Latvijas UniversitateeUniversity of Latvia

Inductive Inference and Constructive Ordinals

Dr. Sc. Comp. Dissertation

Andris Ambainis
Institute of Mathematics and Computer Science

University of Latvia
Raina bulv.29, Riga, LV-1459

[Latvia

Riga, 1997

Acknowledgements.

Interaction with other people was crucial to the success of this research. First,
a lot of thanks to my advisor, Rusigs Freivalds for bringing me into theoretical
computer science research and helping whenever possible. Thanks to Agnis Andzans
for working with me while I was in high school and sending me to Rusigs Freivalds
later.

My coauthors Sanjay Jain and Arun Sharma helped to improve the content of
chapters 3 and 4 greatly. Research described in this thesis also benefited from dis-
cussions and comments by Kalvis Apsitis, John Case, Dick de Jongh, Frank Stephan,
Mahe Velauthapillai and Manfred Warmuth. A lot of comments by anonomous ref-
erees at various conferences was very useful. Thanks to Mark Changizi, Martin
Kummer and Carl Smith for sending me their papers and to Bob Daley and Balya
Kalyanasundaram for writing [16] that inspired me and was the starting-point for
chapter 6.

The financial support for this research was provided by Latvia Science Council
Grants 93.599 and 96.0282 and fellowship "SWH Izglitibai, zinatnei un kultirai”
from Latvia Education Foundation. The results of this thesis were presented at
EuroCOLT’95, COLT’96, EuroCOLT’97. Financial support for participiation in
these conferences was provided by Soros Foundation Latvia (for EuroCOLT’95) and
the organizers of conferences.

Finally, I thank all my colleagues, friends and my family for everything good that
happened during these years.

Contents

1 Introduction

2 Technical preliminaries
2.1 Notation .
2.2 Paradigims of inductive inference .
2.2.1 Language identification in the limit
222 Function identification in the himit
223 Finite identification of functions .
2.3 Well-orderings and ordinals

2.0 Ordinals as mindchange counters

1S
ot

Svstems of notations
2.5.1 Defnitions
25,2 The system P

2.5.3 The universal svstems Sy and O . . .

3 Ordinal mind change complexity of unions of pattern languages
3.1 Overview .
3.2 Results .

3.3 Sumimary

4 General conditions for existence of ordinal mindchange bounds
1.1 Overview .
1.2 A characterization of ordinal bounds on the number of mindchanges .
+.3 Ordinal complexity and conservativeness
L Ordinal complexity and monotonicity

L5 Summary

20
20
20
23

24

| SV VIR (]
-1 U

(o
(V]

The influence of the system of ordinal notations 39
S Overview . o000 o3
5.2 EX -identification for o < w? 10
53 EN _identification oo 0000001
5.3.1 Lemma about lim-computable functions 12
532 The svstem of notations S, . .00 o000 000015

3.3.3 0 The mamn result oo 0 L LT

-t

Two svstemns of notations: Qand P 50
S0 Thesvstem O Lo o0 0 s D0
5.2 The svstem P: smallordinals 3l
.63 The svstem P large ordinals o0 000 000000000 00B)

5.5 Better svstems versus larger ordinals . 0 0 0000 00000000000 6l

ot

S0 Lavger ordinals instead of better systems 6l
5.5.2 Better svstems instead of Jarger ordinals 65

D60 Summary B

Probability hierarchies 68
Gl Overview . o000 s 6
6.2 Preliminaries .. . 0000 oo o 00

(2.1 Probabilistic and team learning 710

6G.2.2 Svstemis of notations o0 o T]
6.3 Threcexamples o000 oL o o3
G.1 Characterization of PFin-hieararchy 74
6.5 Technical lemimas
6.6 Universal diagonalization o 0T

6.7 Well-ordering and system of notations 83

6.7.1 Sphtting the segment [nll.:—l] T o
6.7.2 Well-ordering o ... 86
6.7.3 Distinguishing elements of different types 0 ... 0 S
6.7.1 (r.d)minimal sets 00 Lo
6.7.5 Svstemolnotations Lo 9

6.8 [niversal simulation Lo 09

6.9 Relative complexity 0105

G.10 Probabtlistic versus team learning o2

G Summary 000013

7 Conclusion 116

Chapter 1
Introduction

The topic of this thesis is applications of well-orderings and ordinals in inductive
inference. Inductive inference is a branch of theoretical computer science that studies
the process of learning on a verv general level[25. 7, 41].

Traditionally. inductive inference studies the learning of arbitrary recursive func-
tions (or languages). A learning algorithm receives data about an unknown function
(language) and outputs a sequence of conjectures about this fuction. Each conjec-
ture is a program in a general programming language computing some function (or
a grammar for a language). The learning algorithm succeeds when it outputs a
correct program (grammar).

Various aspects of this model have been studied[41]. Ordinals have found two
very different applications in inductive inference.

First. ordinals can be used as counters. Ordinal counters are generalizations of
counters that use natural numbers.

Most frequently. they are used to count mindchanges. A mindchange is an event
when the learning machine changes its conjecture (by outputting a program different
from the previous conjecture). The number of mindchanges can be considered as a
measure of complexity for inductive inference[l1, 23].

Most of researchers consider only one type of complexity bounds on the number of
mindchanges: constant bounds. (‘onstant bounds are established by requiring that
the learning algorithm makes at most ¢ mindchanges where c is a constant that is
the same for all functions. However, there are situations which cannot be described
by constant bounds.

[n particular. such bounds do not take into account scenarios in which a learning

machine. after examining an element of the language is in a position to issue a bound

on the number of mind changes it will make before the onset of convergence. For

example. consider the class
COINIT ={L | (In)[L = {z |z > n}]}.

Intuitively. ('OLNIT is the collection of languages that contain all natural numbers
except a finite initial segment. ('learly, a learning machine that, at any given time,
finds the minimum element n 1 the data seen so far and emits a grammar for
the language {x | + > n} learns COINIT in the limit from positive data. It is
also easy to see that the class COINIT cannot be identified by any machine that
1s required to converge within a constant number of mind changes. However. the
machine identifying COINIT can, after examining an element of the language. issue
an upper bound on the number of mind changes.

In this example. the number of mindchanges is bounded but this bound is not a
constant bound. An another example is the class of pattern languages (PATTERN),
first introduced by Angluin [6]. Such scenarios can be modeled by the use of con-
structive ordinals as mind change counters introduced by Freivalds and Smith [24].
Use of constructive ordinals provides a very general and flexible model that can be
used to describe a lot of different behaviours of learning machines.

This thesis investigates ordinal bounds on the number of mindchanges in three
directions.

First. we give the ordinal mind change bounds for identification in the limit of
unions of pattern languages from both positive and negative data (informants). We
describe these results in chapter 3.

Second. we investigate conditions under which an ordinal mind change bound can
be guaranteed. We first establish a useful technical result which states that if a
learning machine makes a finite number of mind changes on any text. then the class
of languages that can be identified by this machine has an ordinal mind change
bound. This result allows us to derive various sufficient conditions for the existence
of ordinal bounds. These conditions involve different notions like finite thickness,
finite elasticity. conservativeness. etc.. These results are described in chapter 4.

Third. we investigate the dependence of ordinal bounds on the particular nota-
tion for ordinals. Usually. notation is regarded as something unimportant and it
15 expected that all results will be true (or false) no matter what notation is used.
However. the situation is different with ordinals.

['here exist many nonequivalent systems of notations for constructive ordinals.

The particular system of notations is very important in many computational models
involving ordinals[13. 21]. The power of a machine can change dramatically when
the system of notations changes. We show that the learning power is not influenced
by the system of notations only when small ordinals (below w?) are used. For greater
ordinals. the system of notations has very large influence. These and other results
about systems of notations are described in chapter 5.

The second application of constructive ordinals is probabilistic and team learning
(chapter 6). Here. ordinals are used to resolve difficult problems in an unexpected
way.

We cousider finite identification of recursive functions. In this model, the machine
can output only one program and it must be correct. This seems much simpler than
the identification in the limit where an unlimited number of conjectures is allowed.
However. if we consider probabilistic and team learning[28, 51]. the situation is just
the opposite.

It is well known that teams of machines can identify larger classes of functions
than single machines. Identification by probabilistic machines is closely related to
identification by teams because any team can be simulated by a probabilistic ma-
chine. Teams of different size and probabilistic machines with different probabilities
of success have different learning power. Previous research[22, 18, 17] has shown
that relations between teams and probabilistic machines with different characteris-
tics are very complicated. Finite identification by teams and probabilistic machines
has been studied for 18 vears. Still, we are far from the complete understanding of
the situation.

In chapter 6. we consider PFin. a restricted version of finite identification. The
structure of different PFin-teams and probabilistic PFin-machines is less compli-
cated than the similar structure for unrestricted finite identification. However, it
is complicated. too. Researchers have come to a conclusion that it is unlikely that
it will be possible to determine all probabilities at which the learning power of
probabilistic PFin-machines is different[16].

We propose a different approach. Instead of determining these probabilities ex-
plicitly, we study global properties of the probability structure. We prove that the
set of different probabilities is well-ordered and has a system of notations. Then,
we give an algorithm that receives two probabilities p; and p; and answers whether
the any machine with probability of success p; can be simulated by a machine with

probability of success py. Well-orderedness and the system of notations is crucial

for the construction of decision algorithm.

The precise ordering tvpe of this set is ¢y. a huge ordinal that is order-equivalent
to the set of all expressions possible in first-order arithmetic. This result shows that
the probability structure 1s very complicated. Very general methods are required
to deal with so complex structures. Ordinals and systems of notations give us such
methods.

In the next chapter. we give precise definitions of problems analysed in this thesis.
Then. in chapters 3. 4. 5 and 6, we give our results. At the beginning of each chapter,
we give a more detailed survey of results in this chapter.

The results in chapters 3 and 4 were published in [5]. These results were obtained
together with Sanjay Jain and Arun Sharma. The results in chapter 5 appeared in

[1] and the results in chapter 6 appeared in [2].

[0 4]

Chapter 2

Technical preliminaries

2.1 Notation

We use standard recursion-theoretic concepts[45, 46, 52]. IN = {0.1,...} denotes the
set of all natural numbers, IN* = {1,2,...} denotes the set of all positive integers,
Q) denotes the set of rational numbers and IR denotes the set of real numbers. The
syvmbols €. 2. C.D. and @ denote subset, superset, proper subset, proper superset,
and the emptyset. respectively. (,) denotes one-to-one and onto pairing function
from IN x IN — IN.

Fo-¥1-... is a fixed acceptable programming system[38, 44]. In chapters about
language identifications (chapters 3 and 4), it is an acceptable programming system
for all recursively enumerable languages. In chapters considering function identifi-
cation (chapters 5 and 6), it is an acceptable programming system for all partial
recursive functions. p; is the partial recursive function computed by the *! pro-
gram in » (or the language recognized by the i*" grammar in ¢, if the language

identification is considered).

2.2 Paradigms of inductive inference

In this thesis. we consider three identification paradigms: language identification in
the limit (chapters 3 and 4). identification of recursive functions in the limit (chapter
5) and finite identification of recursive functions (chapter 6). Several authors have
argued that these paradigms is sufficiently general to model. via suitable encodings.

a large variety of real world learning situations [7. 1. 25, 41].

2.2.1 Language identification in the limit

L denotes a typical variable for a language. L denotes the complement of L. that
is. L =IN— L.

We first define the notion of texts for languages.
Definition 1

(a) A tert for a language L is a mapping T from IN into (IN U {#}) such that L

is the set of natural numbers in the range of T'.
(b) content(T) denotes the set of natural numbers in the range of T'.
(¢) The initial sequence of text T of length n is denoted T'[n].
(d) The set of all finite initial sequences of IN and #'s is denoted SEQ.

Intuitively. a text T for a language L is a presentation of elements of L (possi-
blyv repeated) and no non-elements of L: #'s in the presentation may be thought
of as modeling pauses in data input'. It is easy to see that there exists a com-
putable bijection between SEQ and IN. Members of SEQ are inputs to machines
that learn grammars (acceptors) for r.e. languages. We let o and 7, with or without
decorations?. range over SEQ. .\ denotes the empty sequence. content(o) denotes
the set of natural numbers in the range of ¢ and length of & is denoted |o|. We say

that ¢ C 7 (0 C T') to denote that ¢ is an initial sequence of 7 (T').

Definition 2 A language learning machine is an algorithmic mapping from SEQ
into IN U{?}.

M denotes a typical variable for a language learning machine. We also fix an accept-
able programming svstem and interpret the output of a language learning machine
as the index of a program in this system. Then, a program conjectured by a ma-
chine in response to a finite initial sequence may be viewed as a candidate accepting
grammar for the language being learned. M(7) is the program conjectured by M
after reading 7.

A conjecture of "?" by a machine is interpreted as “no guess at this moment.”

This is useful to avoid biasing the number of mind changes of a machine. For this

'Note that the only text for the empty language is an infinite sequence of #s.

o
“Decorations are subscripts. superscripts and the like.

10

paper. we assume. without loss of generality, that ¢ C 7 and M(o) #7 implies
M(r) #7.

We say that M converges on text T' to ¢ (written: M(T') converges to 1) just in
case for all but finitely many n, M(T[r]) = i. The following definition introduces

Gold’s criterion for successful identification of languages.
Definition 3 [25]
(a) M TxtEx-identifies a text T it M(T') converges to a grammar for content(7').

(b) M TxtEx-identifies an r.e. language L (written: L € TxtEx(M)) just in
case M TxtEx-identifies each text T for L.

(c) TxtEx denotes the set of all collections £ of r.e. languages such that some

machine TxtEx-identifies each language in L.

The next two definitions describe the notion of informants as a model of both positive

and negative data presentation and identification in the limit from informants.

Definition 4 An informant for L is an infinite sequence (repetitions allowed) of
ordered pairs such that for each n € IN either (n, 1) or (n,0) (but not both) appear
in the sequence and (n.1) appears only if n € L and (n,0) appears only if n ¢ L.

I denotes a typical variable for informants. I[n] denotes the initial sequence of
informant I with length n. content(I) = {(z.y) | (z.y) appears in sequence [}.

content(I[n]) is defined similarly.
PosInfo(I[n]) = {x | (z.1) € content([[n])}.
Neglnfo(I[n]) = {z | (z.0) € content(/[n])}.
We now define identification from both positive and negative data.
Definition 5 [253]

(a) M InfEx-identifies an r.e. language L just in case M, fed any informant for

L. converges to a grammar for L. In this case we say that L € InfEx(M).

(b) M InfEx-identifies a collection of languages, £, just in case M InfEx-identifies

cach language in L.

(c) InfEx denotes the set of all collections £ of r.e. languages such that some
machine InfEx-identifies L.

11

2.2.2 Function identification in the limit

In this paradigm. the object that is learned by an IIM is a recursive (totally com-

putable) function. IIM receives the values of function f(0), f(1), --- as the input.
Definition 6 [23]

(a) M Ex-identifies an recursive function f just in case M, fed f(0), f(1), ...,

converges to a program for f. In this case we say that L € Ex(M).

(b) M Ex-identifies a collection of functions, U. just in case M Ex-identifies each

function in .

(¢) Ex denotes the set of all collections [’ of recursive functions such that some

machine Ex-identifies (.

2.2.3 Finite identification of functions

Identification in the limit allows an unlimited number of conjectures. On the con-

trary. finite identification allows only one conjecture on each input.
Definition 7 [22]

(a) M Fin-udentifies an recursive function f just in case the first program issued
by M on the input f(0). f(1). ... computes f. In this case we say that
L € Fin(M).

(b) M Fin-identifies a collection of functions. U/, just in case M Fin-identifies

each function in [-,

(¢} Fin denotes the set of all collections I/ of recursive functions such that some

machine Fin-identifies ['.
We consider PFin, a restricted version of Fin,

Definition 8 A machine M is Popperian iff all programs issued by M on al inputs

compute total recursive functions.

Definition 9 (a) M PFin-identifies a collection of functions U/ iff M is Popperian

and M Fin-identifies each function in (.

(b) PFin denotes the set of all collections { of recursive functions such that some

machine PFin-identifies { .

2.3 Well-orderings and ordinals

A linear ordering is well-ordering if it does not contain infinite descending sequences.
Ordinals[48] are standard representations of well-orderings.

The ordinal 0 represents the ordering type of the empty set. the ordinal 1 repre-
sents the ordering type of anv 1 element set, the ordinal 2 represents the ordering
tvpe of any 2 element set and so on. The ordinal w represents the ordering type of
the set {0.1.2....}. The ordinal w + | represents the ordering type of {0,1,2,...}
followed by element «. The ordinal « - 2 represents the ordering type {0,1,2,...}
followed by {w.w + 1.w+2....}. Greater ordinals can be defined similarly (cf.[48]).

We use arithmetic operations on ordinals defined in two different ways.

Definition 10 [36] Let A and B be two disjoint sets, a be the ordering type of A

and 3 be the ordering type of B.

(a) a4+ 31s the ordering type of 41U B ordered so that r < y foranyx € A,y € B

and order is the same within A and B.

(b) a-.7is the ordering type of A x B ordered so that (z,y1) < (x2,y2) ff 2, < &2

or ry = .xy and y; < y;.

We note that both sum and product of ordinals are not commutative. For example,

wehave l+w=w#uw+land2 - w=w#uw-2.

Definition 11 [36] « — 3. the difference of @ and 3 is an ordinal v such that
a=.347.

a — 3 always exists and is unique[36]. We also use the natural sum and the
natural product of ordinals. These operations use the representation of ordinals as
exponential polynomials. In this paper, we consider only ordinals which are less

than or equal to

w w®

€0 = Im(w,w*.w’ W ,...).

If o < ¢y, then

a=2" 4.+ e,

where a;. a, are smaller ordinals and ¢, ¢,, ..., ¢, are natural numbers. If we

require that a; > a, > ... and). ¢, are nonzero, this representation is unique.

13

Definition 12 [36] Let
a=w"-cg+...+w"" -,
F=wdy + ...+ dw" - d,
(a) The natural sum of « and 3 is

a(+)3=w (er+di)+ ...+ (cn + dn).

(b) a(-).3, the natural product of a and f is the product of base w representations
as polynomials. w®'(-)w® = w2 and a(-)A is the natural sum of w(+)% .
c;d; for all 7. .

Natural sum and natural product are commutative. They can be used to bound

the ordering tvpe of unions.

Theorem 1 Let A,...., A, be arbitrary subsets of a well-ordered set A, ay, ..., a;
be the ordering types of Ay. ..., As; and a be the ordering type of A, U ... U A,.
Then.

& S G](‘i’)(}z(—f‘) e (+)Q‘s

The difference between this theorem and Definition 10 is that Definition 10 requires
r < yforall x € A, y € B but Theorem 1 has no such requirement. Next, we give

a similar application of the natural product.

Theorem 2 Let Ay,..., A, and A be well-ordered sets with ordering types ay, ...,
as and a. respectively. Assume that f : Ay x Ay x...x A; — A is a strictly increasing

function onto A. i.ec.
2 o) PRI O3y O T pr o o 1 0) T T w0t 3 ot O BT 55 oy)
Jorallie{l...... s} and o; < o). Then
o < a(agl). - (e

Both Theorem 1 and 2 will be used in section 6.9. Transfinite induction is a

generalization of the usual mathematical induction.

Theorem 3 [36. Principle of transfinite induction] Let A be a well-ordered set and
P(x) be a predicate. If

(a) P(x) is true when x is the smallest element of A, and
(b) P(y) for all y € A which are smaller than x implies P(x),

then P(x) for all x € A.

14

2.4 Ordinals as mindchange counters

Definition 13 F. an algorithmic mapping from SEQ into constructive ordinals, is

an ordinal mind change counter function just in case (Vo C 7)[F(o) = F(7)].

Definition 14 [21] Let a be a constructive ordinal.

(a) We say that M. with associated ordinal mind change counter function F,

TxtEx,-identifies a text T just in case the following three conditions hold:

(1) M(T') converges to a grammar for content(7"),
(1) F(A) = a and
(iii) (Vn)[? # M(T[n]) # M(T[n +1]) = F(T[n]) = F(T[n + 1])].

(b) M. with associated ordinal mind change counter function F, TxtEx,-
identifies L (written: L € TxtEx,(M,F)) just in case M, with associated

ordinal mind change counter function F, TxtEx,-identifies each text for L.

(¢) TxtEx, = {£ | (3IM.F)[£ C TxtEx,(M,F)|}.

[IM with an ordinal mindchange counter can be defined in a formally different but
equivalent manner. Namely, we can assume that the machine M operates a counter
« containing an ordinal. Before each mindchange, M replaces the counter on the
ordinal by a smaller one.

Essentially, this is the same definition expressed in a less formal way. The counter
a is a counterpart to the function F of Definition 14. It is easy to see that both
definitions are equivalent.

We use both definitions. More formal definition appears more appropriate for
chapters 3 and (especially) 4. The second, informal definition, is used in chapter 5.

Similarly to the above definitions, we can define InfEx, to denote classes of
languages that can be identified from informants with a as the ordinal mind change
bound. We also define Ex,, to denote classes of functions that can be identified with
a as the ordinal mind change bound. The following simple lemma will be useful in

our proofs.

Lemma 1 If M is an [IM with the number of mindchanges bounded by an ordinal

a. then M makes finitely many mindchanges on any (even nonrecursive) input.

Proof. By the way of contradiction. If M makes infinitely many mindchanges, it
decreases its ordinal counter infinitely many times. Let ag be the first ordinal on
the counter. a; be the ordinal which appears on the counter after oo and so on.
According to the definition of 1M

Qg > Qy > Qy > ...

Hence. ag. is an infinite decreasing sequence of ordinals.
It 1s well known that infinite decreasing sequences of ordinals do not exist. A

contradiction. |

2.5 Systems of notations

2.5.1 Definitions

Ordinal numbers can he classified into three types:
(a) The ordinal 0;

(b) Ordinals having an immediate predecessor in ordering of all ordinals, such

ordinals are called successor ordinals;

(¢) Ordinals having no immediate predecessor, such ordinals are called lim:t ordi-

nals.

In this paper we consider only those ordinals which can be described in some
constructive way (constructive ordinals).

A system of notations is a method of assigning notations to ordinals. A system of
notations is considered to be acceptable if it allows to extract certain information

from notations and to perform certain operations on notations. More formally,

Definition 15 A system of notations S is a mapping vs from a set of integers Dg

onto a segment of ordinal numbers such that
(a) There exists a partial recursive function ks such that

(1) I vs(x) = 0 then ks(z) = 0;

(i1) If vs(x) is a successor ordinal then ks(z) = 1;

16

(ii1) If vs(.r) is a limit ordinal then ks(x) = 2.

(b) There exists a partial recursive function ps such that, if vs(z) is a successor

ordinal then ps(z) is defined and vs(z) = vs(ps(z)) + 1.

(¢) There exists a partial recursive function gs such that, if vs(z) is a limit ordinal
then gs(r) is defined. p,.(,) is a total function and vs(pe.(2)(0)), 2s(Pgs(a)(1)).

... denotes an increasing sequence of ordinals converging to vg(z).
The members of Dy are called notations.

Definition 16 An ordinal « is constructive ordinal if there is a system of notations

which assigns at least one notation to a.

Definition 17 A system of notations S is univalent if vs is a one-to-one function

(each ordinal has at most one notation).

Next, we define some effective operations on ordinal notations which will be used
further. These operations are defined for an arbitrary system of notations S.

Each ordinal a can be expressed as o’ + n where o' is zero or a limit ordinal and
n is a finite ordinal. We can extract notations for o’ and n from a notation for «

using the following functions L(a) and N(a):

o if o is zero or a limit ordinal
Lia) =

L{ps(a)) otherwise

V(o) 0 if «v is zero or a limit ordinal
i) =
1+ N(ps(a)) otherwise

When IIM uses a particular system of notations .S, its counter can contain only

notations of this system. Replacements are also restricted:
(a) IIM can replace notation x for a successor ordinal by ps(z).
(b) IIM can replace notation x for a limit ordinal with @, (,)(n) for any n.

Other replacements are not allowed. This means that, for each notation, the fact
that it denotes a smaller ordinal than the previous notation must follow from the

functions ps and ¢s of the system S. I1IM cannot replace a notation z by a notation

17

to check whether 1IM makes correct replacements. For notations x and y, 2 < y
denotes that r is smaller than y and this follows from the system of notations that
is currentlyv used.

TxtExf. InfExf. Ex::’: denote the collection of all sets that are TxtEx,, InfEx,,
Ex,-identifiable by IIM using the system of notations S.

Next. we describe two most frequently used systems of notations: P and O.
Most of our theorems use one of these two systems. Exception is chapter 5 where
we construct other svstems ourselves. These systems are specific to results of this

chapter.

2.5.2 The system P

The first system of notation is the system P. In this system the notations are
expressions consisting of 0,1,..., w, addition, multiplication and exponentiation.
For example. w+17. w? -3, w**2 4+ w?-6 all are notations in P. For such expressions,
the functions kp, pp and gp can be easily defined.

