
Latvijas Universitateel.Jniversity of Latvia

Inductive Inference and Constructive Ordinals

Dr. Sc. Camp. Dissertation

Andris Ambainis
Institute of Mathematics and Computer Science

University of Latvia
Raina bulv.29, Riga, LV -1459

Latvia

I "." ,,:;

81~1.- o : :.....Kl
./

RIga, 1997

Acknow ledgements.

Interaction with other people was crucial to the success of this research. First,

a lot of thanks to my advisor, RusiI].s Freivalds for bringing me into theoretical

computer science research and helping whenever possible. Thanks to Agnis Aridaans

for working with me while I was in high school and sending me to Rusins Freivalds

later.

My coauthors Sanjay Jain and Arun Sharma helped to improve the content of

chapters 3 and 4 greatly. Research described in this thesis also benefited from dis-

cussions and comments by Kalvis Apsitis, John Case, Dick de Jongh, Frank Stephan,

Mahe Velauthapillai and Manfred Warmuth. A lot of comments by anonomous ref-

erees at various conferences was very useful. Thanks to Mark Changizi, Martin

Kummer and Carl Smith for sending me their papers and to Bob Daley and Balya

Kalyanasundaram for writing [16] that inspired me and was the starting-point for

chapter 6.

The financial support for this research was provided by Latvia Science Council

Grants 93.599 and 96.0282 and fellowship" SWH Izglit.ibai , ziriatnei un kultiirai"

from Latvia Education Foundation. The results of this thesis were presented at

EuroCOLT'95, COLT'96, EuroCOLT'97. Financial support for participiation III

these conferences was provided by Soros Foundation Latvia (for EuroCOLT'95) and

the organizers of conferences.

Finally, I thank all my colleagues, friends and my family for everything good that

happened during these years.

1

Contents

1 Introduction 5

2 Technical preliminaries
:2.1 \otiltion , ..

9

9
C)

10

12

12

1 :3

.J.) PiHilcligll1~ of inductive inference.

1.1. L Liln~llagp identification in the limit

.) ')'J function identification in the limit

1.:2.:~ Finite identification of functions

\\-t'll-ordf'ring~ and ordinals

OrclillClb a~ minclchange counters

S\'st('m~ of not at ions

1.-j.l Definitions ..

1.·-).1 The svstcrn P

1,·).:3 TIJP universal systems S'l and 0

I;j

IG
16

1. l
.) -_ ..)

18

18

3 Ordinal mind change complexity of unions of pattern languages 20
:t 1 Ovr-rvir-w . 20

:3.1 Results.. 20

:1.:3 Su n Imar,' 2:3

4 General conditions for existence of ordinal mindchange bounds 24
I. J 0verview . ' , . . , 2·1

1.1 ,\ characterization of ordinal bounds on the number of miudchanges 2.)

1.:3 Ordinal complexity and conservat iveness 27

I. I Ordinal cUlllp\exity and monot.onicit v :n
l. .-) Slim rna J'\' .'............. :38

5 The influence of the system of ordinal notations
.i.l (heni(,\\ .. " ... " "

39

:3CJ

10

11

12

\;')

II
;')0

.-)0

.i 1

.'):3

()]

Gl
6·5

·j.:l

LX. -idf'lll ilirat ion for (l < 2

FX_,-id('lll ilica t ion .

.i.:L 1 I.P!lllllii a hout lim-compn t a hle- Iuuct ions

i.:L1 The ~\'~l e-m of not at ions .(,':1

·i.:3.:3 TIl(' u iai n result ... " ...

T\\·o S\'sl("ln" of not at ions: () and P

-J. 1.1 TI)(' <vst cm () , .

,i.l.:2 The S\'slf'l1l P: small ordinals

.i.I.:3 lhc-svstr-m P: large ordinals

Het t er S\'stc'lllS ve-rsus larger ordinals

.'),.-l.l L1I'~pr ordinal:-; inst ead of bl'Her svst ems

·)..),1 H(,tt(']' svst erns instead of larger ordinals

Summan' . ()(j

.J..)

6 Probability hierarchies
h.1 O\'el'\'je\\·,..

h.:2 Prr-li ruin arie»

68

(j.1.1 Proba hi list ic and team learning

(;.2.1 '-)\';;1 ('111;; of not at ions

(;.:~ Three e":amples .. ,

G, I ('haracteri/at ion of PFin-hieararchv

h ..-l Technical lc-unuas

(Ui I niversal c1iagoJ1a liz at ion

h,l \YI'II-ordering and systelll of notations.

fi.l.l Split tim: the s('pnwnl [.ll' 1]
<;> t) n+ H

h.I.1 \Yell-ordering .

(i.I.:3 Distinguishing (+nwnts of different types

h.I,\ (./'.rI)-lllinimal sets

h.I ..-) S\';;IPIl1 or notations

h.K I "ni\"ersa] sirnulat ion

fi.C) Rt'lat ivr- «omp lcxitv

h,IO Prohahi li;;t ic versus tr-am learning

7,)

77
8:3

YO

9·)

99
105
11 :2
11:3h,ll Sllmlll,-\I'\'

:3

7 Conclusion 116

Chapter 1

Introduction

The topic of this thesis is applications of well-orderings and ordinals in inductive

inforr-nce. Inductive inference is a branch of theoretical computer science that studies

t he process of learning on a very general level [:2.5. 7, 41].

Traditionally. inductive inference studies the learning of arbitrary recursive func-

tions (or languages). A lear ning algorithm receives data about an unknown function

(language) and outputs a sequence of conject ures about this fuction. Each conjec-

turr- is a program in a general programming language computing some function (or

a grammar for a language). The learning algorithm succeeds when it outputs a

correct program (granimar).

Various aspects of this model have been studied[4l]. Ordinals have found two

verv different applications in inductive inference.

First. ordinals can be used as counters. Ordinal counters are generalizations of

counters that use natural numbers .

.\Iost frequent ly. they are used to count mindchanges. A mindchange is an event

when the learning machine changes its conjecture (by outputting a program different

from the previous conjecture). The number of mindchanges can be considered as a

measure of complexity for inductive inferencej l l , 23].

Most of researchers consider only one type of complexity bounds on the number of

mindchanges: constant bounds. Constant bounds are established by requiring that

IlIP learning algorithm makes at most c mindchanges where c is a constant that is

t he same for all functions. However, there are situations which cannot be described

bv const ant bounds.

In particular. such bounds do not t ake into account scenarios in which a learning

machine. after ex amiu ing an element of the language is in a position to issue a bound

.')

on t he number of mind changes it will make before the onset of convergence. For

oxarnple-. consider t he class

('OISIT = {L I (::In)[L = {x i x ~ n}]}.

Int uit ivelv, ('OISIT is the collection of languages that contain all natural numbers

except a finite initial segment. Clearly, a learning machine that, at any given time,

finds the minimum clement n in the data seen so far and emits a grammar for

t he language {.r I .r ~ n} learns COINIT in the limit from positive data. It is

also easy to see that t he class COI.'\';[T cannot be identified by any machine that

is required to converge 'within a constant number of mind changes. However. the

machine identifying COINIT can, after examining an element of the language. issue

an upper bound on the number of mind changes.

In this example. t IIf' number of mindchanges is bounded but this bound is not a

constant bound. An another example is the class of pattern languages (PA.TTERN).

first introduced by Angluin [6]. Such scenarios can be modeled by the use of con-

structive ordinals as mind change counters introduced by Freivalds and Smith [24].

{"Sf' of canst ruct ive ordinals provides a very general and ftexi ble model that can be

used to describe a lot of different behaviours of learning machines.

This thesis investigates ordinal bounds on the number of mindchanges III three

d irect ions.

First. ,VI' gi\"c the ordinal mind change bounds for identification in the limit of

unions of pattern languages from both positive and negative data (informants). We

desr rib« thcse re-sults in chapter :3.

Second. we investigate conditions under which an ordinal mind change bound can

he guaranteed. \Vc first establish a useful technical result which states that if a

learning machine makes a finite number of mind changes on any text. then the class

of languages that can be identified by this machine has an ordinal mind change

hound. This result allows us to derive various sufficient conditions for the existence

of ordinal hounds. These conditions involve different notions like finite thickness,

finite elasticity. couservat iveness. et c.. These results are described in chapter 4.

Third. we investigate the dependence of ordinal bounds on the particular nota-

tion for ordinals. l sually, notation is regarded as something unimportant and it

is expected that all results will be true (or false) no matter what notation is used.

However. the situation is difff'rent with ordinals.

There exist many nouequivalent systems of notations for constructive ordinals.

'lhe part icular system of notations is very important ill many computational models

involving ordinalsl l.I. 21]. TIll" power of a machine can change dramatically when

t.he svst orn of not at ions changes. We show that the learning power is not influenced

by t he system of notations only when small ordinals (below u}) are used. For greater

ordinals. the system of notations has very large influence. These and other results

about systems of notations are described in chapter .5.

The second application of constructive ordinals is probabilistic and team learning

(chapter (j). Here. ordinals are used to resolve difficult problems in an unexpected

We consider finite identification of recursive functions. In this model, the machine

can output only one program and it must be correct. This seems much simpler than

the identification in the limit where an unlimited number of conjectures is allowed.

However. if we consider probabilistic and team learning[28, .51L the situation is just

t he opposite.

It is well known t hat teams of machines can identify larger classes of functions

than single machines. Identification by probabilistic machines is closely related to

identification by teams because any team can be simulated by a probabilistic ma-

chine. Teams of different size and probabilistic machines with different probabilities

of success han" different learning power. Previous research[22, 18, 17] has shown

that relations between teams and probabilistic machines with different characteris-

tics are very complicated. Finite identification by teams and probabilistic machines

has been studied for 18 years. Still, we are far from the complete understanding of

t he situation.

In chapter 6. we consider PFin, a restricted version of finite identification. The

st rur t ure of different PFin-tearns and probabilistic PFin-machines is less compli-

cated than the similar structure for unrestricted finite identification. However, it

is complicated. too. Researchers have come to a conclusion that it is unlikely that

it will be possible to determine all probabilities at which the learning power of

probabilistic P'F'in-rnachines is different[16].

We propose a different approach. Instead of determining these probabilities ex-

plicit ly, we study global properties of the probability structure. We prove that the

set of different probabilities is well-ordered and has a system of notations. Then.

we give an algorithm that receives two probabilities PI and P2 and answers whether

t he any machine with probability of success PI can be simulated by a machine with

probability of success P2. Well-orderedness and the system of notations is crucial

for the const ruct ion of decision algorithm.

The precise ordering type of this set is EO. a huge ordinal that is order-equivalent

to the set of all expressions possible in first-order arithmetic. This result shows that

the probability structure is very complicated. Very general methods are required

to deal wit h so complex struct meso Ordinals and systems of notations give us such

methods.

In the I1f'Xt chapter. we give precise definitions of problems analysed in this thesis.

Theil. in chapters :3, .-1. .5and 6, we give our results. At the beginning of each chapter,

we give a more detailed survey of results in this chapter.

The results in chapters :3 and 4 were published in [5]. These results were obtained

together with Sanjay Jain and Arun Sharma. The results in chapter 5 appeared in

[1] and the results in chapter 6 appeared in [2].

8

Technical preliminaries

2.1 Notation

We use standard recursion-theoretic concepts~45, 46, .52]. :IN = {a, I, ... } denotes the

set of all natural numbers, IN+ = {L 2, ... } denotes the set of all positive integers,

<Q denotes the set of rational numbers and IR denotes the set of real numbers. The

symbols <;;;.::2, c.~, and 0 denote subset, superset, proper subset, proper superset,

and the ern ptysct . respectively. (,) denotes one- to-one and onto pairing function

from II\ x Il\ -+ IT\.

--Po. YI is a fixed acceptable programming system[38, 44]. In chapters about

language identifications (chapters :J and 4), it is an acceptable programming system

for all recursively enumerable languages. In chapters considering function identifi-

cation (chapters :s and 6), it is an acceptable programming system for all partial

recursive functions . .pi is the partial recursive function computed by the ith pro-

gram ill .p (or t he language recognized by the ith grammar in sp ; if the language

identification is considered).

2.2 Paradigms of inductive inference

III t his thesis. we consider three identification paradigms: language identification in

t he limit (r hapters :3 and 4). identification of recursive functions in the limit (chapter

.)) and finite ident ificat ion of recursive functions (chapter 6). Several authors have

argued that these paradigms is sufficiently general to model. via suitable encodings,

a large variety of real world learning situations [7. 1L 2.5,41].

9

2.2.1 Language identification in the limit

L denotes a typical variable for a language. L denotes the complement of L, that

is. l. = h'\ - l...

\\"e first define t he not ion of t ext s for languages.

Definition 1

(a) .\ lui for a language L is a mapping T from IN into (IN U {#}) such that L
is the set of natural numbers in the range of T.

(b) conttllt(T) denotes the set of natural numbers in the range of T.

(c) The initial sequence of text T of length n. is denoted 1'[n].

(d) The set of all finite initial sequences of IN" and #'s is denoted SEQ.

Intuitively. a text T for a language L is a presentation of elements of L (possi-

bly repeated) and no non-elements of L: # 's in the presentation may be thought

of as modeling pauses in data inputl. It is easy to see that there exists a com-

put.a hie bijer t ion bet ween SEQ and N. Members of SEQ are inputs to machines

that learn grammars (acceptors) for Le. languages. We let a and T, with or without

dccorat ions". range over SEQ .. \ denotes the empty sequence. content] (f) denotes

t.he set of natural numbers in the range of a and length of a is denoted l(fl. We say

that (J <;;;; T ((J <;;;; T) to denote that a is an initial sequence of T (1').

Definition 2 A language learning machine is an algorithmic mapping from SEQ

into IN uU}.

M denotes a typical variable for a language learning machine. We also fix an accept-

able programming system and interpret the output of a language learning machine

as the index of a program in this system. Then, a program conjectured by a ma-

chine in response to a finite initial sequence may be viewed as a candidate accepting

grannnar for the language being learned. M(T) is the program conjectured by M
after reading T.

;\ conjecture of ""?" by a machine is interpreted as "no guess at this moment."

This is useful to avoid biasiug the number of mind changes of a machine. For this

ll\olt' that the only text for the empty language is an infinite sequence of #'s.

" Decorations are subscripts. superscripts and the like.

10

paper. we assume. without loss of generality, that a s:;; T and M(a) #? implies
M(T) i='?

We say that M con\"{'rges on text T to i (written: M(T) converges toi) just in
case for all but finitely many n, M(T[n]) = i. The following definition introduces
Cold's cri torion for successful identification of languages.

Definition 3 [:2;')]

(a) M Txt Ex-vc. nt ijies a text T if M(T) converges to a grammar for content(T).

(b) M TxtEx-idtntijif8 an r.e. language L (written: L E TxtEx(M)) just in

case M TxtEx-identifies each text T for L.

(c) TxtEx denotes the set of all collections I:- of r.e. languages such that some
machine TxtEx-identifies each language in 1:-.

The next two defini lions descri be the not ion of informants as a model of both posi ti ve
and negative data presentation and identification in the limit from informants.

Definition 4 An informant for L is an infinite sequence (repetitions allowed) of
orde-red pairs such that for each ti E IN either (n, 1) or (n,o) (but not both) appear
in the sequence and (n.1) appears only if ti ELand (n, 0) appears only if n rf- L.

1 denotes a typical variable for informants. l[nJ denotes the initial sequence of
informant 1 with length n . content(l) = {(x.y) I (x,y) appears in sequence I}.
content(1[n]) is defined similarly.

PosInfo(1[nJ) = {l' I (x. 1) E content(I[n])}.

NegInfo(l[n]) = {x I (x.o) E content(I[n])}.

We now define identification from both positive and negative data.

Definition 5 [27>]

(a) M InfEx-identijies an r.e. language L just in case M, fed any informant for
L. converges to a grammar for L. In this case we say that L E InfEx(M).

