding buffer had no positive effect, moreover,
it caused degradation of the DNA fragment especially when
crude cell lysates with CRP were used. It is not possible to give
any general recommendations concerning the buffer composi-
tion, mostly because of different binding conditions for different
proteins (see Hassanain 1993).

In our hands the protein-binding buffer composition which is
given above has worked well both with RafR and CRP, in EMSA
and in footprinting assays. However, we would like to note that
even for the very well studied CRP-lac promoter interactions
binding conditions described by different authors may vary.
Binding of particular protein factors to their sites demands that
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special lizands be added, e.z.. specific bindinz of '=RF occurs
_ '-" • ••...•.. - •••. L·

oniv in the presence of c_"'jvI? Studies of bacterial re or essor-
; j. 1-

aperator interactions mav require the addition of specific induc-
ers That cause the dissociation or the complex. cAMP must De
included not only in the binding buffer (200 ulvl) but also in the
electrophoresis buffer (20 ~tM end concentration).

All the nucleic acid binding proteins exhibit some degree of
non -specific affinity. This can cause smearing of retarded bands
or even appearance of non-specific protein-DNA complexes.
This is especially important when crude cell lysates are used.
Unspecific binding to the quest DNA may be avoided by increas-
ing the salt concentration in the reaction mixture. A more tre
quently used approach to overcome this problem is adding or
"non-specific" competitor DNA. For this purpose sonicated fish
sperm or calf thymus DNA is often employed, although these
DNAs may carry sequences which mimick specific binding sites.
The use of synthetic competitor DNAs, e.g., poly(dA):poly(dT)
or poly(dI):poly(dC), is preferable.

Formation of the protein-DNA complexes is usually carried
out at room temperature, however, this may vary with the pur-
pose of the experiment. Incubations at 4 DC or at 37°C are
described also.

The time for complex formation is usually chosen between 5
and 30 min. However, when binding of several consecutively
added proteins is investigated reaction times may be increased
up to 1h to allow the binding to reach equilibrium.

PJl these variations in procedures just point out the necessity
of empirical determination of individual reaction conditions for
different protein factors and DNA sequences.

vVedescribe here The protocol for the binding reaction which
worked well with the proteins involved in the regulation of the
raj-operon. Similar conditions were applicable also for the bind-
ing of crude and affinity-purified human transcription factor
AP-2 to the cognate DNA sequences.

Procedure

Binding Reaction in EMSA

1. Mix in the Eppendorf tube:
3000 cpm or ca. 1 Il\;l of labelled DNA fragment, an appropri-
ale amount QI-the protein, 1 ul ·::::1-lex urotei.i-bindinn burrer,

, < '-
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cotactors (,.::Al\tlP, 200 u.M: melibiose 10 pj\;I - 1rnM), 1 !_tg of
competitor DNA [polvrd.Al.polvt dT)]
ddH20 to 10 ul.

2. Incubate binding reactions for 20 min at room temperature
(~20°C).

3. Load the binding reactions directly on the non-denaturing
PAAG without addition of dyes (this is possible due to the
presence of 3 % glycerol in the binding reactions) and load
1ul of Loading Buffer I in the side lanes of the gel to control
the migration of the samples in the gel.
In control reactions DNA fragments without proteins or with-
out cofactors are incubated. Additional control is provided by
the reaction without competitor DNA. In most reactions with
purified RafR and CRP the competitor DNA was omitted
since its presence did not influence the binding of the pro-
teins to PrafA'

Typical amounts of the proteins used in our work were about
1ng of purified RafR and CRP, 1:5000 dilution of the crude
extract of CRP over-producing bacterial cells which were dis-
rupted in French Press at OD6oo= 100 (Figs. 5.2-5.3).
Specific binding of CRP to DNA is observed only in the pres-
ence of cAMP. Melibiose is the natural inducer of the raf-
operon. This disaccharide abrogates RafR binding and it was
used to study the protein-protein interactions at PmfA'

Binding and Footprinting Reaction

1. Mix in the Eppendorf tube:
30000 cpm or ca. 10 fM of labelled DNA fragment,appropri-
ate amount of the protein, 5 ~tlof l Ox protein-binding buffer,
cotactors (cAMP, 200 !J,M;melibiose 10!J,M- 1mM)
ddHzO to 50 ~tl.

2. Incubate binding reactions for 20 min at room temperature
(~20 DC).

3. While the incubation is in progress, heat the Stop Solution to
37 DC and mix well.

4. Treat each reaction identically in the following manipulations.

Note. Process no more than three samples simultaneously to
achieve similar results. Add 50 ul of Ca2

-'-/Mi+ Solution and
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incubate at :-OOl:!. temperature for 1. min. Add '3 !_Ll ,)i" appropr iare
.C:Nase I dilution. mix gentlY, but thoroughly, and incubate J.I

room temperarure :L-OI" 1. sin.

5. Terminate the reaction bv adding 100 ~tl or Stop Solution.
Mix well.

o, Extract the reaction with 200 [11 PhenulCl.' ....

- Transfer The upper, aque',:ms phase to 2. fresh tube, add :2 ~L1or
3 M Na-acetate and 500 ul of lOO 9/0 ethanol. Precipitate on
ice for 20 min.

8. Spin down the DNA in micro centrifuge at maximal speed for
10 min. Carefully remove the supernatant, wash with 70 %
ethanol, and air dry.

9. Resuspend the pellet in 4 ~l Loading Solution II by vortexing
and flicking the tube. Heat at 95°C for 2 min and chill on ice
for at least 2 min.

IO. Load onto a 6 % polyacrylamide sequencing gel. Run the gel
at 1200-1500 V in 1x TEE buffer until the bromphenol blue
is at the bottom of the gel.
The optimal amount of DNase I for the footprinting reaction
is to be determined empirically in pilot experiments, The
typical DNase I concentrations added per reaction vary
between 0.2-1.0 ng. This should allow approximately one
random nick pef labelled DNA molecule. The dilutions of
the grade I DNase I are made in 50 % glycerol-containing
buffer from 1mg/rnl stock solution. The dilutions and the
stock solution may be stored at least 6 months at -.:20 "C.,
To save the chemicals, the preliminary footprinting reactions
can be performed in 1/3 of the described scale with DO bind-
ing proteins added to the reaction and analysed on
1.:20 x 200 x 0.5 mm denaturing P~~Agels.
In control reactions DNA fragments are incubated without
binding proteins or without cofactor's which are needed for
binding.
Unlike E"tv'I':::A· ;~ rootorintins "ss"r the T)""' '\ sh ould 'D . ,- - IT-~ - '..J ,1.111 V.t' 1 0 a. a) Ll ..L.-.":''\.i_:'' u t:' ~u .1

pletely saturated with the binding proteins. For this purpose-
we used lOng of purified Rafk and CAP per footpriming
reaction (Fi£,. 5.5 . ·V\Then competitor Dl';A was added if.~ -
rootpr inting with crude CLP extr acts , the ':"'J~~2.S:':: ~ conC:::fl-
tration DeT reaction was increased.
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To localize the protein-binding sites, the footprinting sam-
ples are run in the sequencing gel in parallel with base-
..l.. _'- ••••••• L· ~

specific chemical degradation products of the same DNA
fragment fiVlaxam and Gilbert 1980).

5.5
Electrophoretic Analysis

~ Procedure

Electrophoresis in EMSA

Dimensions of the PAAG for EMSA depend mostly on the num-
ber of expected shifted bands and on the molecular weight of the
complexes. If only a couple of low molecular weight bands are
formed, it is possible to use short gels (ca. 10em). However, if
several large protein-DNA complexes are expected and, espe-
cially, if they have similar sizes, it is advisable to make longer
gels (20 em or more).

Long gels are also recommended when EMSA is used to assess
topological features of DNA which are induced upon binding of
protein factor, e.g., protein-induced DNA bending.

The standard PAAG thickness in EMSA is 1mm. Thinner gels
are more easily dried after electrophoresis, but the size of the
wells may become too small. Gels which are 2- 2.5 mm thick may
be used when it is essential to load enough cell lysate, e.g., to
detect DNA bound protein by Western blot.

Four to 5 % PAAG are most frequently used in EMSA. Such
gels have a pore diameter ca. 16-20 nm and provide sufficient
frictional force on protein-DNA complexes to resolve them
according to their molecular mass and/or structural peculiar-
ities, e.g., bent DNA structures.

PAAG pore diameter depends also on the degree of polymer
cross-linking. Instead of the standard 29:1 or 38:2 acrylamide to
bis-acrylamide ratio, EMSA gels usually have lower cross-linking
at acrylamide to bis-acrylarnide ratios of 39:1 or 75: 1. In our
experiments we used PAA gels with acrylamide to bis ratio 39:l.
This is sufficient to separate on a 20 em long gel all the protein-
DNA complexes formed by RafR and eRP with PrafA·

Our experience shows that electrophoresis in 1X TAE buffer
gives sharper bands and better resolution than in 0.5x TEE. To
avoid buffer ex..haustion during prolonged runs, an electrophore-



Percentage or gel

5.0
3.0

IOC ~oo
65 :60
45 160
20 7012.0

20.0 12 45

" The numbers are the approximate sizes of DNA fragments (in nucleotide
pairs) with which the dyes would cornigrare.

sis chamber with buffer recircularization should be used. Elec-
trophoresis is usually carried out at the same or lower tempera-
ture as binding reactions. At least a 0.5 h long pre-run is recom-
mended to guarantee even distribution of ligands in the buffer
and gel and to allow stabilization of the current.

Electrophoresis is carried out at ca. 10 \l/cm until the samples
have migrated appropriate distances. To observe the progression
of the electrophoresis, dye markers are added in the lanes next tc
the binding reactions (see Table 5.2). When the samples have
migrated the desired distance in the gel, the current is stopped,
the glass plates are disassembled and the gel is either vacuum-
dried or covered with Saran Wrap and directly subjected to auto-
radiography.

Electrophoresis of the Footprints

The footprinting analysis is performed in denaturing sequencing
gels and include all the usual steps for processing these gels.

The length of the gel run depends on the DNA fragment size
and the localization of the protein-binding site within the frag-
ment. Fraarnents of 1ClO-aOG br. rnav be used in foc,t;::-t:-iminc.,

L.- .t" " ~ {..I

with the protein-binding site not closer than 30 br from th-
labelled end. Protein-binding sites as far as 400 bp from the
labelled end can be used, but require longer electrophoresis. and
the bands art not so sharp.