There exist ordinals which have no notation in P. It does not have notations for
ordinals which are greater than or equal to €.

However. P is verv natural system of notations and very easy to use. In general
svstems of notations it is difficult and even impossible to perform some operations
with ordinals. (For example, to find a + w if a is given.) In P such operations are
Very easy.

When scientists speak about ordinals without using any system of notations ex-

plicitly, they usually use the system P.

2.5.3 The universal systems S, and O

We will frequently use universal systems S; and O[35, 45]. Notations of S; are

defined as follows:
(a) 1 is a notation for the ordinal 0:
(b) If & is a notation for a. then 2% is a notation for a + 1;

(c) If »y(0). ,(1). ... is a sequence of notations for an increasing sequence of

ordinals converging to a. then 3 - 5 is a notation for a.

The system O is obtained from S; by eliminating some notations so that the system
remains universal and some new useful properties appear. These properties are not
important for results in this thesis. Therefore, we omit them. Our proofs will not
use these properties and evervthing that we prove for O is true both for S; and O.
We shall use O for the universal system because this is more common in papers in
this arca and using S} may cause some confusion.

O (or S1) embeds all possible systems of notations and anything which is express-

ible in some system of notations is expressible in O (or 5)).

Lemma 2 [45] Given any system A, there is a partial recursive mapping ¢ such
that. if x € Dy then vs(x) = vo(p(z)).

‘The system O allows various constructions including some that may be considered
pathological. For example, it is possible to construct a recursive sequence of nota-
tions 2(0). »(1). ... denoting a sequence of ordinals w - A(0), w - A(1), ... such that
h(x) grows faster than any recursive function. We will use some such constructions
in chapter 5.

The system O is convenient because it embeds any possible construction. In
chapter 4. we will use the possibility to construct a notation for the limit of ,(0),
wr(l)e e

We will also use the fact that, given two notations is O, notations for the sum

and the product of ordinals can be computed|45].

19

Chapter 3

Ordinal mind change complexity

of unions of pattern languages

3.1 Overview

Pattern languages. unions of pattern languages and elementary formal systems are
natural language classes for which ordinal mindchange bounds exist. Shinohara [49]
showed that many rich concepts can be represented by unions of pattern languages;
these languages have been applied to knowledge acquisition from amino acid se-
quences (see Arikawa et al. [10]).

Previously, Jain and Sharma[29] proved ordinal bounds for the identification of
these classes from positive data(text).

This section contains counterparts of these results for identification from both
positive and negative data (informant). The main result is that unions of at most
¢ + 1 pattern languages can be identified with at most w -« mindchanges.

We use the system of notations P in this chapter. However, our result is valid
for any system because. in chapter 5, we show that w - i-identification has the same

power in all systems of notations.

3.2 Results

Let ¥ and X be mutually disjoint sets. ¥ is finite and its elements are referred to
as constant symbols. Elements of X are referred to as variables. For the present

section, we let a.b.... range over constant symbols and z,y, z, x{, Z2, ... range over

20

variables.

Definition 18 A term or a pattern is an element of (¥ U X)*. A ground term (or

a word. or a string) is an element of X+,

A substitution is a homomorphism from terms to terms that maps each symbol
a € ¥ to itself. The image of a termn 7 under a substitution # is denoted 7. We
next describe the language defined by a pattern. Note that there exists a recursive
bijective mapping between elements of ¥* and IN. Thus we can name elements of
Y1 with elements of IN. We implicitly assume such a mapping when we discuss
languages defined using subsets of X% below. (We do not explicitly use such a

bijective mapping for ease of notation).

Definition 19 [6] The language associated with the pattern 7 is defined as
Lang(n) = {6 | 6 is a substitution and 76 € £},

We define the class PATTERN = {Lang(x) | 7 is a pattern}.

Angluin [6] showed that PATTERN € TxtEx. Shinohara [49] showed that pattern
languages are not closed under union, and hence it is useful to study identification
of languages that are unions of more than one pattern language, as they can be used
to represent more expressive concepts. We next define unions of pattern languages.

Let S be a set of patterns. Then Lang(5) is defined as | J, ¢

Lang(5) is the language formed by the union of languages associated with patterns

Lang(~). Intuitively,

in S.
Definition 20 [49, 54] Let n € IN. PATTERN™ = {Lang(5) | card(S) < n}.

Shinohara [49] and Wright [54] showed that for n > 1, PATTERN" € TxtEx.
Jain and Sharma [29] showed that PATTERN" € TxtEx,» (using the system of
notations P) and PATTERN" ¢ TxtEx, for a < w" (for any system of notations).
We now consider the ordinal mind change complexity of identifying unions of
pattern languages from informants. Let PAT denote the set of all canonical patterns
[6]. Let PAT' = {S | S C PAT A card(S) = i}.
Suppose Pos and Neg are disjoint ﬁmte sets such that Pos # (). Then let

XPOS Neg {g € PAT! | [Pos C Lang(S)] A [Neg - m]}

21

Lemma 3 Suppose we are given finite disjoint sets Pos, Neg. where Pos # . and
a natural number i, such that (V3 < ‘i}[XFOS'Mg = 0]. Then, effectively in Pos, Neg.
and i. we can dctermine X‘-};O:‘N"g. (Note that Xﬁf’Neg must be finite in this case!)

PROOF. Suppose Pos. Neg. and i are as given in the hypothesis of the lemma. Let

P = {p € PAT | [Pos N Lang(p) # 0] A [Negn Lang(p) = 0]}

Let

X = {S € PAT'™ | [Pos C Lang(S)] A [S C P]}
It is easy to verify that X = XF:IS'N"S. Also note that X can be obtained effectively
from Pos. Neg and 1. I

Corollary 1 Suppose Pos and Neg are disjoint finite sets such that Pos # 0. Then
effectively in Pos. Neg. one can find i, and corresponding X! °*"® (which must be
finite) such that i = min({J | Xfos'Neg #0}).

PROOF. Note that PATTERN? contains only the empty language. The corollary

_ . . : Pos,Ne
now follows by repeated use of Lemma 3, until one finds an 7 such that X" #

0. 1

Theorem 4 (a) PATTERN! € InfEx,.
(b) (Vi > 1)[PATTERN"! € InfEx,,].

PROOF. (a) Shown by Lange and Zeugmann [37]. Also follows from the proof of
Part (b).
(b) Fix :. Let M(I[n]). F(I|n]) be defined as follows.

Let Pos = Poslnfo(/[n]) and Neg = Neglnfo(1[n]).

If Pos = 0, then M(/[n]) =? and F(I[n]) = w - 1.

If Pos # 0. then let j = min({j" | Xﬁm‘Neg # 0}). Note that 7 (and corresponding
XJ]-D""“N“S) can be found effectively in I[n], using Corollary 1.

Ifjy=1and card(_’(})os‘Neg) > 1, then M(I[n]) =?. F(I[n]) =w 1.

Ifj>1or ca,rd(_‘(r"s’Neg) = 1, then M(/[n]) = lexicographically least element in
X7NE F(I[n]) = w- (i + 1 — j) + (card(X =N8) — 1),

It is easy to verify that M.F witness the theorem. a

N
SN

3.3 Summary

Pattern languages can be identified from positive data only. Hence. it may seem
that negative data are not necessary at all. Theorem 4 refutes this claim by showing
that the complexity decreases considerably when negative data are available (w -z
instead of w'*! mindchanges).

It is open at this stage whether we can do better than the w - ¢ bound for
PATTERN'"!. However, if we consider unions of : + 1 simple pattern languages!,
then it is easy to see that the mind change bound for identification from informants

1s simply 2.

A simple pattern language is formed by substituting. for each variable. strings of length exactly

ulre.

Chapter 4

General conditions for existence

of ordinal mindchange bounds

4.1 Overview

The existence of an ordinal mind change bound for a class can be considered as a
reflection of its learning “tractability”. Therefore, it is useful to investigate condi-
tions under which an ordinal mind change bound can be guaranteed. We consider
a number of possibilities, including identification by conservative strategies, topo-
logical properties like finite thickness, M-finite thickness, and finite elasticity, and
monotonicity requirements. We preview some of our results.

We first establish a useful technical result which states that if a learning machine
makes a finite number of mind changes on any text, then the class of languages that
can be identified by this machine has an ordinal mind change bound. This result is
used to show that if an indexed family of computable languages has finite elasticity
and can be conservatively identified then there is an ordinal mind change bound for
this class. We also show that the requirement of conservative identification can be
sacrificed in the previous result for the purely topological requirement that the class
have M-finite thickness in addition to finite elasticity. Since finite thickness implies
finite elasticity and M-finite thickness, the above results imply that any indexed
family of computable languages with finite thickness has an ordinal mind change
bound.

The results discussed above give general sufficient conditions for identifiability

with ordinal bound on mind changes. However, the mind change bound a may be

24

arbitrarily large. An interesting question to ask is whether the ordinal mind change
bound remains arbitrarily large if some other constraints such as monotonicity are
added. We show a negative result in this direction as for every constructive or-
dinal bound «, there exists an indexed family of computable languages that can
be identified strong-monotonically and has finite thickness, but cannot be identi-
fied with the ordinal mind change bound of a. A similar result also holds for dual
strong-monotonicity.

In this chapter, we use the universal system of notations O.

4.2 A characterization of ordinal bounds on the

number of mindchanges

We first establish an important technical result.

Theorem 5 Let M be a learning machine such that, for any text T (irrespective
of whether M identifies T or not), M makes only finitely many mind changes on
T as input. Let L denote the class of all languages TxtEx-identified by M. Then,
for some ordinal mind change counter function F, and constructive ordinal o, £ C
TxtEx?(M.F).

PROOF. We define a conjecture tree Ty for machine M. The root of 7y corresponds
to the empty sequence, A. Other nodes of the tree correspond to finite initial
sequences of texts, T[n + 1], such that M(T[n]) # M(T[n + 1]). Let S = {A} U
{Tln+1] |n € IN,T is a text and M(T[r]) # M(T[n + 1])}. For ¢ € S, we use V,
to denote the node corresponding to the sequence o. Node V,, is a descendent of
node V,, iff oy C 0.

We will now define a constructive ordinal, a,, corresponding to each o € S. For
oc S, letS, ={re€S|ocCr}. Intuitively S, denotes the proper descendants of
o in the tree 7. Note that S, is recursively enumerable (effectively in o). Let S3
denote the finite set enumerated in s steps in some, effective in o, enumeration of

S

T

a, is defined as follows. a, is the limit of f,(0), f,(1),..., where f, is defined as

follows.

fo(0)=0. fole+1) = fo+eo,+...+a, +1, where 7y, 73, . .., T, are the elements
of Si.

We first need to show that a, are correct notation.

25

Lemma 4 (a) Let V, be a leaf of Tpg. Then o, is a correct ordinal notation.

(b) Suppose o € S. and a, is a correct ordinal notation for each T € S,. Then
a, is a correct ordinal notation.

(¢) For any o € S, a, is a correct ordinal notation.

(d) Ifo € S and 7 € S,, then o, < .
PROOF. (a) If V, is a leaf, then S, is empty. Hence,

f000=0,/(1)=0+1=1,....fo(n)=fo(n—-1)+1=(n—-1)+1=n,....

[t follows that a, is a notation for w.

(b) Since, a, is a limit of f,(0), f,(1),..., it suffices to show that each f,(z) is a
correct ordinal notation. Now, for each 7 € S,, a; is correct notation. Thus, since
fo(2 4+ 1) is defined using f,(z), a,, 1 and + operation only, f,(: + 1) is a correct
ordinal notation.

(¢) Suppose by way of contradiction that a, is not a correct notation. We then
construct an infinite sequence oy C oy C ... such that, for each 7, o; € S and a,, is
not a correct notation.

Let oy = 0. Suppose o; has been defined. Let o;;; be such that 0,4, € S,, and
Q4,,, 1s NOt a correct notation. The existence of such a 0;4, follows from parts (a)
and (b).

Consider the text 7' = | J;. 0i. Now, since each o; € 5, we have that M on T
makes infinitely many mind changes (after reading last element of oy, after reading
last element of o,, and so on). This yields a contradiction to hypothesis of the
theorem:.

(d) Note that a, > f,(i), for each i. Suppose 7 € S2. Then it is easy to see that
fo(s+1) > a;. Thus a; < a,.

This proves the Lemma. |

Let o = ap. We now construct an F such that £ C TxtEx? (M, F). F is defined

as follows.

Qa, if Tn]) = A;
F(Tn])= < F(T'[n]-1), ifn>0,and M(T[n + 1]) = M(T[n]);
QT{n] otherwise.

From the definition of a, and Lemma 4, it is easy to verify that TxtEx(M) C
TxtEx? (M. F).

This is precisely the converse of Lemma 1. So, we can add an ordinal mindchange
counter to a machine M if and only if M makes finite number of mindchanges on any
input. This is a nice characterization of machines with the number of minachanges
bounded by an ordinal.

We proved our result for TxtEx. However, the same argument gives us similar
results for InfEx and Ex. This result is especially useful for TxtEx because, in this
case, it allows to derive several sufficient conditions for the existence of an ordinal

mindchange bounds. So far, we do not know about similar applications for InfEx
and Ex.

4.3 Ordinal complexity and conservativeness

Theorem 5 allows us to establish several sufficient conditions for the existence of
ordinal bounds on mind changes in the context of identification of indexed families
of computable languages. We first adapt learnability notions to the context of
indexed families of computable languages.

A sequence of nonempty languages Lo, Li,... is an indexed family just in case

there exists a computable function f such that for each 2 € IN and for each z € IN,

1, if x € L,’,

0, otherwise.

fli, o) = {

In other words. there is a uniform decision procedure for languages in the class.
Here. : may be thought of as a grammar for the language L;. It makes sense to learn
an indexed family of computable languages in terms of a hypothesis space that also
describes an indexed family. In the following we only consider hypothesis spaces
which describe an indexed family. We will abuse the notation slightly and use £ to
refer to both the concept class and the hypothesis space; it will be clear from context
which interpretation is intended. To differentiate the concept class £ = {L; | : € IN}
from the hypothesis space £, we sometimes say that the class of languages {L; | €
IN} is the range of the hypothesis space £ (written: range(£)). The next definition
adapts Gold’s criterion of identification in the limit to the identification of indexed

families with respect to a given hypothesis space.

Definition 21 Let £ be an indexed family and let £’ = {L{, L}, ...} be a hypothesis

space.

27

(a) Let L € £. A machine M TxtEx-identifies L with respect to hypothesis space
L' just in case for any text T for L, M(T)] = j such that L = L.

(b) A machine M TxtEx-identifies £ with respect to £’ just in case for each
L € £, M TxtEx-identifies L with respect to L’.

There are three kinds of identification that have been studied in the literature:
(a) class comprising; (b) class preserving; and (c) exact. If the indexed family £
is identified with respect to a hypothesis space £’ such that £ C range(L') then
the identification is referred to as class comprising. However, if it is required that
the indexed family be identifiable with respect to a hypothesis space £’ such that
L = range(L’) then the identification is referred to as class preserving. Finally, if
the identification of the indexed family L is required to be with respect to L itself,
then the identification is referred to as exact. The reader is directed to the excellent
survey by Zeugmann and Lange [55] for discussion of these issues.

We can similarly define TxtEx,-identification with respect to hypothesis space
L’. Note that Theorem 5 holds with respect to all hypothesis spaces.

We next describe certain topological conditions on language classes that yield
sufficient conditions for identifiability of indexed families of computable languages.

The following notion was introduced by Angluin [6].

Definition 22 [6] £ has finite thickness just in case for each n € IN, card({L € L |
n € L}) is finite.

PATTERN has finite thickness. Angluin [6] showed that if £ is an indexed family of
computable languages and £ has finite thickness then £ € TxtEx. A more interest-
ing topological notion was introduced by Wright [54] (see also Motoki, Shinohara,
and Wright [39]) described below.

Definition 23 [54. 39] £ has infinite elasticity just in case there exists an infinite
sequence of pairwise distinct numbers, {w; € IN | 7 € IN}, and an infinite sequence
of pairwise distinct languages, {A; € £ | ¢« € IN}, such that for each k¥ € IN,
{w; |1 < k} C A, but wy € Ax. L is said to have finite elasticity just in case £

does not have infinite elasticity.

Wright [51] showed that if a class £ has finite thickness then it has finite elasticity.
He further showed that if a class £ is an indexed family of computable languages

and L has finite elasticity, then £ € TxtEx.

238

Finite elasticity is a sufficient condition for identification of indexed families of
computable languages. Also, the property of finite elasticity is preserved under finite
unions. As already noted. it was shown in [29] that for each n > 0, PATTERN™ €
TxtEx_-.

At the moment. we do not know whether any indexed family of computable lan-
guages with finite elasticity is identifiable with an ordinal mind change bound. How-
ever, we are able to show that an indexed family of computable languages with finite
elasticity has an ordinal mind change bound if it can be identified conservatively.

The next definition describes conservative identification.

Definition 24 Let £ = {Lo,L,,...} be a hypothesis space. M is said to be a
conservative learning machine with respect to hypothesis space L just in case for all
o and 7 such that ¢ C 7 and content(7) C Lm(,), M(o) = M(7).

Intuitively, conservative machines do not change their hypothesis if the input is

contained in the language conjectured.

Theorem 6 Let L' be an indexed family of computable languages with finite elas-
ticity. Assume that L is identifiable by a conservative learning machine with respect
to the hypothesis space L'. Then L € TxtExg with respect to hypothesis space L',

for some constructive ordinal .

PROOF. Let M be a conservative learning machine which identifies £ with respect
to hypothesis space £’. We will describe a machine M’ which identifies £ with
respect to L', and changes its mind at most finitely often on any text. Theorem 5
will then imply the theorem.

For a given text T', n € IN, let Imc(M’, T'[n]) be defined as follows:

Imc(M', T[n]) = max({m+1|m <n A M'(T[m]) # M'(T[m +1])})

Intuitively. Imc denotes the last point where M’ made a mind change. Note that if

M/(T[0]) = M'(T[1]) = --- = M'(T[n]), then Imc(M’, T[r]) = 0. M’ is now defined
as follows:
7. if n =0o0r M(T[n]) =7;
M'(T[n]) = < M(T[n]), if content(T[lmc(M’, T{n — 1])]) € Liygrpys

M'(T'[n —1]), otherwise.

29

It is easy to verify that M’ TxtEx-identifies with respect to £’ any language which.
M TxtEx-identifies with respect to L. We prove that M’ makes only finitely many
mind changes on any text 7. By Theorem 5, this implies that £ € TxtEan with
respect to hypothesis space L', for some constructive ordinal «.

Suppose by way of contradiction that M’ makes infinitely many mind changes on
a text T. Let ny < ny < ... be such that, for each 7, M'(T'[n;]) # M'(T'[n; + 1)).
Then. it is easy to verify from the construction of M’ that, for all ¢, content(7'[n; +
1]) € LllV[’(T[n,+-g])' Moreover, since M is conservative, we have content(7T[n; + 1])

,N[’(T[n.,])' It follows that £’ has infinite elasticity. A contradiction. |

Definition 25 L; is a minimal concept of L in L just in case L C L;, L; € L, and
there is no L; € £ such that L. C L; and L; C L;.

Definition 26 [47] L satisfies MEF-condition if for any finite set D and any L; € £
with D C L; there is a minimal concept L; of D within £ such that L; C L;. £
satisfies MFF-condition if for any nonempty finite set D, the cardinality of {L; €
L | L; is a minimal concept of D within £} is finite. £ has M-finite thickness if £
satisfies both MEF-condition and MFF-condition.

Theorem 7 Let L be an indexed family of computable languages. Assume that
L has M-finite thickness and finite elasticity. Then L € TxtExS with respect to

hypothesis space L. for some constructive ordinal .

PROOF. Suppose T is an arbitrary text. We then describe a learning machine M.
Define M(T'[n]) as follows. Let L™ denote L; N {z | z < n}.
If @ € £, then let Gy denote a grammar for § in £; otheriwse let Gy = 0.

M(T'[n])
Let (', = content(7T[n]).
If C,, = 0 then output Gy.
Let Sp={i<n|C.CL A—(3j<n)CaCL; AL™cLM)
If S, is not empty then output min(S,), else output M(T'[n — 1]).
End

30

The above learning machine is a slight modification of the machine of Muk-
ouchi [40].

Let T be an arbitrary text (for a language L). Assume without loss of generality
that content(T") # 0. We will show that M makes only finitely many mind changes
on T. Suppose for contradiction, M changes its mind infinitely often on T'. First
note that, if M(T'[n]) # M(T'[n + 1]) then content(T[n + 1]) C LM(Tfn+1))- Consider
two cases:

(‘ase 1. M outputs infinitely many distinct conjectures ¢ such that content(T") € L;.
(That is. card({M(T'[n]) | n € N A content(T) € Lmria)}) = 00-)

Let n; < ny < ng < --- be such that M(T'|n;]) # M(T[ni41]), and
content(T[nit1]) € Lm(tin])- Note that there exist such an n; by the
hypothesis of this case. Also, by construction, we have content(7'[n;]) C
LM(Tn,,,)) (since, any new hypothesis output by M is consistent with
the input). By considering the languages LwnyT[n,]), We see that
content(T'[n2i41]) € LM(Tlngiya]), Put content(T[n2iy1]) € LM(Ting- It

follows that £ has an infinite elasticity. A contradiction.

Case 2. M issues finitely many distinct conjectures i such that content(T) € L;.

Then, for large enough n, Lyyris)) 2 content(T) = L (since M changes
its hypothesis infinitely often and if M(T[n]) # M(T[n + 1]) then
content(T'[n + 1]) € LyM(T{n+1)))-

Mukouchi [40] showed the following lemma.

Lemma 5 [40] Let £ = {L; | i € IN} be a class salisfying MEF-
condition and having finite elasticity. Let L be a nonempty language.
If for some n, L C L,, then there is a minimal concept L; of L within
L such that L; C L,.

Since, we have already shown that, for large enough n, LM(T[n]) DL,
Lemma 5 implies that there is a minimal concept L; of L within L.

Let S = {L; | L, is a minimal concept for L within £}. Let m be
such that, for all L' € S, there exists a j < m such that L; = L' (that
is, all minimal concepts of L = content(T’) are represented by an index
< m). Let j, be the minimum number such that L;_ € S.

For large enough n (> m), the following hold

31

() Lmerpy 2 Lo

(i1) For all j < m, either content(T[n]) € L;, or L; € S, or there
exists an L’ € S, such that Lg-n) o LM,

(iii) For all minimal concepts L’ € S, such that L' # L; , L'™ —
LY £ 0.

Note that (i) and (ii) imply that, M(7T'[r]) will only output an index
for one of the minimal concepts. And, (iii) implies that this index must
be j,. Hence, M converges to j, on the text 7', i.e., M makes only

finitely many mind changes on T. A contradiction.

Thus. M must make only finitely many mind changes on any text 7. Similarly
to Case 2, we can show that on any text for a language L;, M converges to the
smallest index for L;. So, M makes finitely many mind changes on any input and
TxtEx-identifies £ with respect to £. Thus, Theorem 5 implies that £ € TxtEx%

with respect to L. for some constructive ordinal a. |

Corollary 2 Let L be an indexed family of computable languages with finite thick-

ness. Then £ € TxtExC with respect to L, for some constructive ordinal a.

PrOOF. If £ has finite thickness, then £ has finite elasticity (cf. Wright [54] and
Shinohara [50]) and M-finite thickness (cf. Mukouchi [40]). Hence, by Theorem 7,

L € TxtExY with respect to £, for some constructive ordinal a. |

A special case of Theorem 7 is the learnability of length-bounded elementary
formal systems with ordinal-bounded mind changes. (Shinohara [50] has proved
that LBEFS(S™ the class of languages defined by length-bounded elementary formal
systems with at most n axioms, has finite elasticity and Sato and Moriyama [47] have
proved that LBEFS!S™ has M-finite thickness.) The learnability of LBEFS(E™ was
shown by Shinohara [50]. Jain and Sharma [29] proved that LBEFS(™ is learnable
with the number of mind changes bounded by ordinal w™.

The results discussed in the present paper give general sufficient conditions for
identifiability with ordinal bound on mind changes. However, they do not give
explicit ordinals a. In all these theorems we have “L € TxtEx? for some ordinal
a.” It appears that ordinal o can be arbitrarily large. An interesting question to
ask is if the ordinal bound « is still arbitrarily large if attention is restricted to

classes that are identifiable by strategies that obey stronger restrications than those

in Theorems 6 and 7.

32

In next section, we show that even if we require that a class £ has finite thickness
and that it is identifiable by a strong-monotonic learning machine, the ordinal mind
change bound can be arbitrarily large. The reader should however note that strong-
monotonicity together with finite elasticity implies the existence of an ordinal bound

because strong-monotonicity implies conservatism.