(b) M InfEx- id(ntijies a collection oflanguages, 1:-, just in case M InfEx-identifies
each language in L

(c) InfEx denotes the set of all collections I:- of r.e. languages such that some
machine InfEx-identifies L

11

2.2.2 Function identification in the limit

In t his paradigm. t he object that is learned by an lIM is a recursive (totally com-

putable) Iunct.ion. II:YI receives the values of function j(0), f(l), ... as the input.

Definition 6 [2:")]

(a) M Ex-idcntzft'fs an recursive function f just in case M, fed f(O), f(1),
converges to a program for f. In this case we say that L E Ex(M).

.. ",

(1)) M Ex-idtntiJifs a collection offunctions, U. just in case M Ex-identifies each

function in I'.

(c) Ex denotes the set of all collections U of recursive functions such that some

machine Ex-identifies C.

2.2.3 Finite identification of functions

Identification in the limit allows an unlimited number of conjectures. On the con-

trary. finite identification allows only one conjecture on each input.

Definition 7 [22]

(a) M Fin-idfntififs an recursive function f just in case the first program issued

by .\1 on the input frO), f(1). , .. computes f. In this case we say that

L E Fin(M).

(b) M Fin-identifif.5 a collection of functions. U, just in case M Fin-identifies

each function in U.

(c) Fin denotes the set of all collections U of recursive functions such that some

machine Fin-identifies U:

We consider PFin, a restricted version of Fin.

Definition 8 A machine M is Popperian iff all programs issued by M on aI inputs

compute total recursive functions.

Definition 9 (a) M PFin- identifies a collection of functions U iff Mis Popperian

and M Fin-identifies each function in l'.

(b) PFin denotes the set of all collections U of recursive functions such that some

machine PFin-identifies t.

2.3 Well-orderings and ordinals

A linear ordering is lL'f/l-ordcring if it does not contain infinite descending sequences.

O,.dinal{lX] arc standard represent at ions of well-orderings.

The ordinal 0 represents the ordering type of the empty set. the ordinal 1 repre-

sents the orderi ng type of any 1 element set, the ordinal 2 represents the ordering

type of any :2 element set and so on. The ordinal w represents the ordering type of

the set {G. I. 2 }, The ordinal (.J.) + 1 represents the ordering type of {G, 1,2, }

followed by element v..:. The ordinal v': . 2 represents the ordering type {O, 1,2, }

followed bv {;,.v. v..: + Li + 2 }. Greater ordinals can be defined similarly (d.[48]).

\Ve use arit hruet ic operations on ordinals defined in two different ways.

Definition 10 [:36] Let A and B be two disjoint sets, a be the ordering type of A
and oJ Iw the ordering type of B,

(a) () + j is t he ordering type of AU B ordered so that .z < y for any x E A, y E B
and order is the same within A and B.

(b) (). J is the ordering type of Ax B ordered so that (XhYI) < (X:,h Y2) iff :rl < X2

or ,r! = .1'1 and .III < .112,

\Ye note that bot h sum and product of ordinals are not commutative, For example,

we have 1 + u.: = u: i= I•.•.: + 1 and 2 ' u: = w i= w ·2.

Definition 11 [:36] 0 - .3. the difference of 0 and i3 IS an ordinal I such that

n=J+~/'

o - .3 alwavs exists and is unique[36]. We also use the natural sum and the

natural product of ordinals. These operations use the representation of ordinals as

exponential polynomials. In this paper, we consider only ordinals which are less

t han or equal to

I, (w w"' c-:)
Eo = 1HI W, uJ . W , uJ , . .. ,

If () < {a, t hell

o = ",..iO'j • CI + ' .. + Lv,On • en

where °1..... 0" arc smaller ordinals and Cl, C2, .. "' Cn are natural numbers. If we

require that. OJ > 02 > .". and ('I. " . "' Cn are nonzero, this representation is unique.

1:3

Definition 12 [:36] Let

(a) The natural sum of a and {3is

(b) a(·) 3, the natural product of a and j3 is the product of base w representations
as polynomials. wQ

, (.)wQ
] = wQi(+)QJ and o{);3 is the natura] sum of w°;(+)aJ •

c.d, for all i . j.

Natural sum and natural product are commutative. They can be used to bound

the ordering type of unions.

Theorem 1 Let AI , As be arbitrary subsets of a well-ordered set A, aI, , as
be the ordering type,;; of AI , As and a be the ordering type of Al U U As·
The n .

The difference between this theorem and Definition 10 is that Definition 10 requires
.r < y for all ,1' E ,4, Y E B but Theorem 1 has no such requirement. Next, we give
a similar application of the natural product.

Theorem 2 Let AI,' .. , As and A be uiell-ordered sets with ordering types aI,

o, and 0. respectively. Ass'ume that f : Al x A2 x ... x As -----t A is a strictly increasing

junction onto A. i.e .

for all i E {1. s} and o, < a;. Then

Both Theorem 1 and 2 will 'be used in section 6.9. Transfinite induction IS a
generalization of the usual mathematical induction.

Theorem 3 [.'36. Principle of transfinite induction} Let A be a well-ordered set and

P(.l') be a predicate. If

(a) P(.l') is true when x is the smallest element of A, and

(b) P(y ~ for all yEA which are smaller than x implies P(:r).

then P(.r) for all .r E A.

2.4 Ordinals as mindchange counters

Definition 13 F. an algorithmic mapping from SEQ into constructive ordinals, is
an ordinal mind ch auqe counter junction just in case (VCT ~ T)[[F(CT) ~ FCT)].

Definition 14 [24] Let Q be a constructive ordinal.

(a) We say that M. with associated ordinal mind change counter function F,

TxtExo-idEntifies a text T just in case the following three conditions hold:

(i) M(T) converges to a grammar for content(T),

(ii) F(A)=aand

(iii) (Vn)[? #- M(T[n]) #- M~T[n + 1]) ::::}F(T[n]) >- F(T~n + 1])~1.

(h) M. with. associated ordinal mind change counter function F, TxtExa-

identifies L (writ ten: L E TxtExa(M, F)) just in case M, with associated
ordinal mind change counter function F. TxtExa-identifies each text for L.

(c) TxtExo = {£ I (3M, F)[[L: ~'TxtExa(M, F)]}.

IlM with an ordinal mindchange counter can be defined in a formally different but
equivalent manner. Namely, we can assume that the machine M operates a counter
(} containing an ordinal. Before each mindchange, M replaces the counter on the
ordinal by a smaller one.

Essentially, this is the same definition expressed in a less formal way. The counter

0' is a counterpart to the function F of Definition 14. It is easy to see that both
definitions are equivalent.

We use both definitions. More formal definition appears more appropriate for

chapters :3 and (especially) 4. The second, informal definition, is used in chapter 5.
Similarly to the above definitions, we can define Infhlx., to denote classes of

languages that can be identified from informants with 0' as the ordinal mind change
bound. We also define EXa to denote classes of functions that can be identified with
Q as the ordinal mind change bound. The following simple lemma will be useful in
our proofs.

Lemma 1 If M is an IIM with the number of mindchanges bounded by an ordinal

o , ilu n AI makes finitely many mindchanges on any (even nonrecursioe} input.

15

Proof. By the way of contradiction. If M makes infinitely many mindchanges, it

decreases its ordinal counter infinitely many times. Let 0'0 be the first ordinal on

the counter. 01 be the ordinal which appears on the counter after 0'0 and so on.

According to the definition of IIM

00 > 0'1 > 0'2 >

Hence. 00.0'1 •... is an infinite decreasing sequence of ordinals.

It is well known that infinite decreasing sequences of ordinals do not exist. A

cont.radict.ion. I

2.5 Systems of notations

2.5.1 Definitions

Ordinal numbers can be classified into three types:

(a) The ordinal 0;

(b) Ordinals having an immediate predecessor 111 ordering of all ordinals, such

ordinals are called successor ordinals;

(c) Ordinals having no immediate predecessor, such ordinals are called limit ordi-

nals.

In this paper we consider only those ordinals which can be described 111 some

constructive way (constructive ordinals).

A Systf m of notations is a method of assigning notations to ordinals. A system of

not.at ions is considered to be acceptable if it allows to extract certain information

from notations and to perform certain operations on notations. More formally,

Definition 15 A systEm of notations 5 is a mapping vs from a set of integers Ds

onto a sf'gmf'nt of ordinal numbers such that

(a) There exist s a partial recursive function ks such that

(i) If l's(x) = 0 then ks(x) = 0;

(ii) If cs(.!') is a successor ordinal then ks(:r) = 1;

16

(iii) If /1s(,c) is a limit ordinal then ks(x) = 2.

(b) There exists a partial recursive function ps such that, if vs(x) is a successor

ordinal then ps(.r) is defined and vs(x) = vs(ps(x)) + 1.

(c) There exists a partial recursive function 'ls such that, if vs(x) is a limit ordinal

then Cfs(.r) is defined. Yq,'(1') is a total function and vs(yqs(xj(O)), vS('Pqs(1:j(1)),

... denotes an increasing sequence of ordinals converging to vs(x).

The members of Ds are called notations.

Definition 16 An ordinal 0 is constructive ordinal if there is a system of notations

which assigns at least one notation to o.

Definition 17 A. system of notations S is univalent if '/.Is is a one-to-one function

(each ordinal has at most one notation).

Next. we define some effective operations on ordinal notations which will be used

further. These operations are defined for an arbitrary system of notations S.
Each ordinal () can be expressed as 0.' + n where 0' is zero or a limit ordinal and

n is a finite ordinal. We can extract notations for 0:' and n from a notation for 0

using the following functions L(o.) and N(a):

L(o) = { 0
L(ps(o))

if 0 is zero or a limit ordinal

otherwise

X(rr) = { 0
1+ lV(ps(a))

if 0 is zero or a limit ordinal

otherwise

When lIM uses a particular system of notations S, its counter can contain only

notations of this system. Replacements are also restricted:

(a) IIl\l can replace notation :1' for a successor ordinal by Ps (x).

(b) lIM can replace notation x for a limit ordinal with 'Pqs(x)(n) for any n.

Other replacements are not allowed. This means that, for each notation, the fact

that it denotes a smaller ordinal than the previous notation must follow from the

functions Ps and qs of t he system S. lIM cannot replace a notation .r: by a notation

17

to check whether I[M makes correct replacements. For notations 1: and y, x -< y
denotes that .1' is smaller than y and this follows from the system of notations that

is currently used.

Txt Ex;; . InfEx;;. Ex~ denote the collection of all sets that are Txt.Ex.,. InfExcn

Ex.i-identifiable by II~f using the system of notations S.
Next. we describe two most frequently used system" of notations: P and O.

Most of our theorems use one of these two systems. Exception is chapter 5 where

we construct other systems ourselves. These systems are specific to results of this

chapter.

2.5.2 The system P

The first system of notation is the system P. In this system the notations are

expressions consisting of 0, 1, ... , w, addition, multiplication and exponentiation.

For example. vJ + 17. vJ3. 3, w...;+2 +w2. 6 all are notations in P. For such expressions,

the functions hop, pp and qp can be easily defined.

There exist ordinals which have no notation in P. It does not have notations for

ordinals which are greater than or equal to EO.

However. P is very natural system of notations and very easy to use. In general

systems of notations it is difficult and even impossible to perform some operations

with ordinals. (For example, to find 0: + w if 0: is given.) In P such operations are

very easy.

When scientists speak about ordinals without using any system of notations ex-

plicitly, they usually use the system P.

2.5.3 The universal systems S 1 and 0

We will frequently use universal systems Ss and 0[35, 4.5]. Notations of Si are

defined as follows:

(a) 1 is a notation for the ordinal 0;

(b) If.r is a notation for 0:. then 2X is a notation for 0' + 1;

(c) If -?y(O). i'y(l) is a sequence of notations for an increasing sequence of

ordinals converging to o, then 3 . .5y is a notation for o.

18

The system 0 is obtained from 81 by eliminating some notations so that the system

remains universal and some new useful properties appear. These properties are not

important for results in this thesis. Therefore, we omit them. Our proofs will not

use these properties and everything that we prove for ° is true both for 51 and 0.

We shall use 0 for the universal system because this is more common in papers in

t his area and using S'] may cause some confusion.

() (or S']) embeds all possible systems of notations and anything which is express-

ible ill some system of notations is expressible in 0 (or SI).

Lemma 2 [45} Gicen any systEm A, there is a partial recursive mappmg .p such

that. ij : E DA then '1'8(.1') = uo(ep(x)).

The system 0 allows various constructions including some that may be considered

pathological. For example, it is possible to construct a recursive sequence of nota-

tions y(O) . ..p(l) denoting a sequence of ordinals w· h(O), w· h(l), '" such that

h(.r) grows faster than any recursive function. We will use some such constructions

in chapter :S.

The system 0 is convenient because it embeds any possible construction. In

chapter "1.we will use the possibility to construct a notation for the limit of epr(O),
..p J" (1).

\Ve will also use the fact that, given two notations is 0, notations for the sum

and the product of ordinals can be computedj-lo].

19

Chapter 3

Ordinal mind change complexity
of unions of pattern languages

3.1 Overview

Pattern languages. unions of pattern languages and elementary formal systems are
natural language classes for which ordinal mindchange bounds exist. Shinohara [49]
showed that many rich concepts can be represented by unions of pattern languages;
these languages have been applied to knowledge acquisition from amino acid se-
quences (see Arikawa et al. [10]).

Previously . .Jain and Sharma[29] proved ordinal bounds for the identification of
these classes from positive data(text).

This section contains counterparts of these results for identification from both
positive and negative data (informant). The main result is that unions of at most
i + 1 pattern languages can be identified with at most w . i mindchanges.

We use the system of notations P in this chapter. However, our result is valid
for any system because. in chapter 5, we show that ui- i-identification has the same
power in all systems of notations.

3.2 Results

Let ~ and X be mutually disjoint sets. ~ is finite and its elements are referred to

as constant symbols. Elements of X are referred to as variables. For the present
sect ion. we let a. b. " " . range over constant symbols and x, y, Z, Xl, X2, ... range over

20

variables.

Definition 18 A tum or a pattern is an element of (~ U X)+. A ground term (or
a uord , or a string) is an element of L+.

A substitution is a homomorphism from terms to terms that maps each symbol
(J E ~ to itself. The image of a term 1f under a substitution () is denoted 1f(). 'Ne
next describe the language defined by a pattern. Note that there exists a recursive
bijective mapping between elements of ~+ and IN. Thus we can name elements of
~+ with elements of~. Vv'eimplicitly assume such a mapping when we discuss
languages defined using subsets of ~+ below. (We do not explicitly use such a
bijective mapping for ease of notation).

Definition 19 [6] The language associated with the pattern 1f is defined as

Langt r) = {r.() I () is a substitution and 1f() E ~+}.

vVedefine the class PATTERS = {Lang(7r) 17r is a pattern},

Angluin [6] showed that PATTERN E Txt Ex. Shinohara [49] showed that pattern
languages are not closed under union, and hence it is useful to study identification
of languages that are unions of more than one pattern language, as they can be used
to represent more expressive concepts. We next define unions of pattern languages.

Let S be a set of patterns. Then Lang(5) is defined as UlI"ES Lang(1f). Intuitively,
Lang(5') is the language formed by the union of languages associated with patterns
in 5'.

Definition 20 [49, ,54] Let ri E IN. PATTERNn = {Lang(S) I card(S) :s; n}.

Shinohara [49] and Wright [,54] showed that for n > 1, PATTERNn E TxtEx.
Jain and Sharma [29] showed that PATTERNn E T'xt Ex.,» (using the system of
notations P) and PATTERNn ¢:. Txt Ex, for a -< co" (for any system of notations).