Good results can be obtained with any type: of sequencing gel.
To ensure a uniform load of radioactivity in eVe2"Y slot it is

. .

recommended to count everv probe "before dissolvins and to. , ~
adiust the volume of the Loading Solution Il accordins to th-

I ~ ~

amount: of cpm in the Tube. The optimal width of [he slots i~
0-8 mrn. with gel thickness a: the [Df' --0 ..2ITl::T..
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(~el Autoradioqraphy

T11'2 standard method far the detection of radioactively labelled
nucleic acids is autoradiography, although recently phosphor-
imaging svsterns have become available allowing direct scanning
of gels and blots without use of X-ray films. Even when employ-
ing phosphor-imaging systems, it is advisable to make also an
autoradiogram of the gel for vour record.

'...... '-.
Both wet and dried gels can be subjected to autoradiography.

Autoradiography of wet gels covered with Saran Wrap is pre-
ferred when further manipulations with the gel are planned, e.g.,
when localized bands are cut out and radioactivity is counted or
when localized protein-DNA complexes are excised and their
footprints are made. Dry gels, however, provide higher sensitiv-
ity and better quality pictures.

Autoradiography of EMSA gels is usually carried out with two
intensifying screens to shorten the exposure times which depend
on distribution of labelled DNA in bands and which may vary
from several hours to several days.

When quantitative experiments are carried out and densito-
metry of exposed films is planned it may be reasonable to use
pre- flashed X-ray films for autoradiography. Films are pre-
exposed to a short « 1ms) flash of light that activates the silver
halide crystals in the emulsion. Crystals in these films have a
prolonged linear response to emitted f3 particles and fluorescent
light of the intensifying screens.

Sequencing gels should be dried before autoradiography. With
gels which contain more than 20 000 cpm per slot we have not
noticed significant differences between autoradiographs done at
room temperature or at - 70 "C.
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The plasmid-borne ret operon of Escherichia coli en-
codes proteins involved in the uptake and utilisation of
the trisaccharide raffinose. The operon is subject to
dual regulation; to negative control by the binding of
RafR -repressor to twin operators, 0, and O2, and to
positive control by the cAMP-binding protein, CAP. We
have identified the CAP binding site (CBS) as a 22 bp
palindromic sequence with incomplete dyad symme-
try by deletion analysis, DNasel footprinting and elec-
trophoretic mobility shift assays (EMSA) of CAP-DNA
complexes. The CBS is centred 60.5 bp upstream of
the transcription start point and partially overlaps 0,.
In vivo, CAP increasesrafA (a-galactosidase) gene ex-
pression up to SO-fold. The 28 bp spacing between the
centres of CBS and the - 35 box is essential, since in-
sertions of 4, 8, 12 or 16 bp completely eliminated rafA
gene expression. In vitro binding studies revealed that
the CBS, 0, and O2 sites, can be simultaneously occu-
pied by their cognate proteins. However, no coopera-
tivity between binding of CAP and RafR was detected.
EMSA with circularly permuted DNA fragments
demonstrated that CAP and RafR proteins bend rat
promoter (rafP) DNA by 75° ± 5' and 95" ± 5', respec-
tively, in opposite directions. Among sugar catabolic
operons, the compact arrangement of three protein-
binding sites, a CBS and two operators bounding the
- 35 promoter box, is unique and provides a sensitive
and highly efficient device fortranscriptional control.
Key words: CAP protein / DNA bending l raP topology I
rat gene expression / Raf repressor.

Introductior.

Utilisatio- of the trisaccharioe raffinose as sore earner
source 0\· certain strains 07 Escneticnie coif is mediate;
b- the ptas ruc-bome tz: coeron (SC:l~::-, e: a: .. ~S7S
S·:nmio er a.... - ::;-:-8 Tn- :;:'e~:;:'enccoe: arr c -caractos-
G2S'::--'IL"-3a:. rz:- ;;ene .. c_Je"Tneas~ !-"a~=, ge~E anc ar

invertase (rafD gene) needed for inducible uptake anc
degradation of raffinose (Aslanidis et el., 1989). The re-
cently identified porin-encoding gene. rafY, is not a part 0'

the rat operon (Ulmke et et.. 1997). The rat genes are co-
transcribed from a common promoter upon induction 0\'

endogenous melibiose. The promoter is controlied bv tne
RafR repressor which is encoded by the upstream ratF:
gene (Aslanidis and Schmitt, 1990; Aslanidis et ei.. 1990) .
RafR binds to the 18 bp palindromic operator sites. 0, and
O2, separated by 3 bp ofthe-35 box (Figure 11.Binding of
RafR to 0, and O2 reduced in vivo transcription of ratA bv
a factor of 1200, whereas RafR binding to O2 alone result-
ed in a 540-fold (45%) and to 0, alone a 72-fold (6%) re-
duction in ratA expression. This difference has been as-
cribed to the positioning of the operator sites relative to tne
promoter elements, hence, the dominance of O2, which IS

located between the - 35 and -1 0 promoter boxes (lanz-
er and Bujard, 1988; Muiznieks and Schmitt. 1994). The
binding of the second RafR dirner to 0;, however. is crucia
for complete repression.

An earlier study (Suet a/., 1989) of a-Gal activity InE. coil
mutants deficient in CAP (crp) or adenvlate cyclase (cya;
suggested that the rat operon is subject to positive trar ..
scription control by the catabolite gene activator protein.
CAP (also termed CRP, for cyclic AMP receptor protein..
The cAMP-CAP complex (hereafter referred to as CAP)
activates transcription of ca. 30 operons in E. coli by bino-
ing to a cognate regulatory site upstream from the- 35 and
- 1G promoter boxes (Collado-Vides er et.. 199'1: Kolb e:
al., 1993). CAP binds to DNA by a helix-turn-helix motif ir
the carboxy-terminal domain of the protein (SChultz et a1..
1991: Parkinson et et., 1996). The nine amino acid recog-
nition helix binds to one half of the palindromic CA.Pbind-
ing sequence. CBS Ide Crombrugghe et el, 1984: Gu-
nasekera et al.. 1992). Figure ~ aepicts the consensus
CBS and Indicates the positions essential for CAP recog-
nition in bold type. Tne center of CBS with respect 1(: tnt
transcription start site varies from - 40 to - 200 in difieren;
promoters. For three promoter types. where CBS is cen-
tered at - 4"1.5 (gal). - 61.5 (lac'; and - 7:'.5 (marTi, CA;:
alone is sufficient to strnulate transcnptior mitiation 0\

RN? polymerase. Gel shit: experiments using c.seco: ci'-
curarlv nerrnuted DN/'-.fragments nave oernonstratec tria:
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Fig.1 Organisation of Sequence of rafP DNA.
Physical and genetic map of a 170 bp Pstl fragment containing the raf regulatory region (rafP) intervening between rafR (repressor gene)
and rafA (a-gal gene); CBS, catabolite activator protein binding site; 01, O2 raf operators; -35; -10, rafP promoter boxes;
+ 1, transcription start point; SO, Shine-Dalgarno sequence. A set of nested deletions (pRU1300-pRU1304) and the native plasmid,
pRU1307 (Table 2) extending from the left into rafP is drawn above the map. Relevant restriction sites are shown, those introduced by mu-
tagenesis are in parentheses. The nucleotide sequence encompassing the CAp, 01 and O2 sites is shown below, on an expanded scale.
Nucleotide numbering is according to Aslanidis and Schmitt (1990). Inverted arrows indicate dyad symmetry of rafrepressor binding se-
quences, filled diamonds show the symmetry axes of protein binding sites and solid arrowheads mark sites hypersensitive to DNasel upon
CAP binding. In vitro nucleotide substitutions and one insertion (+A) are shown above, consensus sequences and nucleotide identities n
are given below the native sequence. ATG (underlined) at position 1270 marks the translation start ofrafA.

may be activated by CAP through direct protein-protein
interactions between one of the a-subunits of RNA poly-
merase (RNAP) and the promoter-proximal subunit of CAP
(Irwin and Ptashne, 1987; Heyduk et al., 1993; Ebright,
1993). CAP-RNAP contacts are necessary, but may not be
sufficient for activation of transcription (Ryu et et., 1994).
DNA bending is clearly important, since lntnnsicaljy
curved DNA can partially substitute for CBS and induce
then CAP-specific efrfects both in vivo and in vitro (Bracco
et si., 1989; Gartenberg and Crothes, 1991: Perez-Martin
and Espinosa. 1993, 1994; Perez-Martin et al., 1994).

Further complexity in the regulation of sugar catabolic
operons, as exemplified by the gal and lac systems, is
introduced by the formation of promoter DNA-RNAP-re-
pressor tertiary complexes (Straney and Crothers, 1987;
Kuhnke et sl., 1989; Lee and Goldfarb. 1991) and DNA-
RNAP-C.AlP-repressor quatemary complexes (Nick and
Gilbert, 1985; Goodrich and McClure, 1992; Dalma-
Weiszhausz and Brenowitz, 1996). The binding of repres-
sor proteins, lacl and GaIR, induces bending of cognate
DNA (Zwieb et ai., 1989; Kuhnke et sl., 1989). X-ray struc-
ture analyses have shown that Lac! binding induces dis-
tortion in the operator sequence causing it to bend away
from the protein (Lewis etel., 1996). It 'is thus believed that
gene expressior: is requlated through interactions of
numerous proteins during formation of the transcription

initiation complex and not simply by mutual exclusion of
effector proteins from the promoter DNA.

This study was initiated to define the rat CSS and to
analyse the effects of CAP and RafR binding on rat regula-
tory DNA structure (hereafter referred to as ratp) and on
ratA gene expression. We report here a uniquely compact
array of regulatory sites, with CAPlbinding to a quasi-
palindromic sequence centered at - 60.5 bp and with CAP
and two RafR dimers binding simultaneously, but non-co-
operatively, to their cognate sites, CBS, 0, and 0.2. Both,
CAP and RafR proteins induce DNA bending, butto differ-
ent degrees and in opposite directions.

Results

Mapping of the CAP Site

The recognition helix of CAP binds to one half-site of the
palindromic CAP consensus ONP-,binding site (de Crom-
brugghe et al .. 1984; Ebright et ai .. 1984; Gunasekara et
e:.. 1992t Alignment with the ra{P (Aslanidis and Schmitt.
1990; Aslanidis et e!.. 1990) revealed 2 64% sequence
match upstream adjacentto the 0, operator she (Figure 1).
This presumptive CBS exhibits incomplete dyad symme-
try with a canonical ngh;:-hand core and an imperfect ieft-
hand half-site. For functional Classification oi the site.



deletion mapping and DNasel footprinting have been
used.