4.4 Ordinal complexity and monotonicity

Below we describe the notion of strong-monotonic identification.
Definition 27 (Jantke [31])

(a) Let £ = {L§. L....} be a hypothesis space. A learning machine M is said to
be strong monotonic with respect to L' just in case for all o and 7 such that

! 7
ocCr, LM(a) - LM(T)-

(b) A learning machine M is said to strong-monotonically TxtEx-identify L with
respect to L' just in case M TxtEx-identifies L with respect to £’ and M is

strong monotonic with respect to £'.

(c) M strong-monotonically TxtEx-identifies L with respect to L' just in case,
for each L € £, M strong-monotonically TxtEx-identifies L with respect to
L.

We use a technical lemma.

Lemma 6 Fir a constructive ordinal o. There erists an r.e. sequence of pairs

of learning machines and corresponding ordinal mind change counter functions,

(My,Fo). (M, F,). ..., such that
(a) for all L € TxtExg, there exists an i1 such that L C TxtExg(Mi, F,).
(b) for all i, Fi(A) = a.

(¢c) for all ¢, for all texts T, for all n, M;(T[n]) # Mi(T[n + 1]) = Fi(T[n]) =
F,(T[n+1]).

The above lemma can be proved on the lines of the proof of Lemma 4.2.2B in [41].

33

Theorem 8 Let a be a constructive ordinal. There exists an indezed family £ such
that £ can be TxtEx-identified strong-monotonically with respect to hypothesis space
L. L has finite thickness, and £ ¢ TxtExS with respect to any hypothesis space.

Proo¥F. Let (My.Fg). (M, F;)... be an enumeration of pairs of learning machines
and corresponding ordinal mind change counter functions as given by Lemma 6.

Note that for each 7 € IN, and for any text T, M; makes only finitely many mind
changes when fed 7' [24].

Let L; = {(¢,x) | = € IN}. Note that L, is infinite, and for distinct 7, j, L; and L;
are disjoint. Let L? = {(¢,z) | ¢ < s}. We now give an algorithm which receives 1

and enumerates (effectively in 7) a finite set of languages L£; such that:

(a) if L € £;, then L = L? for some s;

(b) L, is finite (note that one can effectively decide the membership problem for

languages in £;):
(c) L; is not TxtEx-identified by M, with respect to any hypothesis space;

(d) There exists a machine, effective in 7, that strong-monotonically TxtEx-

identifies £; with respect to the hypothesis space L;.

Now define £ = | J;cy £i, such that for L{ € £, one can effectively find an index
(in £) for L. We will show that £ establishes the theorem. First, the algorithm

enumerating L, is as follows:

Enumeration of £;.

Initially, let £, consists of just the language L?.

Let n = 0 and let initial sequence oy be such that content(co) = L?. Go to
Stage 0.
Stage s
Add the language L3*' to C;.
Search for a v extending oy, such that content(y) € L:*', and M;(o,) #
M (7).
If and when such a 4 is found, let o,,; be an extension of ¥ such that
content(o,4,) = Lt
Go to Stage s + 1.
End Stage s

End Enumeration of C;

34

We now show that L£;’s satisfy the properties claimed.

Lemma 7 For each i € IN, there are only finitely many stages in the enumeration
procedure for L;. Hence, L, is finite.

PROOF. Suppose by way of contradiction there is an ¢ € IN such that there are
infinitely many stages in the constrution of £,. Then M; on UselN o, makes infinitely

many mind changes. A contradiction. |

Lemma 8 For each 1 € IN, M; fails to TxtEx-identify L; with respect to any
hypothesis space.

PROOF. Let s be the stage in the enumeration of £; which starts but does not
terminate. Then M; can TxtEx-identify at most one of L and L{*!, both of which
are in L;. |

Now define £ = |,y £i, such that for L} € £, one can effectively find an index
(in £) for L:. Tt is easy to verify that £ can be strong monotonicaly identified with
respect to hypothesis space £. Also, £L ¢ TxtEx?, by Lemma 8. Moreover, note
that L;’s are pairwise disjoint. Thus, since each language in £; is a subset of L; and
L; is finite, we have that £ has finite thickness. i

The reader should note that a similar result in the sense of class-preserving or exact
identification cannot hold for dual strong-monotonicity [32] because class preserving
dual strong monotonic identification is the same as finite identification (see [37],
[55]). However, we can establish a similar result for class comprising dual strong

monotonic identification.

Definition 28 [32]

(a) Let £ = {Lg, Ly,...} be a hypothesis space. A learning machine M is said
to be dual strong-monotonic with respect to hypothesis space L' just in case for all
o aund 7 such that o C 7, Li\d(a) B) L,M(T)'

(b) A learning machine M is said to dual strong-monotonically TxtEx-identify L
with respect to hypothesis space L’ just in case M TxtEx-identifies L with respect
to hypothesis space £’ and M is dual strong monotonic with respect to L'.

(¢) M dual strong-monotonically TxtEx-identifies L with respect to hypothesis
space L' just in case, for each L € £, M dual strong-monotonically TxtEx-identifies
L with respect to L.

35

Theorem 9 Let o be a constructive ordinal. There erists an indezed family £ and a
hypothesis space L' such that L can be TxtEx-identified dual strong-monotonically
with respect to L', L' has finite thickness, and £ ¢ TxtEx® with respect to any
hypothesis space.

PROOF. Let (Mg, Fo),(M;j,F,)... be an enumeration of pairs of learning machines
and corresponding ordinal mind change counter functions as given by Lemma 6.
Note that for each « € IN, and any text T, M;, fed T, makes only finitely many
mind changes [24].

For each 7, we will define a recursive function g; (where a program for ¢; can be
found effectively in ¢). g, will satisfy the following properties:

(A) {r | g;(z) = 1} is nonempty and finite. Moreover, {z | g:(z) = 1} C {(7,y) |
y € IN}.

(B) Let L; = {2z,20 + 1 | gi(z) =1}. Let £L; = {L C L; | Vz | gs(z) = 1)(Ib €
{0,1})[2¢ + b € L]}. Then, £; € TxtEx?(M;,F;) (with respect to any hypothesis
space)l.

We take £ = |J, £; (using the fact that g;'(1) is finite, one can easily construct
such an indexed family £). From (B) it follows that £ ¢ TxtExS with respect to
any hypothesis space.

We let £’ be an hypothesis space such that range(£’) = {L | (F¢)[L C L;]}, where
an index for L; — D. for any finite set D), can be obtained effectively from 7 and D.
Note that such an hypothesis space £’ can be easily constructed. Clearly, £’ has
finite thickness.

It remains to construct recursive functions g; as claimed above and to show that
L can be dual strong monotonically identified with respect to hypothesis space £’.

We now define g;.

Definition of g;

For x < (2,0), let g;(z) = 0. Let ¢;({z,0)) = 1.
Let 29 = (7,0). Intuitively, ¢ denotes the largest z such that g;(z) is defined to
be 1 before stage s.

Let o9 = A.
Go to Stage 0.
Stage s

! Notation: 3! denotes “there exists a unique.”

36

1. Dovetail steps 2 and 3, until step 2 succeeds. If and when step 2 succeeds,

go to step 4.

[\

Search for an extension 7 of oy, and z € {2z7,22¢ 4+ 1}, such that
(a) M;(7) # M(0os). and
(b) content(7) = content(o,) U {z}.
3. Yorr=r,+1tooodo
Let ¢g;(x) = 0.
EndFor
4. If and when such 7, z are found, let 0,47 = 7. Let 2" € {{(i,y) | y € IN},
be such that g;(2{™') has not been defined until now.
Let g;(«$t!) = 1.
For x < 23*!. such that g;(z) has not been defined until now, let g;(z) = 0.
End Stage s

End of definition of g;.

Lemma 9 For cach 1 € IN, there are only finitely many stages in the construction

Ofg,'.

PROOF. Suppose by way of contradiction there are infinitely many stages. Then,

M, on Use]N os makes infinitely many mind changes. A contradiction. |

Fix 7. Using the above lemma, it is easy to verify that g; satisfies (A). We now show
that g; satisfies (B). Suppose s is the stage which starts but does not terminate. Let
L’ = content(o,) U {225t'}. Let L” = content(o,) U {227 + 1}. Let T’, extending
05, be a text for L’. Let T” extending o, be a text for L”. Since step 2 in stage s
did not succeed, we have that M;(T") = M;(T") = Mi(o,). It follows that M; does
not TxtEx-identify £, with respect to any hypothesis space. Thus (B) is satisfied.

We now give a machine M which, for each L € L, dual strong monotonically
identifies L with respect to hypothesis space £’. Let gram be a recursive function

such that L ., = L; — D (by construction of £’ such a function gram clearly

exists).

For r € IN and b € {0,1}, let mate(2z + b) = 2z + 1 — b.

M(T|n])
If content(7'[n]) = 0. then let M(T[n]) =?.

37

1. Let ¢ be such that content(T[n]) C {2(,y) +b|y € IN A be {0,1}}.
(If no such 7 exists, then let M(T[n]) = M(T'[n — 1]).)

2. Let D = {mate(z) | z € content(T'[n])}.

3. Output gram(z, D).

End

It is easy to verify from the definition of L;, £;, £, L' that M is dual strong

monotonic and TxtEx-identifies £ with respect to hypothesis space £. Theorem
follows. [|

4.5 Summary

This chapter linked together ordinal bounds on the number of mindchanges, mono-
tonicity requirements and topological properties of language classes (finite thick-
ness and finite elasticity). Intricate relations between these notions were revealed.
Interestingly. ordinal bounds are also related to inference of nearly-minimal size

programs|4].

38

Chapter 5

The influence of the system of

ordinal notations

5.1 Overview

This chapter is devoted to the influence of a particular notation for ordinals on the
power of Ex,, TxtEx, and InfEx,. We prove our results for Ex, (identification of
recursive functions in the limit) only. However, all results can be proved for TxtEx,
and InfEx,, too (with minor modifications in the proofs).

We remind that there are many nonequivalent systems of notations for construc-
tive ordinals. We defined the requirements for an acceptable system of notations in
section 2.5. There is a large variety of systems satisfying these requirements. In [24]
1t remained open whether the system of notations influences the learning power. We
resolve this problem.

In section 5.2 we show that the learning power is not influenced by the system of
notations while only small ordinals (below w?) are used. In this case, any learning
machine working with ordinals in one system of notations can be transformed to an
equivalent learning machine working in any other system of notations.

In section 5.3 we consider the bounds on the number of mindchanges described by
the ordinal w?. Here, the situation is completely different. Our results reveal very
strong influence of the system of notations on the learning power. We construct two
systems of notations such that for some learning problems the first system is better
and for some other problems the second system is better (cf. Theorem 11).

In section 5.4 we consider two particular systems of notations: O and P(cf. section

39

2.5). We give results relating these two systems to other systems.

The learning power can be increased in two ways: by using larger ordinals and
by using more expressive systems of notations. We compare these two methods in
sction 5.5. We show that the use of larger ordinals cannot compensate the weakness
of the system of notations and, conversely, the use of stronger system cannot replace

the use of larger ordinals.

5.2 FEX,-identification for a < w?

For small ordinals a the power of EX? does not depend on the system of notations

A,

Theorem 10 If A and B are two systems of ordinal notations and o is an ordinal
smaller than w?. then EXA = EXB.

PrOOF. We show that any system of notations can be simulated by the system P

and, conversely, P can simulate any other system.
Lemma 10 For an arbitrary system of notations A and an ordinal o < w?
EXY € EXA

PROOF. This is a special case of the simulation of EXFP-IIM by EXA-IIM for a <
w? + w -2 in the proof of Theorem 13. 0

Lemma 11 For an arbitrary system of notations A and an ordinal o < w?
EX4 € gxt
PROOF. The proof is based on the following lemma.

Lemma 12 There erists a partial recursive function t(z,y,z) such that, if and y

are notations in the system A, and z is a notation in the system P and
va(y) < va(z) < vp(2) < q,

then t(z,y, z) is a notation in P, va(y) < vp(t(z,y,2)) and vp(t(z,y,2)) < vp(2).

40

PROOF. Let z: =w -k + 1. We define

PN 27 S (ES VR R}
(£-9,2 _{w-{k—l)—l—L[y) fl=0

Let M4 be an EXA-1IM.

Consider the EX”-IIM Mp which simulates M, and outputs the same conjec-
tures. If M4 changes the notation on its ordinal counter from z to y, then Mp
changes the notation from z to t(x,y,z), where z is the notation on Mp’s counter
before change.

At the beginning both M4 and Mp have a notation for « on the counter. Further,
always when M4 changes the ordinal, Mp changes the ordinal, too. Lemma 12
guarantees that all the time the ordinal on the counter of Mp is greater than or

equal to the ordinal on the counter of My4. 1l

From these two lemmas theorem 10 follows. |

5.3 FE X »-identification

However, for w? and larger ordinals, the dependence is rather strong. We can con-
struct two systems of notations such that one is stronger than another (there exists a
set of functions that is identifiable using the first system but is not identifiable using
the second system). More, we can show that there exist two systems of notations

such that in some cases the first is better and, in some other cases, the second is
better.

Theorem 11 There exist systems of notations A and B such that EX*, ¢ EX5
and Esz Z E_XjQ.

PROOF. First, we construct two lim-computable functions such that, for some z the
first grows much faster than the second and, for some other z the second grows much
faster than the first(subsection 5.3.1). Then, we use these two functions to define
two systems of notations Sy, and Sy, (subsection 5.3.2). Finally, we prove that there
is a set of functions which can be identified using S,, but cannot be identified using
Sy, (subsection 5.3.3).

41

5.3.1 Lemma about lim-computable functions

Definition 29 A function A(x) : N — IN is lim-computable if there exists a total

recursive function g(x.y) such that h(z) = lim,_. g(z,y).

For functions h(x) and g(x,y) we say that h(z) is lim-computable as witnessed by
g(xr.y). We say that g(z,y) is monotonic if it is nondecreasing in y and increasing

in r.

Lemma 13 If oi(x), ¢2(z),... is a computable sequence of partial recursive func-
tions. then there exist functions hy(x) and ho(z) such that
1. hy is lim-computable as witnessed by a monotonous function ¢;(z,y);

2. hy is lim-computable as witnessed by a monotonous function g,(z,y);

3. For each z there is an yy such that hi({z,31)) > h2(0z({z,y1))) or ¢.({z,11))
s undefined.

4. For each x there is an y, such that hy({x,y2)) > h1(dz({z,y2))) or ¢.({x,y2))
is undefined. :

PROOF. We give an algorithm computing ¢;(z,y) and g2(z,y).

The algorithm uses variables m;,m,,... and m{,mj,... to mark the possible
values of y; and y,. Also, it uses variables nj,n,, ... and nj,nj,

1% step Set ¢1(1,1) = g2(1,1) =1 and my =0,m] = 0,n; = 0,n; = 0.

kth step (k> 1)

1. Define g;(k,7) = g1(k—1,7)+1 and g2(k,i) = g2(k—1,2)+1fore € {1,...,k—
i}. For each 7 € {1,...,k} define ¢,(z, k) equal to

(a) the maximum of gy(¢,k—1), g1(i—1,k)+1 and gz(min(k—1,n;), k—1)+1,

if 1 = (I,my) for some ;
(b) the_ maximum of ¢;(z,k — 1) and ¢;(z — 1, k) + 1, otherwise.

Similarly, define g,(i, k) equal to

(a) the maximum of g,(z,k—1), go(i—1,k)+1 and ¢;(min(k—1,n}), k—1)+1,
if ¢+ = (I, m;) for some I;

(b) the maximum of g,(z,k — 1) and g¢2(¢ — 1,k + 1), otherwise.

42

2. Foreach: € {1,2,...,k— 1} do:

(a) Simulate the first k steps in the computations of ¢;({z, m;)) and ¢;((z, m?)).

(b) If the computation of ¢;({i,m;)) terminates within k steps, then for
each j € {1,1+1,...,k — 1} compute the smallest number r; such that
@i((i.m;)) < (j,r;) and set m’ = max(m/,r;).

(c) If the computation of ¢;({, m!)) terminates within k steps, then for each
J € {i+1,..., k—1} compute the smallest r; satisfying ¢:({z,m})) < (7,7;)

and set m; = maz(mj,r;).
3. For each j € {l.... . k—1}:

(a) Set n; equal to the greatest ¢;({(i,m;)) such that ¢ € {1,...,7} and the

computation of ¢,((i,m;)) terminates within k steps;

(b) Set n’ equal to the greatest ¢;({i,m!)) such that i € {I,...,7} and the

computation of &;({i,m!)) terminates within k steps.

4. Let my be the smallest number such that (k,my) > nj_, and m) be the
smallest number such that (k,m}) > ng_1.

Proposition 1 For each j the values of mj, m’

%, n; and n} change only finitely

many times.

PROOF. It suffices to prove the proposition for m; and m’ because, if from some
moment the values of my,m],...,m;, m} do not change then the values of n; and n;
can change only finitely many times. (This can happen only when the computation
of ¢:({i,m;)) or ¢;((¢,m!)) terminates for some ¢ € {1,...,7}.)

We prove by induction that the values of m; and m; can change only finitely many
times.

The value of m; never changes.

Further, if we know that the values of m,, ..., m; change only finitely many times,
there exists a moment after which the algorithm does not change them. After this

moment the value of m’; can change only j times: when the computation of ¢;((z,m;))

terminates for some: € {1,...,5}. Hence, the value of m/ changes only finitely many
times.
Similarly, if we know that the values of m{,m),..., m; change only finite number

of times, we can conclude that after some moment the algorithm does not change

43

them. After this moment the value of m;;; can change only j times: when the

computation of ¢,;((i,m!)) terminates for some 2 € {1,...,j}. |

Further, m;, m!,n,.n’ denote the last values of these variables (the values which

are not changed later}.

Proposition 2 For each x there are only finitely many y such that ¢(z,y) #
ai(r.y + 1) or ga2(z,y) # g2,y + 1).

PROOF. By the way of contradiction. Let x; be the smallest number such that
g1(21.y) # g1(x1.y + 1) for infinitely many y and z, be the smallest number such
that ¢ga2(xr2,y) # g2(x2,y + 1) for infinitely many y.

Let 21y = (i1,j1) and x5 = (i2, J2).

Proposition 3 j; is equal to the last value of m;, during the computation.

PRrROOF. By the way of contradiction, assume that the last value of m;, is different

from j;. Then, for some N and all £ > N, ¢g1(zy, k) is computed as
max(gi(z1, k — 1),¢1(x1 — 1, k) + 1).

ry is the smallest number such that ¢,(z1,y) # ¢1(z1,y + 1) for infinitely many y.
Hence, there exists an Np such that g;(z; — 1, No) = g1(z1 —1,No+ 1) = Then
g1(x1. No) = ¢g1(x1. No+ 1) = A contradiction. |

Stmilarly, j, is equal to the last value of m; .
Let 13 < 43. (23 > 22 case is similar.)
If j € {1....,7;}, and the computation of ¢,;({j,m;)) terminates, the algorithm

sets m;, to such value that (iz,m!) > ¢;({j,m;)). Hence

xy = (ip,my) > max{¢;((7,m;))|7 € {1,...,i2}} 2

> maI{¢J((]’mJ>)|] € {1a . -ail}} =ny

Starting from some step, m,, is equal to j; (Proposition 3). Then, g;(z1,k) is

computed as
max(gi(z1,k— 1), q1(x1 — 1, k) + 1,92(n; , k— 1) + 1)

ry > n;, implies that g,(n;,,y) # g2(ni,,y + 1) for finitely many y. Also, there exist
only finitely many y such that g,(xy—1,y) # g1(z; — 1,y +1). Hence, there exists an

44

N such that g1 (7 —1,. V) = gi(z1—1,N+1) = ... and ¢g2(n;,, N) = g2(ni,, N+1) =
oo Then. g1(x1. N+ 1) =gi(a1. N +2) = ...
('ontradiction with the assumption that ¢i(z1,y) # ¢i1(z1,y + 1) for infinitely

many j. |

Hence, for each x there exists an N such that g;(z, V) = ¢g;(2, N+1) = This
implies that hq(x) = limy_. g1(2.y) is defined for all + € IN. Similarly, we can
prove that hy(x) = limy_, g2(x,y) is defined for all z € IN.

We defined that g¢;(. k) is equal to

ma‘x(gl(i) k —]-)-.rgll(2 -1, k) +1,..)

Hence. ¢;(r,y) is nondecreasing in y and increasing in y, i.e. monotonic. Similarly,
g2(x.y) is monotonic. |
We take an arbitrary z and denote by y; the last value of m,. If ¢((z,y1)) is
defined. the computation of ¢,((z,y1)) terminates in N steps for some N € IN.
Then. n, > ¢.((x,y1)) after the N*! step of the algorithm.
Hence, gi1({z,y1). k) > g2(9-({z,y1)),k — 1) + 1 for arbitrary £k > N. Taking
k — oo we obtain that A;((z,y1)) > ha(d:((z,y1))) + 1 > ha(d((z, y1)))-

Similarly we can prove that for arbitrary z there exists an y, such that ho((z,y2) >
hi(0z((x.y2)) or é-({x,y2)) is undefined. i

5.3.2 The system of notations S,

Let h(r) be lim-computable as witnessed by a monotonic g(x,y). (We will need the
monotonicity because Definition 15 requires that ©g.(x)(0), ©45(z)(1), .- - is increas-
ing.)

Consider the system of notations S, consisting of the following notations:

1. a for a € IN;

2. a;for:=1,2,..;

3. a;—w-a+bfori=1,2,... and a,b € IN;
4. 2.

The notations are natural numbers by the definition of system of notations. It is

assumed that some effective encoding of mentioned expressions by natural numbers

45

is fixed. Further we shall call these expressions notations though in reality notations

are their encodings by natural numbers.

The notations denote the following ordinals:
1. a denotes the ordinal a;

2. a; denotes w - a; where a; = h(z) + 1.

3. a; —w-a denotes w- (a; —a)+ bif a < a; and w + b otherwise;

4. w? denotes the ordinal w?.

Next, we define ks, ps,, qs,- It can be checked that they are defined so that the

ordinals corresponding to notations are as we described.
The function ks, (z) is defined to be 0 for the notation 0, 2(a limit ordinal) for

notations a;,a; —w - a and w?, 1(a successor ordinal) for all other notations.

The function ps,(x) is defined to be b—1if + = band oy —w-a+ (b—1) if
r=a;j—w-a+b.

The function gs, () is defined in the following way:

1. If r = o; then g¢s,(z) is a program such that qusg(r](j) =a; —w+J;
2. If r = a; —w - a then gs,(z) is such that

Pas,(2)(J) = Wi :
ai~w-(a+1)+; ifg(z,j)>a+]l

o g = &.1.,‘2 then LPng(x](i) = ;.

The system S, can be defined for many functions g. The notations are the same
only the ordinals denoted by these notations may be different. So, each IIM working
in a system .5, for some g can work in system S, for another g, too.

Let My. M,, ... be an enumeration of all [IM working in S, and starting with w?

on tue counter. We consider the sequence of partial recursive functions ¢,, ¢,...

such that ¢;()) is computed by the following algorithm:

1. Simulate M; on the input function f; such that f;(0) = j and fi(z) = 0 if
r # 0. If after reading f1(0), fi(1),..., fi(k) M; outputs the first conjecture,

goto 2.

46

2. Simulate M; on f; and the function fy(z) such that fo(k+1) =1 and fo(x) =
fi(x)if ¢ # k+1. If on one of functions M; diminishes the ordinal w? to some
aq. define &¢;(j) = [.

Proposition 4 If 0,()) is undefined, M; does not identify one of functions f, and
f2

PROOF. M, has issued a conjecture after reading f1(0), fi(1),..., fi(k). This con-
jecture is incorrect for at least one of the functions f; and f,. If M; identifies both
f1 and f,. then M; makes a mindchange on one of these functions.

0;(7) 1s undefined if and only if M; does not decrease the ordinal on its counter

on f; and f,. Then, M, does not make a mindchange on any of the functions f; and

fa. |

5.3.3 The main result

Next, we take the sequence ¢, @2,... and construct the functions ¢;(z,y) and

g2(x,y) from Lemma 13.

Lemma 14 There exists a set of recursive functions U such that U € EX®" and

w?
UgEXDD.
PRroOOF. We consider an Engl -IIM M working as follows:

1. Read f(0),..., f(k). If £ = 0 output a program computing

{ f(0) ifz=0

0 otherwise

filz) =

2. If k> 0 and f(k) =0, output the same conjecture as on f(0),..., f(k —1).

3. Ifk>0, f(1)=...= f(k—1) =0 and f(k) # 0 diminish the notation on the

counter from w? to ay(g) and output a program computing

fl(x):{ flz) ifz<k

0 otherwise

4. Otherwise, find ¢ and j such that f(0) = (i,j) and simulate M; on the in-
put f(0),..., f(k) in the system of notations S,,. Then, each time when M;

modifies its ordinal:

47

(a) If M; replaces w? by o, for some | € IN, M replaces o) by ag) —w +1.
(b) If M; replaces aj —w-a; + by by oy — w - az + by, M replaces ajo) —w-
(ay + 1)+ (by + 1) by ajo) —w- (a2 + 1) + (b + 1).