We now consider the ordinal mind change complexity of identifying unions of
pattern languages from informants. Let PAT denote the set of all canonical patterns

[6]. Let PATi = {S I S ~ PAT 1\ card(S) = i}.
Suppose Pas and :\eg are disjoint finite sets such that Pas i- 0. Then let

.\',Pos.,\eg = {S E PATi I [Pas ~ Lang(S)] 1\ [Neg ~ Lang(S)]}

21

Lemma 3 ,','UPPOSf let are qicen finite disjoint sets Pas, Neg, where Pas -=I- 0, and
a nat ural n urnbe r i, such that (Vj Si)[.\"Jos,Neg = 0]. Then, EjjEctivEly iii Pas, Neg,

d i dct ernu vPos;';eg (1\' t th t vPos1\ieg t b fi 't . ihi ')an l.u'e call t t ernune .'\.i+l· . iv o e a .'\.i+l'· mils e tnt e m is case.

PROOF. SUPPOSf' Pos, \"eg. and i are as given in the hypothesis of the lemma. Let

P = {p E PA.T I [Pas n Lang(p) -=I- 0] A [Neg n Lang(p) = 0]}

Let

.,"= {S E PATi+1 I [Pas < Lang(S)] 1\ [S <:: P]}

I '. 't' I v vPos,Neg Al I X" b b . d ff . 1t IS easy to yen y t iat .'\. = .'\.i+ 1 . so note t iat can e a tame e ect.ive y

from Pas. :\eg and i. I

Corollary 1 Suppose Pas and Neg are disjoint finite sets such that Pas -=I- 0. Then
ejjecfiuely in Pas, Neg, one can find i, and corresponding X;os.Neg (which must be
finit e] such that i = min({j I XJos.Neg -=I- 0}).

PROOF. Note that PATTERN° contains only the empty language. The corollary

lIOW follows by repeated use of Lemma :3, until one finds an i such that X;os,Neg -=I-

0. I

Theorem 4 (a) PATT ERN1 E InfExo.

(b) (Vi ~ 1)[PATTERSi+1 E InfExw.;].

PROOF. (a) Shown by Lange and Zeugmann [37]. Also follows from the proof of

Part (b).

(b) Fix i, Let M(1[71]),F(I[n]) be defined as follows.

Let Pos = Poslnfo(1[n]) and Neg = NegInfo(l[n]).

If Pas = 0, then M(1[n]) ='1 and F(I[n]) = w· i,
If Pas -=I- 0. then let j = mint {j' I Xf,°s,Neg # 0}). Note that j (and corresponding

Xras,Neg) can be found effectively in l[n], using Corollary 1.

If j = 1 and card(XJos,Neg) > 1, then M(I[n]) ='? F(I[n]) = w ·i.
If j > 1 or carcl(XJos,Neg) = 1, then M(I[n]) = lexicographically least element in

Xras.Neg. F(l[lIn =J. (i + 1 - j) + (card(X;Us,Neg) - 1).

It is easy to verify that M, F witness the theorem. I

22

3.3 Summary

Pattern languages can be identified from positive data only, Hence, it may seem

that negative data are not necessary at all. Theorem 4 refutes this claim by showing

that the complexity decreases considerably when negative data are available (w . i
instead of j+l mindchanges).

It is open at this stage whether we can do better than the .a . i bound for

PATTERNi+1
. However, if we consider unions of i + 1 simple pattern [anguages! ,

then it is easy to see that the mind change bound for identification from informants

is simply i.

1 A sinepl.: pat t oru lanl-',uagc is formed hy subst itut iug. for each variable. strings of lengt h exactly
()!W.

Chapter 4

General conditions for existence
of ordinal mind change bounds

4.1 Overview

The existence of an ordinal mind change bound for a class can be considered as a
reflection of its learning "tractability". Therefore, it is useful to investigate condi-
tions under which an ordinal mind change bound can be guaranteed. We consider
a number of possibilities, including identification by conservative strategies, topo-

logical properties like finite thickness, M -finite thickness, and finite elasticity, and
monotonicity requirements. We preview some of our results.

We first establish a useful technical result which states that if a learning machine
makes a finite number of mind changes on any text, then the class of languages that

can be identified by this machine has an ordinal mind change bound. This result is
used to show that if an indexed family of computable languages has finite elasticity

and can be conservatively identified then there is an ordinal mind change bound for
this class. ~ie also show that the requirement of conservative identification can be

sacrificed in the previous result for the purely topological requirement that the class
have M -finite thickness in addition to finite elasticity. Since finite thickness implies
finite elasticity and AI-finite thickness, the above results imply that any indexed
family of computable languages with finite thickness has an ordinal mind change
bound.

The results discussed above give general sufficient conditions for identifiability
with ordinal bound on mind changes. However, the mind change bound Q may be

24

arbitrarily large. An interesting question to ask is whether the ordinal mind change
bound remains arbitrarily large if some other constraints such as monotonicity are
added. vVe show a negative result in this direction as for every constructive or-
dinal bound 0', there exists an indexed family of computable languages that can
be identified strong-monotonically and has finite thickness, but cannot be identi-
fied with the ordinal mind change bound of 0'. A similar result also holds for dual
strong-monotonici ty.

In this chapter, we use the universal system of notations O.

4.2 A characterization of ordinal bounds on the

number of mindchanges

\Ve first establish an important technical result.

Theorem 5 Let M be a learning machine such that, for any text T (irrespective

of whether M identifies T or not), M makes only finitely many mind changes on

T as input. Let L denote the class of all languages TxtEx-identified by M. Then,

fOT some ordinal mind change counter function F, and constructive ordinal 0', I: <;:;
TxtEx~(M, F).

PROOF. We define a conjecture tree TM for machine M. The root of TM corresponds
to the empty sequence, A. Other nodes of the tree correspond to finite initial

sequences of texts, T[n + 1], such that M(T[n]) =f M(T[n + 1]). Let 5 = {A} U

{T[n + 1] In E IN,T is a text and M(T[n]) =f M(T[n + I])}. For a E 5, we use V".
to denote the node corresponding to the sequence a. Node V".] is a descendent of
node \i~2 iff a2 Cal.

We will now define a constructive ordinal, a"., corresponding to each a E S. For

a E 5, let 5". = {T E 5 I aCT}. Intuitively 5". denotes the proper descendants of
a in the tree TM. Note that 5". is recursively enumerable (effectively in a). Let 5:
denote the finite set enumerated in s steps in some, effective in a, enumeration of
Sa.

0'". is defined as follows. a". is the limit of f".(O),/".(1), ... , where f". is defined as
follows.

f".(O) = O. J".(i + 1) = fa + O'T] + ... + O'Tk + 1, where T}, T2, ... , Tk, are the elements
of S~.

We first need to show that 0". are correct notation.

25

Lemma 4 [a] Let V,. be a leaf of TM. Then a" is a correct ordinal notation.
(b) Suppose a E S', and o, is a correct ordinal notation for each T E Scr. Then

Ocr is a correct ordinal notation.
(c) For any a E S. o., is a correct ordinal notation.
(dJ If a E 5 and T E Scr, then o, -< a".

PROOF. (a) If V~is a leaf, then Scr is empty. Hence,

f,,(O) = O,fcr(1) = 0 + 1 = 1, ... ,fcr{n) = f,,{n -1) + 1 = (n -1) + 1 = n,

It follows that a" is a notation for w.

(b) Since, Ocr is a limit of 1cr(0), 1,,(1), ... , it suffices to show that each 1,,(i) is a
correct ordinal notation. Now, for each T E S", aT is correct notation. Thus, since

fcr (i + 1) is defined using f" (i), aT, 1 and + operation only, 1" (i + 1) is a correct
ordinal notation.

(c) Suppose by way of contradiction that a" is not a correct notation. We then
construct an infinite sequence aD C (/1 C ... such that, for each i, a, E 5 and acr, is
not a correct notation.

Let au = a . Suppose a, has been defined. Let (/i+1 be such that (/i+1 E 5", and
0",+1 is not a correct notation. The existence of such a (/i+1 follows from parts (a)
and (b).

Consider the text T = UiEIN oi, Now, since each a, E 5, we have that M on T
makes infinitely many mind changes (after reading last element of a1, after reading
last element of (/2, and so on). This yields a contradiction to hypothesis of the
theorem.

(d) Note that acr >- f,,(i), for each i. Suppose T E S~. Then it is easy to see that

L!» + 1) >- 0T' Thus o , -< a".
This proves the Lemma. I

Let a = 01\. We now construct an F such that E ~ TxtEx~(M, F). F is defined
as follows.

{

°A,
F(T[n]) = F(T[n] - 1),

aT[n] ,

if T[n]) = A;
if n > 0, and M(T[n + 1]) = M(T[n]);

otherwise.

From the definition of a" and Lemma 4, it is easy to verify that TxtEx{M) ~
TxtEx~(M,F). I

26

This is precisely the converse of Lemma 1. So, we can add an ordinal mindchange

counter to a machine M if and only if M makes finite number of mindchanges on any
input. This is a nice characterization of machines with the number of minachanges
bounded by an ordinal.

VVeproved our result for Txt Ex. However, the same argument gives us similar
results for InfEx and Ex. This result is especially useful for Txt Ex because, in this
case, it allows to derive several sufficient conditions for the existence of an ordinal
mindchange bounds. So far, we do not know about similar applications for InfEx
and Ex.

4.3 Ordinal complexity and conservativeness

Theorem .5 allows us to establish several sufficient conditions for the existence of
ordinal bounds on mind changes in the context of identification of indexed families
of computable languages. We first adapt learnability notions to the context of

indexed families of computable languages.
A sequence of nonempty languages Lo, LI, ... is an indexed family just in case

there exists a computable function f such that for each i E IN and for each x E IN,

{
I, if x ELi,

f(i,:r)= .
0, otherwise,

In other words, there is a uniform decision procedure for languages in the class.
Here. i may be thought of as a grammar for the language Li, It makes sense to learn

an indexed family of computable languages in terms of a hypothesis space that also
describes an indexed family. In the following we only consider hypothesis spaces
which describe an indexed family. We will abuse the notation slightly and use £, to
refer to both the concept class and the hypothesis space; it will be clear from context
which interpretation is intended. To differentiate the concept class £, = {Li liE IN}

from the hypothesis space L, we sometimes say that the class of languages {Li liE
IN} is the range of the hypothesis space £, (written: range(£')). The next definition
adapts Gold's criterion of identification in the limit to the identification of indexed
families with respect to a given hypothesis space.

Definition 21 Let £, be an indexed family and let E' = {L~, L~, ... } be a hypothesis
space.

2...,
I

(a) Let LEI:. A machine M TxtEx-identifies L with respect to hypothesis space

C just in case for any text T for L, M(TH = j such that L = Lj.

(b) A machine M TxtEx-identi./ies I: with respect to C just in case for each
LEI:, M TxtEx-identifies L with respect to 1:'.

There are three kinds of identification that have been studied in the literature:
(a) class comprising; (b) class preserving; and (c) exact. If the indexed family I:
is identified with respect to a hypothesis space C such that L ~ range(C) then
t he identification is referred to as class comprising. However, if it is required that
the indexed family be identifiable with respect to a hypothesis space E' such that
L = range(L') then the identification is referred to as class preserving. Finally, if
the identification of the indexed family £ is required to be with respect to £ itself,
t hen the identification is referred to as exact. The reader is directed to the excellent
survey by Zeugmann and Lange [.5.5]for discussion of these issues.

We can similarly define 'I'xt.Ex .-identificat.ion with respect to hypothesis space

C. Note that Theorem .5holds with respect to all hypothesis spaces.

We next describe certain topological conditions on language classes that yield

sufficient conditions for identifiability of indexed families of computable languages.

The following notion was introduced by Angluin [6].

Definition 22 [6] L has finite thickness just in case for each n E lN, card({L E I: I

11 E L}) is finite.

PATTERN has finite thickness. Angluin [6] showed that if I: is an indexed family of
computable languages and L has finite thickness then L E TxtEx. A more interest-
ing topological notion was introduced by Wright [54] (see also Motoki, Shinohara,

and Wright [:39J) described below.

Definition 23 [.54,39] I: has infinite elasticity just in case there exists an infinite
sequence of pairwise distinct numbers, {Wi E lN liE IN}, and an infinite sequence
of pairwise distinct languages, {Ai ELI i E IN}, such that for each k E IN,
{Wi I i < It-} ~ Ak, but Wk rf- Ak. L is said to have finite elasticity just in case L
does not have infinite elasticity.

Wright [5.l] showed that if a class L has finite thickness then it has finite elasticity.

He further showed that if a class L is an indexed family of computable languages
and L has finite elasticity, then £ E TxtEx.

28

Finite elasticity is a sufficient condition for identification of indexed families of
computable languages. Also, the property of finite elasticity is preserved under finite
unions. As already noted. it was shown in [29] that for each n > 0, PATTERI'.;-n E

TxtEx..vn.
At the moment. we do not know whether any indexed family of computable lan-

guages with finite elasticity is identifiable with an ordinal mind change bound. How-
ever. we are able to show that an indexed family of computable languages with finite
elasticity has an ordinal mind change bound if it can be identified conservatively.
The next definition describes conservative identification.

Definition 24 Let ,[= {La, L1, .•• } be a hypothesis space. M is said to be a
conseroatioe learning machine with respect to hypothesis space ,[just in case for all
a and T such that (J ~ T and content(T) ~ LM(<r), M(a) ::;::::M(T).

Intuitively. conservative machines do not change their hypothesis if the input IS

contained in the Ilanguage conjectured.

Theorem 6 Let C be an indexed family of computable languages with finite elas-

ticity. Assume that ,[is identifiable by a conservative learning machine with respect

to the hypothesi.s space C. Then'[E TxtEx~ with respect to hypothesis space E",

for som e construct tu« ordinal 0'.

PROOF. Let M be a conservative learning machine which identifies E with respect
to hypothesis space C. We will describe a machine M' which identifies ,[with
respect to L', and changes its mind at most finitely often on any text. Theorem 5
will then imply the theorem.

For a given text T, n E IN, let Imc(M', T[n]) be defined as follows:

Imc(M', T[n]) = max({m + 1 1m < n 1\ M'(T[m]) -I M'(T[m + l])})

Intuitively. lmc denotes the last point where M' made a mind change. Note that if

M'(T[O]) = M'(T[1]) = ... = M'(T[n]), then Imc(M', T[n]) = O. M' is now defined
as follows:

M'(T[n]) = { ~(T[n]),
M'(T[n - 1]),

if n = 0 or M(T[n]) =?;

if content(T[lmc(M', T[n - 1])]) ~ LM(T[n]);

otherwise.

29

It is easy to verify that M' Txt Ex-identifies with respect to E' any language which.
M Txt Ex-identifies with respect to C. We prove that M' makes only finitely many
mind changes on any text T. By Theorem 5, this implies that £ E TxtEx~ with
respect to hypothesis space C, for some constructive ordinal 0'.

Suppose by way of contradiction that M' makes infinitely many mind changes on
a text T. Let III < T12 < ... be such that, for each i, M'(T[ni]) =j:. M'(Z'[», + 1]).
Then. it is easy to verify from the construction of M' that, for all i, contentl T'[n, +
1]) ~ LM1(T[n'+2])' Moreover, since M is conservative, we have contentj Z'[n, + 1]) Cf:.

LM'(T[n,])" It follows that £' has infinite elasticity. A contradiction. I

Definition 25 L, is a minimal concept of L in £ just in case L ~ Lj, L, E L, and

there is no t.. E c such that L ~ t; and t: C i;

Definition 26 [47] E satisfies MEF-condition if for any finite set D and any L, E E
with D ~ t., there is a minimal concept t., of D within t: such that t., ~ L; £
satisfies JIFF-condition if for any nonempty finite set D, the cardinality of {Li E

t: I L, is a minimal concept of D within £} is finite. i: has M-finite thickness if .c
satisfies both MEF-condition and MFF-condition.

Theorem 7 Let £ be an indexed family of computable languages. Assume that
£ has M-finite thickness and finite elasticity. Tlien E E TxtEx~ with respect to
hypothtsis space L, for some constructive ordinal 0'.