The native rafP sequence ~pRU1307) and a set of five
overlapping deletions extending from the left into the reg-
ulatory region were compared for rafA gene expression in
CAP-proficient and CAP-deficient E. coli hosts. Deletions
were introduced by endonuclease cleavage at already
existing or artificially introduced restriction sites, namely,
Xbal (T/CTAGA at pos. 1173), Sau3A (/GATC at pos. 1188),
Eeo52 I (C/GGCCG at pos. 1196), Sful (TT/CGAA at pos.
1220) and Ndel (CAITATG at pos, 1296), as diagrammed in
Figure 1 (recognition sequences and assignments of post-
cleavage 5' nucleotide positions ,in parentheses). «-Gal
activities determined in three E. coli hosts, CA8000 (eye",
crp+) , CA8306 (eya) and XA3D1 (erp) , that were trans-
formed with the deletion constructs, are listed in Table 1.
These data revealed that
(i) the integrity of the putative CAP site is essential for

rafA transcription, since a deletion extending to posi-
tion 1173 (pRU1304) still retained more than 90% of
wild-type activity;

(ii) however, a deletion extending only into the riqht-hand
half of the palindromic site (pRU1303) displayed just
20% of wild-type activity;

(iii) all deletions beyond this site showed only background
activity.

Moreover, the two E. coli hosts deficient in CAP (XA3D1)
and in adenyl ate cyclase (CA8306) expressed less than
5% of wild-type a-Gal activity throughout, suggesting
that it is the lack of CAP binding to its cognate site which
causes the reduction in rafA gene expression.

The sequence bound by CAP was further defined by
DNasel footprinting. The binding of RafR alone and to-
gether with CAP was probed in this experiment to deter-
mine whether simultaneous binding of both regulatory
proteins was feasible. The results presented in Figure 2
demonstrate that CAP protects a 30 bp region covering

Table 1 a-Galactosidase Activity of pRU1307 Derivatives with
and without Catabolite Gene Activation.

a Enzyme activities are expressed as arbitrary units determined in
the late exponential phase of grow1h (Muiznieks and Schmitt.
1994). Values were averaged from three independent experi-
ments. The estimated standard deviation is = 20%.

o Configurations of pRU1300 through pRU1307 are shown in
Figure 1.

C NO. not determined.
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Fig.2 DNasel Footprintinq of CAP and RafR Binding to ratp
DNA
(A) Diagram of the 198 bp EcoRI/Pstl fragment containing rafP
that was [32P]-labelled and subjected to DNasel digestion. Sym-
bols are as in Figure 1. (B) Lanes 1, 2; sequencing markers gener-
ated by the C orG chemical sequencing reactions: lanes 3,9; free
DNA treated with DNasel; lanes 4- 8: DNasel digestion after bind-
ing of RafR, CAP. or both as indicated below (+/-); the superscript
'M' indicates the presence of 1 mM melibiose (inducer) in the
binding reaction. Protection by CAP is illustrated by bars at the
right-hand margin: shading indicates potential protection not
seen due to an intrinsic DNase I-insensitivity of the oligo T tract.

the entire CBS consensus with two DNasel-hypersensi-
tive sites, one in each half-site of the palindrome (Figure
2A, arrowheads). Their positions, 3 bp and 5 bp away from
the dyad symmetry axis (at position 1186/1187). are
slightly shifted to the right half-site. perhaps as a conse-
quence of the non-ideal left-half sequence of the CBS
(Figure 1). Moreover, footprinting demonstrated that con-
current binding of one CAP dimer and two RafR dimers to
their cognate sites was feasible (Figure 2B, lanes 6 and 7).
The patterns seen wit!" various combinations of bound
proteins in the presence and absence of 1 m~ melibiose
(inducer) can be accounted for as follows:
(i) Two RafR dimers cover the region between positions

1194 and 1244 containing 0" O2 and the - 35 promot-
er box (Figure 28, lane 4). Unlike CAP. bound RafR
completely protects the core sequences of O~and O2.

but it also introduces a new DNasel-hypersensitive
site at position 1194. where the CAP and O· sites over-
lap (Figure 28, 4-7).
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(ii) 1 mM melibiose reverses the operator-binding of RafR
(Figure 2B, 5). The binding of CAP stabilises the re-
pressor-DNA complex in the presence of melibiose
(Figure 2B, 6) suggesting that under these conditions
CAP may act as co-repressor. This assumption is fur-
ther corroborated by the fact that pRU1324-specified
a-Gal synthesis is repressed by RafR more efficiently
in wild type (cya") than in an adenyl ate cyclase-defi-
cient mutant (Table 1).

(iii) Footprinting defines the distance between the centres
of CBS and 0, as 18 bp, and between the axes of 0,
and O2 as 21 bp (Figures 1 and 2). Therefore, the two
RafR dimers bind at the same face of the DNA double
helix, whereas the CBS is twisted by 103°.

Differential Binding of CAP and RafR

The gel shifts shown in Figure 3 further demonstrate that
the CBS, 0, and O2 sites can be occupied either separate-
ly or simultaneously by cognate regulatory proteins. Five
predictable combinations of protein-DNA complexes
were formed, the upper two bands, however, at reduced
intensity (Figure 38). Complexes represented by these
bands are the only combinations where both operators are
occupied by RafR dimers. As established by Fried and
Crothers (1981), the relative intensities of shifted bands at
low protein concentration reflect both the probability of
complex formation and the relative affinities of binding.

A -"0 -
~ ~ r~fR

c,

'0'

-,-

The data shown in Figure 3B thus confirm our earlier ob-
servations that the close spacing of 0, and O2 causes mu-
tual 'binding obstruction' between the two bound RafR
dimers and that stable occupation of both sites requires a
change in DNA confonmation (Muiznieks and Schmitt,
1994). By contrast, no mutual obstruction between CAP
and RafR binding was observed with mutant DNAs, where
one or the other operator site was non-functional (Figure
3C, D). The observed differences in band intensities,
which correspond to singly and doubly occupied promot-
er DNAs, where only one operator site is functional, do not
support an interpretation in tenms of binding co-operativi-
ty between CAP and RafR (Kleinschmidt et ei., 1991). This
suggests that the relative twist of 103° between the dyad
axes of the CBS and 0, supports mutually independent
binding of CAP and RafR proteins, whereas the simultane-
ous binding of the two RafR dimers to 0, and O2 at the
same face of the double helix is impeded by steric hin-
drance and requires DNA bending to accommodate the
two repressor molecules (Muiznieks and Schmitt, 1994).

Intrinsic and CAP/RafR-lnduced DNA Bending

Various promoters are known to contain sequence-inher-
ent bends that may participate in transcription initiation
(Plaskon and Wartell, 1987; Lozinski et ai., 1991; Kim et a/.,
1995). It has been shown that the affinity of CAP binding to
DNA largely depends on such pre-existing bends and that
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Fig.3 Gel Shift Assays Demonstrating the Binding of CAP and/or RafR to ratP-DNA.
(A) Diagram of the 180 bp Hind IIl/Sca I fragment of pRU1307 used in these gel shift assays. Symbols as in Figure 1. (B) CAP and RafR pro-
teins bound to wild-type DNA. Samples of 15 fmol3' -labelled, gel-purified DNA incubated with RatA (5 ng) and CAP (5 ng) at 21°C for 20
min, were separated Or]4% PAGE. Pictograms to the ri€lht indicate the DNA-protein complexes represented by the respective band. Open
rectangle, CAP binding site; open ovals, rat operators; solid diamond, CJ\:p.protein dimer; solid circle. RatA dimer. At non-saturating con-
centration, RatA has no preference for either 0, or 02, as symbolized by the solid circle placed between the operator sites. (C) CAP and
RafR proteins bound torafP DNA lacking a functional O2, [32PJ-labelled pRU1324 DNA (15 fmol) was incubated with 5 ng RafR (lane 1), with
5 ng RatA plus 5 ng CAP (lane 2) or with 5 n9' CAP (lane 3). (D) CAP and RatA proteins bound to ratp DNA lacking a functional 0,. Labelled
pRU1324 DNA (5 fmol) was incubated with 5 ng RafR (lane 1), with '5ng RafR plus 5 ng CAP (lane 2), or with 5 ng CAP (lane 3).



CAP tends to stabilise and enhance DNA bending (Kahn
and Crothers, 1992).

To examine intrinsic and induced bending of DNA in the
rat system, we have used the circular permutation EMSA
(VVU and Crothers, 1984) both in the absence and in the
presence of binding proteins. The 170 bp Pstl fragment
containing the entire ratp (Figure 1) was circularly permut-
ed by employing pre-existing or newly generated restric-
tion sites, as shownin Figure 4A. The electrophoretic mo-
bilities of fragments A, 0 and E (Figure 4A, lanes Pstl, Sful,
Alwl) are considerably lower than those of Band C (Figure
4A, lanes BsaJI, Eco521) as illustrated by plotting their rel-
ative mobilities (Figure 4B). These data suggest that an in-
trinsic bend is centrally located ir;;tfragment D, ca. 40 bp
upstream from the CBS dyad axis. However, this upstream
curvature is not essential for ratA gene expression, since a
deletion of this sequence (pRU1304; Figure 1) resulted in
wild-type levels of a-Gal (Table 1).

X-ray structure analyses of CAP-CBS co-crystals (us-
ing the CBS consensus sequence) revealed that the DNA
was bent by 90°, had two major kinks at the hypersensitive
sites (Figure 1, arrowheads) and was wrapped around the
protein (Schultz et aI., 1991). By contrast, Lac repressor
binding to lacO induces a distortion in the operator se-
quence that causes the DNA to bend away from the pro-
tein (Lewis et a/., 1996).A_
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Fig.4 Circular Permutation Gel Shift Analysis of Intrinsic Bend-
ing of rafP DNA.
(A)The electrophoretic mobility of a 340 bp tandem dimer of the
Pstl fragment containing the rafP (Figure 1) was determined by
non-denaturing 8% PAGEat 4°C. By restriction with the enzymes
indicated below the lanes, five 170 bp circular permutations with
different locations of CAP (solid rectangle). 0, and O2 (shaded
ovals)were obtained, asdiagrammed below the gel.Thesite of in-
trinsic bending (diamond) was assigned according to Figure4B.
M. 165 bp marker fragment. Arrow denotes virtual position of the
unbent 170 bp fragment. (B) Fragment relative lengths (RLl plot-
ted against the sequence permutation. RL isthe ratio of the mobil-
ity-derived apparent length of each fragment vs. the sequence
length of corresponding fragments. R. values are Inverselycorre-
lated with the fragment end-to-end distance. This locates the
center of bending 40 bo upstream of the CBS as depicted in
Figure4A.
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Circular permutation EMSA with fragments A - E (Figure
4A) was used in the presence of CAP or RafR proteins. [n
these experiments, all fragments tested with bound RafR
(Figure 5A) had only one functional operator owing to point
mutations (fragments B" B2) or to the position of the
cleavage site used for permutation (fragments C, D). This
resulted in clear-cut band shifts and facilitated a calcula-
tion of the degree of RafR-induced DNA bending. Elec-
trophoretic mobilities of the permuted fragments binding
either RafR (Figure 5A) or CAP protein (Figure 5B) and the
distance between the fragment center and the dyad axis
of the binding site (given below each lane) were directly
correlated, Protein binding near the center of the DNA
fragment led to considerably lower mobilities (Figure 5A.
lane B1; Figure 5B, lane A) than binding near the end of the
DNA fragment (Figure 5A, lane D; Figure 5B, lane C).