(c) If M; replaces aj—w-ay + by by by, M replaces ayo) —w-(ay+1)+ (b1 +1)
by (b + 1).

Let m denote the largest number such that m < k and the conjectures of M
after reading f(0), f(1), ..., f(m) and after reading f(0), ..., f(m + 1) are
different. If M; makes a mindchange after reading f(0), ..., f(n) for some n

such that m < n < k, M outputs a program computing

fl(:cJ:{ flz) ifz <k

0 otherwise

Otherwise, the conjecture remains the same as on f(0),..., f(k—1).
The set [7 consists of all total recursive functions identified by M.
Proposition 5 If1 € IN then M: does not EXf;” -identify U.

PROOF. By Lemma 13, there is an y; such that A;({z,31)) > ha(di({z,31))) or
6:i((2, 1)) 1s undefined.

Case 1. ¢;({z,y1)) is undefined.

Proposition 4 implies that M; does not identify a function f such that f(0) =
(z,41) and f(z) # 0 for at most one z > 0. M always identifies such functions.

Case 2. ¢i((i,y1)) is defined and h1((7,y1)) > ha(:({z,1))).

We consider functions f such that
(a) f(0) = (i,y1),

(b) f(0), f(1),..., f(k)is an initial fragment of f, or f, (Proposition 4) after which

M; changes its ordinal from w? to ag,((iy,)), and
(c) M; identifies f.

T denotes the set of all such functions.

The function f, always satisfies requirements (a) and (b). Hence, f; € T if and
only if f; is identified by M;.

If T is empty then f; is not identified by M;. However, it is identified by M.
Hence. U is not identified by M;.

It remains to consider the case when T' is nonempty.

48

Proposition 6 If f € T and, after reading f(0),..., f(n), M; makes its last mind-

change on f. there exists a function f' such that
1. f'(7) = f(2) fori € {0,...,n};
2. f(x) # f'(x) for some x > n;

3. M EX’9 -identifies f'.

ProOF. We consider M working on the input f(0)...., f(k). At the beginning it
changes the ordinal notation from w? to & y,)-

When M; puts the notation ag,((iy,)) in the system Sy, on the counter, M puts
the notation ;) —w +1 in the system S, on the counter. The notation ay, (i y))
denotes the ordinal « - h2(@;({¢,y1)) + 1). The notation ay;) —w + 1 denotes the
ordinal w - hy({z,11)) + 1.

Lemma 13 implies h2(é:({i,1v1))) < hi({i.y1)). Hence, ha(o:i({1,11))) + 1 <
hi({i.y1)) and

w - ha(0i((1y1)) + 1) <w - ha((iy1)) +1

So. at the beginning. the ordinal on the counter of M is larger than the ordinal on
the counter of M;. The rules of modification for M guarantee that it always remains
larger than the ordinal on the counter of M;. So. each time when M; modifies its
notation, M can do it. too.

We consider

f(r) if v <n
flay=< fin+1)+1 ifr=n+1
0 otherwise

After reading f(0)...., f'(n) IIM M, makes a mindchange because f(0) = f'(0).
. f(n) = f'(n). We consider M computing the conjecture on the input f'(0). ...

f'(n 4+ 1). M simulates M,. finds that M; has made a mindchange and changes its

conjecture to the program computing f'(z). So, M identifies f’. |

Proposition 7 There exists a function fy € T and a number n such that M; makes
the last mindchange on [after reading fi(0)..... fi(n) and M; does not identify any
function f" such that " # fi but fi(x) = f'(z) for 2 € {0.....n}.

ProOOF. lor each function f € T we take the ordinal which appears on the ordinal

counter of M; after this counter is modified for the last time. We select the smallest

19

among these ordinals and denote it ag. Let f; be a function such that M; puts ag
on the ordinal counter on the input f;. n is the number such that, after reading
f1(0). ..., fi(n), the ordinal is modified for last time.

T denotes the set of all functions f € T such that f,(0) = f(0), ..., fi(n) = f(n).
If M; identifies a function f’ such that f' # f; but fi(z) = f'(z) for z € {0,...,n},
then f' € T). To identify f’, M; has to make a mindchange and replace ap by a

smaller ordinal f;. A contradiction because we defined ag as the smallest ordinal

which appears on the counter. |
Combining Propositions 6 and 7 we obtain Proposition 5. |
So, £X_2-1IM can identify U in S,,. Lemma is proved. |
Similarly, we can construct U such that U € E’Xjff2 and U ¢ EXj.zgl. Hence,

theorem holds with systems S,, and Sy, as A and B. i

5.4 Two systems of notations: O and P

In this section, we consider the systems O and P (cf. section 2.5).

5.4.1 The system O

For inductive inference with procrastination, O is the strongest possible system of

notations.

Theorem 12
EX2 CEX?
for an arbitrary system of notations A.

Proof. By Lemma 2, if we have an £ XA-1IM, we can obtain £X>'-1IM, replacing
the ordinal notations z by o(z). |

Theorem 12 is based on the fact that an arbitrary system of notations can be em-
bedded in O. If we consider only univalent systems of notations (systems containing
at most one notation for each ordinal) then, for each system of notations we can

construct a stronger system of notations. (This follows from Theorem 15.)

50

5.4.2 The system P: small ordinals

For small ordinals, every IIM working in P can be transformed into equivalent 1IM
in any other system of notations. Any procrastination behaviour which can be
described with ordinals smaller than w? +w -2 in P can be described with the same

ordinals in any other system of notations.

Theorem 13 [f A is a system of ordinal notations and « is an ordinal, a < w?+w-2,
then EXP C EXA.

PROOF. We prove the theorem for a = w? + w + m case.

Lemma 15 There exists a partial recursive function t(zx,y,z) such that, if
1. x and y are notations in the system P,
2. z is a notation in the system A, and
3. vp(y) < vp(z) <wvalz) <w’+w,
then t(z,y.z) is a notation in A, vp(y) < val(t(z,y,2)) and va(t(z,y,2)) < va(z).

PrOOF. We define an auxiliary function SeekA(x,n). This function has two argu-
ments: an ordinal notation x (in the system A) and a natural number n. It returns
some natural number. The function SeekA(x,n) is computed by the following al-

gorithm:

1. Mo = {L(z)},i = 0;

N

. If M; contains only notations for the ordinal 0, return 2 as the value of
Seek Az, n).

- Miyy = {L(@q.0)(k))ly € Mi&ka(y) # 0&k € {0,1,...,n}},i =1+ 1, goto 2.

Proposition 8 Let x be a notation in the system A for the ordinal w-a+b. Then,

the set M; contains only notations for ordinals 0,w,...,w- (a —1).

PROOF. By induction.
Base Case. Mo = {L(x)} and L(z) denotes w - a.
Inductive Case. Let = € Miy;. Then z = L{ipg,()(k)) for some y € M.

51

The proposition holds for M;. Hence, y denotes w - j for j < (a —). Then,
Pa.(w (k) denotes an ordinal which is smaller than w-, i.e. w-j; + 72 for j; < 7 and
L(p,,(n(k)) denotes w - jy.

We have j <a—7and j; <) —-1<a—-:—1. Hence. any = € M, is a notation

for one of 0..... @ (a—1—=1). [

Proposition 9 [If r is a notation in system A for w-a + b, then SeekA(z,n) < a

for arbitrary n.

PROOF. By Proposition 8, M, contains only notations for the ordinal 0. [|

Proposition 10 Let » be a notation for w-a (or greater ordinal) in the system A.
There erists an n such that SeekA(r,n) > a.

PROOF. Denote r, = L(z). z; is a notation for the ordinal w-a (or greater ordinal).
We consider the sequence of notations g ,(x,)(0)s Pga(z)(1), ... The sequence of
ordinals denoted by these notations converges to the ordinal denoted by z;. Hence.
there exists a number m; such that o, (;,)(m,) denotes an ordinal greater than or
equal tow - (a —1).

Let 2y = L(pg,(ry)(my)). 1t is a notation for w - (a — 1) or greater ordinal. Then,
similarly as my and x, were obtained from r;, we obtain m; and 3 from z,. We
continue so until we obtain ..

Then, x, denotes ordinal w - a or greater ordinal, z, denotes w - (a — 1) or greater
ordinal and so on, r, denotes w or greater ordinal, z,4, denotes 0 or greater ordinal.

Let m = max(m;....,m,). When SeekA(x,m) 1s computed, z, € My, x, € M,,

. T,41 € M,. Hence, each of sets M; for + < a contains a notation for ordinal

which is greater than 0 and SeekA(z,m) is at least a. i
The function ¢(x.y. z) is computed as follows:
I. If = denotes a successor ordinal. return p4(z) as the value of t(z,y, z).

2. Otherwise, find @ and b such that y = w-a +b. (It is possible to do it because

Yy is a notation in the system P.)

3 n=1.

LI Seek Az, ,(5)(2)-n) > aand N(p,,(:)(7)) > bfor some: € {1,....n}, return

Pa42)12) as the value of f(r.y.z).

5. I SeekA(p, (o). 7) 2 a+ 1 for some ¢ € {1..... n}. return 2, :)(7) as the

value of t{r.y.z).

6. n=n+ l: goto .

We prove that the algorithm given above works correctly. i.e., if r.y.: satisfy
the conditions of Lemma 15. then the algorithim terminates and returns the value
t(xr.y. =) satisfving Lemma 15.

Case 1. = denotes a successor ordinal. Then t(x.y.z) = pa(z) is a notation for
the ordinal preceding v4(z) i.e. for the largest ordinal which is less than v4(z).

The ordinal vp(y) is smaller than v4(z). Hence, vp(y) < valt(z.y.z)).

Case 2. : denotes a limit ordinal.

Then. vr4(=) is less than w? + w. i.e. v4(z) is at most w?. vp(y) < va(z). Hence.
vp(z) is less than w2 ie. »p(z) =w-a + b for some a. b € IN.

The algorithm returns the value {(r.y.z) = 2, ,(-)(?) In two cases:

(a) SeehA(py,(1).n) > a+1.

Then. 2, ,(-)(7) denotes « - (a + 1) or greater ordinal (cf. Proposition 9).

(b) ScehA(gy,5(1).n) =a and N(p2,,(5(1)) = 0.

Faa(s)(7) denotes w - @ or greater ordinal. N{gz, (-)(2)) = b implies that the

ordinal denoted by ,,(:)(7) is at least w-a + b.

In both cases the ordinal denoted by 2, (.)(7) is greater than or equal to vply).
It remains to prove that the algorithm always returns some notation.
= denotes the limit ordinal which is greater than vp(y) = « - a + b Hence. =
denotes w - (a + 1) or ereater ordinal. We consider two cases:
(a) = denotes an ordinal which is greater than w - (¢ + 1).
Then. for some ¢ € IN. £, (¢} 1s at least w - (¢ + 1). Proposition 10 implies

Sceh Mgy q(0).m) > a4+ 1 for some m = IN. Henee. when n hecomes greater

than max(/.m). the algorithm returns a notation.

(b) = denotes - o + 1).
For some 1 € IN. ({21 1s at least w -« + b 2, (/1 denotes an ordinal
which s less than ryiz) = - (a0 = 1). Hence. it denotes w-a + ¢ for ¢« > b, and
Nz, oty = ¢ > b For some m. SeckA(2g,(+(7).m) > a (Proposition L.

Hence. the algorithim returns a notation. when n reaches maxiz. . [|

We assume that Mp is an EX;D—IIM. We show how to transform Mp to EX2-1IM
My.

Let ry be a notation for a = w? + w + m in the system A. r, denotes L(zg). no
is a number such that p»,,(,,)(n0) denotes an ordinal which is greater than or equal
to w*.

(‘onjectures of M, are the same as conjectures of Mp. Ordinal notations on the

counter are transformed as follows:

1. When Mp puts a = w? +w + m on the counter, M4 puts zo. Further, when

Mp replaces w? + w + k by w? 4+ w + k — 1, M4 replaces z by pa(x).

2. When Mp replaces w?+w with w?+k for some k € IN, then M, searches the se-
quence g ,.(x,)(n0): Pqa()(mo+1), ... and finds an 2 such that N(p,,,)(2)) 2
k. My puts o, (;,)(?) on the counter.

3. Further. if Mp changes the ordinal from z to y, then M4 computes t(z,y, z)

where = is the notation on the counter of M, and replaces = by t(z.y, z).

Proposition 11 The ordinal on the counter of My is always greater than or equal

to the ordinal on the counter of Mp.

PrROOF. When the counter of Mp contains @ = w? + w + m on the counter, the
counter of M, contains xy, i.e. a notation for w? + w + m. Further, when Mp
replaces w? 4+ w + k by w? +w + k — 1, M, replaces which denotes w? +w + k by
pa(r) which denotes preceding ordinal. i.e. w? +w + k — 1.

If My puts the notation p,,(r,)(¢) on the counter, then ¢,,(;,)(7) > w? and
N(pqs)(8)) =2 k. Hence. 9q,(z)(2) > w? + k, i.e. it is greater than or equal
to the ordinal on the counter of Mp.

Further. consider the case. when My replaces = by t(x,y,z). Assume that, before
this modification. the ordinal on the counter of M, is greater than or equal to the
ordinal on the counter of Mp. i.e. v4(z) > vp(z), Then Lemma 15 implies that
vall(r.y.z)) 2 vp(y). i.e.. the ordinal on the M4's counter after modification is

greater than or equal to the ordinal on the Mp’s counter after modification. i

Hence. each time when Mp modifies its counter, M4 can modify it, too. It means

that always. when Mp outputs a conjecture, M, can do it too, i.e. M, simulates

Mp successtully. [|

5.4.3 The system P: large ordinals

However. for w? + « - 2 and larger ordinals the situation is different.
Theorem 14 There erists a system of ordinal notations A such that

EX’ o —EXh, . #0.

BT S

ProOF. We consider an IIM M working in the system P according to the following

instructions:

such that fo(0) = f(0) and fo(x) =0 if 2 # 0.

I. Read f(0)....,f(k). If k = 0 output a program computing the function fq

2. If ¥ # 0 and f(k) = 0 output the same conjecture as on f(0)...., f(k—1).
3. If k #0 and f(k) # 0 then

(a) If the counter contains 0. output the same conjecture as on f(0), ...,
f(k—=1).

(b) If the counter contains a notation for a successor ordinal. replace it by

the notation for preceding ordinal. ("hange conjecture to a program conm-

) Hr<k
fomz{ f(x) <

puting

0 otherwise

(c) If the counter contains a notation for a limit ordinal. replace it by the

k™R notation from the sequence converging to that limit ordinal. (w? is
replaced by w-k. w-a. w? +w and w?+w-2 are replaced by w-(a—1)+ k.
w? + k and w? 4+ w + k. respectively.)

(‘hange conjecture similarly to the previous case.

Let {7 be the set of all functions identified by M. We construct a syvstem of

notations A4 such that [" ¢ EXTE: Lo

Lemma 16 Le/ A be a system of notations and My be an IIM identifying [with
an ordinal mindchange bound in the system A. Then. for any initial segment [(0).
JCL) oo fin). the ordinal on the counter of M, after reading f(0). f(1). f(n)
ts grealer than or equal to the ordinal on the counter of M after reading the same

indtial segment.

v‘
on

PROOF. By the way of contradiction. Let O be the set of all ordinals which appear
on the counter of M; after reading segments f(0),..., f(n) such that the ordinal
on the counter of M, is less than the ordinal on the counter of M. Let a be the
smallest ordinal in O.

Consider the segment f(0),..., f(n) after reading which the counter of M; con-
tains a and the counter of M contains greater ordinal. 3 denotes the ordinal on the
counter of M after reading f(0),..., f(n).

Case 1. a = 0.

Consider the functions

file) = {g(:r) fz <n,

otherwise

flz) ifx<n,
flz)=X1 fr=n+1,

0 otherwise
f(0),.... f(n)is the initial segment of both f; and f,. After reading it M, has issued
the same conjecture on both f; and f;. It cannot change its conjecture on any of
these two functions because, before mindchange, it needs to modify the counter.
However, this is impossible because the counter contains the ordinal 0. Hence. M,
does not identifv at least one of functions f; and fs.

3 > a = 0. Hence. M can modify its counter and make at least one more
mindchange. After reading f,(n + 1) = 1. M makes a mindchange and outputs a
correct program for f;. On the function fi. the correct program was issued earlier.
after reading the last nonzero value among f;(0)..... fi(n). Hence. M identifies
both f, and f;.

We have proved that A} does not identify some function in {". A contradiction.
Case 2. a #0. Let m be

1. n+11f Fis a successor ordinal:

2. a number such that », (5(m) > a and m > n.if 3 is a limit ordinal.

Consider the functions .
file) = {f(.r) 1flr§7'fn.
0 otherwise
flr)y fr <m.
Hle)=<1 if @ =m.

0 otherwise

Similarly to the previous case. both f, and f, are identified by M. More. after
reading the last nonzero value of f; or f, the counter of M contains a notation for
an ordinal which is greater than or equal to a.

If M, identifies both f; and f,, it makes a mindchange on one of these functions.
Then, it also modifies the counter, i.e. replaces a by a smaller ordinal. We take
the imitial segment of f; or f, after reading which it happens. After reading it the
ordinal on the counter of M, is smaller than a and « is less or equal than the ordinal
on the counter of M.

Hence, the ordinal which is on the counter of M; belongs to O. However, we

assumed that a is the smallest element of O. Contradiction. il

The system A. It is well-known that there exist lim-computable functions which
grow faster than any recursive function. Let h(z) be a function such that h(r)
is lim-computable as witnessed by a monotonic g(z.y) and, for any recursive f,
h{x) > f(x) for all except finitely many z. We use h(z) to define the system A.

The system A consists of notations:

l. a:

[S

.w-a+bfora.be IN:
3. a;i+jfore,j € IN;
+.oa;j+kfori g ke N

ks(x) is defined to be 0, if e = 0. I if (r =w-a+band b> 0)or (r = a;+J and
J>0)or {r=a,;+kand k > 0) and 2 otherwise.

ps(x)is defined tobe w-a+b—-1.ifr =w-a+b.a;+j—1.ifr=0a,+].
a;+hk=1ifr=0a,+k

¢s(.r) is defined as:

1. a program computing the sequence w- (¢ — 1), w-(a—=1)+1, ..., ifr = «-a.

2. a program computing ay. oy + 1. ... if ¢ = a.
3. a program computing a;p. o, + 1. ... if r = a,.
L. a program computing 1(0).¢(1).... where
) = {w'-y ?fglf:-yl < J"-
Hy—1)4+1 ifgli.e) >

itr =a,;.

N |
-1

It is easy to check that. if k4.p4 and ¢4 are defined so, then « - @ + b 1s a notation

for the ordinal w-a + b.
Proposition 12 «;; denotes w?, if k(1) < j and w - k for some k € IN otherwise.

ProoF. Let hA(z) < 7. Then g(i.7) < j for all @ € IN. Hence,

ie. 0.w,w-2....1s a sequence of ordinals converging to the ordinal with notation

a; ;. Hence. a;; denotes w?.

Let A(i) > j. Monotonicity of g(i,z) implies that there exists an N such that
gli,r) < jif j < N and g(z,r) > jif ; > N. Hence,

H0)=0,t(1) =w,.. ., t(N—-1) =w - (N - 1),
Ny =w- (N=D+1t(N+1)=w-(N-1)+2,...
This sequence converges to w - N. Hence, a;; denotes w -V in this case. |
Hence. a,; + k denotes w? + k if h(:) < j and w-a + k for some a € IN otherwise.
Proposition 13 For any i € IN. ; denotes w? + .

PROOF. a; 1s the limit of the sequence

i.e. a; denotes w? + w. i

Hence. a;+j denotes w? 4w+ and a (the limit of ag. a1 +1....) denotes w?+.-2.
By the way of contradiction. assume that an IIM M, E X ., .,-identifies { in the
system A. We obtain the contradiction by constructing a recursive function h; such

that hi(x) > h(x). hi(n) is computed by the algorithm below:

L. Simulate My on evervwhere zero function until it outputs a conjecture. (It
certainly happens because everywhere zero function belongs to " and. hence
1s 1dentified by 1/,.)

Let N be the number of the input values read by 1/ before issuing the first

conjecture.

2. Let s = 0. my, = max(n./N), and

0 ifxr <m,,
fflz)=¢ 1 fz=m,+ 1.
0 otherwise .
(a) Simulate M, on f; and f; until it changes its conjecture on one of these
functions. Let 7, j, be such that M; makes a mindchange on the function

f? after reading j, values of f7.
{(b) If M, changes the ordinal from a) to ar; + [, goto step 3.

(c) Otherwise, M; changes the ordinal from a;+p+1 to ax+p. Then, define

My = max(js, p). Set

fl"(:r) if 2 <mgyq,
f,-s+1(i') B 1 if &= msyy + 1,
0 otherwise .

s =35+ 1. Go to step 2a

3. Let ax; + I be the notation on the counter of M, after reading f(0). ...,
fi(js)- Sei h][”.) — f_

Lemma 17 hy(n) > h(n) for all n € IN.

PROOF. We consider the segments f7(0)..... fi{ys). Each next segment ff:'l(ﬂ),

fiti(jsﬂ) is an extension of the previous segment f7(0), fZ(js). Let
f(0)..... f(J) be the last of these segments (i.e. the segment after reading which
M, modifies the notation from ay to ax; + (). Consider Af; working with the input
f(0)..... f(7). It modifies the counter as follows:

First. M, replaces a with p,,(s)(k) = ar + k for some k& € IN. Then. it replaces
ar + k with ag 4+ &k —1 and so on, until a; is on the counter. After that, M, replaces

ar by apy + 1 for some [€ IN.
Proposition 14 k > n.

PROOF. My makes the first modification on the segment f}(0). fl{j1). This

segment contains only one nonzero value: f! (m; + 1). So. M makes only one

modification: it replaces w? + & - 2 by w? +w +m; + 1 after reading j;ll (my +1).
Lemma 16 implies that the ordinal on the counter of 1/ must be greater than or

equal to the ordinal on the counter of M. Hence. a; + & denotes ordinal whirh is at

39

least w? + w + m; + 1. We defined a; + k as the notation for w? + w + k. Hence.
k> my + 1. From my, = max(n,.V) it follows that m; +1 > n and k& > n. |

Proposition 15 [> h(k).
PROOF. We use

Proposition 16 Afier reading f(0),..., f(j). the counter of M contains an ordinal

which is greater than or equal to w?.

PROOF. If the counter of M contains w? + w or greater ordinal after reading f(0),

.. f(n). the proposition is evident. Otherwise, at some moment M replaces w? +w
by a smaller ordinal.

M makes mindchanges and modifies the counter only after reading a nonzero
value from the input. Nonzero values in the segment f(0),.... f(z) are f(m; + 1).
f(my +1), We assume that M replaces w? + w after reading f(m, + 1). Then,
M replaces w? 4+ w by w? 4+ m, + 1.

Let ax + p be the ordinal on the counter of M, after reading f(0). f(J-). By
the definition of m,, m, > p.

Each segment ff":[O) fit:(jsH) 1s an extension of the previous segment
f200). ..., f2(Js). More. this extension contains exactly one nonzero value which

does not belong to f7(0). fi(js). Hence, while reading f;-:}(_]s + 1), ...

fs+1

i (7s+1), M modifies the counter only once. The machine M; modifies the counter

on f”:(Js +1). ... f'::(]sﬂ) at least once because in step 2a we wait until M,
makes a mindchange (and modifies the counter). Hence. the number of M;’s modi-
fications is greater than or equal to the number of M’s modifications.

Step 2a is repeated until A, replaces ax by ar; + [. After ap + p appears on the
counter of Al. step 2a is executed at most p+ 1 times. (Each time M; modifies its
counter at least once. After p modifications M; has oy on the counter and after p+1
modifications M; has ay; + [for some [€ IN on the counter. Then the algorithm
goes to step 3.)

After p+1 modificadons the ordinal on M's counter is at least wi4m,+1—(p+1) >

2 i

After reading the segment f(0)..... f(7). the counter of M, contains ay; + [and
the counter of M contains 2 or greater ordinal. By Lemma 16. a;, + { denotes o

or greater ordinal.

60

Hence. [> h(k) (cf. Proposition 12). |

The algorithin computing h; defines hi(n) = I. Hence, hy(n) = | > h(k). From
k > n it follows that h(k) > A(n) and hy(n) > h(n). Lemma 1s proved.]

So. there exists a recursive function h; which is greater than or equal to h. How-
ever, h grows faster than any recursive function. Contradiction, proving the theo-

rem. I

So. for the ordinal w? + w - 2, there are procrastination behaviours which can
be defined using the system P but cannot be defined using some other systems of

notations.