PROOF. Suppose T is an arbitrary text. We then describe a learning machine M.
Define M(T[n]) as follows. Let Lln) denote t; n {x I x < n}.

If 0 E L, then let G0 denote a grammar for 0 in L: otheriwse let G0 = O.

M(T[n])

Let en = content(T[n]).

If C; = 0 then output G0.

Let s, = {i < n I c; < t; 1\ -,(3j < n)[Cn ~ t., 1\ L}n) C Lln)]}.

If Sn is not empty then output min(Sn), else output M(T[n - 1]).

End

30

The above learning machine is a slight modification of the machine of Muk-

ouchi [40].
Let T be an arbitrary text (for a language L). Assume without loss of generality

that content(T) #- 0. 'vVewill show that M makes only finitely many mind changes
on T. Suppose for contradiction, M changes its mind infinitely often on T. First
note that, if M(T[n]) #- M(T[n + 1]) then content(T[n + 1]) ~ LM(T[n+l])' Consider
two cases:

Case 1. M outputs infinitely many distinct conjectures i such that content(T) Cf: Li.

(That is. card({M(T[n]) I n E IN 1\ content(T) Cf: LM(T[n])}) = 00.)

Let nl < n2 < n3 < ... be such that M(T[ni]) #- M(T[ni+l])' and
content(T[ni+d) Cf: LM(T[n.l)' Note that there exist such an ni by the

hypothesis of this case. Also, by construction, we have content(T[ni]) ~

LM(T[n,+dl (since, any new hypothesis output by M is consistent with
the input). By considering the languages LM(T[n2.1b we see that

content(T[n2i+l]) ~ LM(T[n2.+2])' but content(T[n2i+l]) Cf: LM(T[n2i])' It
follows that L has an infinite elasticity. A contradiction.

Case 1. M issues finitely many distinct conjectures i such that content(T) Cf: Li.

Then, for large enough n, LM(T[n]) 2 content(T) = L (since M changes
its hypothesis infinitely often and if M(T[n]) #- M(T[n + 1]) then

content(T[n + 1]) ~ LM(T[n+l]))'

Mukouchi [40] showed the following lemma.

Lemma 5 [40] Let £, = {Li liE IN} be a class satisfying MEF-

condition and having finite elasticity. Let L be a nonempty language.

If for some n, L ~ Ln, then there is a minimal concept Lj of L within

c such that t., ~ Ln.

Since, we have already shown that, for large enough n, LM(T[nll 2 L,

Lemma .5 implies that there is a minimal concept Lj of L within L,
Let 5 = {Lj I L, is a minimal concept for L within £}. Let m be

such that, for all L' E S, there exists a j < m such that L, = L' (that
is, all minimal concepts of L = content(T) are represented by an index
::; m). Let jm be the minimum number such that Ljm E S.

For large enough n (> m), the following hold

31

(i) LM(T[n)) ;2 L.

(ii) For all j < rn , either content(T[n]) ~ t.; or t., E 5, or there
exists an L' E S, such that L ;n) :J tr».

(iii) For all minimal concepts L' E S, such that L' f- Ljm, L'(n) -
L (n) -J. 0.

Jm I

Note that (i) and (ii) imply that, M(T[n]) will only output an index
for one of the minimal concepts. And, (iii) implies that this index must
be jm. Hence, M converges to jm on the text T, i.e., M makes only
finitely many mind changes on T. A contradiction.

Thus, M must make only finitely many mind changes on any text T. Similarly
to Case 2, we can show that on any text for a language Lj, M converges to the

smallest index for Lj. So, M makes finitely many mind changes on any input and
TxtEx-identifies.c with respect to .c. Thus, Theorem 5 implies that .c E TxtEx~

with respect to L, for some constructive ordinal Q. I

Corollary 2 Let L be an indexed family of computable languages with finite thick-

ness. Then E E TxtEx~ with respect to L, for some constructive ordinal Q.

PROOF. If .c has finite thickness, then E has finite elasticity (d. Wright [54] and
Shinohara [50]) and ~,I-finite thickness (d. Mukouchi [40]). Hence, by Theorem 7,
L E TxtEx~ with respect to L, for some constructive ordinal Q. I

A special case of Theorem 7 is the learnability of length-bounded elementary
formal systems with ordinal-bounded mind changes. (Shinohara [50] has proved
that LBEFs(~n), the class of languages defined by length-bounded elementary formal

systems with at most n axioms, has finite elasticity and Sato and Moriyama [47] have
proved that LBEFs(~n) has M-finite thickness.) The learnability of LBEFs('Sn) was

shown by Shinohara [,50]. Jain and Sharma [29] proved that LBEFs(~n) is learnable

with the number of mind changes bounded by ordinal co":

The results discussed in the present paper give general sufficient conditions for
identifiability with ordinal bound on mind changes. However, they do not give

explicit ordinals Q. In all these theorems we have ".c E TxtEx~ for some ordinal

0:." It appears that ordinal Q can be arbitrarily large. An interesting question to

ask is if the ordinal bound Q is still arbitrarily large if attention is restricted to
classes that are identifiable by strategies that obey stronger restrications than those
in Theorems 6 and 7.

32

In next section, we show that even if we require that a class £ has finite thickness
and that it is identifiable by a strong-monotonic learning machine, the ordinal mind
change bound can be arbitrarily large. The reader should however note that strong-
monotonicity together with finite elasticity implies the existence of an ordinal bound
because strong-monotonicity implies conservatism.

4.4 Ordinal complexity and monotonicity

Below we describe the notion of strong-monotonic identification.

Definition 27 (Jantke [31])

(a) Let L' = {L~, L~.... } be a hypothesis space. A learning machine M is said to
be strong monotonic with respect to E' just in case for all (7' and T such that

(J" <:: T. LM(cr) <:: LM(r)"

(b) A learning machine M is said to strong-monotonically TxtEx-identify L with
respect to E' just in case M TxtEx-identifies L with respect to L' and M is
strong monotonic with respect to C.

(c) M strong-monotonically TxtEx-identifies £ with respect to £' just in case,
for each L E L, M strong-monotonically Txt Ex-identifies L with respect to

C.

We use a technical lemma.

Lemma 6 Fix a constructive ordinal o . There exists an r.e. sequence of pairs
of learning machines and corresponding ordinal mind change counter functions,
(Ma, Fa). (M1, Fj). .. ", such that

(a) for all £ E TxtEx~, there exists an i such that £ <:: TxtEx~ (M, Fj).

(b) for all i, Fj(A) = Q.

(c) for all i ; for all texts T, for all n, Mj(T[nJ) =I Mj(T[n + 1]) => Fj(T[n]) >-
Fj(T[n + 1]).

The above lemma can be proved on the lines of the proof of Lemma 4.2.2B in [41].

33

Theorem 8 Let 0 be a constructive ordinal. There exists an indexed family .L such

that .L can be TxtEx-identijied strong-monotonically with respect to hypothesis space

L, .L has jinii e thickness, and E rf: TxtEx~ with respect to any hypothesis space.

PROOF. Let (Mo. Fa). (MI, Fd ... be an enumeration of pairs of learning machines
and corresponding ordinal mind change counter functions as given by Lemma 6.
Note that for each i E IN, and for any text T, M, makes only finitely many mind
changes when fed T [24].

Let t; = {(i, x) I x E IN}. Note that i; is infinite, and for distinct i, i, t; and c,
are disjoint. Let Li = {(i,x) I x::; 5}. We now give an algorithm which receives i
and enumerates (effectively in i) a finite set of languages L, such that:

(a) if L E .Li, then L = Li for some s;

(b) L, is finite (note that one can effectively decide the membership problem for
languages in .Li):

(c) L, is not TxtEx-identified by M, with respect to any hypothesis space;

(d) There exists a machine, effective in i, that strong-monotonically TxtEx-
ident ifies L, with respect to the hypothesis space .Li.

Now define .L = UiElN .Li' such that for Li E .L, one can effectively find an index
(in .L) for Lf. We will show that .L establishes the theorem. First, the algorithm
enumerating L, is as follows:

Enumeration of .Li.

Initially, let L, consists of just the language L?
Let n = 0 and let initial sequence 0"0 be such that content(0"0) L? Go to

Stage O.

Stage 5

Add the language Lf+l to .Li.

Search for a I extending o"s, such that content(-y) ~ V:+1
, and Mi(O"s) i=

MiC-y)·
If and when such a I is found, let O"s+! be an extension of I such that

content] O"s+l) = Lf+l.
Go to Stage .s+ 1.

End Stage 5

End Enumeration of c,

34

Wf' now show that £i'S satisfy the properties claimed.

Lemma 7 For each i E IN. there are only finitely many stages in the enumeration

procedure for £i· Henc«, £i is finite.

PROOF. Suppose by way of contradiction there is an i E IN such that there are

infinitely many stages in the constrution of £i. Then M, on UsEIN as makes infinitely
many mind changes. A contradiction. I

Lemma 8 For each I E IN, M; fails to TxtEx-identify L, with respect to any

hypothesis space.

PROOF. Let s be the stage in the enumeration of £; which starts but does not
terminate. Then M, can TxtEx-identify at most one of Li and L:+1

, both of which

are in £i. I

Now define £ = UiEIN £i, such that for Li E L, one can effectively find an index
(i n .c) for L i. It is easy to verify that £ can be strong monotonicaly identified with

respect to hypothesis space Z. Also,.c rf. TxtEx~, by Lemma 8. Moreover, note

that Li's are pairwise disjoint. Thus, since each language in L, is a subset of L, and

L, is finite, we have that E has finite thickness. I

The reader should note that a similar result in the sense of class-preserving or exact

identification cannot hold for dual strong-monotonicity [32] because class preserving
dual strong monotonic identification is the same as finite identification (see [37],

[.5.5]). However, we can establish a similar result for class comprising dual strong

monotonic identification.

Definition 28 [32]

(a) Let L' = {L~, L~, ... } be a hypothesis space. A learning machine M is said
to be dual strong-monotonic with respect to hypothesis space E' just in case for all

a and T such that a ~ T, LM(q) 2 LM(T)'
(b) A learning machine M is said to dual strong-monotonically Txt Ex- identify L

unih. respect to hypothesis space C just in case M TxtEx-identifies L with respect

to hypothesis space C and M is dual strong monotonic with respect to E',
(c) M dual strong-monotonically TxtEx- identifies £ with respect to hypothesis

space C just in case, for each L E L, M dual strong-monotonically TxtEx-identifies
L with respect to C.

3.5

Theorem 9 Let Q be a constructive ordinal. There exists an indexed family £ and a
hypothesis space C sucli that E can be TxtEx-identified dual strong-monotonically
with respect to E', E' has finitE thickness, and E 1- TxtEx~ with respect to any
hypothesis space.

PROOF. Let (Ma, Fa), (M1, Fj) ... be an enumeration of pairs of learning machines
and corresponding ordinal mind change counter functions as given by Lemma 6.

Note that for each i E IN, and any text T, M,. fed T, makes only finitely many
mind changes [24].

For each i, we will define a recursive function gi (where a program for gi can be
found effectively in i). gi will satisfy the following properties:

(A) {J'I g;{x) = I} is nonempty and finite. Moreover, {x I gi(X) = I} ~ {(i,y) I
y E IN}.

(B) Let L, = {2x,21' + 1 I g;(x) = I}. Let £i = {L ~ L, I (Vx I gi(X) = l)(:3!b E

{O,1})[2x + bEL]}. Then, Li 1::- TxtEx~(Mi,F;) (with respect to any hypothesis
space) 1.

We take L = Ui L, (using the fact that gil (1) is finite, one can easily construct
such an indexed family £). From (B) it follows that L rt. TxtEx~ with respect to
any hypothesis space.

We let C be an hypothesis space such that range(C) = {L I (:3i)[L ~ Li]}, where
an index for L, - D, for any finite set D, can be obtained effectively from i and D.
Note that such an hypothesis space £' can be easily constructed. Clearly, E' has
finite thickness.

It remains to construct recursive functions gi as claimed above and to show that

L can be dual strong monotonically identified with respect to hypothesis space C.
\;Venow define s:

Definition of q,

For J' < (i,O), let gi(X) = O. Let gi((i, 0)) = 1.

Let x? = (i,O). Intuitively, xi denotes the largest x such that gi(X) is defined to
be 1 before stage s.

Let aa = A.

Go to Stage O.

Stage s

1Notation: ::3!denotes "there exists a unique."

36

1. Dovetail steps 2 and 3, until step 2 succeeds. If and when step 2 succeeds,

go to step cIe.

2. Search for an extension T of as, and z E {2xi, 2xi + I}, such that

(a) Mi(T) -1= Mi(as), and

(b) contentt r] = contenttov) U {z}.
:3. For or = .l's + 1 to 00 do

Let 9i(;1') = O.
EndFor

4. If and when such T, z are found, let O"s+l = T. Let x:+1 E {(i,y) lyE IN},

be such that 9i(:1':+1) has not been defined until now.

Let 9i(1·:+1
) = 1.

For or < 01':+1. such that 9i(X) has not been defined until now, let 9i(X) = O.

End Stage s

End of definition of 9i.

Lemma 9 For eacli i E IN, there are only finitely many stages in the construction

of s;

PROOF. Suppose by way of contradiction there are infinitely many stages. Then,

M, on USEIt'\ o, makes infinitely many mind changes. A contradiction. I

Fix i. Using the above lemma, it is easy to verify that 9i satisfies (A). We now show

that 9i satisfies (B). Suppose s is the stage which starts but does not terminate. Let

L' = contenttrr.] U {2;rf+1}. Let L" = content(O"s) U {2xf+1 + I}. Let T', extending

as. be a text for L'. Let T" extending as be a text for L". Since step 2 in stage s
did not succeed, we have that M;(T') = M;(T") = M;(as)' It follows that M; does

not TxtEx-identify L, with respect to any hypothesis space. Thus (B) is satisfied.

We now give a machine M which, for each L E L, dual strong monotonically

identifies L with respect to hypothesis space L', Let gram be a recursive function

such that L~arn(i.D) = L, - D (by construction of £' such a function gram clearly

exists).

For or E IN and s « {a, I}, let mate(2x + b) = 2x + 1 - b.

M(T[nJ)

If content(T[n]) = 0. then let M(T[n]) =?

37

1. Let i be such that content(T[n]) ~ {2(i,y) + b lyE IN f\ bE {O, I}}.

(If no such i exists, then let M(T[n]) = M(T[n - 1]).)

2. Let D = {mate(z) I Z E content(T[n])}.

:3. Output gram(i, D).

End

It is easy to verify from the definition of Li, £i, L, E' that M is dual strong
monotonic and TxtEx-identifies E with respect to hypothesis space L', Theorem
follows. I

4.5 Summary

This chapter linked together ordinal bounds on the number of mindchanges, mono-
tonicity requirements and topological properties of language classes (finite thick-
ness and finite elasticity). Intricate relations between these notions were revealed.

Interestingly. ordinal bounds are also related to inference of nearly-minimal size
prograrnsj-l].

38

Chapter 5

The influence of the system of
ordinal notations

5.1 Overview

This chapter is devoted to the influence of a particular notation for ordinals on the
power of Ex, Txt.Ex., and InfEx.; We prove our results for ExO' (identification of
recursive functions in the limit) only. However, all results can be proved for T'xt Ex,
and Inffilx.,; too (with minor modifications in the proofs).

We remind that there are many nonequivalent systems of notations for construc-
tive ordinals. We defined the requirements for an acceptable system of notations in
section 2.5. There is a large variety of systems satisfying these requirements. In [24]
it remained open whether the system of notations influences the learning power. We
resolve this problem.