A B

6 27 58 70

Fig.5 Circular Permutation Gel Shift Analysis of rafP DNA
Bending by CAP and RafA.
(A)Bending by RafR. DNA fragments (5 fmol) were [32PJ-end-la-
belled and incubated with RafR(5 ng)as in Figure 3. Circular per-
mutations and letter code as in Figure 4A. B, (from pRU1324:
Table3)contains a non-functional 0,: B2 (from pRU1327; Table3j
contains a non-functional O2. The distance between the midpoint
of each fragment and the dyad axis of the functional operator are
given below lin bp). (B) Bending by CAP.Nomenclature of DNA
fragments as in Figure4. labelling and protein binding conditions
as in Figure3. The distances between the midpoint of each frag-
ment and the dyad axis of the CBS are indicated below (inbp).

We have estimated the protein-induced bending angles
in ratp by assuming that the electrophoretic mobility of a
rigid DNA fragment is related to its end-to-end distance. L,
which equals

L = L cos 0./2

with L being the length 0" unbent DNA and L'. the angle. by
which the DNA is bent away from linearity (Thompson and
Landy. 1988). Since the end-to-end distance of a fragment
with a protein bound to one end is essentially identical to
L. it follows that

fLM/fLE = (L > cos o, /2)/L = cos n/2
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where ~M is the mobility of the complex with the protein
bound at the center of DNA and ~E is the mobility of the
complex with the protein bound at one end (Kim et al.,
1989).

Accordingly, one RafR dimer bends DNA by an estimat-
ed 95° ± 5°, which is similar to the value reported for the
GalR-induced DNA bend (Zwieb et al., 1989). CAP on the
other hand bends ratp by 75° ± 5°, which is somewhat
lower than the reported 96° DNA bending, when CAP
binds to its cognate site at lacP (Kim et al., 1989). The 75°
± 5° bending, however, becomes plausible in view of the
imperfect dyad symmetry of the rat CBS as opposed to its
near-perfect counterpart in lacP.

Direction of DNA Bending

The relative direction of CAP- and RatA-induced DNA
bends was determined by assessing the relative mobilities
of CAP and RafR complexed with a set of five DNA frag-
ments each with a different spacing between the CBS and
O2 (01 being non-functional). EMSA of the DNA-protein
complexes shows that electrophoretic mobility shifts of
the three-component, CAp, RafR, ratp DNA complex fluc-
tuate according to the phasing of CBS and O2. Placing
CAP and RafR on the same face of the DNA double helix
results in a smaller shift (Figure 6B, lane 3) than placing
them on opposite faces (Figure 6B, lane 4). Changes in
fragment length and nucleotide composition brought
about variations of electrophoretic mobilities of the ratp
derivatives, both as 'naked' DNA (Figure 6B, mark 0) and
as CAP- or RafR-bound complexes (Figure 6B, marks C
and R). To distinguish between the effects of spacer
length, fragment length and nucleotide composition of
DNA on mobility, the following equation was used:

NCR = CR/(C/R)

where CR, C and R are the electrophoretic mobilities of
CAP-RafR-DNA, CAP-DNA and RafR-DNA complexes,
respectively, relative to the mobility of free DNA. The nor-
malised relative mobilities of the three-component com-
plexes CR/(C/R) were plotted against the phasing of the
two binding sites (Figure 6C). The results suggest that
the bends imposed on ratp DNA by CAP and RafR have
opposite directions. None of the plasm ids pRU1341-
pRU1344, characterized by increasing distances between
CBS and O2, produced detectable amounts of a-Gal upon
transformation of E. coli cells (results not shown). We thus
conclude that the conrect spacing of CBS and the - 35/-10
promoter elements is an essential criterion for rat gene
transcription.

Discussion

Spatial Structure and Regulation of rafP

We have defined and analysed the compound structure of
the rat regulatory region featuring three closely spaced
binding sites for one CAP and two RafR dimers. The - 35

box is bounded by two operators, 01 and O2, that bind
RafR at the same surface ofthe double helix, downstream
of the CBS, whose centre is twisted by 103° towards 01

and O2. The three protein dimers bind non-cooperatively
to DNA and bend it in opposite directions, namely, by 75°
towards CAP and by 90° each, away from the RatA mol-
ecules. This unique and highly efficient regulatory device
is diagrammed in Figure 7 and compared to equivalent
structures of two other prominent catabolic operons, lac
and gal.

A comparison of these schematic representations sug-
gests that the compact anrangement of positive and neg-
ative regulators in ratp accomplishes a tight transcription
control that in the lac and gal systems can be only
achieved by repressor tetramerisation accompanied by
DNA looping (Figure 7). This is further highlighted by com-
paring the in vivo contribution of conresponding regulato-
ry elements to gene control among the rat, lac and gal
operons (Table 2). It may be seen that

(i) CAP binding to rat CBS results in a distinctly higher in-
crease in gene expression (50-fold) than CAP binding
to lac CBS (20-fold) or gal CBS (18-fold);

(ii) control over gene expression by repressor binding to
either the main or the auxiliary operators alone is be-
tween one and two orders of magnitude stronger in the
rat than in the lac and gal regulatory systems;

(iii) only the concerted binding of repressors to the main
and auxiliary operators results in a similarly tight tran-
scription control for the rat and lac systems, whereas
the effect on gal transcription is still less stringent
(Table 2).

As portrayed in Figure 7, these regulatory systems follow
two quite different strategies: the lac and gal controls with
distantly spaced operators (which enclose the CBS and
- 35/-10 promoter boxes) have to rely 011 DNA looping and
interaction of bound repressor molecules for maximum re-
pression (Fried and Hudson, 1996; Lewis, 1996; Choy and
Adhya, 1996). To the same end, the rat system uses an ar-
ray of three tightly spaced binding sites, CBS - 01 - O2,

interlocked with the -35/-10 promoter boxes and, thus,
does not require DNA looping. Among sugar catabolic
operons, this compact spatial structure of regulatory ele-
ments and divergent bending of DNA by bound proteins is
unique and ensures a highly efficient transcription control
by positive and negative regulatory proteins. - The
anrangement of two operators and two divergent promot-
ers in the tet regulatory region is somewhat reminiscent of
the ratp configuration, also with respect to fine tuning of
gene expression (Klock et al., 1985; Tovar et al., 1988);
however, in view of lacking positive control by CAP the
molecular mechanism regulating transcription is clearly
different. Experiments reported here (Figure 2 and 3B)
demonstrate that the three rat regulatory sites, CBS, 0,
and O2, can be simultaneously occupied by their cognate
proteins. This is different from lacP, where the 03 site iso-
merisation and repressor displacement are needed to
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Fig.6 Determination of Relative Directions of CAP- and RafR-lnduced DNA Bends.
(A) Wild-type (1, pRU 1307) and five mutant rafP sequences (2, pRU1307M; 3, pRU1341; 4, pRU1342; 5, pRU1343; 6, pRU1344; as spec-
ified in Table 3) lacking functional 01 with different spacings between the CBS (underlined) and O2 (boxed) sites. Altered or inserted nu-
cleotides are marked with asterisks. (B) Gel shift assays of the DNA fragments 1-6 from 6A. These were e2PJ-labelled and incubated with
CAP and RafR proteins as in Figure 3. Symbols: n. number of bp between the dyad axes of CBS and 02; tit, distance in helical turns. as-
suming B conformation of DNA with 10.5 bp per helical turn; 0, free DNA; C, DNA complexed with CAP protein: R. DNA complexed with
RafR. CR, DNA complexed with CAP and RafR. (C) Normalized relative mobilities, CR/(C/R), of the CAP-RafR-DNA three-component
complex plotted against the phasing of CBS and O2 binding sites. expressed as a decimal part of the number of helical turns separating
the dyad axes of these sites. Data were taken from the experiment shown in Figure 6B. For details see text.

Table2 Influence of Regulatory Sites and Their Cognate Proteins on Gene Expression Compared among the raf./ac and gal Regulatory
Systems.

Regulatory system: Mutation Percent gene expression"

Confiquration" raf lac gal rei': lacd gat

Constitutive rafR tact galR 100 100 100
Constitutive. CAP inactive rafR, eya tee), cya galR, cya 1.9 5.1 5.7
Main and auxiliary operators ret: lac- gar <0.1 <0.1 5.7
Only main operator rafO, lae0203 ga/OE 0.2 5.6 34.5
Only auxiliary operator (s) rafOc [acO, galO, 1.5 526 40.2

a Unless stated otherwise, CBS and repressor proteins are functional. Genetic configuration of regulatory elements is shown in Figure 7.
o Assessed by relative enzyme activities of a-galactosidase (mi). f)-galactosidase (lac) and galactokinase (gal).
C Calculated from Muiznieks and Schmitt (1994) and from this work.
a Calculated from Mandecki and Caruthers (1984) and from Oehler et a/. (19901.

e Calculated forgalP1 from Adhya and Miller (1979) and from Irani et a/. (1983).
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Fig.7 Conformational Schemes (Left) and Genetic Organisation (Right) of the rei.tee and gal Regulatory Elements.
(Left) Spatial models of the dimeric (RafR, GaIR) or tetrameric (Lacl) repressor- and activator (CAP)-associated DNA complexes. Only the
configurations where CAP is bound at its principal site are shown. Positions ofthe -35 and -1 °promoter elements are assigned by boxed
numbers. The degree of DNA bending (dashed arcs and triangles) by regulatory proteins was deduced from Wu and Crothers (1984),
Zwieb et al. (1989), Kim et ai. (1989), Schultz et al. (1991), Lewis et al. (1996) and from this work; (0) denotes a right angle (85 -1 00°). The di-
rection of bending by GalR has been included in analogy to the bending by RafR and Lacl. Open arrows indicate the DNA twist between
the centre of repressor binding and the centre of the CBS as deduced from the number of helical turns separating these sequence ele-
ments (assuming 10,5 bp per helical turn). Dashed lines with arrowheads indicate DNA looping. In lac, the possibility of DNA looping be-
tween 01 and 03 in the presence of CAP is disputed (Lewis et ai., 1996; Perros and Steitz, 1996; Lewis, 1996) and probably involves iso-
merisation ofthe 03 site (filled arrow; Fried and Hudson, 1996).lngai, the histone-like protein, HU, is needed along with GalR for DNAloop-
ing and efficient repression (Aki et al., 1996). The mode of Hu and GalR interactions is not known. (Right) Linear maps of regulatory sites of
the three sugar-catabolic operons. Rounded boxes depict the positions of CBS (open) and operator (shaded) sites with their centres de-
fined by bp numberings relative to the (+ 1) transcription start point (flag). Data on lac and gal regulatory sites were taken from Choy and
Adhya (1996).