5.5 Better systems versus larger ordinals

There are two ways how to increase the power of an [IM with an ordinal mindchange

bound:
e by using larger ordinals;
e by using more powerful system of notations.

Inductive inference using different ordinals and a fixed system of notations was in-
vestigated in [24]. In the previous sections of this paper we investigated the influence
of system of notations for a fixed ordinal.

In this section, we consider possible tradeoffs between these two methods.

5.5.1 Larger ordinals instead of better systems

Theorem 135 shows that the use of greater ordinals cannot replace the use of more

expressive system of notations.

Theorem 15 [f A is a univalent system of notations and a is an ordinal to which

A assigns notation. there exists a system B such that
EX® ¢ EX]
ProoO¥. We define
{7, = {f]f is total recursive and there are at most h(f{0))

r > 0 such that f(r) # 0}.

61

Lemma 18 If h is lim-computable then
Uh S E)(fz
for some system of notations B.

PROOF. Let h(r) be lim-computable as witnessed by g(z,y). Without loss of gen-

erality we assume that g(z,y) is monotonous. (If it is not so, we can replace g(x,y)

by

gl(rwy): max g(la.])

i<z,j<y
g1(x,y) converges to hy(z) such that h(z) < hy(z) for all 2. Hence U, C U,. From
Un, € EXE it follows that U, € EX5E)

We use the system of notations 5, defined in the proof of Theorem 11.
U is inferred by the IIM M described below:

1. M reads f(0)..... f(n). If n =0 1t outputs a program computing

fi(a) = { 1o e =0

0 otherwise

2. If n > 0 and f(n) = 0 it outputs the same conjecture as on {f(0)..... f(n—1)).

3. fn > 0 and f(n) # 0 it outputs a program computing
, fla) x<n
filx) = :
0 otherwise

as a conjecture. The counter is modified as follows:

(a) If the counter contains «2. it is replaced by a (o).
P Y @f(0)
(b) If the counter contains aj(q). it is replaced by a ;o) — w.

(c) I the counter contains ajg)—w -k, Al searches the sequence of notations
,9,,;9(0”0‘_#&)(0). ?q_;g(aﬂo,—w-k)(l)- ... looking for a notation agp) — w -
(k4 1)+ j for some j and puts it on the counter.

(d) If the counter contains ajp)—w-k+ .1t is replaced by ajo)—w-k+j5—1.

After reading the last nonzero value of f € ['. M issues a correct conjecture.
Hence. it suffices to prove that M is able to modify the counter (and make mind-

change) alwavs when it is necessary. First. we prove

62

Proposition 17 [f: < h(f(0)) — 2 there exists an m such that
‘PQSy{C‘n(}]—T*‘](m') = 0)‘[0} — W (? + 1) + k
Jor some k.

PROOF. From lim,_. g(f(0),2) = A(f(0)) and ¢« < A(f(0)) — 2 we have that
g(f(0).m) > ¢+ 1 for some m. Then, by the definition of ¢s,,

?t}sg{fk}(o]—w‘i](m) = Gjp) —W- (I + 1) + m.
i

Hence. M can modify the ordinal from ajfp) — w -1 to azo —w - (2 + 1), if
1 < h(f(0)) — 2.

If fe), then f has at most h(f(0)) nonzero values. Hence. machine M modifies
the counter at most A(f(0)) times. We must prove that all these modifications are
possible. Before any modification at most h{ f(0)) — 1 other modifications are made.

First, M replaces w? by a(q). then a (o) by ajs0)—w. aso)—w by aseo)—w-2+7,
and so on. After A(f(0))—1 replacements the ordinal is at least a gy —w-(h(f(0)—2).

Proposition 17 implies that it can be replaced by a smaller ordinal. |

Lemma 19 If A is a univalent system of notations and a s an ordinal to which A

assigns notation, there erists a lim-computable function h such that
Uy ¢ EX®

PROOF. M,.M,....is a numbering of all IIMs working in the system of notations
A and putting the notation for a on their ordinal counter at the beginning. (The
system A4 is univalent. Hence. a has onlyv one notation and it can be checked whether
[IM puts the notation for o on its ordinal counter.)

We construct a function g(r.,y) converging in the limit to A(z). It will be con-
structed so that for each ¢ the IIM M; does not identify a function f such that
fel,and f(0)=1.

The following algorithm computes g(i.) and simultaneously constructs two func-

tions fi and f, such that A/; does not identify at least one of them.

1. Set yj=0.m = 1:

0 otherwise

r ifr =
flzfz:{ ’

63

o

Simulate j first steps of the computation of M; on the input from the function
fr(x). If M; does not output any conjectures, then set g(z.7) =m:j =7+ 1

and repeat. If AM; outputs a conjecture, go to next step.

" 3. Set k equal to the number of values read by M; so far, t equal to the conjecture

of M; produced in previous step.

filz) fz<k
folz)=< 1 fz=k
0 if x>k

m=m+ l,g(i.j))=m,) =7+ 1t

4. Simulate j steps of the computations of M; on inputs from functions f; and fs.
If M, does not change conjecture t on one of these functions, define g(z.)) =

m.J = j + 1 and repeat.

5. If M; changes the conjecture { on a function fi({ € {1.2}). set ¢ equal to the
new conjecture of M; on f, k equal to the number of values of f; read by M;.
fi(x) equal to fi(x),
file) <k
folr) =< 1 Hr=F
0 ifr>Fk

m=m+ 1l.g(i.7) =m,) =7 +1.go to 4.

If Step 5 1s executed infinitely many times. we can construct a function on which
M; makes infinitely many mindchanges. By Lemma 1. IIM with an ordinal mind-
change counter cannot make infinitelv many mindchanges. Hence, Step 5 1s ex-
ecuted finitely many times. So. m is increased by 1 finite number of times and
h(7) = lim,_ g(i.r) always exists.

We consider the moment when Step 5. is executed for last time. After this
moment fi(x) and f;(x) are two different functions on which M; outputs the same
conjecture f and does not change it. Hence. it does not identifv one of them.

Always. when a new nonzero value of f; or f; is defined. m is increased by 1. It
implies that g(7. j) = m remains greater than the number of r such that fi(x) # 0
or fy(r) # 0. Hence. the number of r such that fi(x) # 0 or fo(xr) # 0 is at most
h(t) =lm,— . gli.x) and fi. f, € U

64

We have proved that. for an arbitrary I[IM M;, there exists a function f € U
which is not E X B-identified by M;. [|

From Lemrmas 18 and 19 the theorem follows. |
Theorem 16 For an arbitrary constructive ordinal o there erist systems of nota-

tions A and B such that
EX% ¢ EXB

PROOF. For each constructive ordinal a there exists a univalent system of notations

B which assigns a notation to «[45]. We apply Theorem 15 to this @ and B and
obtain A. il

It can be noted that the system A can be constructed so that it is univalent, too.

(Small modification in the definition of .S, suffices.)

Corollary 3 Let Sy be the Kleene's universal system of notations. For an arbitrary

univalent system B and constructive ordinal a
EX% ¢ EXB.
Proof. Follows from Theorem 15 and Theorem 12 |

So, we see that even the use of very large ordinals cannot replace the better system

of notations.

5.5.2 Better systems instead of larger ordinals

On the other hand. the use of better system of notations cannot replace the use of

larger ordinals.

Theorem 17 For an arbitrary system of notations A and ordinal & there exists a

set of recursive functions U such that
1. Ue EX}:
2o Af3<a.then U ¢ EXP jor any system of notations B.

PRrOOF. Consider an 1IM W working as follows:

1. Read f(0)..... f(k). Tf k = 0 output a program computing the function fo
such that fo(0) = f(0) and fo(x) =0if @ # 0.

2. If k #0 and f(k) = 0 output the same conjecture as on f(0),....f(k—1).

3. f k #20 and f(k) # 0 then

(a) If the notation on the ordinal counter denotes 0, output the same conjec-

ture as on f(0),..., f(k —1).

(b) If the ordinal counter contains the notation 5 which denotes a succes-
sor ordinal, replace it by pa(7y). Change the conjecture to a program
computing

Jolz) =

0 otherwise

{fu)ﬁrgk

(c) If the ordinal counter contains the notation ¥ for a limit ordinal, replace

5 by q.~)(k), change the conjecture similarly to the previous case.

Let U7 be the set of all functions identified by M. Evidently I’ € EX2. Similarly

to Lemmma 16 we can prove

Lemma 20 Let B be a system of notations and M, be an IIM identifying U with
an ordinal mindchange bound in the system B. Then, for any initial segment
£0), f(L)...., f(n). the ordinal on the counter of My after reading f(0). f(1). ...
f(n) is greater than or equal to the ordinal on the counter of M after reading the

same tnitial segment.

Hence. if A, identifies [, then its counter contains a or greater ordinal at the

beginning. |

5.6 Summary

We have studied the dependence of the learning power on the used system of ordinal
notations. We have proved that, for small ordinals (below «?) there is no such
dependence. For w? and greater ordinals. the dependence is rather strong.

The power of /X, -identification is influenced by hoth ordinal a and used svstem

of notations. Results of section 5.5 show that these two influences are. in general.

b6

independent. In particular, even the use of very large ordinals cannot compensate
the weakness of the system of notations (cf. Theorem 16). This shows the important

role of the system of notations.

67

Chapter 6

Probability hierarchies

6.1 Overview

Within inductive inference, there has been much work on team learning. (cf. surveys
in [28. 51]) It is well-known that a team of learning machines can learn more than
a single machine. Various aspects of this phenomena have been investigated. Re-
searchers have noted that the advantages of teams over single machines appear not
only because there are more machines in team. The cooperation between learning
machines and the diversity of their approaches are also important. (The last as-
pect. the diversity of approaches between learning machines in a team. was recently
studied in [9].)

Probabilistic learning is closely related to team learning. Any team of machines
can be simulated by a single probabilistic machine with the same success ratio. The
simulation of a probabilistic machine by a team of deterministic machines is often
possible. too.

In this paper. we consider Fin, finite learning of total recursive function2.2.3.
Fin is supposed to be one of the simplest learning paradigms. However. if we
consider probabilistic and team learning. the situation becomes very complex. By
now. probabilistic Fin-type learning has been studied for 18 vears. Still, we are far
from the complete understanding of the situation.

The investigation of probabilistic FINite learning was started by Freivalds in [22].
He gave a complete description of learning capabilities for probabilistic machines
with probabilities of success above % These results were extended to team learning
by Daley. Pitt. Valauthapillai and Will[20].

The further progress appeared to be very difficult. Daley. Kalvanasundaram and

63

Velauthapillai[18] determined learning capabilities for probabilistic learners with

success probabilities in [23.3]. Later, Daley and Kalyanasundaram(17] extended

that to [#2.1]. Proofs became more and more complicated. (The full version of (7]
is more than 100 pages long.)

PFin (Popperian Fin)-type learning is a simplified version of Fin-type learning
(cf. section 2.2.3). In PFin-type learning, a learning machine is allowed to output
only programs computing total recursive functions. Probabilistic and team PFin-
type learning is simpler than Fin-type learning. However, it has many properties
similar to Fin. Daley, Kalyanasundaram and Velauthapillai[19, 16] determined the
capabilities of probabilistic PFin-type learners in interval [% %] However, even in
PFin-type learning the situation becomes more and more complicated when the
probability of success for learning machine decreases. [16] wrote "the prospects of
determining all the learning capabilities and all the redundancy types for even the
interval |2.1] appear to be bleak indeed”.

In this paper, we return to PFin-type learning. Instead of trying to determine
exact points at which the learning capabilities are different (either single points or
sequences of points generated by a formula) we propose an another approach. We
investigate the probability structure on the whole and its properties.

We prove that the probability hierarchy for PFin-type learning (the set of success
probabilities at which learning capabilities of probabilistic machines are different)
is well-ordered in decreasing ordering. More precisely, it is order-isomorphic to €,
verv large (and complicated) ordinal. (It is known that e expresses the set of all
expressions possible in first-order arithmetic.)

This result shows that the probability hierarchy for PFin is very complex. The
part of the hierarchy investigated before ([2.1]) is order-isomorphic to the ordinal 3w
and is very simple compared to the entire probability hierarchy. Thus, we can con-
clude that finding an explicit description for the whole hierarchy is hardly possible.
(The previous research shows that. even for segments like [% 1] with a simple topo-
logical structure. this task is difficult because of irregularities in the hierarchy[16].)

However. we construct a decision algorithm for the probability hierarchy of PFin.
It receives two numbers p;.p, € [0.1] and answers whether the learning with prob-
ability p, is equivalent to the learning with probability p,. Also. we construct a

universal simunlation algorithm receiving

® pi.p; € [0.1] such that PFin-learning with these probabilities is equivalent

and

69

e PFin-learning machine M with the probability of success p;

and transforming M into machine M’ with the probability of success p,.

We note that these decidability results (and most of other results in this paper as
well) make heavy use of the fact that PFin-hierarchy is well-ordered. We suppose
that this is the first application of well-ordered sets (and systems of notations for
well-orderings) to a problem of such type.

Further, we consider relations between probabilistic and team learners. We prove
that any probabilistic PFin-type learning machine can be simulated by a team of
deterministic machines with the same success ratio. Thus, we prove that, for PFin-

type learning, team learning is exactly of the same power as probabilistic learning.

6.2 Preliminaries

For results of this chapter, we need more definitions (in addition to those in chapter
2). We define probabilistic and team learning in section 6.2.1. Then. in section
6.2.2. we modify the definitions of a system of notations for the purposes of this

chapter

6.2.1 Probabilistic and team learning

Scientific discoveries are rarely done by one person. Usually, a discovery is the result
of collective effort. In the area of computational learning theory, this observation
has inspired the research on team learning.

Let M = {M,...... M} be a team consisting of Fin-tvpe learning machines ;.

M,. The team M [r,s]Fin-learns a function f if at least r of M;. M,
Fin-learn f. The collection of all [r, s]Fin-learnable sets is denoted [r, s]Fin.

Besides deterministic learning machines. we can consider probabilistic ones.

Let I be a probabilistic learning machine. M FIN(p)-learns (Fin-learns with
probability p) a set of functions U if. for any function f € . the probability that
M FIN-learns f is at least p. Fin(p) denotes the collection of all Fin(p)-learnable
sets.

Probabilistic and team PFin-learning is defined similarly to probabilistic and
tcam Fin-learning. The requirement that learners must output only programs comn-

puting total recursive functions is absolute. i.e.

1. All conjectures of all machines in a PFin-team must be programs computing

total recursive functions.

2. A probabilistic PFin-learning machine is not allowed to output a program
which does not compute total recursive function even with a very small prob-

ability.
Definition 30 The probability hierarchy for Fin is the set A C IRN[0, 1] such that

1. For any two different py,p2 € A,

Fin(p,) # Fin(p,)

i.e. learning with probability of success p; is not equivalent to learning with

probability of success p,.

2. If x € A. r < p and [z.p[does not contain any points belonging to A, then

Fin(z) = Fin(p).

Essentially., the probability hierarchy is the set of those probabilities at which the
learning capabilities of probabilistic machines are different.

The probability hierarchy for PFin is defined similarly.

6.2.2 Systems of notations

In this chapter we use subsets of QN[0, 1] that are well-ordered in decreasing ordering.
A subset of Q is well-ordered in decreasing ordering if it does not contain infinite
monotonously increasing sequences. Below. we give our definition of a system of
notations for well-ordered subsets of Q. It is a modification of the definition of a
system of notations for ordinals(section 2.5).

Let A be a subset of Q which is well-ordered in decreasing ordering. All elements

of A can be classified as follows:
1. The greatest element of the set A. We call it the marimal element.

2. Elements » which have immediately preceding element in decreasing ordering
(i.e. the element y such that » < y and [2.y] does not contain any points

belonging to 4). Such elements are called successor elements.

71

3. All other elements x € A. They are called limit elements.

Definition 31 A system of notations for A is a tuple of functions (ks.ps,¢s) : @ —
IN such that

1. ks(x) is equal to

(a) 0,if x is the maximal element;

(b) 1.if x is a successor element;

—_—
)
~—

[A

2.1f x 1s a limit element;

(d) 3.ifxr ¢ A

2. If ks(2) = 1, then pg(x) is defined and it is the element immediately preceding

r in descending ordering.

3. If ks(2r) =2, then ¢gs(x) is defined and it is a program computing a decreasing

sequence of elements of the set A converging to z.

Systems of notations are convenient for manipulating well-ordered sets i our
proofs. Possibly, a system of notation is the most appropriate way of describing the
probability hierarchy for PFin. The structure of this hierarchy is very complicated
(cf. Section 6.9) and it seems unlikely that more explicit decriptions exist.

Below. we give a useful property of systems of notations.

Lemma 21 Let A C Q be a set which 1s well-ordered in descending ordering and has
a system of notations S. Let fi(p) be the largest number in A such that fy(p) < p
and f,(p) be the smallest number in A such that p < fo(p). Then fy and fa are

computable functions.

PROOF. f; and f, are computed by the algorithm below:

1. Set x equal to an arbitrary number from A smaller than p.

2. (a) If r = p.output: fi(p) = folp) = x. Stop.

(b) It & is a successor element and ps(xr) > p. then output: fi(p) = « and

falp) = ps(x). Stop.

(c) If 2 is a successor element and py(r) < p. set r = pg(r).

=1
| £

(d) If 2 is a limit element and r # p, take a sequence

Pas(2)(0): Pas(z)(1)s - - -

Search for the smallest : satisfying vg.()(2) < p and set z = g ()(2)-
(Such 7 exists because this sequence is monotonously decreasing and con-

verges to r and = < p.)
3. Repeat step 2.

While this algorithm works, z remains less or equal to p.

From the definition of the system of notations it follows that the values of f; and
f2 output by the algorithm are correct. It remains to prove that algorithm always
outputs fi(p) and fa(p).

Assume. by way of contradiction. that the algorithm does not output fi(p) and
f2(p) for some p € (). It can happen only if it goes into eternal loop, 1.e. if Step 2
1s executed infinitely many times.

During Step 2 the value of r increases. Let x; be the value of z after the &P
repetition of Step 2.

T1.T9,T3,. ..
is infinite monotonously increasing sequence.
However, A is well-ordered. Hence, it does not contain infinite monotonously

increasing sequences. A contradiction. i

6.3 Three examples

One can ask: what probabilistic and team inference has in cominon with well-
ordered sets?
In Figure 6.3. we show the known parts of probability hierarchies for three learning

criteria:
e Ex (learning in the limit. cf.Pitt and Smith[42, 13]),
e Fin (Freivalds[22]. Dalev. Kalyanasundaram and Velauthapillai[18]). and

e PFin (Daley. Kalvanasundaram and Velauthapillai{l9. 16]).

o
| —
N Xy
LR
—

w
T b=
Wi
+ win
—

Figure 6.1: The probability hierarchies for Ex, Fin and PFin

We see that these probability hiearchies contain infinite decreasing sequences but
none of them contains an infinite increasing sequence. Known parts of these hierar-
chies are well-ordered in decreasing ordering.

Below. we will show that, for PFin-type learning, the entire hierarchy is well-
ordered and will use this property to study its properties.

Recently, a similar result was obtained for Fin[3] and counterparts of some other

our results were derived (cf. Section 6.11 for more information).

6.4 Characterization of PFin-hieararchy

Below. we give a recursive description for the probability hierarchy of PFin and use
this description to prove decidability.

We claim that the probability hierarchy is the set 4 defined by the following rules:

1. 1€ 4:

Z gy, .- ps € A and p € [0.1] is a number such that there exist ¢y, ¢s €
0. 1] satisfving

74

then p € A;

The outline for the proof of this result is as follows. We start with several tech-
nical lemmas in section 6.5. In section 6.6 we give the proof that all probabilities
from A give different learning capabilities. Then, in section 6.7 we prove that A is
well-ordered and has a system of notations. Finally, in section 6.8 we use technical
results of section 6.7 to prove that all different learning capabilities are defined by
probabilities in A. Together, these results imply that A is the probability hiearar-
chy for PFin. Our diagonalization theorem uses methods from Kummer’s paper on
PFin-teams(34| but simulation part uses new techniques and is far more compli-

cated.

6.5 Technical lemmas

In this subsection. we study the properties of the rule that generates the set A. The
results of this subsection are used in various parts of section 6.4. First, we show

that the rule 2 can be described without using variables ¢;.

Lemma 22 [f there erist q;..... gs € [0,1] satisfying ¢y + @2+ ... + g; = p and

f1.+};—p =p fori=1...... s. then
> (6.1)
P = S .)
(.5—1)-{—21-:1}%
ProOOF. q—JrI;Tp = p; 1s equivalent to ¢, = pﬁ + p—1. Hence,
S S p S 1
) = ;= —+p—-1)= — |p+s-p—s,
b3 l
s=|Y —|p+is—1p
=1 Pi
p= =
TESTES N
i

We shall use both forms of the rule 2. The rule with ¢; is more natural in simulation
and diagonalization arguments but is less convenient for algebraic manipulations.

We also use a version of Lemma 23 where equality is replaced by inequality.

Lemma 23 If there exist q;,...,qs € [0,1] satisfying g1 + g2+ ...+ ¢s = p and

i Spifori=1....,s then

s
p < - . 6.2
p_(3—1)+2izli (62)

PROOF. Similar to the proof of Lemma 22, with < or > instead of = where neces-

sary. [|

Lemma 22 suggests that the rule 2 can be considered as a function of py,..., ps.

Next lemmas show that this function is monotonous and continous.

Lemma 24 If
1. p € A follows from p, € A..... ps € A by rule 2:
2. p' € A follows fromp, € A,...,p\, € A by rule 2:

3 i< P py < L
then p < p'. If p; < p! for at least one 1, then p < p'.

PROOF. By Lemma 22

i - and p’' = . .
(s— 1)+ 2o, + (5= 1)+ Y0y

From p; < p! it follows that pL > L and

p:

S

(s—1) + 12(8—1)+Zi.

=1 pi i=1 "t
s < B ,
p = s — 5 = p N
=D+ T s+,
If p; < p; for some . then 1/p; > 1/p! and all inequalities are strict. |

Lemma 25 Let p; = lim_. p,; andr = limy_ r;. If. for alli € IN. r; € A follows
from py; e Al psi € A by rule 2. then r € A follows fromp, € A... .. Ps € A by

rule 2.

76

PROOF.

) s
r = limr; = lim
e = (s — 1)+ 200 1p
3.

S S

(s—D+ Y fmmss =D+

—2 Py

The last result of this section relates the numbers generated by applications of

the rule 2 top, € A, p; € A and 1—_{‘? €A ..., 1+p € A.

Lemma 26 An application of the rule 2 to 1 € A, x5 € A generates p € A
if and only if an application of the rule 2 to l+r € A, ;75 € A generales
P

e € A

PROOF. Assume that 6.1 is true for p; = ;. ..., ps = z5;. Then,

r (s—1}+'sz,’=1 n B
]+"'_1+W+SZ?=1-E_ +Z.1,
s s
(—D+i1+L 7 -+ T B
This is precisely 6.1 for p; = TR o Ps = Ty
The opposite direction (6.1 for p; = ﬁf; s hag D = 1; implies 6.1 1s true for
P1 = 1. Ps = &) 1s similar. |

6.6 Universal diagonalization

We consider sets of functions described by trees. Similarly to [31], we define trees as
finite nonempty subsets of IN* which are closed under initial segments. The root of

each tree is the empty string e. Next. we define labelings of trees by positive reals.

Definition 32 Let 0 < p < ¢. An (p. ¢)-labeling of a tree T is a pair of mappings!

.y : T — IRT such that

This is a modification of the definition in [34] which had only one mapping v (our). The
definition in [34] uses quantities eq. ¢s. a counterpart of vo. In our opinion. specifying v+ as a
part of labeling makes notation easier. This modification is of technical character and does not

change anything important.

1. v(€) 2> p and wy(€) = 0,

|8}
—
—_—
~—
—

..... t, are all direct successors of ¢, then >~7_ vo(t;) < vi(t) + v2(1)? and
n(t;)+va(t;) >pfori=1....,s,

3. For each branch the sum of the v;-labels of all of its nodes is at most ¢.

pr denotes the largest number such that there is a (p, 1) labeling of T'.

This is an extension of definition in [34] that considered labelings by natural
numbers only. We shall consider both labelings by arbitrary positive reals and
labelings by natural numbers. Further, a "labeling” means a "labeling by positive
reals”. If we consider labelings by natural numbers, it is specified explicitly.

We start by showing that for a tree T" and its subtrees T;, pr and pr, are related

similarly to rule 2.

Lemma 27 Let r > 0 and T' be a tree with {p, q)-labeling. Then, there is a (pr.qr)-
labeling for T.

PrOOF. We multiply all labels by r and obtain a (pr. ¢r)-labeling. |
Lemma 28 Let ty,....1, be all direct successors of the root in a tree T and Ty. T3,
..., Ts be the subtrees with roots t1, tg, ts. Assume there are 1. ..., g5 such

that 0 ¢ = p and
p=rrl¢+1-p)
forie {l..... s}. Then pr = p.