In section 5.2 we show that the learning power is not influenced by the system of
notations while only small ordinals (below w2) are used. In this case, any learning
machine working with ordinals in one system of notations can be transformed to an

equivalent learning machine working in any other system of notations.
In section 5.3 we consider the bounds on the number of mindchanges described by

the ordinal w2• Here, the situation is completely different. Our results reveal very
strong influence of the system of notations on the learning power. We construct two

systems of notations such that for some learning problems the first system is better

and for some other problems the second system is better (d. Theorem 11).
In section .5.4we consider two particular systems of notations: 0 and P(d. section

39

2..)). We give results relating these two systems to other systems.

The learning power can be increased in two ways: by using larger ordinals and

by using more expressive systems of notations. We compare these two methods in

sction .5..5. We show that the use of larger ordinals cannot compensate the weakness

of the system of notations and, conversely, the use of stronger system cannot replace

the use of larger ordinals.

5.2 EXo-identification for a < w2

For small ordinals 0 the power of EX; does not depend on the system of notations

A.

Theorem 10 If A and B are two systems of ordinal notations and a is an ordinal

smaller than "",,2. then EX; = EX!.

PROOF. We show that any system of notations can be simulated by the system P
and, conversely. P can simulate any other system.

Lemma 10 For an arbitrary system of notations A and an ordinal a < w2

PROOF. This is a special case of the simulation of EX';-IIM by EX;-IIM for a <
•.•..,2 + u.,' • 2 ia the proof of Theorem 13. II

Lemma 11 For an arbitrary system of notations A and an ordinal a < w2

PROOF. The proof is based on the following lemma.

Lemma 12 There exists a partial recursive function t(x,y,z) such that, if x andy

are notations in the system A, and z is a notation in the system P and

V.4(y) < VA(X):=:; vp(z) < a,

then t(x,y,::) is a notation in P, VA(Y):=:; vp(t(x,y,z)) andvp(t(x,y,z)) < vp(z).

40

PROOF. Let z = w . k: + I. vVedefine

{
W.k+(l-l)

i(.r.y,z) =
. w·(k-1)+L(y)

ifll-O,

if I = 0

I

Let j{4 be an EX;-IIM.
Consider the EX,;-UM M» which simulates M.4 and outputs the same conjec-

tures. If I\1A changes the notation on its ordinal counter from x to y, then Mp

changes the notation from z to t(x,y,z), where z is the notation on Mp's counter
before change.

At the beginning both !'vIA and Mp have a notation for a on the counter. Further,

always when NIA changes the ordinal, M» changes the ordinal, too. Lemma 12
guarantees that all the time the ordinal on the counter of Mp is greater than or
equal to the ordinal on the counter of MA. I

From these two lemmas theorem 10 follows. I

5.3 EXw2-identification

However, for w2 and larger ordinals, the dependence is rather strong. We can con-
struct two systems of notations such that one is stronger than another (there exists a
set of functions that is identifiable using the first system but is not identifiable using

the second system). More, we can show that there exist two systems of notations
such that in some cases the first is better and, in some other cases, the second is
better.

Theorem r 1 There exist systems of notations A and B such that EX:;2 <1:. EX~2
and EX~ Cf:-EX~2'

PROOF. First, we construct two lim-computable functions such that, for some x the
first grows much faster than the second and, for some other x the second grows much
faster than the first(subsection 5.3.1). Then, we use these two functions to define

two systems of notations 591 and 592 (subsection 5.3.2). Finally, we prove that there

is a set of functions which can be identified using 591 but cannot be identified using
5'92 (subsection .5.:3.:3).

41

5.3.1 Lemma about lim-computable functions

Definition 29 A function h(.r) : IN ----+ IN is lim-computable if there exists a total

recursive function g(;r. y) such that hex) = limy~oo g(x, y).

For functions h(J') and g(z , y) we say that h(x) is lim-computable as witnessed by

g(.r. y). We say that 9(z , y) is monotonic if it is non decreasing in y and increasing

In .1'.

Lemma 13 If <PI (z), q)2(X), ... is a computable sequence of partial recursive func-
tions. then there exist functions h1(x) and h2(x) such that

1. h., is lim-computable as witnessed by a monotonous function 9dx,y);

") h2 is lim-computable as witnessed by a monotonous function 92(X, y);

3. For each x there is an Yl sucli that h1((x,Yl)) > h2(¢>x((X,Yl))) or ¢>x((X,Yl))
is undefined.

4- For each x there is an Y2 such that h2((x,Y2)) > h1(¢>x((X,Y2))) or ¢>x((X,Y2))
is undefined.

PROOF. We give an algorithm computing 91(X,y) and 92(X,y).
The algorithm uses variables ml, m2, ... and m;, m;, ... to mark the possible

values of Yl and Y2. Also, it uses variables nl, n2, ... and n;, n;,
l " step Set 9dL 1) = 92(1,1) = 1 and ml = O,m; = O,nl = O,n; = O.

ph step (k > 1)

1. Define 91(k ; i) = 9d k - 1, i) + 1 and 92(k, i) = 92 (k - 1, i) + 1 for i E {I, ... , k -
l}. For each i E {l, ... ,k} define 91(i,k) equal to

(a) the maximum of 91(i, k-1), 91(i -1, k) +1 and 92(min(k-1, nl), k-1) +1,

if i = (I, ml) for some I;

(b) the maximum of 91(i, k - 1) and 91(i - 1, k) + 1, otherwise.

Similarly, define 92(i, k) equal to

(a) the maximum of 92(i,k-1), 92(i-1, k)+l and 91(min(k-1, nD, k-1)+1,
if i = (/,mD for some I;

(b) the maximum of g2(i,k -1) and 92(i -1,k + 1), otherwise.

42

2. For each i E {I, 2, ... , k - I} do:

(a) Simulate the first k steps in the computations of <Pi((i, mi)) and <Pi((i, m~)).

(b) If the computation of <Pi((i,mi)) terminates within k steps, then for
each j E {i, i + 1, ... , k - I} compute the smallest number rj such that
<Pi((i.mi)) < (j,rj) and set mj = max(mj,rj).

(c) If the computation of 9i((i, m;)) terminates within k steps, then for each
j E {i+ 1, ... , k-1} compute the smallest rj satisfying <Pi((i, m;)) < (j, rj)
and set raj = ma:r(mj,Tj).

3. Foreachj E {l. ... ,k-I}:

(a) Set nj equal to the greatest 1>i((i,mi)) such that i E {1, ... ,j} and the
computation of </>i((i, mi)) terminates within k steps;

(b) Set n', equal to the greatest 1>i((i,m~)) such that i E {I, ... ,j} and the
computation of d\((i, m~)) terminates within k steps.

4. Let tru, be the smallest number such that (k, mk) > n~_l and m~ be the
smallest number such that (k, mD > nk-l'

Proposition 1 For each j the values of mj,

many times.

nj and nj change only finitely

PROOF. It suffices to prove the proposition for mj and mj because, if from some

moment the values of ml, m~, ... , mj, mj do not change then the values of nj and nj
can change only finitely many times. (This can happen only when the computation
of 1>i((i,mi)) or ¢i((i,m~)) terminates for some i E {I, ... ,j}.)

We prove by induction that the values of mj and mj can change only finitely many
times.

The value of ml never changes.

Further, if we know that the values of ml, ... ,mj change only finitely many times,
there exists a moment after which the algorithm does not change them. After this

moment the value of mj can change only j times: when the computation of <Pi((i, mi))
terminates for some i E {I, ... , j}. Hence, the value of mj changes only finitely many
times.

Similarly, if we know that the values of m~,m;, ... ,mj change only finite number
of times, we can conclude that after some moment the algorithm does not change

43

them. After this moment the value of mj+l can change only j times: when the
computation of (/Ji((i, m;)) terminates for some i E {1, ... ,j}. I

Further, nu. m;. ni, n; denote the last values of these variables (the values which
are not changed later).

Proposition 2 For each x there are only finitely many y such that 91 (x, y) =I
gd.l', y + 1) or g2 (.1:, y) =I 92 (x, y + 1).

PROOF. By the way of contradiction. Let Xl be the smallest number such that
gd .1'\ . y) =I 9d .1:1.Y + 1) for infinitely many y and X2 be the smallest number such
that 92(.1'2, Y) =I 92(X2. Y + 1) for infinitely many y.

Let ;1'1 = (il,jl) and ·7:2= (i2,j2)'

Proposition 3 jl is equal to the last value of mil durin9 the computation.

PROOF. By the way of contradiction, assume that the last value of mil is different

from h. Then, for some N and all k > N, 91 (Xl, k) is computed as

.r\ is the smallest number such that 9l(Xl,y) =I 9l(Xl,y + 1) for infinitely many y.

Hence, there exists an No such that 9l(Xl -1, No) = 9l(Xl -1, No + 1) = Then
91 (;1'1. No) = 9d Xl. No + 1) = A contradiction. I

Similarly, 12 is equal to the last value of m~2'

Let il :::; i2• (il > i2 case is similar.)

If j E {l. ... ,id, and the computation of ¢>j((j,mj)) terminates, the algorithm

sets mi2 to such value that (i2,m;2) > ¢>j((j,mj)). Hence

~ max{¢>j((j,mj))lj E {1, ... ,id} = n'l

Starting from some step, mil is equal to jl (Proposition 3). Then, 9l(Xl,k) IS

computed as

)'2> Hil implies that 92(nipy) =I 92(nipY+ 1) for finitely many y. Also, there exist
only fini tely many y such that 9d Xl - 1, y) =I 91(x \ - 1, y + 1). Hence, there exists an

44

X such that 91(;r1 -1, N) = gd:r1 -1, N + 1) = ... and g2(n;j, N) = 92(nij, N + 1) =
.... Then. gl(.r1. N + 1) = 91(:r1. N + 2) =

Contradiction with the assumption that 91(Xl, Y) -I 91(Xl, Y + 1) for infinitely

many y. I

Hence, for each x there exists an N such that 91(X, N) = gl(X, N + 1) = This
implies that hI (.r) = limy~,x>gr(X, y) is defined for all x E IN. Similarly, we can
prove that 112(:r) = limy->CXl92(x, y) is defined for all x E IN.

We defined that 9d i, I.;) is equal to

max(91 (i, k - 1), 91(i - 1, k) + 1, ...).

Hence. 9dx,y) is non decreasing in .11 and increasing in y, i.e. monotonic. Similarly,

92(x. y) is monotonic.
We take an arbitrary x and denote by .111 the last value of mx· If </>x((x, Y1)) is

defined. the computation of <Px((x, Y1)) terminates in N steps for some N E IN.

Then. nx 2: <Px((x, .111)) after the Nth step of the algorithm.

Hence, 9d(x'Y1),k) 2: 92(</>x((X'Y1)),k - 1) + 1 for arbitrary k > N. Taking
I.. ~ 00 we obtain that h1((x,Y1)) 2: h2(cPx((X,Y1))) + 1 > h2(cPx((X,Y1)))'

Similarly we can prove that for arbitrary x there exists an Y2 such that h2 ((x, .112) >
h1(O:r((X,Y2)) or </>A(:r,Y2)) is undefined. I

5.3.2 The system of notations Sg

Let h(.r) be lim-computable as witnessed by a monotonic 9(X,y). (We will need the

monotonicity because Definition 15 requires that 'Pqs(x)(O), 'Pqs(x)(1), ... is increas-
ing.)

Consider the system of notations Sg consisting of the following notations:

1. a for a E IN;

2. Q; for i = 1,2, ... ;

3. o, - W . a + b for i = 1,2, ... and a, b E IN;

4. v•.?

The notations are natural numbers by the definition of system of notations. It is

assumed that some effective encoding of mentioned expressions by natural numbers

4.5

is fixed. Further we shall can these expressions notations though in reality notations

are their encodings by natural numbers.
The notations denote the following ordinals:

1. a denotes the ordinal a;

2. 0i denotes w' a, where a, =. h(i) + 1.

3. o, ~ w, 0 denotes w· (aj - a) + b if a < OJ and w + b otherwise;

4. w2 denotes the ordinal w2
•

Next, we define ksg,psg,qSg']1. can be checked that they are defined so that the
ordi nals corresponding to notations are as we described.

The function I..~Sg(x) is defined to be 0 for the Rotation 0, 2(a Limit ordinal) for
notations 0i. o, - I.J.J' 0 and w2• l(a successor ordinal) for all other notations.

The function PSg (or) is defined to be b ~ 1 if x = band (};;~ w . a + (b - 1) if
.r = 0,: ~ l.<,," a + b.

The function qsg (or) is defined in the following way:

1. If .r = OJ then qSg(x) is a program such that 'PqSg(x)(j) = OJ - W + j;

2. If x = o, - W . a then qSg (x) is such that

{
j if g(x, j) < a + 1

'PqSg(x)(J) =. (1)"'f (")]
0i-W' a+ +] 1 g~x,J >a+ I

The system 59 can be defined for many functions g. The notations are the same
only the ordinals denoted by these notations may be different. So, each lIM working

in a system S9 for some 9 can work in system 59 for another g, too.
Let AIl, M2, ... be an enumeration of all lIM working in 59 and starting with w2

on the counter. We consider the sequence of partial recursive functions <PI, <P2, ...
such that <Pi(j) is computed by the following algorithm:

1. Simulate M, on the input function II such that Il(C~) ::;;;:j and Il(x) = 0 if

or =J. O. If after reading ft(O), Id1), ... Jl(k) M; outputs the first conjecture,
goto 2.

46

2. Simulate M, on jl and the function h(x) such that h(k + 1) = 1 and h(x) =

II (.1') if T =I- Ie + 1. If on one of functions M, diminishes the ordinal w2 to some

0'/. define 0i(j) = I.

Proposition 4 If (J)i(j) is undefined, M, does not identify one of functions fl and

h·

PROOF. Jfi has issued a conjecture after reading !I(O), !I(1), ... , fdk). This con-
jecture is incorrect for at least one of the functions !I and h. If M, identifies both

!I and h. then]\1i makes a mindchange on one of these functions.
<Pi(j) is undefined if and only if M, does not decrease the ordinal on its counter

on fl and h. Then, 1\1i does not make a mindchange on any of the functions i. and

h· I

5.3.3 The main result

Next, we take the sequence <PI, <P2, ... and construct the functions 91 (x, y) and
92(,1', y) from Lemma 1:3.

Lemma 14 There exists a set of recursive functions U such that U E EX~;l and
U tI- EX~~.

PROOF. We consider an EX~;l -IIM M working as follows:

1. Read f(O), ... , f(k). If k = 0 output a program computing

fI(X)={ j(O) ifx=~
o otherwise

2. If k > 0 and j(k) = 0, output the same conjecture as on I(O), ... , f(k - 1).

3. If k > 0, f(1) = ... = f(k -1) = 0 and f(k) =I- 0 diminish the notation on the

counter from w2 to 0'1(0) and output a program computing

fl(X) = {f(X) if x < ~
o otherwise

4. Otherwise, find i and j such that f(O) = (i,j) and simulate M, on the in-
put f(O), ... , f(k) in the system of notations 592, Then, each time when M,
modifies its ordinal:

47

(a) If M, replaces w2 by 0/ for some I E Il'J, A1 replaces OJ(O) by OJ(O) -w + 1.

(b) If ,\;Ii replaces 0/ - w . al + bl by oi - w . a2 + b2, M replaces 0 j(O) - W .

(al + 1) + (b1 + 1) by of(O) - w· (a2 + 1) + (b2 + 1).

(c) If 1\1; replaces o/-w"al +b1 by b2, M replaces OJ(O)-w'(al +1)+(b1 +1)
by (b2 + 1).

Let m denote the largest number such that m < k and the conjectures of M
after reading f(O), f(1), ... , f(m) and after reading f(O), ... , f(m + 1) are
different. If M, makes a mindchange after reading f(O), ... , f(n) for some n

such that m < n < k, AI outputs a program computing

({
f (x) if x < kit x) = o otherwise

Otherwise, the conjecture remains the same as on f(O), ... , f(k - 1).

The set U consists of all total recursive functions identified by M.

Proposition 5 If i E IN then M, does not EX~~ -identify U.