avoid steric collision of Lac! with CAP (Fried and Hudson,
1996). The simultaneous binding of repressor and activa-
tor to rafP DNA is facilitated by the placement of overlap-
ping CBS and 01 sequences on twisted faces of the B-
DNA helix. In footprinting experiments, the location of
CAP- and RafR protected zones and the character of
DNasel-hypersensitive sites in footprinting assays did not
reveal any interference of the two proteins (Figure 2B,
lanes 4,7,8), nor did gel shift experiments indicate any co-
operativity in CAP and RafR binding to rafP DNA (Figure 3).
While it may appear paradoxical that the transcription ac-
tivator, CAP. and the repressor, RafR, bind promoter DNA
simultaneously, DNA bending induced by the joint action
of CAP and RafR may be instrumental in recruiting RNAP
to complete the transcription initiation complex.

The Regulatory Role of CAP
The axis of the rat CBS has been localised at position
- 60.5; its sequence matches the CBS consensus in 14 out
of 22 positions (Figure 1). This resembles the CBS preced-
ing the lac and gal promoters with 14 and 15 matches, re-
spectively. However, the latter are near-evenly distributed
along the binding sequence, whereas the rat CBS con-
tains a canonical right half-site core, but conforms just in
6 out of 11 left-half positions. These deviations from the
consensus sequence impede both, its binding and the
bending of ratp DNA that was estimated as 75°, whereas
the bending of lac DNA by CAP approximates 900 (Schultz
etaJ., 1991; Wu and Crothers, 1984; Kim eta/., 1989). The
asymmetry of the rat CBS is thought to cause an asym-
metric binding of CAP (Pyles and Lee. 1998), which, in



turn, reduces the degree of DNA bending. This corre-
sponds to the five- to eight-fold lower affinity of CAP bind-
ing to rat CBS than to lac CBS (results not shown).

A deletion of the left half of the rat CBS (pRU1303, Fig-
ure 1), resulted in a 50-fold reduced binding efficiency of
CAP compared to the native CBS. By contrast, ratA ex-
pression from the mutant plasmid pRU1303 was five- to
ten-fold enhanced in a CAP-proficient E. coli compared to
a crp or a cya mutant (Table 1). This discrepancy between
in vivo-stimulation of gene expression by CAP and re-
duced in vitro-binding to and bending of DNA suggests
that additional factors may be involved in transcription
initiation in the cellular environment that have still to be
identified.

Operater DNA Bending Induced by
Repressor Binding

RafR induces prominent bends of the two adjacent opera-
tor sites, 0, and O2• From EMSA with circularly permutat-
ed ratp fragments, the extent of bending was calculated
as 95° ± 5° for one functional operator (Figure 3). As in-
ferred earlier (Muiznieks and Schmitt, 1994), sequence
deterioration is needed for occupancy by RafR of two op-
erator sites, whose centres are separated only by 21 bp.
For this configuration, the additive angle of bending was
indirectly determined. After introduction of a 31 bp syn-
thetic DNA linker between 0, and O2, no significant in-
crease in mobility shifts of the complex with two RafR
dimers was observed over the native complex (results not
shown), although increased spacing of the operator axes
by three helical turns should have abolished any spatial
hindrance. It is therefore proposed that two RafR dimers
bound to the native 0, and O2, bend the DNA to about
95° ± 5° each, with the centres of bending located at the
symmetry axes of the operators. The cumulative angle of
DNA bending induced by two RafR dimers at ratO, O2 thus
amounts to 190 ± 10° (Figure 7).

Table 3 Plasmids Used in This Study
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Materials and Methods

Bacterial Strains and Plasmids

Escherichia coli XL l-Blue (Stratagene Cloning Systems, La Jolla.
CA, USA) was used for plasmid propagation as well as for RafR
and CAP protein overexpression. E. coli CA8000 (crp' cya"),
CA8306 (cya) (Sabourin and Beckwith, 1975) and XA3Dl (crp)
(Breul et aI., 1993) served to estimate the activation by CAP of dif-
ferent promoter mutants. Plasm ids designed to test the effect of
certain regulatory mutations on rafA gene expression and DNA
bending are listed in Table 3.

Oligonucleotide-Directed Mutagenesis

The Amersham Sculptor in vitro mutagenesis system (Amersham
Buchler, Braunschweig, Germany) was used as described before
(Muiznieks and Schmitt, 1994).

Protein Preparation

RafR repressor was overproduced in E. coli XL 1-Blue (pRU984)
purified essentially as described by Aslanidis et al. (1990). The
RafR inclusion bodies were solubilised in 0.1 % SDS or 0.3%
sarkosyl and 1: 100 to 1: 1 000 dilutions were used directly for
EMSA and DNasel footprinting. Protein preparations were typi-
cally over 90% pure as estimated by densitometry of Coomassie
Brilliant Blue R250-stained polyacrylamide gels. Lower SDS con-
centrations than 0.0001 % did not interfere with subsequent pro-
tein-DNA binding assays.

CAP was overexpressed in E. coli XL l-Blue (pBG2) (Breul et al ..
1993). Both, crude ceillysates and affinity-purified CAP (Ghosai-
ni et al., 1988) were used for EMSA and DNasel footprinting with
no detectable differences in DNA binding. Binding buffer without
Mg2• ions was required, when CAP-enriched crude cell Iysates
were used. Protein concentrations were detenmined according to
Bradford (1976).

Electrophoretic Mobility Shift Assay

Protein-DNA binding reactions and electrophoresis were per-
formed as described by Aslanidis et al. (1990) and Muiznieks and
Schmitt (1994) with slight modifications.

Plasmid" Source and derivations

pRU1300
pRU1301
pRU1302
pRU1303
pRU1304
pRU1307
pRU1307X
pRU1307E
pRU1307M
pRU1307N
pRU1324
pRU1327
pRU1341
pRU1342
pRU1343
pRU1344

Ndel/Hindlll deletion of pRU1307N. coding sequence of rafA without promoter (Figure 1)
Sful (BstBI)/Hindlll deletion of pRU1307 retaining 28 bp of rafP upstream of the transcription start point (Figure 1)
Eag521/Hindlll deletion of pRU1307E retaining 52 bp of rafP upstream of the transcription start point (Figure 1i
Sau3A/Hindili deletion of pRU1307 retaining 60 bp of rafP upstream of the transcription start point (Figure 1)
Xbal/Hindlll deletion of pRU1307 retaining 76 bp of rafP upstream of the transcription start point (Figure 1)
Native rafP-rafA configuration without rafR inserted into pUC8 (Muiznieks and Schmitt, 1994)
Mutagenesis of pRU1307, A insertion between 1174 and 1175 bp to create an Xbal site
Mutagenesis of pRU1307. transition of AA at 1196. 1197 bp to GG to create an Eco521 (Eagl) site
Mutagenesis of pRU1307. substitution of AA at 1202. 1203 bp to CG to create a Mlul site
Mutagenesis of pRU1307. substitution of Tat 1268 bp by A to create an Ndel site
Mutagenesis of pRU1307. G insertion between 1200 and 1201 bp to inactivate 0,
Mutagenesis of pRU1307. substitution of nat 1227/1228 bp by GG to inactivate 0,
Filling-in of Mlul overhanging ends In pRU1307M DNA resulting in a 4-bp addition between the CAP and 0, sites
Ligation of the CGCGAGGTACCT linker in Mlul site of pRU1307M introducing 12 bp between CAP and 0,
Filling-in of Kpnl overhanging ends in pRU1342 DNA resulting in an 8-bp addition between CAP and 0,.
Filling-in of Mlul overhanging ends in pRU13~2 resulting in a 16 bp addition between CAP and 0,

,. Construction of pRU984 and sequence numbering according to Aslanidis et al. (1990) and Muiznisks and Scnmitt (199~i.
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Approximately 10 fmol DNA fragment and 1 -100 ng cognate
protein in binding buffer (10 mM Tris-HCI pH 8.0, 10 mM KCI, 1 mM
DTT, 50 ).lg/ml BSA, 0.01 % NP40, 3% glycerol) were allowed to
react at room temperature for 20 min. Where needed, cAMP was
included at 200 ).lM. The addition of 3% glycerol to the binding
buffer allowed direct loading of samples on the gel and facilitated
protein binding to DNA. Mg2

+ ions were excluded from the reac-
tion to prevent DNA degradation by nucleases from crude cell
Iysates sometimes used as a source of CAP.