PROOF. First. we construct a (p.1)-labeling. Let vi. v} be a (pr,.1)-labeling for T..
We define

p- Ht=c

vilt) =< p—q.- ift =1,
(1 +¢ —pvi(z), iftisa descandant of ¢;
0. ift=c¢

valt) = < q,. ift=t,

(1 +¢; — plvi(e), iftis a descandant of f;

Properties | and 2 can be checked directly from the definitions of v, and v,.

“Definition in [34] incorrectly uses v () instead of v (t) + (1) here.

We prove Property 3. Let u be a direct successor of ¢;. Then. the sum of v{-labels
on any branch starting at u is at most 1 — pr,. (By Property 3 of v}, it is at most 1
for any branch starting at ¢; and vi(¢;) > pr..) Hence, the sum of v-labels for such
a branch is at most (¢; + 1 — p)(1 — pr,). A branch starting at ¢ consists of €. ¢, and
a branch starting at a direct descendant of ¢;. Hence, the sum of all its v-labels is

at most
p+p—a¢)+(g+1-p)(1—pri=p+1—-(1+q—pl+(a+1—-p{d-p1)=

ptl—(g+l-plpr=p+1-p=1
By way of contradiction, assume that there is p’ > p and a (p/, 1)-labeling (v}, v3)
for T. Let ¢ = vi(t;). If we add vi(t;) to v{(t;), we obtain a (p’,1 — p’ + ¢})-labeling
for T;. By Lemma 27. there is a (p'/(1 — p' + ¢/). 1) labeling for this subtree. Hence,

! 7

P /Spi: P < > '
1 —p +¢q l—p+q¢ 1—p+yq

(1=p' +¢)>(1—p+q)

P—d<p—g

We consider the sum of these expressions for all z.

S S 5
(5= <sp'=> q=> (—g)<> (p—q)=
=1 =1 1=1
—5-p=Y g =(s—1)p
i=1
and p' < p. Contradiction, proving the lemma. |
By Lemma 22. the relation between pr and pr,. pr. is also expressed by the

formula 6.1. Next. we show that the (pr. 1)-labeling of Lemma 28 uses only rational

numbers and. hence, can be transfomed into a labeling that uses only integers.
Lemma 29 For any tree T. pr € Q).

ProofF. By induction over the depth of T. For a tree consisting of root only. p = 1.
Otherwise. let #,..... ts be all direct successors of the root in 1 and 17. Ts. T«
be the subtrees with roots ¢,.#,....,¢,. The depth of these subtrees is smaller than

the depth of T'. Hence. all py, are rationals. Formula 6.1 implies that pr is rational.
too. I

Lemma 30 (pr,1)-labeling constructed in the proof of Lemma 28 uses only rational

numbers.

PROOF. By induction over the depth of T. Again, the lemma is evident for the tree
with the root only.

For other trees, notice that all ¢; can expressed by p and pr,. Hence, gy, ..., g;
are rationals. Label of the root is the rational number p, labels of ¢y,....t, are
rationals p—qy,...,p~— ¢s and labels of other nodes are (1 — p+ qi)y;(t). (1—p+aq)
is a rational number because p and ¢; are rationals and u;(t) is a rational number

because 1/;j is a part of the (pr,,1)-labeling for a tree of smaller depth. |

Corollary 4 Let T be a tree. Then there isn € IN such that T has (prn,n)-labeling
with labels from IN.

PROOF. Let n be the least common denominator of all rational numbers in the
(pr,1)-labeling vy, v, of Lemma 28. Then, nv(t), nvy(t) is a (prn,n) labeling and

uses only natural numbers. |

Next, we define sets of functions St corresponding to trees T. K denotes the
halting set. yx denotes the characteristic function of A'. (A’;) denotes a recursive

enumeration of k.

Definition 33 [34] Let T be a tree of depth d. St is the set of all recursive functions

of the form

: - t t t w
t1...140"a10%ay...0"aq,0

where each ¢, = min{t : |{j : {; € K,;}| > h} is finite. (a;..... a;) € T. and either
[={7:1;€ K} or(ay,...,a;)is a leaf of T.

Lemma 31 [34] If T has an (m.n)-labeling by integers then
St € [m,n|PFin.

['he next lemma is an extension of Kummer’s results to probabilistic learning.

The proof is similar to Theorem 16 in [34]. We give it here for completeness.

Lemma 32 [f St € (p)PFin[A] and K is not Turing reducible to A. then T has a
(p—e¢.1) labcling for any e > 0.

80

PROOF. Let k be the depth of T. M denotes an IIM that identifies St with the
A-oracle. For arbitrary 2;,....7; we enumerate a set T;,

Initialization. Let t =0, = —1.7;, ., =

k-

Step 1. Search for the smallest s > t satisfying P(c,s) for some ¢ > ¢/. If the
search terminates, enumerate (xk.(%1),- .-, Xk,(tx)) into T; set t =35, =¢
and go to Step I + 1.

P(c,s) is true iff ¢ = |{j : 1; € K,}| and, for each (a1,...,a.) € T and 0. =

----- Th

i1...140"a;0%ay . .. 0*a,., the probability that M4 outputs a program computing a

function with an initial segment o, while reading ¢.0° 1s at least p — e.
Proposition 18 (xx(?1),-..,xx (%)) € T;

PROOF. Let ¢ = |{j : i; € K}|. P(c,s) holds for all sufficiently large s be-
cause M# infers all functions o.0%. After discovering it, (\nx(21),--..xx(ix)) =

(\k.(Z1),- .-, xK.(1x)) is enumerated into A5, . |

Proposition 19 |T;, .. | = k+ 1 for some 1;,.... 1
Proor. If (\]\’(il),. .. sXA'(ik)) S Tl'1 _____ i and |Ti1 ik‘ < k for all 7;..... 1k, then K
is Turing-reducible to A (Fact 6 in [34]). i

Hence, there exist s; < ... < spy; such that P(I —1,s/)forl=1.....k+ 1. The
label vi(r) of 7 = (a;..... a;-1) 1s the probability that:

1. M does not output a program while reading o;_,0%-2. and

2. M outputs a program computing a function with the initial segment o;_; while

reading o;_0%-!.

For 7 = ¢. there is no segment o_; and vy(¢) is just the probability that M outputs
a program computing a function with the initial segment oo while reading 0o0%.
The label v,(7) is 0 for 7 = ¢ and the probability that M outputs a program

computing a function with the initial segment o;_; while reading o;_,0%-2 for 7 =

Next. we verify that all conditions of Definition 32 are satisfied. Property 1 follows

from the definitions of vq(€). vy(€) and P(0. s).
For property 2. notice that vi(#) 4 vo(#) is the total probability that M outputs a

function consistent with o;_; while reading o;_;0%-1. v, (#,) are the probabilities that

31

a particular continuation of o;_; is an initial segment of the function. These events
are mutually exclusive. Hence, > 7_, vi(t;) < vi(t) + va(t). vi(th) +va(ty) > p—€is
true because M outputs a program consistent with ,0° with a probability at least
p — € (cf. definition of P(c.s)).

Property 3 is true because the sum of all vy-labels on any branch is equal to the

yrobability that M outputs a conjecture while reading 0.0% and, hence, is at most
1) p] g

1. |

If there is no oracle A. we get
Corollary 5 If St € (p)PFin. then T has a (p — €,1) labeling for any € > 0.
Corollary 6 For a tree T. St € (pr)PFin and St ¢ (pr + ¢)PFin for any ¢ > 0.

PRroOF. Corollary 4 and Lemma 31 imply that St € [prn,n]PFin for appropriate
n. A [prn,n]PFin team can be simulated by a (pr)PFin probabilistic machine that
chooses one of n machines in the team equiprobably.

If St € (pr + ¢)PFin. then, there is a (pr + €/2,1) labeling of T (Corollary
5). This is impossible because pr is the largest number such that there is a (pr.1)
labeling of T'. 0

Lemma 33 A = {py : T is a trec }.

PROOF. By induction. If p € A follows from p;,...,ps € A by rule 2 and pr, = p;
for trees T;, we construct a tree T consisting of the root. Tj. ..., T, and make the
roots of Ty, Ty, ..., Ts children of T’s root. Then, pr = p (cf. Lemma 28). Hence.
there is a tree 7" with py = p for any p € A.

Similarly, we can show that pr € A for any tree T. |
Corollary 7 AC Q.

PRroO¥F. Follows from Lemmas 29 and 33. |

Theorem 18 Ifp.q € A and p # q. then (p)PFin # (¢)PFin.

PROOF. Follows from Corollary 6 and Lemma 33. |

021
V]

6.7 Well-ordering and system of notations

It remains to prove that, for any probability p PFin(p)-type learning is equivalent
to PFIN-type learning with some probability belonging to A. Our diagonalization
technique was similar to [34]. The simulation part is more complicated. Simulation
techniques in [34] rely on fact that each team issues finitely many conjectures and,
hence, there are finitely many possible behaviours of these conjectures. A prob-
abilistic machine can issue infinitely many conjectures and these conjectures have
infinitely many possible behaviours. This makes simulation far more complicated.
We need an algorithmic structure for manipulating an infinite number of pos-
sibilities. We establish 1t by proving that A 1s well-ordered and has a system of

notations.

Theorem 19 The set A is well-ordered in decreasing ordering and has a system of

notations.

PrOOF. We construct a system of notations for the set A inductively. First, we
construct a system of notations for AN [7,1]. Then we extend it, obtaining system
of notations for AN [3.1]. AN [§.1] and so on.

Freivalds[22] proved

1 1 n .

A system of notations for AN [1.1] can be constructed easily from this description.

Below. we show how to construct a system of notations for Ar[-1-, 1] using a system

n+1’
of notations for A N [1].

An outline of our construction is as follows:

1. Split the segment [5. 1] into smaller segments [r;y,. 7] so that, if p € [riyy. 7]
and p € A follows from the rule 2. then p; > r,.....p, > r;. (This property
allows us to obtain a system of notations for AN [riy1.7:] from a given system
of notations for A N [r;. 1] without using any knowledge about A N [rpq.7i].)

We give the splitting and prove its properties in subsection 6.7.1.

2. Using transfinite induction over the segments [r;y;.7]. extend the system of
notations for AN[2.1] to larger and larger segments AN[r;. 1]. finally obtain-
g a system of notations for AN [ﬁ 1]. This part is described in subsections
6.7.2.6.7.3.6.7.1 and 6.7.5.

1

6.7.1 Splitting the segment [n+1

The splitting consists of two steps.

. First, we take ;£ for p € AN[L, =1-]. These points split [—— —] into segments

n?n-1
SE.]
1+pt 14717
. Each segment ({5, 717 is split further by the sequence
r 2
To=T—">Tix1= 771 —1-
1 + T 1 + 5 =+ ;
To.T1,T2,.. .15 a monotonously decreasing sequence converging to . It splits
T—;—Lp' =] into segments [ry, 7o), [r2, 7], ...
A, denotes the set consisting of all - a,nd To,T1,- .. for all segments l—i—p, ljrr]-

Next, we prove several properties of the segmcnts [ri+1,7:] that will be used further.

Lemma 34 Let [{E-. ;-] be a segment obtained in the first step of the splitting. If

r € A follows from py...., .Ps € A by the rule 2 and z € [, 7] then

pr<pp2<p....,ps < p.

PROOF. We have

Pi T
1+p; ™
By definition of p, i 75 and p; < p. |
Lemma 35 Let v € AN [rigq.r]. If £ € A follows from py. ..., ps € A by the rule
2, then
Pr & TiePo & Fina: s Ps 2T
PRrOOF. We prove p; > r; only. (p2 > ri.... are proved similarly.)

-5l Theno py < popy <

Assume that {riy;.r;] was obtained by splitting

Vheas 1a ps < p (Lemma 34).

84

From

J‘ —
1—x+g¢g; =P
it follows that
x
g;=—=—1+4+=
J ?;
We have p, < p. Hence,
T
qi 2 - =]- + €,
p

G <r—¢=<1-—,
P

Py = x S x _ 1
! l—z4+q ~ 2-2-7 %—l—}}'
From r € [ri41, 7] we have that £ > r;4; and
plzg_i_LZ 2 _11_12(1+L+11)_1_1:’""'
z P it P n'p P

We have proved that all + € AN[r;4y.7;| are generated by applications of the rule

2t0o pro....ps € AN [r;.1]. The next lemma bounds the number s.

Lemma 36 Let v € AN [riyy, 1. If 2 € A follows from p,.....ps € A by the rule
2 then
L3 e
P

PRrRoOOF. From Lemma 34 we have

Hence,

"-J
it

6.7.2 Well-ordering

Lemma 37 A, is well-ordered.

1
n’n-—1

PrOOF. AN [+, 1] is well-ordered by 1nduct1ve assumption. Hence, AN [%
well-ordered. too. The set {{{-|p€ A Nn[:

] is
1

} is order-isomorphic to AN[1. 2],

into which it splits [n—+1, l]

nnl

Hence. it is well-ordered and the set of segments [l+p’ Tis]

is well-ordered, too.

r

1+p? 1+r
Each sequence is well-ordered. Hence, the entire set A4, is well-ordered. |

A, is obtained by replacing each segment [~ | with the sequence rg, 7.

Hence, we can use transfinite induction over this set.
Lemma 38 AN [nl? 2] is well-ordered in decreasing ordering.

PROOF. By transfinite induction over A,.
Base case. The set AN (1 1] is well-ordered.
Inductive case. Let r € A,. We assume that AN [z’, 1] is well-ordered for ' > r

and prove that A N [r,1] is well-ordered. too. There are three cases:

lLa=¢forpe AN [=) and pis a limit element.
Let p be the limit of p;, p,..... Then, 1+ is the limit of li’p lfm ... because
the function {3 is continous. By inductive assumption. each [t~ 1] is well-

ordered. Hence, their union [-£-, 1] is well-ordered.

1+p°

2.z =& for p€ AN[i7, ;] and p is not a limit element.
We tal\e the segment [1+p -] obtained in the first step of the splitting and
the corresponding sequence 79,71, 1—i—p is the limit of rg.7ry.. . .. [1+p 1] is
well-ordered because each [r;, 1] is well-ordered.

3.1r # ;&= forany p € AN [n+1 1], Then, = # ry because ry = T
re A ﬁ [n+1] Hence. r = r;;, for some ¢ > 0.

AN [ri 1] is well-ordered because r;;; < r;. Hence, it is enough to prove that
AN [rig1.7:] is well-ordered.

By way of contradiction. assume that AN [r;y;.7;] contains an infinite increas-

ing sequence r;. Iy. We use
Lemma 39 Lt vy € AN[rigy.r]. 22 € AN [rgq.]. ... There isan s € N
and scquences ¥y, 0y, ... and p;y.pja.... for j € {1.....s} such that

86

(a) 25,75, ... is a subsequence of 1,22, ...,
(b) x. € A follows from pyk,....psk and the rule 2, and

(¢) pia =Pj2=-.. 0T pja > pj2>... foralje{l,.. . s}

PROOF. Denote

Sy = |———— |-
Ti41 + R — 1
Consider the applications of the rule 2 that prove r; € A,r, € A,.... By
Lemma 36,
c—% <« % <5
5= Erg—1—" =Fp—1— "
p Tigl

in each of these applications. Hence, there exists an sp € {1,...,s;} such

that infinitely many of z,,... are generated by applications of the rule 2 with

s = sp. We denote this subsequence :rﬁ”’, :BE,'O], e
Next, we select x{ln, ;r(;), ..., a subsequence of 3:50), ;rgoi, Then, we select
:rtlzl, '_r{?z}, ..., a subsequence of :{‘51), I&l}, We continue so until we obtain

.I‘[ISD], ;I?[;u},

3'{1k)s~rg(}. (k=1) _(k-1)

The subsequence1s generated from xy" ,x; ’,... as follows:

Let pg‘_“j—”,. .. .plsf;l} be the values of py,...,ps, in the application of the rule
(k-1)

2 that proves € A. We use a following modification of well-known

theorem.

Theorem 20 Let yy,ys,... be a sequence of real numbers. Then yy, ya. ...

contains
o a subsequence Yo, Yn,, ... Such that y,, =y, = or

® an infinite monotonously increasing subsequence, or

e an infinite monotonously decreasing subsequence.
{k—1) k—1 . : . .
The sequence p; | ,pgﬂ).... does not contain an infinite monotonously in-
creasing subsequence because all elements of this sequence belong to AN [r;. 1]
and A4 M [r;. 1] is well-ordered in decreasing ordering. Hence, this sequence
contains an infinite subsequence consisting of equal elements or an infinite

monotonously decreasing subsequence.

8T

Let this subsequence be p&l—ll)’ p}:r;l)7 B

k) (k)
sequence Iy ,Ty ,....

.. We choose r,(zlf_l),r,(g_l), ... as the

;1'(180), :r,(;"), ... is the needed sequence z}, 5, We have
Pik =P2k=--. OT D1k > P2k > -
because such property holds for the sequence l'gk), a‘ék), ... and :rgso), :vgs"), .
is a subsequence of z!, z{", ... 1
We have
P11 2 P21 2
Pi,s Z P2,s 2
By Lemma 24,
! !
Ty 2Ty 2 Ty....
Hence. zy,z,,... contains an infinite monotonously decreasing subsequence.
A contradiction with the assumption that z;, x4, ... Is monotonously increas-
ing. |

Next, we construct a system of notations S for Aﬂ[nl?, 2]. We start with technical
results necessary for our construction. In section 6.7.3, we show how to distinguish
limit elements from successor elements. In section 6.7.4, we define (z, d)-minimal
sets and show that such sets can be computed algorithmically. Finally. in section

6.7.5, we use these results to construct a system of notations.

6.7.3 Distinguishing elements of different types

The maximal element of the set A is 1. It does not belong to A N [r;41.7;]. Hence,
A 0O [rig1,7;] does not contain the maximal element and, constructing a system of

notations. we should distinguish numbers p of three types:

1. p€ AN [riy1.7:] and p is a successor. Then ks(p) = 1.

Q]

. p€ AN[riy1.r] and p is a limit element. Then ks(p) = 2.

3.p ¢ AN [Fi+1.T;]. Then Ab([’) = 3.

Two lemmas below shows how to distinguish between limit and successor elements.

Lemma 40 Let x € AN [ri41,7:]. Then z is a limit element if and only if it can be

generated by rule 2 so that at least one of py,...,ps is limit element.

PROOF.

"if” part. Assume that p; is a limit element. Let p;1,p;2,... be a monotonously
decreasing sequence converging to p; and xx be the number generated by the ap-
plication of the rule 2 to py, ..., pj—1, Pjks Pj+1, --» Ps. Then, 2y,2,,... 15 a
monotonously decreasing sequence converging to z. Hence, z is a limit element.

"only if” part. Let x be a limit element and z,,z,... be a monotonously de-
creasing sequence converging to r. We apply Lemma 39 to z,,z,,... and obtain a
subsequence x|, 15,

We consider the sequences p;y,pj2,.... Let
= lim p;.
p} Feite p.};k

x can be generated from p),p)....,p. by application of rule 2 (c¢f. Lemma 25). We

have
Pix =Pj2 = ... O Pji > Pj2 > ...
for any j € {1,....m}. If pjs = pj2 = ... for all j. then, 2} = 2, = A
contradiction with the assumption that z,,22,... is monotonously decreasing.
Hence,
Pjia1 > Pi2 > ..
for at least one j and p) = limi_ pjx is a limit element. 0

Lemma 41 Let v € A,. Then x is a limit element.

PROOF. We have three cases.

- 1 1
1. r = Tf‘:—p forpG 4m[m.;]
Let p be the limit of p;, ps..... Then. T+7 is the limit of T T . . - because

the function i is continous.

2. x={-forpe AN [m’H .1] and p is not a limit element.

We take the segment 11;»‘ -] obtained in the first step of the splitting and

the corresponding sequence rg,ry. TES is the limit of ro.ry... ..

39

a L P Lol
3. r # its for any p € Aﬂ[nﬂ,n].

Then. * = r;. We prove the lemma by induction over 1.

Base (Case. If 1+ = 0, then r; =

element.

i and we already know that I~ is a limit
Inductive Case. Lemma 22 and the definition of r;4; imply that r;;, € A

follows from r; € A and p € A by the rule 2. If r; is a limit element, then, by

Lemma 40, r;4; is a limit element, too. 1

6.7.4 (x,d)-minimal sets

In the algorithms of subsection 6.7.5, we will often need to compute the largest
element of A N [ri41,7;] which is less than some given z. This will be done by
checking p; € AN{r;,1], p2 € AN[r;, 1], ..., ps € AN|[r;, 1] that can generate z € A
by rule 2. There are infinitelv many possible combinations of py, ps. Hence, we

need

e to prove that it is enough to check finitely many combinations p, € AN [r;, 1],
pp€ AN, 1. ..., ps € AN[ri. 1], and

e to construct an algorithm finding the list of combinations p; € AN [r;.1].
p2 € AN[ri 1], ... ps € AN [ri. 1] which must be checked when the functions

ks, ps,gs are computed.

We do it below. First, we give formal definitions.

Definition 34 A tuple (p,,...,p;) is said to be (z, d)-allowed if p, € AN[r;, 1], .
ps € AN[r;.1] and Z;:](f +r—1)<d.

. ey

Definition 35 A tuple (p,,....p;) is said to be less than or equal to (p},...,p.) if
p.l Sp’l- T p.’; Sp:'

Definition 36 A set of tuples P is said to be (r.d)-minimal if,
1. It contains only (x, d)-allowed tuples:
2. For each (x.d)-allowed tuple (p;...., ps) there is a tuple belonging to P which

is less than or equal to (p;....,p;)

90

Next three lemmas show why (z,d)-allowed tuples and (z.d)-minimal sets are

important for our construction.

Lemma 42 (py,...,ps) is (z,2)-allowed if and only if the application of the rule 2

to p1,...,ps generates a number p satisfying p > x.

PROOF. Let d = Y °_ (z+ = 1). {p1,...,ps) is (z,z)-allowed if and only if d < .
Hence. it is enough to prove that d < z if and only if z < p.

i=Y (s+ Z-1) =Y (s+ 2 1) -p+s
= P -

i P;
8 5 5 1
=3 (:r+i—1) -3 (p+£_-1) +p= (Z(l-l——_))(r—-p)—’rp.
j=1 p_'.' j=1 pJ j=1 pj
We have s
Z(Hi) T o
= Pi Pi
Hence, if + > p,then (z —p) >0andd > (zr —p)+p==x. lf z < p, then (z —p) <0
andd<(r—p)+p=rz. 0

Lemma 43 Let P be a (z,z)-minimal set. Then, for any p;,...,ps that generates
p 2> x by an application of the rule 2, there erists a tuple (pi,....p.) € S such that
Py <pie-.. Py < ps.

PROOF. (py,....ps) is (z,x)-allowed (cf. Lemma 42). By the definition of (z.x)-

minimal set, P contains a tuple (p},...,p.) such that pj < p;,.... p < ps. [|
Lemma 44 Let P be a (2, z)-minimal set. py € AN [ri,1]..... ps € AN[ri 1], If
r € A follows from p;....,ps € A and the rule 2, then (p;,..., ps) € P.

PRrOOF. By Lemma 42, (py,...,ps) is (z,z)-allowed. Hence, by Lemma 43, there
exists (. xr)-allowed (pj.....p}) € P such that pj < py.....p. < p,.

Let &’ be the number generated by an application of the rule 2 to p} € A, ...,
p, € A. If pi < p; for some i. then ' < r (Lemma 24) and (pi..... p.) is not
(. x)-allowed (Lemma 42).

However, (r.r)-allowed set contains only (r.z)-allowed tuples. Hence. p; =
Plaos s ps =pl.ie. (p..... ps) € P. 0

Next lemma shows that (r.d)-minimal sets can be computed algorithmically. Its

proof also shows that a finite (x.d)-minimal set alwayvs exists.

91

Lemma 45 Assume that a system of notations for A N [r;,1] is given. There is
an algorithm rdminimal(z,d) which receives * € AN [riy1,7:] and d € [0,z] and

returns a (x,d)-minimal set.

PROOF. We use an auxilary procedure findsmallest(P,xz,d). It receives numbers
x,d and an (x,d)-minimal set P and returns the smallest d' such that d' > d and
Zle(i +a — 1) = d for some pq,...,p; € A.

Both findsmallest and zdminimal use a constant pg. po is defined as the smallest
number in A N [r;, 1] such that = + pio — 1 > 0. Equivalently, py is the number in
AN{r;, 1] with the smallest z + > —1 such that 24+ = —1> 0. A denotes =+z—1.

Algorithm findsmallest(P, z,d):

1. Let &' = 0;
2. For each (p;,...,ps) € P do:
(a) For each j € {1,...,s}:

i. p; = max{plp€ AN[r;,1] and p < p;};

i. d, = f;ll(iqha‘—1)+(i+x—1)+22:j+1(i+$—1). If dy > d,
then d' = min(d', dy).