PROOF. By Lemma 13, there is an Yl such that h1((i,Yl)) > h2(<Pi((i,Yl))) or

9i((i,Yl)) is undefined.
Case 1. <Pi ((i, Yl)) is undefined.
Proposition 4 implies that M, does not identify a function f such that f(O)

(i, Yl) and f (x) =I- 0 for at most one x > O. M always identifies such functions.

Case 2. (/)i((i,Yl)) is defined and h1((i,Yl)) > h2(<Pi((i,Yl)))'
We consider functions f such that

(a ~ f(0) = (i, Yl),

(b) f(O), f(1), ... , f(k) is an initial fragment of 11 or 12 (Proposition 4) after which

Mi changes its ordinal from w2 to 0<t>i((i,YI»)' and

(c) M, identifies f.

T denotes the set of all such functions.

The function fl always satisfies requirements (a) and (b). Hence, fl E T if and
only if it is identified by A1i.

If T is empty then Ii is not identified by Mi. However, it is identified by M.
Hence. U is not identified by Mi.

It remains to consider the case when T is nonempty.

48

Proposition 6 If I E T and, after reading f(O), ... ,f(n), AI; makes its last mind-
change on f. there exists a function I' such that

1. 1'(i) = f(i) fori E {O, ... ,n};

") f(1") =/:- 1'(.1') for some 1" > n;

~1E ".591.'d "ft" ['8. ,I .'\.,;2-I e nii .es , .

PROOF. We consider M working on the input J(O), ... , f(k). At the beginning it

changes the ordinal notation from w2 to 0'(i,Y1)'

When Ali puts the notation 0:¢>.((i,Y1)) in the system 592 on the counter, AI puts
the notation 0:(i,Y1) - W + 1 in the system 591 on the counter. The notation O'd>,((i.YJl)

denotes the ordinal v.: . h2(<Pi((i,Yl)) + 1). The notation O:(i.YI) - w + 1 denotes the
ordinal IJ.) • hd (i, Yl)) + 1.

Lemma 13 implies h2(Oi((i,Yl))) < h1((i,Yl)). Hence, h2(<Pi((i,Yl))) + 1 <
h1((i,Yl)) and

So. at the beginning. the ordinal on the counter of 1\1 is larger than the ordinal on
the counter of "~1i. The rules of modification for "~ guarantee that it always remains
larger than the ordinal on the counter of Ali. So. each time when 1\1i modifies its
notation. M can do it. too.

'We consider

{

I(r)

f'(.r) = ~(n + 1) + 1

if:r < 11

if :r = n + 1

otherwise

After reading 1'(0) , 1'(n) lIM AI; makes a mindchange because f(O) = 1'(0) .

.... I(lI) = 1'(n). We consider At computing the conjecture on the input 1'(0),

1'(17 + 1). AI simulates ,\1i. finds that M, has made a mindchange and changes its

conjecture to the program computing 1'(r). So, .\1 identifies 1'. I

Proposition 7 Th e re exists a [unction II E T and a nu mber 11 such that .'vI; makes
tlu last mindch a nqe on I after readinq II (0) ,II (n) and .11, dots not idtntiIy any

[unction f' such that f' =/:- II but fI(.r) = f'(J') [or ,r E {O..... n}.

PROOF. For each function I E T we take the ordinal which appears on the ordinal
counter of .\1; after this counter is modified for the last time. We select the smallest

among these ordinals and denote it 0:0. Let 11 be a function such that M, puts 0:0

on the ordinal counter on the input II. n is the number such that, after reading
fdO), ... , fdn), the ordinal is modified for last time.

T, denotes the set of all functions f E T such that f1(0) = f(O), ... , fl(n) = f(n).
If .\1, identifies a function l' such that l' -=1= II but lI(x) = 1'(x) for x E {O, ... ,n},
then f' E T1- To identify 1', M, has to make a mindchange and replace 0:0 by a
smaller ordinal fl. A contradiction because we defined 0:0 as the smallest ordinal
which appears on the counter. I

Combining Propositions 6 and 7 we obtain Proposition 5. I

ISo, EXw2-IIM can identify U in Sg2. Lemma is proved.

Similarly, we can construct U such that U E EX~~ and U rf. EX~~l. Hence,

theorem holds with systems Sgl and Sg2 as A and B. I

5.4 Two systems of notations: 0 and P

In this section, 'vveconsider the systems 0 and P (d. section 2.5).

5.4.1 The system 0

For inductive inference with procrastination, 0 is the strongest possible system of
notations.

Theorem 12

for an arbitrary system of notations A.

Proof. By Lemma 2, if we have an EX~-IIM, we can obtain EX;J-IIM, replacing
the ordinal notations x by ..p(x). I

Theorem 12 is based on the fact that an arbitrary system of notations can be em-
bedded in O. If we consider only univalent systems of notations (systems containing
at most one notation for each ordinal) then, for each system of notations we can
construct a stronger system of notations. (This follows from Theorem 15.)

50

5.4.2 The system P: small ordinals

For small ordinals, every lIM working in P can be transformed into equivalent lIM
in any other system of notations. Any procrastination behaviour which can be
described with ordinals smaller than w2 +w· 2 in P can be described with the same
ordinals in any other system of notations.

Theorem 13 If A is a system of ordinal notations and 0' is an ordinal, 0' < w2+w·2,

then EX!: < EX:.

PROOF. Vv'eprove the theorem for 0' = w2 + w + m case.

Lemma 15 There exists a partial recursive function t(x,y,z) such that, if

1. ,r andy art notations in the system P,

J. z is a notation in the system A, and

8. l'p(y) < vp(:r) ::; VA.(z) < w2 + w,

then t(J:,y.::) is a notation in A, vp(y)::; VA.(t(x,y,z)) and VA.(t(x,y,z)) < VA.(z).

PROOF. We define an auxiliary function SeekA(x,n). This function has two argu-
ments: an ordinal notation x (in the system A) and a natural number n. It returns
some natural number. The function SeekA(x,n) is computed by the following al-
gorithm:

1. Mo={L(x)},i=O;

2. If M, contains only notations for the ordinal 0, return 'Z as the value of
SeekA(x, n).

Proposition 8 Let a be a notation in the system A for the ordinal w . a + b. Then,

the set M; contains only notations for ordinals 0, w, ... , w . (a - i).

PROOF. By induction.

Base Case. ;\10 = {L(x)} and L(x) denotes w· a.

Inductive Cast. Let:: E J\1;+I' Then z = L(i.pqA(y)(k)) for some y E M, .

.51

The proposition holds for Jh Hence, y denotes w . j for j ~ (a - i). Then,

YfJA(y)(k') denotes an ordinal which is smaller than W', i.e. W')l +]2 for]1 < i and

LCP'n(y)(k')) denotes u.J· jl'

We have j ~ ([- i and jl :s: j - I :s: a - i - 1. Hence, any z E 111i+1 is a notation

for one of 0 4.." (0 -i - 1). •

Proposition 9 If l' IS a notation in system A fO'I" W . a + b, then SeekA(x, n) ~ a

[or arbit.raru n.

PROOf. By Proposition 8, Mo contains only notations for the ordinal O. •

Proposition 10 Let .r be a notation fOT w . a (01' qreaier ordinal] in the system A.

There erisis an n such that S'ul,A(.f,n) ~ a.

PROOF. Denote .T\ = L(1'). II is a notation for the ordinal ia-o. (or greater ordinal).

We consider the sequence of notations 'PqA(rJ!(O), 'PqA(rJ!(1), The sequence of

ordinals denoted by these notations converges to the ordinal denoted by II. Hence,

there exists a number Tnl such that yqA(xJ!(Tnl) denotes an ordinal greater than or

equal to u.J· (0 - 1).

Let 1'2 = L('PqA(rJ!(md). It is a notation for w· (a - 1) or greater ordinal. Then,

similarly as ml and I2 were obtained from Xl, we obtain m2 and X3 from .1'2. We

continue so until we obtain .Ta+l'

Then, J'\ denotes ordinal io . a or greater ordinal, X2 denotes W . (a - 1) or greater

ordinal and so on .. fa denotes W or greater ordinal, Xa+l denotes 0 or greater ordinal.

Let m = maX(Tnl,"" rna)' When SeekA(x, m) is computed, Xl E Mo, X2 E Ml,

...• ·1'0+1 EAr" Hence, each of sets M, for i < a contains a notation for ordinal

which is greater than 0 and SefkA(x,m) is at least a. I

The function t(.r.y.z) is computed as follows:

1. If z denotes a successor ordinal. return PA(Z) as the value of t(x,y,z).

2. Otherwise, find a and b such that y = W . a + b. (It is possible to do it because

y is a notation in the system P.)

:3. n = 1.

t. If S'ed·/1.(Y'7A(zli).n) ~ a and N('PqA(zl(i)) ~ b for some i E {l, ... , n}, return

Y'14(z)(i) as the value of t(.r.y.z).

;). If ,.:.,'(dAr Y'lk) (i). n) 2 (J + 1 for SOIllP i E {I. /I}. ret L1 I'll Y''/4 (0 l (i) as the

val \I f' 0 f t ~.1". Y . z) .

6. n = 11 + 1: got oi.

We prove that the a~gorit'hm given above works correctly. i.e., if .r,y . z sat isfv

t.lie conditions of "Lemma 1.1. then the algorit hm termiuates and returns the value

i(.r.y . c) satisfying Lemma 1.s.
Case 1. z denotes a successor ordinal. Then t (.r, y, c) = PA (.: JI is a not.at ion for

t he ordinal preceding 1'.d.:) i.e. for the largest ordinal which is less t han 1·.d.:::)·

Thp ordinall'p(y) is smaller thalll'.4~':). Hence, l'r(Y)::::; l'.dt(.r,y . .:)).

Case 2. z denotes a limit ordinal.

Then. 1'04(':) is less than "".2 + .c, i.e. I'A(':) is at most ...,.:2.I,p(y) < 1'.,(.:). Hence.

I'p(.:) is less than "",2. i.e. "p(.:) = ",,"a + b for some a. b E l~.

Ihe algorithm returns the value t(.r . .lI.':)·= Y,/.do)(ij, ill two cases:

Then. Y'/..d:)(i) denotes .c> (0 + 1) or greater ordinal (d. Proposition 9).

YQ4(:j,(i) denotes ...,.: . (L or greater ordrnal .. V(Y'I ..d:j(i)) > b implies that t l«-

ordinal denoted hy Yq.d:)(i) is at least ",," a + b.

In both cases the ordinal denoted bYY'ld:li) is greatf'r t han or equ a l t o 1'1'(.1/).

It remains to provo that the algorithm always returns some notation .

.=; denotes t he limit ordinal which is greater than 1'/,(.11) = w' . 0 + b. He-n.e. -

denotes ..•....(0 + 1) or greater ordinal. \,'e consider two cases:

(a):; denotes all ordinal which is greater than ..•....(0 + I).

Then. for SOl11e i E 1:'\. Y'!4(:j(i) is at least ..•..·· (0 + 1). Proposition 10 implies

:..:((I.-. \(Y'I~(:)(i). 1/1) 2 (/+ 1 for sonic 111 E 1\. Hence. when 11 becomes greater

thanlllaxii.II/i.t!Je alaorit hm ret urns a notation.
, ',!

(b):; deuotr-s: . ((/ + 1).

For some i E 1\. ";",(o)(lj is at least w" u + b. r,d",(I', dellut('~ <Ill orcli ua]

which is /e;.;;-; than /"1 i:) = .: i u -'- 1). Hellce. it dellutes w·· a + c for t: 2: h. dlle!

.Yir;d-jliil = (2 Ii. For SOllW /1/. S'cd·.l(Yqd;)(i).rn) 2: (J (Pro posit ion [0,.

BCn(T. the alguritlllll rvt u rns a nutation. WI]('11 11 ['(-'aches 11Iil,-:1 i. 1111. I

;):~

We assume that .\/p is all EX';-UM. We show how to transform Mp to EX:-IIM
.H.1.

Let .1'0 he a notation for 0 = 1J.,.2 + u': + m in the system A .. Tt denotes L(xo). no

is a number such that .p'l.dl' j)(110) denotes an ordinal which is greater than or equal
to ...•...2.

C'oujecture-s of .\fA are the same as conjectures of M», Ordinal notations on the

counter are t ransforrned as foillows:

1. When .lIp puts o =:2 + ' + m on the counter, AfA puts Xo. Further, when

Alp replaces 2 + W + I.: by....:2 + '"'-,+ k: - 1, MA replaces x by PAtX}.

2. When JJp replaces co"+u: with w2 +k for some k E IN, then MA searches the se-

quence 'f'qA(l'j) (no), +,qA(Xj) (no + 1), ... and finds an i such that N (yqA(x!l (i)) ~

k . J\JA puts +,qA(rIl(i) on the counter.

:3. Further. if .lIp changes the ordinal from:r to y, then MA computes t(:r,y,:::)
where z is the notation on the counter of M A and roplaces z by t(x ; y, z },

Proposition 11 The ordinal on the counter of 11,;/.4 is always greater than or equal

to th.e ordinal 011 lh« counter of 111p.

PROOF. When the counter of Alp contains a = w2 + w + m on the counter, the

counter of J\1,4 contains .1'0, i.e. a notation for w2 + i.JJ + m. Further, when .lip

replaces ,-,-.2 + i.JJ + J.. by "",.2 + u: + k - 1, MA replaces x which denotes "",.2 + u.: + J.~ by
p.-1C.r) which denotes preceding ordinal. i.e. i.JJ2 + w + k - l.

If .\f.-1. puts the notation 'PqA(rIl(i) on the counter, then 'PqA(xd(i) ~ I..,} and

J\'(Y'IA(rd(i)) ~ t: Hence, 'PqA(rd(i) ~ w2 + k, i.e. it is greater than or equal

to the ordinal on the counter of Mp.

Further. consider the case, when ,\1..1 replaces z by t(x, y, z). Assume that, before

this modification. the ordinal on the counter of Mo4 is greater than or equal to the

ordinal on the counter of .\1p, i.e. VA(:::) ~ vp(x), Then Lemma 15 implies that

/·A(/(.r.y.z)) ~ /'p(y), i.e .. the ordinal on the Mo4's counter after modification is

greater than or equal to the ordinal on the Mp's counter after modification. I

Hence. each time when .\1p modifies its counter, .AlA can modify it, too. It means

that always. when Jlp outputs a conjecture, 1\104 can do it too, i.e. M,4 simulates

J/p successfully. I

:)4

5.4.3 The system P: large ordinals

However. for ..••,2 +""'·2 and larger ordinals the situation is different.

Theorem 14 Then exists a system of ordinal notations A such that

PROOF. We consider an ID/I AI working in the system P according to the following

instruct ions:

1. Read f(O) •... , f(k). If k = 0 output a program computing the function fo
such that fo(O) = f(o) and fo(:r) = 0 if r =I- O.

2. If l: =I- 0 and f(k) = 0 output the same conjecture as on f(O) , f(k - 1).

:3. If k =I- 0 and f(j,.) =I- 0 then

(a) If the counter contains O. output the same conjecture as on f(o),
f(k - 1).

. . .~

(b) If the counter contains a notation for a successor ordinal. replace it by

the notation for preceding ordinal. Change conject me to a program com-

pnting

{
f (.r) if or < j,.

~(.r)= .-
. 0 I 0 otherwise

(c) If the counter contains a notation for a limit ordinal. replace it by the

j,.th notation from the sequence converging to that limit ordinal. (..••,2 is

replaced by uJ' k, .,;.,"a . .,;.,,2 +w' and uJ2 +....'·2 an' replaced by ..••,· (a - 1) + k .
0.'-,2 + l: and .,;.,,2 + .o + k. respect ively.)

Change conject me similarly to the previous caSt'.