DNasel Protection Assay

DNasel protection assays followed the protocol of Aslanidis et al.
(1990). Protein-DNA complexes were allowed to form as for
EMSA in 100 iJ.1 reaction mixture. 7 iJ.1 DNasel, diluted in binding
buffer plus 2.5 mM Ca2+ - 3 mM Mg2+ were added quickly and after
20 seconds the reaction was terminated by the addition of 20 iJ.1

DNasel stop solution (2 M ammonium acetate, 20 mM EDTA, 0.2
mg/ml carrier DNA). The mixture was extracted with phenol and
with phenol:chloroform (1: 1), and DNA was then ethanol precipi-
tated, washed in 70% ethanol, vacuum-dried and redissolved in
10 iJ.1 loading buffer (80% formam ide, 1 mM EDTA, 0.1 % xylene
cyanol and bromophenol blue), incubated at 100 °C for 5 min and
chilled on ice; 3 iJ.1 ofthe solution were loaded on an 8% polyacryl-
amide sequencing gel and run in 90mM TRIS-borate (pH 8.5),
2.5 mM EDTA, 7 M urea.

a-Galactosidase Assay

a-Gal activity was determined as described by Muiznieks and
Schmitt (1994). Activity is expressed as the maximum increment
of specific activity (units per h) during exponential and early sta-
tionary growth. One unit of enzyme activity corresponds to a
change of 0.01 OD420 (owing to hydrolysis of the chromogenic
substrate p-nitrophenyl-a-D-galactopyranoside) per min per
OD600. Relative plasmid dosages were determined according to
Stueber and Bujard (1982) for normalising the values of enzyme
activity.
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Abstract

We show that in rajP, the promoter of Escherichia coli plasmid born raffinose

catabolism operon, the sequence, which is located between the positions -52 and -39

in respect to the mRNA start site is indispensable for non-activated, basal level of

expression. This sequence and the conventional -35 promoter element both are

equally important for the transcription of rajP in the absence of cAMP receptor

protein, CRP. Functionally the -52/-39 sequence resembles an UP element of

constitutively expressed bacterial promoters. However, it has week sequence

homology to the UP element consensus. The sequence and DNA topology

determinants essential for the rajP UP element are discussed.
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1. Introduction

Our understanding of the regulation of bacterial gene expression has been

obtained mainly from the studies, which model extreme levels of promoter activation

or repression due to the binding of specific transcription factors. This hardly reflects

the mode of gene transcription in bacterial cells growing in complex natural

environments. The maintenance of cellular household functions depends upon the

basal activity of constitutive promoters, which are primarily regulated by the promoter

sequence elements [1] and DNA topology [2]. Conventional -35 and -10 promoter

boxes are extensively characterized [1]. For the group of promoters, which regulate

ribosomal RNA synthesis, an AfT rich sequence or UP element located immediately

in 5'-direction from the -35 element is critical for effective transcription without any

additional protein factors [3, 4]. Similar elements have been found also in other

promoters [5-7]. The consensus sequence of UP element has been deduced [8]. UP

element-containing promoters may be activated also by different transcription factors.

In the case of lac? J [9, 10], UP element and the cAMP receptor protein (hereafter

referred to as CRP) do not show additive effect. The same amino acids in the C-

terminal domain of RNA polymerase (RNAP) a subunit are supposed to interact both

with CRP and with UP element. Binding of eRP may hide away the UP element

sequence from RNAP a subunit [11]. This implies that UP elements are needed

mostly to ensure the basal transcription level.

The plasmid born raffinose catabolism operon (raj operon) of Escherichia coli

includes raJA (a-galactosidase, a-Gal), rafB (permease) and rafD (invertase) genes,

which are needed for the uptake and utilization of the trisaccharide raffinose [12]. It

belongs to the group of sugar catabolism operons, which are induced by the presence
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of the substrate and activated by CRP in response to glucose depletion in the growth

environment. The raj genes are co-transcribed from a common promoter, rajP. The

promoter is controlled by the RafR repressor binding to two operators, 01 and O2,

which embrace the -35 sequence of rajP [13, 14]. RafR is encoded by the upstream

rajR gene, which is transcribed from its own promoter PR [15]. The only known

inducer of the raj operon is a disaccharide, melibiose. The inducer may result from

raffinose hydrolysis by rajD invertase [13]. Melibiose may be found also in complex

polysaccharide sources, e.g., in malt and molasses. The rafP belongs to the Class I of

CRP activated promoters [16].

In the natural environment, which usually contains mixture of carbohydrates,

raj operon should be induced, but not activated [13, 14, 16]. In this work we have

studied rajP sequence elements, which are required for the basal activity of a-Gal

synthesis in the absence of RafR-dependent repression and CRP-dependent activation.

Our study demonstrates a new, UP-related, sequence element in rajP and

characterizes its impact on the promoter activity.
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1. Materials and methods

2.1. Bacterial strains, plasmids and cultivation conditions

Bacterial strains and plasmids used in this study are listed in Table 1. The

structure of wt rajP and its derivatives is outlined in the Fig. 1. E. coli strains were

cultured in standard 2 x TY liquid medium or on LB agar plates supplemented with

100 ug/ml ampicillin [20].

2.2. Plasmid construction and site-directed mutagenesis

Basic plasmid DNA manipulations were done as described in [20]. Site-

directed mutagenesis was done by Amersham Sculptor in vitro mutagenesis kit

(Amersham Pharmacia Biotech Europe GmbH, Freiburg, Germany) or by PCR-based

mutagenesis [21]. The oligonucleotide substitutions of the rajP region in 5'-direction

from the position -28 were done by cloning of synthetic oligonucleotides (MWG

Biotech, Ebersberg, Germany) (Fig. 1C) between the HindIIl and BstBI sites of the

plasmid pRU1307 [14]. The oligonucleotide substitutions affected also the sequence

of -35 element, which was optimized to match the consensus TTGACA.

Oligonucleotides, which replace wt rajP sequence in pRU 1369 contain 4 runs of

(T)n(A)n tracts, in pRU1371 - 4 runs of (A)n(T)n tracts (n=4-5) in phase with the DNA

helical tum. The AfT tracts of the oligonucleotides were shifted by ca. half a helical

turn in respect to -35 element of rafP by filling-in of the resident (in pRU 1369) or

mutagenesis-restored (in pRU 1371) MunI sites by DNA polymerase 1 Klenow

fragment. The ensuing plasmids are pRU1369+4 and pRU1371+5 respectively, where

5



four or five nucleotides are added between the oligonucleotide and -35 element

sequences.

2.3. Polyacrylamide gel electrophoresis of DNA

Sequence dependent DNA curvature of rajP derivatives was characterized by

the analysis of DNA fragment electrophoretic mobility in non-denaturing

polyacrylamide gels (PAAG) as described in [16]. Intrinsically bent DNA fragments

migrate in PAAG electrophoresis slower than straight molecules of identical sequence

length. Coefficient KR is calculated as the ratio of apparent fragment length estimated

in PAAG electrophoresis versus its sequence length. KR is inversely correlated to the

fragment end-to-end length and it may be used to calculate the angle of DNA bending

[22].

2.4. a-Gal assay

The efficiency of rajP-directed transcription was assessed using rajA as the

natural reporter gene. The product of the rafA gene, a-Gal, was assayed as described

in [23], by the liberation of the p-nitrophenol from p-nitrophenyl-a-D-

galactopyranoside, and the resulting increase of absorption at 420 om. The activity

was measured twice during the middle logarithmic growth phase of liquid cultures.

The activity was expressed as the change of OD420 per minute per one OD600 of the

cells. At least three independent assays were performed for each experiment.

Estimated error was ca. 20%.

6



3. Results and discussion

3.1. Localization of the rajP UP element

The transcription of E. coli raffinose operon in complex natural environments

may occur at the basal level, because of the induction of repressor RafR by melibiose

and exclusion of activator CRP by low level of cAMP. Under these conditions only

the promoter DNA sequence and topology are responsible for the regulation of rajP.

In order to determine the role of upstream promoter region in regulation of basal rajP

activity, the mutagenesis and deletion analysis of the corresponding region was

carried out (Table 1, Fig. 1).

The plasmids carrying rajP derivatives were tested in rafk, crp and cya

genetic background to assess the basal expression level. The production of a-Gal by

various promoter constructions is summarized in the Table 2. Enzyme activity was

expressed in % of the activity produced by wt rajP in pRU1307, which was 0.34±0.07

arbitrary units.

The deletions upstream from the position -59 in respect to the mRNA start site

(pRU 1303) did not affect the basal activity of the promoter. Further consecutive

deletions caused gradual decrease in rajP activity. pRU1302, with the deletion of rajP

sequence upstream from position -52, displayed ca. 36% of the wt promoter activity.

Deletion of the region upstream from position -45 in pRU 1305 diminished a-Gal

production 9-fold, and the deletion removing -35 region reduced the rajP activity ca.

50-fold (pRU1301). The deletion in rajP, which retained only 15 nucleotides

upstream from the a-Gal mRNA start point, exhibited no detectable promoter activity

[16].
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The promoter sequence in the plasmids pRU1302 and pRU1305 was truncated

usmg the restriction enzyme sites, which were introduced by site-directed

mutagenesis in the plasmids pRU1307E and pRU1307M, respectively. These

mutations themselves had detrimental effect upon basal rajP activity. AA to GG

replacement in the pRU1307E at the positions -51 and -50 reduced the rajP activity

ca. 2-fold, whereas AA to CG replacement in the pRU1307M at the positions -45 and

--44 reduced the rajP activity 4.5-fold. Non-adjacent mutations A to G and T to G in

the pRU1340 at the positions --46 and --40 reduced the rajP activity 6-fold. Mutations

introduced in the -35 box of the rajP (pRU1307B and pRU1307C) diminished the wt

rajP activity 100- and 50-fold, respectively. This was comparable with the activity of

promoter, where -35 region was deleted (pRU1301).

Mutagenesis of the positions --40 and --45 of rajP demonstrated that any

changes in wt sequence were detrimental to the rajP activity (Table 2). Substitution of

T at the position -40 by Cor G reduced rajP activity ca. 5-fold, while substitution by

A caused only 3-fold decrease. Substitution of A at the position -45 by C or G

reduced activity ca. 2- to 2.5-fold and by T -less than 2-fold. Replacement of wt rajP

sequence by unrelated oligonucleotide in plasmid pRU1372 resulted in more than 50-

fold decrease of a-Gal activity, although the -35 element of the promoter was not

impaired.

The deletion and mutation analysis between the positions -52 and -39 in

respect to mRNA start site in rajP disclosed a novel sequence element. Alterations in

the structure of this element diminished the basal activity of rajP in vivo up to 50-

fold. This element and -35 sequence were equally important for the CRP non-

activated expression of the promoter, their defects could not be mutually

complemented. Within this element individual point mutations displayed cumulative

8



effect and promoter - proximal sequence changes were more deleterious. Thus, -52/-

39 sequence in rajP show functional features of the UP elements, which are described

in a number of other promoters [8].

3.2. Comparative analysis of the rajP UP element structure

The comparison of the wt rajP -52/-39 region with the consensus sequence of

UP element [8] revealed sparse homology, only four nucleotide matches within 15

defined positions (Fig. 2). Eight nucleotides in the UP element of rajP are Gore,

while UP consensus includes only A or T bases. In plasmids pRUl369 and pRUl371

we replaced the wt rajP -52/-39 region with the synthetic oligonucleotides containing

(T)n(A)n or (A)n(T)n tracts. The number of A and T residues within the UP element

region of these plasmids was increased to 15 and 12, respectively, although the direct

match with the consensus sequence remained low (Fig. 2). Neither pRU 1369, nor

pRUl371 produced significant a-Gal activity (Table 2). Further mutagenesis and

insertion of four and five nucleotides between the cloned synthetic sequence and -35

element ofrajP generated plasmids pRUl369+4 and pRU1371 +5. Here the homology

with the UP element consensus sequence was improved (10 matches from ~5 in both

plasmids), but the number of A or T nucleotides within UP element region was

reduced (Fig. 2). pRU1369+4 still produced hardly detectable a-Gal activity, but in

pRU1371+5 rajA expression was increased more than 25-fold in comparison to

pRU1371.