(b) dy = ijl(i +a—1)+ (47— 1);f d; > d, then d' = min(d', dy).
3. Return d’ as the result;
Algorithm xdminimal(z,d)
1. Let P =1;
2. If d < A, return the empty set as the result;
3. Let y = pq.
4. while (3 + 2 — 1> 0) do:
(a) d’:d—(§+x—1);
(b) A = rdminimal(z.d');

() If o = 0, add (y) to P. Otherwise, for each (p,....p;) € P, add
(y.p1,....ps) to P;

(d) Replace y by a greater element of AN [r;, 1]:

92

1. If y is a successor element, replace y by ps, (v);

ii. If y is a limit element, replace y by y’ where y’ is the smallest element
of AN |r;.1] such that
i/ + 2z —1<d~— findsmallest(Py,z,d).
Y
5. Return P.

Proof of correctness for xdminimal(z,d). We prove the correctness by induction
over L%J
Base Case. d € [0, Al.

Then, £ +2—1 > A for any y. Hence, Zj:l(;—, +z—1) > Afor any (p1,...,ps)
and there are no (z, d)-allowed tuples. In this case, the algorithm returns the empty
set. Hence, it works correctly.

Inductive Case. We assume that the lemma holds for d € [0, kKA[and prove it for
d € [kA,(k+ 1)A[. We use

Lemma 46 If zdminimal(x,d) calls zdminimal(z,d"), then d' < d — A

PROOF. From the description of xdminimal we have d' = d — (;1 +z —1). By
definition of py and A, i +r—1>Aandd <d- A. [|

Hence. rdminimal(z.d) calls only zdminimal(z,d") with d' < (k+1)A—A = kA,
The correctness of such xdminimal(z,d’) follows from the inductive assumption.

First, we prove that the computation of zdminimal(z, d) always terminates. Each
rdminimal(x,d') called by xdminimal(z,d) terminates because zdminimal(z.d")
is correct. Hence, each while loop terminates and, if rdminimal(z,d) does not stop
then while loop is executed infinitely many times.

Let y; be the value of y during the j*h-th execution of while loop. y is increased
at the end of each while loop. Hence, y; < y2 <

y1 € AN[ri,1],y2 € AN [r;, 1].. ... If while loop is executed infinitely many times,
then yi,y;... is an infinite monotonously increasing sequence. However. AN [r;, 1]
does not contain such sequences because it is well-ordered.

Hence. while loop is executed finitely many times and rdminimal(x, d) terminates.
Let P = xdminimal(xr.d). Next, we prove that P is a (r.d)-minimal set.

Assume, by way of contradiction, that it is not. Then, there exists an (r.d)-
allowed tuple (pi,....p,) such that P does not contain any tuple that is less than

or equal to (p;..... Ps).

93

We assume that (p},ps,...,ps) is not (z,d)-allowed for any p} € AN [r;, 1] satis-
fying pi < p1. (Otherwise, we can replace p; by the smallest p; € AN [r;, 1] such
that (p{,p2,...,ps) is (z.d)-allowed.)

Consider two cases:

1. In zdminimal(z,d), while loop is executed with y = p;.
Denote d' = d — (£ + z — 1). The tuple (ps,...,p,) is (z, d')-allowed.
rdminimal(z,d) calls xdminimal(z,d’). zdminimal(z,d’) works correctly,
i.e. returns an (z,d')-minimal set P,. Hence, P; contains a tuple (p},...,p})

that is less than or equal to (po,...,ps).

rdminimal(z, d) adds (p1,p),...,p.) to P because (p,,...,p.) belongs to the
set returned by xdminimal(z,d’). Hence, P contains the tuple (p1,p,...,p.)

that is less than or equal to (p1,p2,...,ps). A contradiction.

2. While loop is not executed with y = p;.

Let y; be the greatest number such that y; < p; and while loop is executed
with y = y;. Let y, be the number by which y, is replaced in the end of while
loop.

y1 < y because y is always replaced by a greater number. By definition of y,,

y2 > p1. (Otherwise y2 would have been instead of y;.)

(a) y; 1s a successor element.

Then, y;. y,, p1 all belong to A and y; < p; < y2. When xdminimal(z,d)
replaces y; by a greater element of A, it chooses the smallest element of
A that is greater than y;. It can be p; or some number between y, and

p1 but not y,. A contradiction.
(b) ro is a limit element.

We assumed that (p{,p,.....ps) is not (z.d)-allowed for any p} € AN
[ri. 1] satisfying p} < p;. Hence, (y1.p2,....ps) is not (z.d)-allowed i.e.

N d I
—+x—-11]4+ —4r—-1]>d.
Grre)+ 2 (Gee)

1=2

Zs:(ijL‘p_l) >d—<£+~z-~1) =d

94

Hence,

(f_ 4tz 1) > findsmallest(x,d', Py)
- P;
1=2

where P, is the (z,d’)-minimal set obtained by zdminimal(z,d’). How-

(5 erm) e

5=1

ever,

because (py, pa,...,Pps) is (z, d)-allowed. Hence,

T pr-1<d- > (3 +z— 1) < d — findsmallest(z,d', P,).
)41 — \Dj

By the definition, y; is the smallest number such that

T 2 —1<d— findsmallest(z,d', P,).
Y2
This implies y, < p;. A contradiction with y2 > p;. |

6.7.5 System of notations

We extend the system of notations S from AN[L, 1] to AN [=5,1]. Below, we give

1 1

the algorithms computing ks(z), ps(z) and gs(z) for = € [—5, -]. These algorithms

n+1’n

use the procedure rdminimal(x,d) defined in the previous subsection. They also
use the system S for AN[1,1].
Function ks(z).

1.

Use the system for AN[, ~25] to find whether z = 2 for some p € AN[E, L.

n—1 P n’ n-1
If yes, then ks(z) = 2.

T

. Otherwise, find the segments [£-. =] and [rij1.7;] containing x. If x = ri}y

1+p° 14r
or x = r;, then kg(x) = 2.

Otherwise. find a (z.r)-minimal set P using zdminimal(z,x).

. If there exists (p;.....ps) € P such that z is generated by an application of

the rule 2 to py..... ps and at least one of py.....ps is a limit element, then
ks(a) = 2.

Otherwise. if there exists (p;..... ps) € P such that r is generated by an
application of the rule 2 to py..... ps, then ks(r) = 1.

95

6. Otherwise, ks(z) = 3.

Function ps(x).

1.

Find the interval [r;;1,7;] containing x. Execute zdminimal(z,z) and find a

(z,x)-minimal set.
Let P, be the set consisting of all tuples {pi,...,ps) such that

(a) (p1,---.ps) € Por

(b) (pl,...,p]-_l,p;,pjﬂ,...,ps) € P and p; = ps(p);) for some j € {1,...,s}
or

() (p1+---Pi-1,0,Djr---,Ps) € Plorsomej € {1,...,s} and p’ € AN[r;, 1].

For each tuple (p;,...,ps) € P find the number p € A generated by an
application of the rule 2 to py,....p;.

ps(z) is the smallest of those p which are greater than z.

Function gs(z).

1.

o

Ifr= 1+ ,p € AN ,ﬁ] and p is a limit element, gs(x) is a program

©q5(p)(0) ‘qu(P)(l)
computin = .
p & 1+0q.(p)(0)7 14@ge(py(1)

Ifr = 2. pe AN[+, 5] and pis a successor element, find » = ps(p). ¢s(z)
1s a program computing the sequence rg, ry, ... corresponding to [1+p I:LT]

Otherwise, search the set P returned by xdminimal(z,r) and find p; € AN
[ris1], ps € AN[r;, 1] such that z is generated by an application of the

rule 2 to py,....ps and p; 1s a limit element.
gs(x) is a program computing the sequence z,, z,, ... where xx is generated
by an application of the rule 2 to pi1, ..., pj-1. P45 () (K)s Pjt1s - Ps.

Lemma 47 S s a system of notations for AN [nl? 1].

PRrRoOOF. By transfinite induction over A,.

Base Case. It is clear that S is a correct system of notations for AN [1.1].

Inductive Case. Let y € A,. We assume that S is correct for all AN [y’.1] with

y' > y and prove that it is correct for AN [y.1]. We consider two cases:

96

1.

yzl—i—pandpéAﬂ[%,n%l].

y is a limit of a sequence consisting of elements of A, (cf. proof of Lemma 41).
Hence, if ¢ > y, then x > y’ where y’ is some element of this sequence. The
functions ks(x), ps(z), gs(z) are correct because S is correct for AN[y’, 1] (by
inductive assumption). It remains to prove the correctness of ks(z), ps(z),

gs(x) for x = y.

ks(y) = 2. This is correct because, by Lemma 41, y is a limit element. The
function ps(x) is defined only for successor elements. Hence, we do not need to
check its correctness for the limit element y. The correctness of the sequence

computed by ¢s(y) is proved in the proof of Lemma 41.

. y = 1i41 for ¢ > 0. In this case, we assume that S is correct for AN r;, 1] and

prove the correctness for A N [riy1,7:].

By Lemma 45, zdminimal(z, d) returns an (z,d)-minimal set if it has access
to a system of notations for AN[r;,1]. We know that S is correct for AN[r;, 1].

Hence, the set P returned by xdminimal(z,z) is (z,z)-minimal.

2.1. Proof of correctness for ks.
If z € AN [rig1, 7], then 2 € A follows from p; € A,...,p; € A and
the rule 2, for some py,...,ps. By Lemma 35, py € AN [r; 1], ps €
AN |[ri,1]. By Lemma 44, (p;....,ps) belongs to P.
Hence, if 2 € A, the algorithm computing ks finds pq,....ps such that
p € A follows from p; € A,...,ps € A and the rule 2.
Hence. it distinguishes * € A and = ¢ A correctly. By Lemma 40. it
distinguishes limit and successor elements correctly.

2.2. Proof of correctness for ps.
We prove that ps(r) returns the element of A N [r,4;, 7] immediately
preceding x 1.e. (Vz € AN[ri, 1))z <z = ps(x) < 2).
Let : € An[riq,7] and < 2. Consider py,...,ps that generate = € A
by rule 2.
P contains a tuple (pj....,p.) such that pj < p;,....p, < ps (Lemma
43). An application of the rule 2 to pj... .. p. generates p € A withp > &

(Lemma 12). Consider two cases:

97

(a) p> .
The algorithm computing ps adds (p,...,p.) to the set P;. Later, it
sets ps(z) equal to a number that is less or equal to p. (It is so because
{py,...,p.) € Py and pi,...,p. generates p > x. The algorithm
selects ps(z) as the smallest of all p satisfying these conditions.)
By Lemma 24, p < z. Hence, ps(z) <p < z.

(b) p==
If pr = pl, ..., ps = P, then p = 2. However, p < 2. Hence, p; < p|
for some 2. Let p} = ps,(p:). We have p] < p; because ps, (p}) is
the smallest element of A that is greater than p.. Let p denote the
number generated by the rule 2 from pi,...,p:_, P, Pit1s- -, D5

By Lemma 24, = < p. Hence, the algorithm for ps(z) adds the tuple

(Prse s Do P Dys oo oo L)
to the set P; and, then, checking tuples in Py, sets ps(z) equal to a
number which is greater than or equal to p. This implies ps(z) < p.
From pi < py, ..o Piy < pj—1s P] S Py Pl S Pidrs oo Py S ps it
follows that p < z (Lemma 24). Hence, ps(z) <p < =.
So, in both cases ps(z) is less than or equal to any = € A satisfying z < =.
On the other hand, ps(z) € A and = < ps(x). (It can be seen from the
algorithm computing ps.)
Hence. ps(x) is the smallest element of A satisfying r < ps(z). i.e. the
algorithm computes ps correctly.
2.3. Proof of correctness for g¢s.
We already proved that. if there exist p,. ..., p, such that x € A fol-
lows from p; € A, ..., p, € A. then such combination is found by
rdminimal(x,z) (cf. proof of correctness for kg). If there exists such
a combination with one of py,...,p, being limit element, it is found.

The algorithm computing gs generates a program computing required

sequence from such combination correctly.
The correctness of S for AN [1.1] follows by transfinite induction. |

By Lemmas 38 and 47. AN [,1—1 1] is well-ordered and has a system of notations
for any n. Hence. 4 is well-ordered and has a system of notations. This completes
the proof of Theorem 19. |

98

6.8 Universal simulation

Theorem 21 For any p € A there ezists k such that PFin(z) C [pk, k|PFin for all
x which are greater than any p’ € AN|0, p[. There exists an algorithm which receives
a probabilistic machine M and a probability x and outputs a team L,, ..., Ly which

identifies the same set of functions.

PrRoOOF. By transfinite induction.

Base Case. For p > . the theorem follows from the results of [22].

Inductive Case. We assume that the theorem is true for all p € A such that p > po
and prove it for p = py.

Po is the smallest element of A which is greater than or equal to 2. p can be
computed effectively when z is known(cf. Section 6.2.2). A = ;—6 +z—1. Pisa
(x,)-minimal set (cf. Section 6.7.4). P can be computed from z, too (Lemma 45).

Next, we give a technical lemma which is very important part of our simulation
technique. It expresses relevant results of section 6.7.4 in a form appropriate for the

proof of this theorem.

Lemma 48 Let py,...,ps, q1,....qs be such that

1. QIZA----,' QSZA;
2. q+...+¢ < x;
5PV oegg o Ps = Toaga

There exist (py,....p.) € P and q,...,q. such that
1. Foranyi € {1,...,s}, p; > p} or (p; < p! and AN|p;, pi[=0).

2.1+ ...+ ¢ < po:

& ! — PO ' Po
i P1 1_P0+‘T{"”’p" T l-po+qi”

PROOF. Let p{ be the smallest element of A such that p; < p! and ¢/ be such that
Pl = 1—%&;" pi < p/ implies I —x + ¢ > ¢ — 2 + ¢; and ¢; > ¢”. We replace all p;
and ¢; by p!" and q/'. Then, ¢/ + ...+ ¢” < = because ¢” < ¢,.

Let " be the number generated by an application of the rule 2 to p” € A.....p" €
A. Then, 2” > r (Lemma 24). P contains a tuple (p},...,p.) such that p| < pl'. ...,

ps < py (Lemma 43). By definition of (2, r)-minimal set, this tuple is (&, x)-allowed

99

and p) € A, ..., p. € A. Hence, an application of the rule 2 to it generates =’ > .
More, &’ > po because pg is the smallest element of A such that z < po.

Let ¢, ...,q” be the values of ¢, ..., ¢s in the application of the rule 2 to pi, ...,
p.. We have ¢/ =2’ + % — 1 (cf. proof of Lemma 22). Let ¢! = po + E% — 1. Then,

qi+---+q;=(po+p—?~1)+---+(pﬁi—f’—l) <
1 5

(a:+$—1)+(po—:c)+...+(:c+§s—1)+(p0—a:)g

@t +q +s(po—z)=x+3(po—2z) <z 4+ (po—) = po,

proving 2. 3 follows by substituting the expression for ¢/.

If p! < p?, then p! < p; because p! is the smallest element of A such that p; < p!'. If
pi = pl and p; = p/, then p; = pl. If pl = p and p; < p!/, then p; < pi, |p, pi[=]pi, P{|
and AN)p., p![= 0 by the definition of p!. In all three cases, 1 is true. i

In the simulation algorithm for p = po, we use several simulation algorithms for

P > po as subroutines. Namely, we use:

1. A simulation algorithm for p = pj.

2. Simulation algorithms for p = p, for (py,...p.) € Pand 1 € {1,...,s}.

The existence of these simulation algorithms is implied by the assumption that
Theorem 21 holds for p > po.
A [pk.k]PFin-team L = {L,...., Ly} simulates a probabilistic PFin(z)-machine

M as follows:

1. Ly,...,Lgread f(0), f(1), ..., simulate M and wait until the probability that
M has issued a conjecture reaches . Then pk machines (L,,..., L) issue

conjectures hy, ..., Ay

N

. The first values of the functions computed by hy, ..., hy are identical to the

values of f, i.e.
on (1) = ... = on,, (1) = f(2)

for 2 < m where f(m) is the last value of f read by L before issuing conjectures.

The next values of these functions are computed as follows:

100

(a)

(b)

Simulate the conjectures of M issued before L outputs hy,.... hy. If all
these programs output the same f(n), hy,..., hpr output this value, too.
Otherwise, for each possible value of f(n) compute the probability that

M has issued conjecture with this value.

If there is only one value with the probability at least A, all programs

hi, ..., hpr output this value.

Otherwise, d,, ... ,d; denote these values and ¢, ..., gs denote the prob-
abilities that f(n) = d,, ..., f(n) = d;, respectively. Let

I I

P :m,--qpsz m

The programs hy, ..., hyx compute py, ..., ps, search the set P and find
the tuple (p},...,p.) € P (cf. Lemma 48). Then, they compute

G=p+2_1,...,q=p+ 21
1 P,

q1k of programs hy,..., h, output f(m) = d,, ¢k programs output
f(m) = d; and so on.

Further, g;k programs together with (1 — pg)k machines L,k41. ... Lg
simulate M on functions with f(m) = d; according to the algorithm for

p = p}.

3. After L,..... L.« have issued conjectures, all remaining machines in the team

L read the next values of the input function and simulate the conjectures

issued by the probabilistic machine M before conjectures of L, ..., L,k They

wait until the splitting of conjectures in step 2b happens or the probability of

conjectures consistent with the input segment becomes less than A.

(a)

(b)

If the splitting in 2b happens, Ly k41, ..., Li (i.e. all machines which
have not issued conjectures yet) read f(m). If it is equal to d;. they

participiate in the simulation according to the algorithm for p = pl.

If the probability of conjectures consistent with an input segment be-
comes less than .\ (i.e. almost all conjectures of M have different initial
segments). Ly gqq..... Ly start a simulation according to the algorithm

for p = p. (We recall that pj is the smallest element of A which is greater

than or equal to 22)
1-po

101

Proof of correctness. In our simulation algorithm, we use si.nulation algorithms

for the ratios of successful machines greater than py. We must prove that

e these algorithms can do required simulations,

e these simulations give us at least pok correct programs.

1. Step 2b. Here, we use ¢'k programs and (1 — pg)k machines Lpox41, - .., Li

to simulate M on functions with f(m) = d; according to the algorithm for

p =P

(a)

(b)

The simulation is possible.

M can be transformed into machine M’ with the probability of success
pi- (We take a machine M’ which, before outputing a conjecture, checks
whether its conjecture f has f(m) = d;. If f(m) = d;, then it outputs
the conjecture. If f(m) # d;, then M’ does not output the conjecture.
Instead, it begins the learning on the same input data once again. The
probability of success of M’ is equal to the conditional probability of
success of M, if it is known that M issues the conjecture with f(m) = d,.

It 1s 1_;+q‘_ = pi.)

p: is selected so that p; is greater than any p € A N [0,p.[. Theorem
21 holds for p = p! because p! > po. Hence, a probabilistic machine
with success probability p; can be simulated by a team with the ratio of

successful programs p!.

The simulation gives pok correct programs.

We have ¢’k programs and (1 — pg)k machines which have not issued
conjectures yet. So, together we have (1 — po + ¢;)k programs. If they
work as a team with success ratio p!, at least pi(1 — po + ¢!)k programs
are correct. By the definition of p!,

P £ - and pi(1 — po + ¢;)k = pok.

2. Step 3b. The probability of conjectures consistent with input segment becomes

less than A and we use the simulation algorithm for p = pj,.

(a)

The simulation is possible.

Similarly to the previous case, M can be transformed into machine M’
which identifies only functions consistent with input read so far. The

probability of success of M’ is equal to the success ratio of M.
The probability of issued conjectures is at most A. Hence, the success
ratio is at least =~ . By the definition of A, it is greater or equal than
any p € AN |[0,p,[. Hence, M’ can be simulated by a team with success
ratio pj.

(b) The simulation gives pok correct programs.

(1 — po)k machines (L, x41,. .., L) participate in this simulation. pg(1 —
Po pok+ 0

Po
1-po”

po)k of them are successful. By the definition of pj, we have p; >

Hence,
Po

— po

po(l — po)k > T (1 — po)k = pok.

The size of L. We show how to select the size of the team L so that be it will

able to perform all described simulations. Two conditions must be satisfied:

1. When the machines of the team split, the amount of machines saying that

f(m) = d; must be integer for any d; i.e.. ¢_k must be integer in all cases.

2. When the simulation algorithm for the success ratio py uses another simulation
algorithm (with the ratio of successful machines p > py). certain team size k’
is required for simulation with [pk’, K'|PFin-team. The amount of machines
participiating in this simulation (when it is used as the subroutine of the

simulation for the ratio py) must be multiple of &'.

Formally. it is equivalent to:

(a) For all (pj....,p.) € Pand i € {1,...,s}, (1 — po + ¢/)k must be a

multiple of k; where k; is the size of the team with the success ratio p!.

(b) (1 — po)k must be a multiple of ky. the size of the simulation team with

the success ratio py,.

The set P is finite. Hence. we have only finitely many requirements about the size
of simulating team for p = py.

All p! belong to A and A is the subset of rational numbers(cf. Section 6.6). It
implies that all ¢; are rationals, too. Hence, all requirements about the size of

the team are equivalent to requiring that the team size is a multiple of some finite

103

number of integers ki, ..., k,. If we select the size k so, the simulation algorithm

will be able to perform all required simulations. |

Theorem 21 implies

Corollary 8 Let v,y € [0,1] and z < y. If there is no p € A satisfying x < p <y,
then
PFin(z) = PFin(y).

PROOF. Any machine which succeeds with probability y, succeds with probability
x < y, too. Hence, it suffices to prove that any machine with the probability of

success ¢ can be simulated by a machine with the probability of success y, i.e.
PFin(z) C PFin(y).
Let p be the smallest element of A which is greater than z. Theorem 21 implies
PFin(z) C [pk, k)PFin C PFin(p).

We have y < p and, hence.
PFin(p) C PFin(y)

PFin(z) C PFin(y)
1

So, if Theorem 18 does not prove that the power of learning machines with prob-

abilities & and y is different, then these probabilities are equivalent. Hence,

Theorem 22 A is the probability hierarchy for probabilistic PFin-type learning in
the range [0,1].

PROOF. Follows from Theorem 18 and Corollary 8. |
Theorem 22 has a following important corollary.

Theorem 23 Probabilistic PFin-type learning probability structure is decidable i.e.

there is an algorithm that receives as input two probabilities p; and p, and computes

whether PFin(p;) = PFin(p,).

PROOF. Use the algorithm of Lemma 21 to find the intervals [fi(p1). f2(p1)] and
[f1(p2). f2(p2)]. These two intervals are equal if and only if PFin(p,) = PFin(p,). I

104

6.9 Relative complexity

From Theorem 19 we know that PFin-type probability hierarchy is well-ordered. A
question appears: what is the ordering type of this hierarchy? To what particular
ordinal is it order-isomorphic? We analyse the proof of Theorem 19 step by step.
a(z) denotes the ordering type of AN]z,1] for z < % and the ordering type of
ANz, 1] for z > 3. If z > y, then a(z) < a(y) because ANjz,1] € ANJy,1]. We

will often use this inequality.
Lemma 49 a(3) = w.

PROOF. AN|1,1] consists of a single sequence 1, 2/3, 3/5, ...[22]. |

First, we prove lower bounds on the ordering type of A. [(p) is the largest ordinal
« such that there is an w®-sequence in ANJp,1] which converges to p. We define
{(p) = 0 if there is no such sequence for any a.

It is easy to see that a(p) > w'®). However, there may be a large gap between
these two ordinals. For example, if AN|p, 1] has the ordering type w” + 1, there is
no infinite monotonous sequence converging to p and I(p) = 0. We use the function

[to prove lower bounds.

Lemma 50

p
! (TJ—r_p) > a(p).

PROOF. Transfinite induction over p € A.
Base Case. Let p = 1. The ordering type of AN[1,1] = {1} is 1. The ordering type
of AN]1/2,1] is w and 1(1/2) = 1.

Inductive Case. Consider two cases:

1. pis a successor element.

Let p € [% anl] r denotes the element immediately preceding p. We have

a(p) = a(r) + 1 because p is the only element of A N [p,1] which does not

belong to AN [r.1]. By inductive assumption, /() 2 a(p).

Consider the splitting of [nl? 1] in the proof of Theorem 19 (subsection 6.7.1).

In the first step, one of segments is [1£. 5] because [p,r] does not contain

other elements of A. We consider the sequence 7o, ry. ... corresponding to

[ﬁ 1;7']'

105

Lemma 51 I(r;) > a(r).

PROOF. By induction.
Base Case. Let i = 0. Then, ro = 3 and l(ro) = (155) = (7).

Inductive Case. We prove [(r;41) > I(r;). Then I(r;1;) > afr) follows from
l(r;) > a(r). We use

Lemma 52 If a set is obtained from w® by removing a proper initial segment,

it still has ordering type w°.