Let L' he the set of all functions identified by JJ. \Ye construct a system of

notations A such that t tI- E.\'~i\h.2"

Lemma 16 Let A bf a .~.Iptem of notations and .'11 be an fl.\1 idf ntUlJing t uith

an ordinalmindchangf bo u n d in ih e system A. Th» n . for any initial se qment f(O).

f(1)0 f(1/) 0 ih e ordinal on the counter of .\11 ajt er ruuling f(O) 0 f(1) f('lIi

is gnatf I' than or t quol to ih c ordinal on ih c co unir I' of .\1 altf r rt adin q llie same

initial .~fqmf u l .

PROOF. By the way of contradiction. Let 0 be the set of all ordinals which appear

on the counter of All after reading segments f(O), ... , f(n) such that the ordinal

on the counter of AIl is less than the ordinal on the counter of AI. Let a be the

smallest ordinal in O.

Consider the segment f(O), ... , f(n) after reading which the counter of All con-

tains 0 and the counter of A1 contains greater ordinal. .3 denotes the ordinal on the

counter of M after reading f(O), ... ,f(n).
Case 1. o = O.

Consider the functions

fl(.r)={~(X)

{

f(.T) ifx::;n,
h(x)= 01 if.r=n+L

otherwise
f(O), f(17) is the initial segment of both II and h. After reading it j\II has issued

the same conjecture on both .fI and h. It cannot change its conjecture on any of

these two functions because. before mindchange. it needs to modify the counter.

However, this is impossible because the counter contains the ordinal O. Hence. iY!1
does not identify at least one of funct ions .fI and h.

,j > () = O. Hence. Al can modify its counter and make at least one more

mindrhange. After reading h(n + 1) = L J1 makes a mindchange and outputs a

correct program for h. On the function fl' the correct program was issued earlier.

after reading the last nonzero value among fdO)fI(n). Hence. :H identifies

both i, and h.
We have proved that All does not identify some function in C. A contradiction.

Case 2. 0 -I- O. Let 111 be

1. 17 + 1 if .3 is a successor ordinal:

if x ::; n,

otherwise

:2. a number such that YqA(,J)(rn) > a and m > n.. if.3 is a limit ordinal.

Consider t he functions
fd.r) = {f(.r). 0

{

f(·r)

f2(.r) == ~

if .1' ::; m.
otherwise

if .r ::; m .

if.r = tn .

otherwise

:')6

Similarly to the previous case. both fl and h are identified by M. More. after

reading the last nonzero value of h or .h the counter of 1'v1 contains a notation for

an ordinal which is greater than or equal to o,

If :\11 identifies both fl and h, it makes a mindchange on one of these functions.

Then, it also modifies the counter, i.e. replaces 0 by a smaller ordinal. We take

the initial segment of I, or .h after reading which it happens. After reading it the

ordinal on the counter of J'vfl is smaller than 0 and 0 is less or equal than the ordinal

on t he counter of 1'.1.
Hence, the ordinal which is on the counter of All belongs to O. However, we

assumed that 0 is the smallest element of O. Contradiction. I

The systun A. It is well-known that there exist lim-computable functions which

grow faster than any recursive function. Let h(x) be a function such that h(.r)
is lim-computable as witnessed by a monotonic g(x, y) and, for any recursive [;

h(x) > f(;r) for all except finitely many x. We use h(.1·) to define the system A.
The system A consists of notations:

1. 0:

2. w' a + b for a. bEN:

:3, o , + j for i,j E ll\;

-1. Oi.j + k fori.j./.· E Il\.

l:..;;(.r) is defined to be 0, if .r = O. 1 if (.r = w . a + band b > 0) or (.r = o, + j and

j > 0) or (.r = oi., + /..and k > 0) and 2 otherwise.

ps (.1') is defined to be w . a + b - 1. if .r = "",'. 0 + b. 0; + j - 1. if .1' = 0 i + j.

°i../+ k - 1. if .r = Q 1 •./ + k.
qs(.r) is defined as:

1. a program computing the sequence w· (0 -1), u:: (a - 1)+ I, ... , if.r = "","a.

2. a program computing ou, 01 + 1. if .1' = O.

:3. a program computing Oi.O' 0i.l + 1.... if .r = 0i.

L a program computing t(O). t(1) when'

{

"",' • If
t(1/) = .'

. . tty - 1) + 1
ifg(i.y)<j.

if g(; .. I') 2:: j

if .1' = (Ii .i :

It is easy to check that. if k.4. PA and qA are defined so, then (;.,. a + b is a notation

for the ordinal 1.4) • a + b.

Proposition 12 Cli,j denotes w2, if h(i) < j and (;.,'. k: for some k E IN otherunse,

PROOF. Let h(1)<j. Theng(i.:r) <i for all:r E IN. Hence,

t(O) =O,t(l) = "",t(2) =",,·2, ... ,

i.e. 0.:,"",'. 2 is a sequence of ordinals converging to the ordinal with notation

OJ,)" Hence. OJ.) denotes (;.,,'2.

Let h(i) ~ j. Monotonicity of g(i,x) implies that there exists an N such that

g(i. J') < j if j < Sand g(i, .r) ~ j if j ~N. Hence,

t(O) =O,t(l) =I.J,,', ... ,t(N -1) =uJ' (IV-1),

t (.T\") = 1.4) • (.V - 1) + 1. t (.\1 + 1) = .o . (.1\l - 1) + 2, ...

This sequence converges to ,» . N. Hence, Oi,j denotes uJ' A in this case. I

Hence. OJ,j + I.: denotes ",,'2 + k if h(i) < j and ",,'. a + k for some a E IN otherwise.

Proposition 13 For any i E IN, o, denotes ",,2 + ",,'.

PROOF. 0i is the limit of the sequence

0i,o· O:j,l + 1. OJ,) + j. ' ..

OJ,) is ",,2 for j > h(i). Hence, OJ is the limit of the sequence

2/(') 12 h(') .)....:+ II + ..» + . I + _.....

i.e. OJ denotes "",.'2 + "",'. I

Hence. 0i+ j denotes ""2+",,,.+ j and o (the limit of 00. O} +1. ...) denotes "",2+,",,"'·2.
By the way of contradiction. assume that an lIM Ji1 E.\.,2+..u,ridentifies l: in the

system .4. We obtain the contradiction by constructing a recursive function h , such

that hd.r) > h(,I'). hdn) is computed by the algorithm below:

1. Simulate ,\1} on everywhere zero function until it output s a conjecture, (It

cert ainlv happens because everywhere zero function belongs to l' and. hence

is identified by -'11')

Let .Y be- t Ilf' number of t he input values read hv .\11 be-lore- issuing the first

conjer t lire,

:2. Let s = O. 171 s = rnaxln, 1\'), and

Ji(x) ~ E if:r ::;ms,

if ;]. = 171s + 1.
otherwise.

(a) Simulate Jl1 on It and n until it changes its conjecture on one of these

functions. Let is, js be such that MI makes a mindchange on the function

.n after reading i. values of fiS,·

(b) If All changes the ordinal from Qk to Ok,! + I, goto step 3.

(c) Otherwise, M1 changes the ordinal from Ok+P+ 1 to Ok+p. Then, define

111s+1 = max(js,p). Set

if x ::; 1I1s+1,

if ,r = 1I1s+1 + 1,

otherwise.

s = s + 1. Go to step 2a

:3. Let Ok,! + 1 be the notation on the counter of JJI after reading It, (0).

fi (js). Set h1(n) = 1.

Lemma 17 hJtn) 2 h(n) for all n E N.

PROOF. \Ve consider the segments fi,(O) .. ,.,.nUs)' Each next segment .f/,~~(O),
.... It>~~(js+l) is an extension of the previous segment IUO) , It, (js). Let

I(O) .. , .. f(j) be t.he last of these segments (i.e. the segment after reading which

Atl modifies the notation from Ok to Qk,1 + I). Consider j\11 working with the input

I(O) .. '" f(j)· It modifies the counter as follows:

First. .H1 replaces ° with yqA(o)(k) = o; + k: for some k E lI\, Then, it replaces

01; -s]: wit h 01; + k - 1 and so on, until o i; is on the counter. After that, A!I replaces

Ok· by 0u + (for some I E Il\.

Proposition 14 ~.> 11.

PROOF. '\/1 makes the first modification Oil t he s(>gmellt Ilj(O) r\(jl)' This

segmf'nt contains onlv one nonzero value: e (rnl + 1). So .. H makes oulv one. ~II .

modification: it replaces .,;..,2 +.,;..,,:2 by ,-,-,2 +.,;..'+ 1711 + 1 after reading /,\ i rn , + 1).

Lemma 16 implies that the ordinal on the counter of '\/1 must be greater than or

equal to till' ordinal on the counter of JI. Hence. 01;+ l: denotes ordinal which is at

least u.,2 + w' + II! 1 + 1. We defined Ok + k as the notation for ,-,-,2 + uJ + A~. Hence,

It 2:: nil + 1. From nil = max(n, /V) it follows that m1 + 1 > ti and It > n, I

Proposition 15 /2:: h(k).

PROOF. \-Ve use

Proposition 16 After reading f(O), ... , fU), the counter of M contains an ordinal
which is greater than or equal to w2.

PROOF. If the counter of 1\1contains w2 + war greater ordinal after reading j(O),
... , j(n), the proposition is evident. Otherwise, at some moment M replaces w2 + W

by a smaller ordinal.

.\1 makes mindchanges and modifies the counter only after reading a nonzero

value from the input. Nonzero values in the segment j(O), ... , j(i) are f(nll + 1).

j(7712 + 1), "Ve assume that M replaces w2 + w after reading f(mr + 1). Then,

M replaces (;.)2 + uJ by w2 + m, + 1.

Let o; + p be the ordinal on the counter of M1 after reading j(O) f(jr). By
the definition of ni.; m ; 2:: p.

E h t ['0$+1(0) fS+1(') . tensi f th tac segmen. "dl ,. '" ;,+1 }s+1 IS an ex enSIOn a e pre\'lOus segmen .

.1/,(0) , ft,(Js). More. this extension contains exactly one non zero value which

does not belong to j/,(O), "', ft,(Js)' Hence, while reading f;'.:~(Js + 1)
.f;::~(js+I), Al modifies the counter only once. The machine M; modifies the counter

on ft,:~Us + 1), ft,:~(Js+l) at least once because in step 2a we wait until Jll
makes a mindchange (and modifies the counter). Hence. the number of :U1's modi-

fications is greater t han or equal to the number of M'» modifications.

Step 2a is repeated until All replaces Ok by 01../ + l. After 0k + p appears on t he

counter of M1, step 2a is executed at most p + 1 times. (Each time .H1 modifies its

counter at least once. After p modifications NIl has 0k all the counter and after p+ 1

modifications .\11 has 01../ + / for some l E I!\ on the counter. Then the algorithm

goes to st.ep :3.)

After p+l modifications the ordinal all JFs counter is at It->astu..2+rn,+1-(p+l) 2::
2

w' . I

After reading the segment /(0), ... , f(j). the counter of .\II contains au + I and

the counter of ,\1 contains ..•.,2 or greatf'r ordinal. By Lemma 16. Ou + / denotes ..•.,2

or greater ordinal.

GO

Hence. I ~ h(l.·) (cf. Proposition 12). I

The algorithm computing h , defines hdn) = l. Hence, h1(n) = I ~ h(k). From

l.. > n it follows that lI(k) ~ h(n) and h1(n) ~ h(n). Lemma is proved. I

So. there exists a recursive function hI which is greater than or equal to h. How-

ever, h grows faster than any recursive function. Contradiction, proving the theo-

rem. I

So. for the ordinal ;,,;)2 + ;,;.). 2, there are procrastination behaviours which can

be defined using the system P but cannot be defined using some other systems of

notations.

5.5 Better systems versus larger ordinals

There are two ways how to increase the power of an lIM with an ordinal mindchange

bound:

• by using larger ordinals;

• by using more powerful system of notations.

Inductive inference using different ordinals and a fixed system of notations was in-

vestigated in [24]. In the previous sections of this paper we investigated the influence

of system of notations for a fixed ordinal.

In this section, we consider possible tradeoff's between these two methods.

5.5.1 Larger ordinals instead of better systems

Theorem 1.) shows that the use of greater ordinals cannot replace the use of more

expressive system of notations.

Theorem 15 I] A is a univalent system of notations and 0 is an ordinal to uhich
A assiqn» notation. the re e xisis a SystEIII B such that

PROOF. We define

{'j, = {III is total recursive and there are at most h(f(O))

.1' > 0 such that f(·r) f=- O}.

61

Lemma 18 If h is lim-computablt then

for some system of notations B.

PROOF. Let h(:r) be lim-computable as witnessed by g(x,y). Without loss of gen-

erality we assume that g(x,y) is monotonous. (If it is not so, we can replace g(x,y)
by

gdx,y) = .max g(i,j).
'~X,J~Y

gl(X,y) converges to h}(x) such that h(x):S h1(x) for all x. Hence L\ <:;;; Uh]. From

"», E EX~2 it follows that u, E EX~2')
We use the system of notations 5g defined in the proof of Theorem 11.

l"h is inferred by the IIM M described below:

1. 1\1 reads f(O), ...• f(n). If n = 0 it outputs a program computing

('(.r) = {f(O) x = 0
. 0 otherwise

2. If n > 0 and f{n) = 0 it outputs the same conjecture as on (j(0)• f(n -1)).

:3. If n > 0 and f{n) f= 0 it outputs a program computing

I {f(T) x=Snf(·r.) = o otherwise

as a conjecture, The counter is modified as follows:

(a) If the counter contains ..;.)2. it is replaced by 0f(O).

(b) If the counter contains 0f(O). it is replaced by of(O) - .c,

(c) If the counter contains 0 f(O) -...J. k, M searches the sequence of notations

f'q-og(O!iO,-...:·q(O). Y'q-og(t'!rol-u)·q(l), ... looking for a notation 0f(O) - w' .

(k + 1) + j for some j and puts it on the counter.

(e1) If t he counter contains 0 f(U) - •..•...' -]: +i. it is replaced by o f(O) - •..•...•./.. + j - 1.

After reading the last nonzero value of fEr', ,'\f issues a correct conjecture.

Hence. it suffices to prove that ,\1 is able to modify t.he counter (and make mind-

changf') alwavs when it is necessary. First. we prove

(,.))~

Proposition 17 If iSh (f(0)) - 2 there exists an 171 such that

for some J.~.

PROOF. From limI_,x g(l(O),.r) = h(f(O)) and i S h(f(O)) - 2 we have that
g(.f(O).m) > i+ 1 for some tn . Then, by the definition of qSg'

I

Hence. !vI can modify the ordinal from D J(o) - LJJ ·z to 0 frO) - iJ..,1 • (i + 1), if

iS h(f(O)) - 2.
If IE r, then f has at most h(f(O)) nonzero values, Hence. machine .H modifies

the counter at most h(f(O)) times. We must prove that all these modifications are
possible. Before any modification at most h(f(0)) - 1 other modifications are made.

First, M replaces ..,;2 by 0 flO). then Of (0) by D flO) -..,;, o flO) - LJJ by D flO) -..,;·2 + j,

and soon. After h(f(O))-1 replacements the ordinal is at least OJ(0)-uJ·(h(f(O)-2).
Proposition 17 implies that it can be replaced by a smaller ordinal. I

Lemma 19 If A is a unicaletu system of notations and D is an ordinal to which A

assiqns notation. there exists a lim-computable function h such that

PROOF. ;\}1. J1z is a numbering of all II\ls working ill the system of notations
A and putting the notation for 0 on their ordinal counter at the beginning. (The
system A is univalent. Hence. o has only one notation and it can he checked whether
II~I puts the notation for D on its ordinal counter.)

We construct a function g(.r,y) converging in the limit to h(l:). It will be con-
structed so that for each i the II \'1 Mi does not identify a function I such that

f E U; and I(O) = i .
ThE' following algorithm computes g(i . .r) and simultaneously constructs two func-

tions II and fz such that A'Ii does not identify at least one of them.