These results should be interpreted in context of the promoter topology.

According to the preliminary data and theoretical prediction [25], the oligonucleotide

sequence in pRU 1369 and 1369+4 should not contain significant sequence-directed
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DNA curvature, while the oligonucleotide in pRU1371 and pRU1371 +5 should be

statically bent at 80 - 90°. The electrophoretic mobility analysis of 215 bp restriction

fragment spanning rajP region from these plasmids in non-denaturing PAAG

confirmed the predictions. KR value for pRU1369 and pRU1369+4 fragments was

1.02; for pRU1371 and pRU1371 +5 - 1.45 (results not shown).

Our data (Table 2, Fig. 2) indicate that the abundance of A and T nucleotides

alone and even high homology to the consensus sequence is not sufficient for the

proficiency of UP element in rajP. The spatial structure of UP element is as important

for the recruitment of RNAP as are the sequence determinants. The activity of UP

element in rajP activity can be mimicked by properly phased segment of intrinsically

curved DNA fragment (pRU1371 and pRU1371+5, Table 2). Similarly, promoter

activation by CRP may be partially replaced by statically curved DNA fragments

[26]. DNA flexibility, which is increased by G or C nucleotide patches within

monotonous and stiff AfT tracts [27] may also contribute to UP element functionality.

In rafP, UP element may stabilize RNAP binding to -35 region by providing

additional contacts with the C-terminal domain of a subunit. This assumption is

supported by the fact that CRP activation of the promoter largely abolishes the impact

of UP element. Point mutations within the rajP UP sequence at the positions -40 and

-45 decreased the promoter activity in crp, but not in crp' strain (results not shown).
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Table 1

Strains and plasmids

StrainlPlasmid Purpose/relevant genotype Reference

Strains

CA8000

CA8306

XAJDl

XLI-Blue

Plasmids

a-Gal activity measurements / crp+, cya +

a-Gal activity measurements / crp+, cya

a-Gal activity measurements / crp, cya+

General cloning procedures

[ 17]

c c

[18]

[19]

pRU1307

wtrafP

[14]

Promoter deletions (Fig. IB)

pRU1301, pRU1302, pRUB03

pRU1305

[16]

This study

Promoter mutations (Fig. IB)

pRU1307E, pRU1307M

pRU1307B, pRU1307C, pRU1340, pRUI350-1352, pRU1360-

1362

[16]

This study

Oligonucleotide substitutions (Fig. 1C)

pRU1369, pRU1369+4, pRU137L pRUI37l-+-5; pRUI372 This study



Table 2

a-Gal activity of rajP derivatives

Plasmid Promoter properties Activity

pRU1307 wt 100

pRU1303 upstream from -59 100

'" pRU1302 upstream from -52 36= Cl'
0 .::.- .•...- eo:
Cl' ••• pRU1305 upstream from -45 11~ .-
Q

l.o
Cl'-e

pRU1301 upstream from -28 2

pRU1307E A -51A.50to GG 55

pRU1307M ~5~toCG 22

pRU1307B T-35 T -34G-33to CCA 1

pRU1307C G-36 to A, T-34 to C 2

'" pRU1340 A...46to G, T-40 to G 16.•..
=eo:.•..=S pRU1350 ~5 toT 57
l.o
Cl'.-0
S pRU1351 ~5 to C 49
0
l.o

~
pRU1352 ~5toG 38

pRU1360 T-4oto A 37

pRU1361 T-4o to C 22

pRU1362 T-4o to G 18

pRU1369 See Fig. 1. for sequence 3

Cl' pRU1369+4 " 2~ '".- =0 .S:~ - pRU1371 " 2-u ...= ;'::= .•..
'"0 .Q pRU1371+5 " 54O!l ..::: ..

0 '"
pRU1372 " 2



Figure legends

Fig. 1. Schematic representation of the raffinose operon promoter rafP. A: Genetic map of

the rajR - rafA intergenic region containing rafP. Localization of the protein binding sites

involved in regulation of rajP is marked as follows: CRP - CRP binding site; 01 and O2 -

raf repressor operator sites. Transcription initiation site is marked by a pennant and basic

promoter elements are underlined. B: Sequence of the wt rajP region. Mutations introduced

in the rajP are indicated above and below the promoter sequence along with the respective

plasmid names. The deletions used to delimit boundaries of upstream element are marked by

arrows along with the relevant plasmid names and restriction enzyme sites. The HindlII site

from the plasmid vector polylinker region, which was used to introduce deletions, is marked

on the left. C: Sequences of the oligonucleotide substitutions of the rajP upstream region

from position -133 till-28. Four and 5 nucleotide insertions in pRU1369+4 and pRU1371 +5,

respectively, which were created with purpose of phasing of AfT rich region in respect to

basic promoter elements, are marked by asterisks.

Fig. 2. Comparison of the UP element consensus sequence with the corresponding regions

from wt rajP and oligonucleotide - substituted derivatives (panel A) and the correlation of

sequence homology with nucleotide composition and activities of constructions (panel B). A:

Nucleotide matches with the consensus sequence are marked with asterisks. B: Only the

exact and W (A or T) matches were counted in the case of consensus sequence.



A
-{ ~ I~I rajR~ CRP ?= °1 ::x= °2 ~ raJA I

I -35 -10 I
,.-..,.-.. -0\ on ,.-..

on I on
~0 '-' on-.::tN,.-..0_ 0_ 00
~-< ~ N ~ ,.-..

- on - •....•

B ~Si ~ c ::J ;::::
cac55 ~ '-l ~~o..~ 0..0

= pRU1307B· . ···························CCA-g pRU1307C··· . . . A C. . pRU1301::e pRU1340 C G :
pRU1307M· .. .. G· BstBI (-27)

I pRU1307E· r
···ATTTTTTATCCAGATCACAAACCGAAACGTTTTGGTTGATGTTCGAAACGTTTCGGATCAACAGTAAGACA

-35 -10 +1
A pRU1360
C pRU1361
G pRU1362c

pRU1350 T
pRU1351 C

pRU1352 G

pRU1369
AGCTTAAAATATTTTTAAAATATTTTAAAATATTTTAAAAATATTTTAAGCAATTGACATT
~8 ~5

pRU1369+4 ****
AGCTTAAAATATTTTTAAAATATTTTAAAATATTTTAAAAATATTTTAAGCAATTAATTGACATT
~2 ~5pRU1371

AGCTTAAGCAATTTTCGAAAATTTTTCGAAAATTTTCGAAAAATTTTCGAAAATTGACATT
-88 -35

pRU1371+5 * ****
AGCTTAAGCAATTTTCGAAAATTTTTCGAAAATTTTCGAAAAATTTTCGAGCAATTAATTGACATT

pRU1372 -93 -35
AGCTTGGGCCCTTAAGGGCCCCTTAAGGGCCCTTAAGGGGCCTTAAGGGCCCAATTGACATT
~9 ~5



A
UP element consensus [8] 59-NNAAAWWTWTTTTNNAAAANNN-38

* * * *
wt ra [15] 59-GATCACACAACCGAAACGTTTT-38

* ** * * *
RU1369 [this stud ) 59-ATATTTTAAAAATATTTTAAGC-38

* **
RU1371 [this stud] 59-AAATTTTCGAAAAATTTTCGAA-38

**** * *** * *
59-TTTAAAAATATTTTAAGCAATT-38

*** ***** * *
RU1371+5 [this stud] 59-TTCGAAAAATTTTCGAGCAATT-38

B
RU1307 RU1369 RU1371 +5 RU1372

Matches to 4 6 10 4
consensus
Aff content 7 15 12 13 11 6
Activi 100 3 2 2 54 2



4



Jurma'la,
Republic of Latvia

25-29 September,
1995

ABSTRACTS
2nd Baltic Genetical Congress

TABLE OF CONTENTS

Preface

Microorganism and Molecular Genetics
Plant Genetics
Animal Genetics
Human Genetics
Late Abstracts
Author Index

Pages
AO

A1-A14
A15-A37
A38-A44
A45-A50

A51
A52-A54

PROCEEDLNGS OF THE LA1VlAN ACADEMY OF SCIENCES, Section B, 1995, no, 5/6 (574/575), pp, Ao-A54



CLONING OF SARCOSINE OXIDASE FROM
Arthrobacter sp. I-IN

R Meskys, R. Rudomanskis
Institute of Biochemistry, Vilnius 2600, Lithuania

The heterotetrarneric sarcosine oxidase (SOX) producing
Arthrobacter sp, I-IN strain was earlier isolated in our
laboratory. The genes encoding the four subunits of SOX were
cloned and expressed in E. coli DH5a. The genomic library
was constructed by partial digestion of chromosomal DNA
from Arthrobacter sp. I-IN with Pstl and ligation into pUCI9
linearized with PstL The positive clone (DH5a/pROXI) that
generates hydrogen peroxide in a sarcosine-dependent reaction
was isolated by using indicator plates (containing sarcosine,
horse radish peroxidase and o-dianisidine ) to screen the
genomic library. The fragment of DNA inserted into pROXI
was approximately 12.5 kb. The genes that confer SOX activity
were further localized by deletion analysis. It was found that
an, about 7 kb, subfragment contained the SOX operon. Crude
cell lysate from E. coli DH5a/pROXI cells grown on LB media
was prepared and subjected to native gel electrophoresis. SOX
activity was detected as a violet band when the gel was stained
using nitro blue tetrazolium as a redox dye. The band from
DH5a/pROXI lysate comigrated with authentic SOX purified
from Anhrobacter sp. I-IN. The results suggested that DH5a/
pROX 1 cells express a sarcosine oxidase similar to the enzyme
isolated from Arthrobacter sp. I-IN and prompted further
studies to characterize the recombinant enzyme.