PROOF. If we remove a segment with ordering type 3, we obtain the set with
ordering type w® — 3 (Definition 11). We have w* — 8 = w® for all 3 < w”. §

Let
2

AT T
f(x) maps v € A to the number generated from z and p by rule 2(Lemma
22). Let zo be the number such that f(z) = r;. The function f maps (2o, 7;)

to (risrig1). (rig1 = f(r;) by the definition of r;4,.)

We take an w'(") sequence converging to 7; and remove all z < zo from it.
The remaining sequence is still w'(” (Lemma 52). f maps it to a sequence

converging to r;4, and preserves the ordering. Hence, I(r;s1) > I(r). 0

We take the union of a” sequences converging to rg, 7y, ... and obtain a a”*!

sequence converging to lim; .., r; = T-;l-; Hence, I(;£5) 2 a(r) + 1 = a(p).

2. pis a limit element.

Let po,pi1.... be a decreasing sequence converging to p. Then,
a(p) = lim a(p;).
=00

We take the union of w®P) sequences converging to 75+ It has the ordering

type

liln \.(..?Q(p') — ‘-‘_)]iml—-oo a(p:) - q)or[p)
i—
and converges to T—FLp Hence, l{l—i—p) > a(p). 0

106

Lemma 53 o (%) > WP,
P

PROOF. Follows from Lemma 50 and a(7;) = W' (75, |

The upper bound proof is more complicated. We prove a counterpart of Lemma
53.

Lemma 54 « (%) < wolp),
P

PROOF. Transfinite induction over p € A.

Base Case. Let p = 1. The ordering type of AN[1,1] is 1 and the ordering type of
AN(1/2,1] is w.

Inductive Case. Consider two cases:
1. pis a successor element.

Let r be the element immediately preceding p. Similarly to the proof of Lemma

50, To, T1, ... is the sequence in the splitting of [5.] corresponding to

Fretbeed
14p 14717
Lemma 55 a(r;) < w*) - ¢; for some ¢; € IN.

ProOOF. By induction.

Base Case. If 1 =0, rg = H’_r and a(l_TI_T

) < w") by inductive assumption.

Inductive Case. Let P be a (r;4;,7;41)-minimal set (cf. section 6.7.4). Let
A(p1....,ps) denote the set of all x € AN|r;4y, 7] generated by applications of
the rule 2 to p} € A, ..., p, € Asuch that p; < p}, ..., ps < DP.. &(p1,--.,Ps)
denotes the ordering type of A(p;,...,ps)-

Lemma 56

a(ris)) Salr)(+) Y a'(pioo.ps).

PROOF. We have

AN|rigy, 1] = (AN]r;, 1]) Uiprpe)eP A(pry... ps)-

By Lemma 1. the ordering type of AN]r,1y,1] is less than or equal to the

natural sum of the ordering types of AN|r;. 1] and all A(p;..... Ps). |

Next, we bound each o'(p;.. ... ps). We start with an auxilary lemma.

107

Lemma 57 [fp € A follows from an application of the rule 2 to p; € A. ...,
ps € A. then
a(p) = a(p1)(+) ... (+)a(ps).

PRrROOF. Without the loss of generality, we assume that p; < p, < ... < p,.
Then, a(p;) > a(pz) > ... 2 a(ps). We prove the lemma by transfinite

induction over p;.
Base Case. p; is the maximum element, i.e. p; = 1.

Then, p; = ... = ps; = 1. An application of the rule 2 to py, ..., ps generates

p=s/(2s —1).
s] s—1 2
AN = ——my——— .5l 3.
[25—1‘] {23—1’23—3’ '3 }

The ordering type of this set is s, i.e. a(p) = s. On the other hand, a(p,) =

..=a(ps) =1 and
o(p)(+). .. (+)alps) = s.

Inductive Case. We have two possibilities:
(a) pp 1s a successor element.

J denotes the maximum number such that p; = ... = p;. Let

, { predecessor of py, if 1<)
P =

Pi, ifi>j
We have a(p;) = a(p) + 1 for : < j and a(p;) = a(p!) for ¢ > ;. Hence.

a(p)(+) .- (Helps) =

(a(pi) + 1)(+) - (H)le(p)) + D(H)a(pj)(+) ... (+)alpy) =
a(py)(+) ... (H)ea(pl) +j.

Let g be the number generated by an application of the rule 2 to p}.
Py and x;. for i € {1...., J}. be the number generated by an application

of the rule 2 to py. ..., pi, piyy. ..., p,. By inductive assumption.
a(zo) > a(pi)(+) ... (+)a(p)).
We have p; < p! for : < j. By Lemma 24, 2; < r;_;. Hence.
a(x;) 2 a(ri_) + L.

108

We have p; = p! for : > j. Hence, z; = p and
alp) = alz;) 2 a(zo) +7 > a(p)(+) .. (H)alpl) +7 =

a(p)(+) - .- (+)eal(ps)-

(b) py 1s a limit element.

Again, j is the maximum number such that p, = ... = p;. Let p{,p},...
be a monotonous sequence converging to p; and x; be the number gen-
erated by an application of the rule 2 to p!, ..., p!, pjt+1, ..., Ps. By

inductive assumption,

a(z:) 2 a(p)(+) - . - (+)a(p;)(+)a(pi)(+) - - (+)a(ps)- (6.3)
jti.ln‘ﬁes
We have p; = ... = p; = lim;_ p, By Lemma 25, p = lim;_, z;. Hence,

if we take 1 — oo in (6.3) and apply the fact that (4) is continous, we
get

a(p) > a(p)(+) ... (+)a(ps)-

Lemma 58 Let (py,...,ps) € P. Then

o' (pry- .., ps) < w7 - const.

PROOF. Lemma 2 implies that o/(py,...,ps) is at most the natural product of
a(p1), .., a(ps). Let a; be the largest ordinal such that a(p;) > w®. Then,
alp;) < cjw. (If there is no such ¢;, then a(p;) < limw® - ¢ = w™*! and q;

is not the largest ordinal with such a property.) Hence,

oy ag | COs Car{H)az{+).(+)as

A (Pre.. ., ps) SO (w0 . W e = w “(ereg. .. cs).

Let p; be such that pi € A and ofp)) = a;. We have a; < a(r) because
p; > 1 alp;) < a(rg). alp;) > w® and a(r;) < w*™) . const < w1 Hence,

p; = r and both Lemma 50 and Lemma 54 are true for p = p.. This means

!

p P
that a(igy) = wr. Hence. i > p; because o(p;) > w.
J 2

Let p’ be the number generated by an application of the rule 2 to pj. ..., p,. By
P1 [
ThT e T

Lemma 26, Iip, is generated by an application of the rule 2 to

109

2 s greater than or equal to the number generated by an application of rule

1+p’
2 :o Pi, ... Ps because % > pj. This number is at least 7,4, because the
tuple (pi, ..., ps) belongs to the (r.41,7:41)-allowed set P. Hence, 1%';77 > Tig1-
We have 1—_’;;)—, > 1 because [1{{5, i+-] does not contain any points of type %
with p’ € A. This implies p’ > 7.
By Lemma 57,
a(p’) = a(pr)(+) - . (+)alps)-
This implies
&' (pry- .., ps) S wPVHARalpe) 00y <
WP (e1...¢) < Wl . (c1...¢5).
i

Now, we are ready to finish the proof of Lemma 55. By Lemma 56, a(r;41)
is less than or equal to the natural sum of a(r;) and o'(p1,...,ps). We have

a(r;) < w™) . const by inductive assumption and
& (p1,. ., ps) < w* . const

by Lemma 58. Hence, the natural sum of these ordinals is at most w®(") - const,
too. i

a (L) = lim a(r;) < lim W < limw - ™) = WM = o)

14+p) = o0 oo

(8]

. pis a limit element.

Let po,p1,... be a decreasing sequence converging to p. By inductive assump-

tion. a(%) < woP) We have

8! (_p = lma (P < lim W) = plim—salp) — olp),
1+ p 100 1+ Pi 1—20

|
Lemma 59 o(£) = w(P),
PRrROOF. Follows from Lemmas 33 and 34. |

110

Theorem 24 The ordering type of A is at least €p.

PROOF. The ordering type of AN]3,1] is w (Lemma 49). The ordering type of
AN|%,1] is w¥ (Lemma 59 with p = 1/2), the ordering type of AN]3,1] is w*” and

so on. The ordering type of A is the limit of this sequence, i.e.

) i

€0 = lim(w,w*,w* ,w* ,...).

It is known that the ordinal €5 expresses the set of all expressions possible in
first-order arithmetic. It is also claimed that the ordinal € is so large that it is very
difficult to find any intuitive description for €.

So, we see that PFin, a very simple learning criterion, generates a very complex
probability hierarchy.

Table below shows how the complexity of the hierarchy increases. All results in

this table can be obtained using Lemma 59.

Interval || Ordering type of the probability hi(;.rchy

[5.1] w

[5.1] w2

1] 3w

[3.1] w?

[5-1] w’

[5.1] w

i, 1] wv”

[0,1] €0

It shows that the known part of hiearchy ([2,1]) is very simple compared to the
entire hierarchy.

Notes. The points of the probability hierarchy in the intervals [1,1],[2.1] and
(2. 1] were explicitly decribed in [22], [19] and [16], respectively.

In [16], an w? sequence of points converging to é was presented and it was con-
Jectured that this sequence forms the backbone of the learning capabilities in the

interval [£,1].

111

6.10 Probabilistic versus team learning

For Ex-identification, there is a precise correspondence between probabilistic and
team learners (Pitt’s connection[42]). Any probabilistic learner can be simulated by
any team with the ratio of successful machines equal to the probability of success
for the probabilistic learner.

However, the situation is more complicated for finite learning (Fin and PFin).
Here, the learning power of a team depends not only on the ratio of succesful ma-

chines. Team size is also important.
Theorem 25 [53, 30] [1,2]|PFin C [2,4]PFin.

So, a team of 4 learning machines where 2 machines are required to be successful
has more learning power than team of 2 learning machines where 1 must succeed.
However, in both teams the ratio of successful machines to all machines is the
same(3).

This phenomena is called redundancy. Various redundancy types have been dis-
covered for various ratios of successful machines(cf. [20, 16, 30]). The theorem below

is the examnple of infinite redundancy[16, 20].
Theorem 26 [16] It k mod 3 # 0, then
[2k, 5k]PFin C [8k, 20k]PFin.
In particular,
[2,5]PFin C [8,20]PFin C [32,80]PFin C

So, for the ratio of successful machines 2/5 there are infinitely many different
team sizes with different learning power.

However, even for PFin, any probabilistic machine can be simulated by a team
with the same ratio of success, if we choose the team size carefully. A simple corollary

of Theorem 21 is

Corollary 9 If p.q € INT, then there exists k such that

PFin(Z) = [pk, ¢k|PFin.
q

This shows that probabilistic PFin-learning and team PFin-learning are of the

same power.

Corollary 10 If p,q € IN*, then there exists k such that
[pl, ¢!/|PFin C [pk, ¢k]PFin

for any | € INT.

PROOF. The team of g/ machines can be simulated by single probabilistic machine
which equiprobably chooses one of machines in team and simulates it. Hence, The-

orem 9 implies that

[pl,qJPFin C PFIN(Z) = [pk, ¢k|PFin.
q

So. we see that redundancy structures can be very complicated but always there
is the "best™ team size such that team of this size can simulate any other team with
the same ratio of successful machines. It exists even if there are infinitely many

team sizes with different learning power (like for ratio 2/5, Theorem 26).

6.11 Summary

We have investigated the structure of probability hierarchy for PFin-type learning.
Instead of trying to determine the exact points at which the learning capabilities
change, we focused on the structural properties of the hieararchy.

We have developed a universal diagonalization algorithm (Theorem 18) and a
universal simulation algorithm (Theorem 21). These algorithms are very general
forms of diagonalization and simulation arguments used for probabilistic PFin [16,
19].

Universal diagonalization theorem gives the method that can be used to obtain
any possible diagonalization for probabilistic PFin. Universal simulation algorithm
can be used for any possible simulation.

These two results together give us a recursive description of the set of points A
at which the learning capabilities are different.

This set is well-ordered in decreasing ordering. (This property is essential to the
proof of Theorem 21.) Its structure is very complicated. Namely, its ordering type

is €, the ordering-type of the set of all expressions possible in first-order arithmetic.

113

It shows the huge complexity of the probabilistic PFin-hiearchy and explains why
it is so difficult to find the points at which the learning capabilities are different.

A simple corollary of our results is that the probabilistic and team PFin-type
learning is of the same power, i.e. any probabilistic learning machine can be simu-
lated by a team with the same success ratio.

Several open problems remain:

1. Unrestricted finite learning(Fin).

‘The major open problem is the generalization of our results for other learning
paradigms such as (non-Popperian) Fin-type learning and language learning

in the limit.

Theorem 18 can be proved for (nonPopperian) Fin-type learning, too. Hence,
if
PFin(p,) # PFin(py),

then
Fin(p) # Fin(p,).

So, the probability hierarchy of Fin is at least as complicated as the probability

hierarchy of Fin. It is even more complicated because it is known[18. 19] that
Fin(24/49) C Fin(1/2)

but
PFin(24/49) = PFin(1/2).

The simulation techniques for Fin are much more complicated than simulation
techniques for PFin. However, we hope that some combination of our meth-
ods and other ideas (cf. [18. 17]) can help to identify the set of all possible
diagonalization methods for Fin and to prove that no other diagonalization

methods exists (i.e. to construct universal simulation for Fin).

A step in that direction was made in [3] by proving that Fin-hiearchy is
well-ordered and recursively enumerable. It still remains open whether it is
decidable. The proof technique in [3] is different from ours and uses capability
trees[17].

2. Probabilistic language learning.

114

The probability hierarchy of language learning in the limit[26] has some simi-

larities to Fin and PFin-hiearhies.

It is an interesting open problem whether some analogues of our results can

be obtained for language learning in the limit.

3. What is the computational complexity of decision algorithms for the PFin-
hierarchy?

4. How dense is the probability hierarchy?
Can we prove the result of the following type:
If Pi1,P2 € [L l] and Ipl = pzl < (1/2]“, then

n+l1'n

PFin(p:) # PFin(p,)?

Other properties of the whole hierarchy can be studied, too.

115

Chapter 7
Conclusion

We have shown two applications of constructive ordinals in the theory of inductive
inference.

The first was counting mindchanges (cf. Freivalds and Smith[24]). Here, we ex-
amined the ordinal mindchange complexity of natural language classes and derived
various sufficient conditions for the existence of such bounds. These conditions
showed that ordinal bounds are strongly related to other notions of inductive infer-
ence. We also examined the role of the system of notations. Our results showed
that various systems of notation form very complicated structure. Together, all
these results show that the ordinal bounds on the number of mindchanges is rich
and interesting research area with both concrete and more abstract results.

The second was the probability hierarchy of PFin. Here, ordinals and well-
orderings were applied to obtain a global information about probability structure.
In future, we should find other applications for powerful techniques of chapter 6.
An extension of our results to criteria of success other than PFin is one possible

application.

116

Bibliography

(1]

2]

4]

[5]

(6]

(3]

(9]

A. Ambainis, The power of procrastination in inductive inference: how it de-
pends on used ordinal notations. Proceedings of the 2nd European Confer-
ence on Computational Learning Theory, Lecture Notes in Computer Science,
904:99-111, 1995.

A. Ambainis, Probabilistic and team PFin-type learning: general properties.
Proceedings of the 9th Conference on Computational Learning Theory, pp.
157-168, ACM, 1996.

A. Ambainis, K. Apsitis, R. Freivalds, C.H. Smith, Matriz games and team
learning, accepted for ALT 97, 1997.

A. Ambainis, J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size pro-

gram inference. In preparation, extends [12].

A. Ambainis, S. Jain, A. Sharma, The ordinal mind change complexity of lan-
guage identification, in “Proceedings of EuroCOLT’97”. Lecture Notes in Com-
puter Science, 1203:301-315, 1997.

D. Angluin, Finding patterns commmon to a set of strings, Journal of Computer
and System Sciences, 21(1980), 46-62.

D. Angluin. C.H. Smith, Inductive inference: theory and methods. Computing
Surveys, 15:237-269, 1983.

K. Apsitis, Derived sets and inductive inference, in "Proceedings of A11'94™.

Lecture Notes in Computer Science, 872(1994), pp. 26-39. Springer-Verlag.

k. Apsitis, R. Freivalds. C.H. Smith, On duality in learning and the selection

of learning teams. Information and Computation, 129:53-62. 1996.

117

[10]

(11]

[12]

[13]

[14]

(15]

(16]

[17]

18]

(19]

S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, and A. Yamamoto. Al-
gorithmic learning theory with elementary formal systems. IEICE Trans. Inf.
and Syst., ET5-D No. 4:405-414, 1992.

J. Case and C. Smith. Comparison of identification criteria for machine induc-
tive inference, Theoret. Comput. Sci., 25(1983), 193-220.

J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size program infer-
ence. In Klaus P. Jantke and Steffen Lange, editors, Algorithmic Learning
for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial Intel-
ligence, pages T7-96. Springer-Verlag, 1995.

M. Changizi, Self-monitoring machines and an w* hierarchy of loops. Inform.
and Comput., 128(1996), 127-138.

A. Church, The constructive second number class. Bulletin American Mathe-
matical Society, 44:224-232, 1938

A. Church, S. Kleene, Formal definitions in the theory of ordinal numbers.
Fund. Math.. 28:11-21, 1937

R. Daley, B. Kalyanasundaram, Use of reduction arguments in determining
Popperian FIN-type learning capabilities. Proceedings of the 4th International
Workshop on Algorithmic Learning Theory, Lecture Notes in Computer Science.
744:173-186, 1993

R. Daley, B. Kalyanasundaram, FINite learning capabilities and their limits.
To appear at COLT97. Full version available at http://www.cs.pitt.edu/ da-
ley/fin/fin. html.

R. Daley. B. Kalyanasundaram, M. Velauthapillai, Breaking the probability 3
barrier in FIN-type learning. Journal of Computer and System Sciences. 25:574-
599, 1995.

R. Daley, B. Kalyanasundaram, M. Velauthapillai, The power of probabilism
in Popperian FINite learning. Proceedings of the 3rd International Workshop
on Analogical and Inductive Inference. Lecture Notes in (‘omputer Science.
642:151-169. 1992.

1138

http://www.cs.pitt.edu/

[20]

[21]

22]

[24]

[25]

[26]

[27]

23]

[29]

(30]

R. Daley, L. Pitt, M. Velauthapillai, T. Will Relations between probabilistic and
team one-shot learners. Proceedings of the 4th Conference on Computational

Learning Theory, pp. 228-239, Morgan-Kaufmann, 1991.

S. Feferman, Classification of recursive functions by means of hierarchies, Trans.

Amer. Math. Soc., 104(1962), 101-122.

R. Freivalds, Finite tdentification of general recursive functions by probabilistic
strategies. Proceedings of the Conference on Algebraic, Arithmetic and Cate-
gorical Methods in Computation Theory, pp. 138-145. Akademie-Verlag, Berlin,
1979

R. Freivalds, J. Barzdins, K. Podnieks, Inductive inference of recursive func-
tions: complexity bounds, in "Baltic Computer Science”, Lecture Notes in

Computer Science, 502(1991), pp.111-155, Springer- Verlag.

R. Freivalds, C. H. Smith, The role of procrastination in machine learning.
Information and Computation, 107:237-271, 1993.

E. M. Gold, Language identification in the limit. Information and Control.
10:447-477, 1967.

S. Jain, A.Sharma, Computational limits on team identification of languages.
Information and Computation, 130:19-60, 1996.

S. Jain and A. Sharma. On the intrinsic complexity of language identification.
In Proceedings of the Seventh Annual Conference on Computational Learning
Theory, New Brunswick, New Jersey, pages 278-286. ACM-Press, July 1994.

S. Jain, A.Sharma, On identification by teams and probabilistic machines. K.
P. Jantke, S. Lange, (eds.) Algorithmic Learning for Anowledge-Based Systems
Lecture Notes in Computer Science, 961:108-145, 1995.

S. Jain, A. Sharma, Elementary formal systems, intrinsic complexity, and pro-
crastination, in "Proceedings of 9th Annual Conference on Computational

Learning Theory™, pp. 181-192, ACM, 1996.

S. Jain. A. Sharma, M. Velauthapillai. Finite identification of functions by

teams with success ratio 3 and above, Information and Computation. 121:201-
213, 1995.

119

[31]

32]

[33]

[34]

(38]

39]

[40]

k. P. Jantke. Monotonic and non-monotonic inductive inference. New Gener-
ation Computing, 8:349-360, 1991.

S. Kapur. Monotonic language learning. In Proceedings of the Third Workshop
on Algorithmic Learning Theory. JSAI Press, 1992. Proceedings reprinted as
Lecture Notes in Artificial Intelligence, Springer-Verlag.

P. Kilpelainen, H. Mannila, and E. Ukkonen. MDL learning of unions of simple
pattern languages from positive examples. In Proceedings of the Second Euro-
pean Conference on Computational Learning Theory, Lecture Notes in Artficial
Intelligence 904. Springer-Verlag, 1995.

M. Kummer, The strength of noninclusions for teams of finite learners, Pro-
ceedings of the 7th Conference on Computational Learning Theory, pp. 268-277,
ACM, 1994.

S. Kleene, On notation for ordinal numbers. Journal of Symbolic Logic, 3:150-
155, 1938.

K. Kuratowski, A. Mostowski, Set Theory. North-Holland Publishing Company,
Amsterdam, 1967.

S. Lange and T. Zeugmann. Monotonic versus non-monotonic language learn-
ing. In Proceedings of the Second International Workshop on Nonmonotonic
and Inductive Logic, pages 254-269. Springer-Verlag, 1993. Lecture Notes in
Artificial Intelligence 659.

M. Machtey, P. Young, An Introduction to the General Tﬁeory of Algorithms.
North-Holland, 1978

T. Motoki, T. Shirnohara, and K. Wright. The correct definition of finite elas-
ticity: Corrigendum to identification of unions. In L. Valiant and M. Warmuth,
editors, Proceedings of the Fourth Annual Workshop on Computational Learn-
ing Theory, Santa Cruz. California, page 375. Morgan Kaufman, 1991.

Y. Mukouchi. Inductive inference of an approximate concept from positive
data. In S. Arikawa and K. P. Jantke. editors, Algorithmic Learning Theory.
4th International Workshop on Analogical and Inductive Inference. AII'94 and
dth International Workshop on Algorithm Learning Theory. ALT 9/, Lecture
Notes in Artificial Intelligence. 872. pages 484-499. Springer-Verlag, 1991.

120

[41]

42]

143]

[44]

45]

[46]

[47]

48]

[49]

[50]

D. Osherson, M. Stob, S. Weinstein, Systems that Learn: An Introduction
to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cam-
bridge, MA, 1986

L. Pitt, Probabilistic inductive inference, Journal of the ACM, 36:383-433, 1989.

L. Pitt, C. H. Smith, Probability and plurality for aggregations of learning
machines. Information and Computation, 77:77-92, 1988.

H. Rogers Jr., Godel numberings of partial recursive functions. Journal of Sym-
bolic Logic, 23:331-341, 1958

H. Rogers Jr., Theory of Recursive Functions and FEffective Computability.
McGraw-Hill, New-York, 1967. Reprinted, MIT Press, 1987.

G. E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.

M. Sato and T. Moriyama. Inductive inference of length bounded EFS’s from
positive data. Technical Report DMSIS-RR-94-2, Department of Mathematical

Sciences and Information Sciences, University of Osaka Prefecture, Japan, 1994.

W. Sierpinski, Cardinal and ordinal numbers. PWN - Polish Scientific Publish-
ers, 1965

T. Shinohara. Studies on Inductive Inference from Positive Data. PhD thesis,
Kyushu University, Kyushu, Japan, 1986.

T. Shinohara. Rich classes inferable from positive data: Length-bounded ele-

mentary formal systems. [nformation and Computation, 108:175-186, 1994.

C.H. Smith, Three decades of team learning. Proceedings of the 5th Interna-
tional Workshop on Algorithmic Learning Theory, Lecture Notes in Computer
Science, 872:211-228, 1994

R. Soare, Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

M. Velauthapillai, Inductive inference with bounded number of mind changes.

Proceedings of COLT'89, pp. 200-213, 1989

K. Wright. Identification of unions of languages drawn from an identifiable
class. In R. Rivest, D. Haussler, and M. K. Warmuth, editors, Procecdings of

121

the Second Annual Workshop on Computational Learning Theory, Santa Cruz,
California, pages 328-333. Morgan Kaufmann Publishers, Inc., 1989.

T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In K.P. Jantke and S. Lange, editors, Algorithmic Learn-
ing for Knowledge-Based Systems, pages 190-258. Lecture Notes in Artificial
Intelligence No. 961, Springer-Verlag, 1995.