LONG DISTANCE REGULATION THROUGH REPLJCON
TOPOLOGY IN PLASMID GENE EXPRESSION

I. Muiinieks, N. Matjuskova, N. Rostoks, G. Makarenkova,
G. Dumpe
Faculty of Biology, University of Latvia, RIga LV-J586. Latvia

The gene expression in bacteria is regulated primarily through the
efficiency of the transcription of relevant mRNAs. The data accumu-
lated in our laboratory over the years of experience with various
recombinant Escherichia coli strains. indicate that the efficiency of
gene expression can be influenced no! only by the adjacent sequence
elements involved in transcription regulation, e.g. - promoters. ter-
minators, etc. The transcription process that takes place within a rela-
tively small, supercoiled circular replicon is influenced also by the
remote sequence elements which modulate the topology constraints
of the plasmid. We demonstrate the phenomenon of long range
regulation on the following model systems.
1. Recombinant plasmid maintenance stability and copy number per
cell is enhanced by insertion of IS elements into the rer-gene domain.
which is opposite the RNAll transcription regulating elements on the
circular map. The cloning of IS5 DNA fragment. which carries sharp
sequence-directed bent. into the lei-gene S' part. is sufficient to
produce the effect of plasmid maintenance stabilisation.
2. The expression of the rajR gene promoter from the bacterial raf-
finose degradation operon is modulated \:ly the CAP protein binding
sites located up- and downstream the a-gal<tctosidase reporter gene.
The CAP binding on these sites can not influence the lest promoter
activity directly. The CAP-induced effects can be mimicked through
replacement of the protein binding sites by intrinsically bent DNA
fragments.
3. A cloned human a-interferon gene. which was perfectly silent
under the control of strong bacterial promoter. was induced for high-
level expression by the deletion of the vector plasrnids pan more than
200 b.p. downstream the 3' end of the cloned gene. The deleted DNA
is a portion of rcr-gene. which is known to participate in regulation
of plasmid supercoiling properties.

AS

POSTI'RANSCRII'TIOl'AL REGULATION OF GENE
EXPRESSION IN BACTERIOPIIAGE n
R. Nivinskas, N. Marys. A. Zajanckauskaite, V },:7alLw.
R. Vaiskunaite
Institute of Biochemistry. Vilnius 2600. Lithuania

Posttranscriptional mechanisms modulate expression of T4
genes in a variety of ways which include the regulation of trans-
lational initiation via potential RNA secondary structures. It is
well established that translational initiation can be prevented by
sequestering the ribosome-binding site in double-stranded
RNA. T4 uses this mechanism to prevent or reduce the early
translation of at least three late genes, soc, e, and 49. On the
other hand, in the case of T4 gene 38, there exists a secondary
structure that brings the Shine and Datgarno sequence and in-
itiation codon into close proximity. Such structures that en-
hance or facilitate initiation on T4 mRNA~ are rare. Earlier
work of our laboratory suggested that such a secondary struc-
ture may exist in the translational initiation region of T4 gene
25. Now we demonstrate that the expression of gene 25 in \,il'o
is regulated via the proposed RNA secondary structure. Our
data also indicate the existence of RNA secondary structure
just upstream of the gene 30.3', which is completely embedded
within gene 30.3, but in a different reading frame. We suppose
that this structure may be important for optimal gene 30.3'
expression. We also studied the regulation of expression of gene
26', which starts with the rarest initiation codon. AUU, and in
frame overlaps with 3'-end of gene 26.

SPECIFIC GENOMIC FINGERPRINTS OF SOIL
PSEUDOMONADS GENERATED WITH REPETITIVE
SEQUENCES AND PCR

A. Nurk; M. Peters
Institute of Molecular and Cell Riolog)'. Tartu University.
Tartu EE2400, Estonia

The understanding of microbial gene transfer. including how bacteria
acquire and disseminate genes in natural environments. will provide
data on the role of horizontal transfer in evolution. This prospect has
increased interest in the determination of the fate and persistence of
bacteria injected into aquifers as well as the detection of genetic in-
teractions between bacteria introduced into aquifer (pro soil) and the
indigenous microflora. Many known strain identificntion methods.
which are usable for cells with defined life conditions in the laboratory.
cannot be applied for cells in the long term after release. The genetic
polymorphism increases much more quickly after release of bacteria
than in laboratory conditions. During the last year. we succeeded in
developing a specific chromosomal fingcrprinting method for bacteria
on the basis of rep-PCR. This new method is bacteria! strain-specific
and. using this approach. it is possible to exactly answer: a) whether
the reisolated bacterium is tile same as that released (despite diffcren-
ces in phenotypic and plasmid-medirucd genotypic characters); b)
which reisolaied bacteria could be siblings (K" et .11.. 1994. Appl. £11-

viron. Microbiol, 60 1106-] J 15). Our experience supports Ihe recent
finding that the rep-P'CR technique appears to be a rapid. simple. and
reproducible method to identify specific strains (Louws et al., 1994.
AppL Environ. Microbial. 602286-2295). Families of repetitive DNA
sequences are dispersed throughout the genome of diverse bacterial
species. These elements have the potential to form stem-loop struc-
tures and m:1Yplay an iportant role in the organization of the bacterial
genome. Genome organisation is thought to he shaped by evolution
and appears sufficiently conservative. but at the same time also strong-
ly strain-specific character. The advantage of rep-PCR before random
amplifed polvmorphic DNA (RAPD) analysis lies in the length of the
primers used and the corresponding peR conditions. The extended
primers for rep-P'Cl-; allow the use of more stringent peR conditions.
which in tum may reduce experimental variation and peR artifacts.
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CLONING OF HUMAN GENES REGULATING THE IMMUNE RESPONSE.
G. Makarenkova, E. Jankevicsl .

Latvian University, 'Institute of Molecular· Biology of the Latvian Academy of Sciences.
Riga, Latvia

Different methods for constructing genomic b"brary in bacteriophage A. vector Charon 4A
and stability of the recombinant DNA during reproduction in E. coli cells were esti-
mated. The maximal number of recombinant phages was obtained by the in vitro packai-
ing method involving freshly freeze - thaw lysate from BHB 2688 and sonicated extract
from BHB 2690 preparation (N. Sternberg) .

A Charon 4A human gene library consisting of 3.6 x 1f!' independently derived
clones was prepared. Recombinant phage clones carried about 15-20 kb-size DNA frag-
ments from the partially £CoRI - digested human blood leukocytes DNA. Investigation
of structural swp:Jity of both vector phage Charon 4A and its derivatives carrying DNA
inserts of bovine leukemia and mouse sarcoma viruses revealed considerable hetero-
genity of phage popularions after 1-2 cycles of reproduction in E. coli strains K 802, K
803 and QD sun juuged byappearnnce of new restriction sites in inserted DNA. Taking
into account-use us.~. ility of recombinant phage populations during propagation. only
imamplificJ: genomic .library was used for isolation of specific sequences •

.Human genomic library was screened by the in situ bacteriophage plaques hybridiz-
atior ~~fJ "iues using separately nicktranslated human interleukin 2 (ll.-2) cDNA. bu-
man Cil'I"L,,~ricfOn (lFN-a) and mouse immunoglobulin G heavy chain constant region
(~h) probes.,eke of rne recombinant bacteriophages containing a whole human ll.-2
gene and its S'-nanking region as well as 3 other clones containing IFN-a5. IFN-a.8 and
IFN-a13 genes with extensive 3'· and 5'-flanking regions were isolated and physical
maps of gene-containing DNA segments were obtained by digestion with restiction enzy-
mes. Seven plaques which gave a positive signals with mouse CH DNA probe in relaxed
strigency hybridization conditions were isolated and are under identification.

IL-2 gene fragments and IFN-a genes were further subcloned into plasmid vectors,
their nucleotide sequences were determined and compared with the known genes. The
coding parts of cloned genes contain only few silent nucleotide exchanges in comparison
with the previously published sequences. while marked differences could be detected in
regulatory 5'-flanking regions. Those are promising for detection of DNA elements con-
trolling gene expression neihbouring and distant from the coding pan as well as for the
studies of the interactions between such elements. Cloning of the IFN-a genes can be
used for constructing of new bacterial strains capable to produce human interfero~:

SPONT ANFOUS INSERTION OF TRANSPOSON Tn 1000 IN rat A GENE OF
Pl,A~C ,;'!i,U :'-:;'.:1 ": ,

""".".

N. Matyusbkova, N. Rostoks

Latvian University, Riga. Latvia

Recombinant plasmid pRU 1307 (constructed by Dr. I. Muiznieks) is a pUC 8 derivative
which carries raf A gene with its own promoter nom E. coli plasmid-born rat-operon
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10 20 30 A 40
5' CACGGTTCAT TCTCCTTCCT TCTGAIIIII TATCCAGATC

50 60 70 80
ACACAACCGA AACGlTI'TGG i'TGATGTTCG AAACGTITCG

90 100 110 , 120
GATCAACAGT AAGACATACC TGAAAGCGGA GATGTCnN

130 140 150, 160
QJATITCAAAG T~GTITG AGGGCCAATG GAACGAAAAC

170 l180 190 200
GTACGITAAG GAGATAATTC .GTTGIIlATA TIlAAA TITA.

210 220 230 240
GAGCTCTCAG .rrccccrrrt AAAATATCCf CTGGCAACGT

250 . 260 270 280
GAATGTATAA GOCCCAACAT ATTGATATCC CGTGCATCAG

-- 290 300 310
GGGAGATAGC CGAGCGATAT CTTCATCTAT A 3'

B
• 1'aq I

TATA
Pst I

ACG I A'rG
II

PRAF A Tn 1000

~5700 bp

Hind IIi P&t I P.t I

Pvu

Barn HI

liar I .

Nda I

Sela I ~

?vu~

Fig. 1. The sequence of Tn 1000:: pRU 1307 junction (A) and schematic location of the =POSOll

in the structure oi plasmid pRU 1307 (8). The first lranslalell ATG codon of rat A gene
is boxed, The begining of inserted Tn 1000 sequence is marked with an arrow
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(AsIanidis et.al .• 1989). E.coli strains containing pRU 1307 are arnpicillin-resistant (ApR)
and express high levels of a- galactosidase.tcgar').

Studies of pRU 1307 maintenance in E.coli TG I liquid batch cultures readily
revealed population heterogenity, where alongside with the cells. which have lost plas-
mid (ApsaGal' -phenotype), ApRaGal'-segregants could be detected. The accwnulation
of Ap'laGal' -cells was faciliated in cultures kept mainly in late-log-stationary phase of
growth at low initial concentrations of Ap (25 mkglml).

Electrophoretic analysis of plasmid DNA from Ap'laGar- segregants showed a re-
plicon ca, twice as big as pRU 1307. Further restriction and sequence analysis allowed
us to identify the inserted DNA in pRU 1307 as the transposon Tn 1000 (known also as
y B) in its direct (yB) orientation (Fig. I). The junction point of plasmid and Tn 1000 inte-
gration was sequenced in several independent isolates and appeared to be always the
same. So the S' end of rae A sequence is a Tn 1000 integrations hotspot -

pRU 1307::Tn 1000 was maintained in TG I strain in higher copy numbers and sig-
nificantly more stable than the parent pRU 1307. The elimination of metabolic burden
caused by a-Gal-protein synthesis appears to be crucial for improving the mainteriance
characteristics of the plasmid. nOllooldngto the expenses of DNA-length increment
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