1. Set j = O. in = 1:

{

I if.r = 0
II = h = 0 otherwise

2. Simulate j first steps of the computation of M, on the input from the function

11('1'). If lIili does not output any conjectures, then set 9(i.j) = m:j = j + 1

and repeat. If M, outputs a conjecture, go to next step.

:3. Set A' equal to the number of values read by M, so far, t equal to the conjecture

of M, produced in previous step.

{

II (x)

h(x) = ~

if x < k
if x = k
if x> k

m = m + 1,9(i.j) = m,j = j + 1:

4. Simulate j steps of the computations of M, on inputs from functions II and I2.
If M, does not change conjecture t on one of these functions, define 9(i.j) =

m, j = j + 1 and repeat.

.5. If Ali changes the conjecture t on a function 11(1 E {1. 2}). set t equal to the

new conjecture of M, on 11, k equal to the number of values of 11 read by ,Hi.

Id x) equal to fl(z).

{

fl(x)

h(x) = ~

if x < k
if x = A'
if .1' > k

111 = tti + 1. 9(i. j) = m, j = j + 1. go to 4.

If Step!) is executed infinitely many times. we can construct a function on which

.\1i makes infinitely many minclchanges. By Lemma 1. II"\I with an ordiual mind-

chauge counter cannot make infinitely many mindchanges. Hence, Step Ii is ex-

ecuted finitely many times. So. m is increased by 1 finite number of times and

h(i) = limy_x 9(i. J') always exists.

\Ve consider the moment when Step.J. is executed for last t.irue. After this

moment 11(J') and h(.r) are two different functions on which Jl; outputs the same

conjecture t and does not change it. Hence. it does not identify one of them.

Always. when a new nonzero value of h or 12 is defined. m is increased by 1. It

implies that g(i.j) = m remains greater than the number of.r such that 11('1') i- 0

or 12('1') i- O. Hence, the number of.r such that Id.r) -10 or .1'2(.1') -lOis at most

/'(i) = liml_~. 9(i .. r) and fl.h E ["h.

64

We have proved t hat , for an arbitrary IIM Mi, there exists a function f E Uh

which is not EX~-identified by Iv1;. I

From Lemmas 18 and 19 the theorem follows. I

Theorem 16 For an arbitrary constructive ordinal 0: there exist systems of nota-
tions A and B such that

PROOF. For each constructive ordinal 0: there exists a univalent system of notations

B which assigns a notation to 0'[45J. We apply Theorem 1.5 to this 0: and Band

obtain A.. I

It can be noted that the system A can be constructed so that it is univalent, too.

(Small modification in the definition of 8g suffices.)

Corollary 3 Let S'] be the Kleene's universal system of notations. For an arbitrary
unioalent system Band constructive ordinal Q

Proof. Follows from Theorem I.) and Theorem 12 I

So, we see that even the use of very large ordinals cannot replace the bet tel' system

of notations.

5.5.2 Better systems instead of larger ordinals

On the other hand. the use of better system of notations cannot replace the use of

larger ordinals.

Theorem 17 For an arbitrary system. of notations A and ordinal (I there erists a
sft of rec ursi rc fund ions (' such that

) IfJ < o , then t ~E.yf for any .~ystem ofnotntions B.

PROOF. Consider all II:VI ."1 working as follows:

6.)

1. Read j(O) j(k). If k = 0 output a program computing the function Io
such that Io(O) = f(O) and fo('Y) = 0 if :1.: #- O.

2. If k #- 0 and f(A') = 0 output the same conjecture as on f(0), ... , f(k - 1).

3. If A'#- 0 and f(k) #- 0 then

(a) If the notation on the ordinal counter denotes 0, output the same conjec-

t ure as on I(0), ... , I (k - 1).

(h) If the ordinal counter contains the notation I which denotes a succes-

sor ordinal. replace it by PAh). Change the conjecture to a program

computing

({
I (:1') if.r:::; k

fo z) = o otherwise

(c) If the ordinal counter contains the notation I for a limit ordinal, replace

I by 'PqA(->l(A:), change the conjecture similarly to the previous case.

Let Li be the set of all functions identified by M. Evidently U E EX:. Sirnilarlv

to Lemma 16 we can prove

Lemma 20 Let B be a system of notations and ;\-11 be an IIj/ iduztijying L' u,ith
an ordinal m nidchanqe bound in th.e suetem B. Then, for any initial seqmeni
nO), f(l) •... , f(17), the ordinal on the counter of :\-11 after readin q I(O). I(1)
f(n.) is qrcai«: than or equol to tlie ordinal on tlie counter of M after reading the
sante initial seqm e nt,

Hence. if -'II identifies C then its counter contains Q or greater ordinal at the

beginning. I

5.6 Summary

\V(· haw studied t he dependence of the learning power on the used system of ordinal

notations. \Ve han' proved t hat , for small ordinals (below "",,2) there is no such

dependence. For """.2 and greater ordinals. the dependence is rather strong.

The power of EX,.-identification is influenced by hot h ordinal n and used system

of notations. Results of section :")}5 show that these two influences are. in gf'!wral.

independent. In particular, even the use of very large ordinals cannot compensate

the weakness of the system of notations (d. Theorem 16). This shows the important

role of the svstern of notations.

67

Chapter 6

Probability hierarchies

6.1 Overview

Within inductive inference, there has been much work on team learning. (d. surveys

in [28. 51]) It is well-known that a team of learning machines can learn more than

a single machine. Various aspects of this phenomena have been investigated. Re-

searchers have noted that the advantages of teams over single machines appear not

only because there are more machines in team. The cooperation between learning

machines and the diversity of their approaches are also important. (The last as-

pect. the diversity of approaches between learning machines in a team. was recently

st udied in [9].)

Probabilistic learning is closely related to team learning. Any team of machines

can be simulated by a single probabilistic machine with the same success ratio. The

simulation of a probabilistic machine by a team of deterministic machines is often

possible. too.

In t his paper. we consider Fin. finite learning of total recursive function2.2.3.

Fin is supposed to be one of the simplest learning paradigms. However. if we

consider probabilistic and team learning. the situation becomes very complex. By
now. probabilistic Fin-type learning has been studied for 18 years. Still, we are far

from the complete understanding of the situation.

The investigation of probabilistic FE\ite learning was started by Freivalds in [22].

IIp gaH' a complete description of learning capabilities for probabilistic machines

with probabilities of success above i. These results were extended to team learning

hy Daley. Pitt. Valaut hapillai and \\"ill[20].

The furt her progress appeared to be verv difficult. Daley. Kalvanasundar am and

68

Veiauthapillaij l S] determined learning capabilities for probabilistic learners with
success probabilities in [~~.~]. Later, Daley and Ka.lyanasundaram[17] extended
that to [~;. H Proofs became more and more complicated. (The full version of [17J
is more than 100 pages long.)

PFin (Popperian Fin)-type learning is a simplified version of Fin-type learning
(d. section 2.2.3). In PFin-type learning, a learning machine is allowed to output
only programs computing total recursive functions. Probabilistic and team PFin-
type learning is simpler than Fin-type learning. However, it has many properties
similar to Fin. Daley. Kalyanasundararn and Velauthapillai[19, 16] determined the
capabilities of probabilistic PFin-type learners in interval [¥, ~J. However, even in
PFin-type learning the situation becomes more and more complicated when the
probability of success for learning machine decreases. [16J wrote "the prospects of

determining all the learning capabilities and all the redundancy types for even the

interval H.~J appear to be bleak indeed".
In this paper, we return to PFin-type learning. Instead of trying to determine

exact points at which the learning capabilities are different (either single points or
sequences of points generated by a formula) we propose an another approach. We
investigate the probability structure on the whole and its properties.

We prove that the probability hierarchy for PFin-type learning (the set of success
probabilities at which learning capabilities of probabilistic machines are different)
is well-ordered in decreasing ordering. More precisely, it is order-isomorphic to EO,

very large (and complicated) ordinal. (It is known that to expresses the set of all

expressions possible in first-order arithmetic.)
This result shows that the probability hierarchy for PFin is verv complex. The

part of the hierarchy investigated before ([~. 1]) is order-isomorphic to the ordinal 3w'

and is very simple compared to the entire probability hierarchy. Thus, we can con-

clude that finding an explicit description for the whole hierarchy is hardly possible.
(The previous research shows that. even for segments like [~.lJ with a simple topo-
logical structure. this task is difficult because of irregularities in the hierarchy[16].)

However. we construct a decision algorithm for the probability hierarchy of PFin.

It receives two numbers PI./h E [0.1] and answers whether the learning with prob-
ability PI is equivalent to the learning with probability Pz. Also, we construct a
universal simulation algorit hm receiving

• PI·[J2 E [O.lJ such that PFin-learning with these probabilities IS equivalent
awl

• PFin-learning machine M with the probability of success PI

and transforming 1\1into machine jl' with the probability of success P2.

\Ve note that these decidability results (and most of other results in this paper as

well) make heavy use of the fact that PFin- hierarchy is well-ordered. We suppose

that t his is the first application of well-ordered sets (and systems of notations for

well-orderings) to a problem of such type.

Further, we consider relations between probabilistic and team learners. We prove

that any probabilistic PFin-type learning machine can be simulated by a team of

deterministic machines with the same success ratio. Thus, we prove that, for PFin-

type learning, team learning is exactly of the same power as probabilistic learning.

6.2 Preliminaries

For results of this chapter, we need more definitions (in addition to those in chapter

:2). We define probabilistic and team learning in section 6.:2.1. Then. in section

6.:2.2. we modify the definitions of a system of notations for the purposes of this

chapter

6.2.1 Probabilistic and team learning

Scie-ntific discoveries are rarely done by one person. Usually, a discovery is the result

of collective effort. In the area of computational learning theory. this observation

has inspired the research on team learning.

Let .VI = pII• ,VIs} be a team consisting of Fin-type learning machines Jl!.
.... .\1s. The team .\1 [r. $]Fin-learns a function f if at least T of 1\lII •.... ;VIs
Fin-learn f. The collection of all [r. s]Fin-learnable sets is denoted [I'. s]Fin.

Besides determinist ic learning machines. we call consider probabilist ic ones.

Let .\1 be a probabilistic learning machine. .\1 FE\" (p)-learns (Fin-learns with

probability p) a set of functions C if. for any function .f E [I. the probability that

.\1 F1A-learns f is at least p. Fin(p) denotes the collection of all Fin(p)-Iearnable

sets.

Probabilistic and team PFin-learning is defined similarly to probabilistic and

team Fin-learning. The requirement that learners must output only programs com-

puting total recursive functions is absolute. i.e.

TO

1. All conjectures of all machines in a PFin-team must be programs computing

total recursive functions.

2. A probabilistic PFin-Iearning machine is not allowed to output a program

which does not compute total recursive function even with a very small prob-

ability.

Definition 30 The probability hierarchy for Fin is the set A <:;;; IRn [0, 1] such that

1. For any two different PI, P2 E .4,

I.e. learning with probability of success PI is not equivalent to learning with

probability of success P2.

2. If .r E A . .r 'S p and [.r.p[does not contain any points belonging to A. then

Fin(x) = Fin(p).

Essentially. the probability hierarchy is the set of those probabilities at which the

learning capabilities of probabilistic machines are different.

The probability hierarchy for PFin is defined similarly.

6.2.2 Systems of notations

In this chapter we use subsets of (Qn[O, 1] that are well-ordered in decreasing ordering.

A subset of <Q is well-ordered in decreasing ordering if it does not contain infinite

monotonously increasing sequences. Below. we give our definition of a system of

notations for well-ordered subsets of <Q. It is a modification of the definition of a

system of notat ions for ordinals(section 2.5).

Let A be a subset of <Q which is well-ordered in decreasing ordering. All elements

of A can be classified as follows:

1. The greatest element of the set A. We call it the m.axmuil element.,

2. Elements.r which have immediately preceding element in decreasing ordering

(i.e. the element y such that .r < y and [x. y] docs not contain any points

Iwlonging to A.). Such elements are called SUCCEssor elements.

:3. ;\11 other elements x E .4. They are called limit elements.

Definition 31 A system of notations for A is a tuple of functions (ks. Ps- qs) : <Q -+

IN such that

1. ks (.1') is equal to

(a) 0, if x is the maximal element;

(b) L if x is a successor element;

(c) 2, if .T is a limit element;

(d) :3. if x ~ A:

2. If ks(x) = 1, then PS(1') is defined and it is the element immediately preceding

.r in descending ordering.

:3. If J.~s(J') = 2, then qs(x) is defined and it is a program computing a decreasing

sequence of elements of the set A converging to ;1'.

Systems of notations are convenient for manipulating well-ordered sets ill our

proofs. Possibly, a system of notation is the most appropriate way of describing the

probability hierarchy for PFin. The structure of this hierarchy is very complicated

(cf. Sect ion 6.9) and it seems unlikely that more explicit decript ions exist.

Below. we give a useful property of systems of notations.

Lemma 21 Let A s: <Q be a set which i8 uiell-ordered in descending orderinq and h.as
a .5ysft m of notations S. LfJ II (p) be the larqe.s! number inA sucli that fd p) 'S P
a nd /2(P) be lh« smallest number in A such that p 'S h(p), Th en I1 and hart

coniput able functions.

PROOF. II and /2 are computed by the algorithm below:

1. Set .r equal to an arbitrary number from A smaller than p.

2. (a) If.r = p, output: fdp) = hlp) = J'. Stop.

(b) If.» is a successor element and ps(.r) 2 p. t hr-n output: fdfJ)

12(p) = ps(·r). Stop.

.1' and

(c) If.r is a successor e-lerneut and p,"'(.r) 'S p. sct.» = ps(.r).

-.)
1-

(d) If .1' is a limit element and ,1' -=I- p, take a sequence

Search for the smallest i satisfying f'qs(x)(i) S P and set x = 'Pqs(x)(i).

(Such i exists because this sequence is monotonously decreasing and con-

verges to :1' and x < p.)

3. Repeat step 2.

While this algorithm works, .1' remains less or equal to p.

From the definition of the system of notations it follows that the values of !l and

f2 output by the algorithm are correct. It remains to prove that algorithm always

outputs !l(P) and hlp)·
Assume. by way of contradiction. that the algorithm does not output fdp) and

hlp) for some p E Q. It can happen only if it goes into eternal loop, i.e. if Step :2
is executed infinitely many times.

During Step :2 the value of x increases. Let z , be the value of x after the ith

repetition of Step 2.

is infinite monotonously increasing sequence.

However, A is well-ordered. Hence, it does not contain infinite monotonously

increasing sequences. A contradiction. I

6.3 Three examples

One carr ask: \v hat probabilistic and team inference has 111 common with well-

ordered sets'?

In Figure 6.:l. We' show the known parts of probability hie-rarchies for three learning

criteria:

• Ex (learning in t he limit. cf.Pitt and Smith[42.t:3]).

• Fin (Frei\·alds[22]. Daley. Kalyanasundaram and Velauthapillai[lK]). and

• PFin (Dal.-v, Kalyanasundaram and Vcla.ut hapil lail l S. 16]).

Ex
a ... 1 1

4 3
1
2 1

••• 111111111 I

Fin
a ? 12 24 1

25' .. 492"
3
5

2
3 1

111111111 111111111 I I

PFin
a ? 3 47 ... 9

111111 111111 I I

1
2

3
5

2
3 1

1111111111 I

Figure 6.1: The probability hierarchies for Ex, Fin and PFin

\Ve see that these probability hiearchies contain infinite decreasing sequences but

none of them contains an infinite increasing sequence. Known parts of these hierar-

chies are well-ordered in decreasing ordering.

Below. we will show that, for PFin-type learning. the entire hierarchy is well-

ordered and will use this property to st udy its propert ies.

Recently, a similar result was obtained for Fin[3] and counterparts of some other

our resulrs were derived (d. Section 6.11 for more mforrnation).

6.4 Characterization of PFin-hieararchy

Below. we gin> a recursive description for the probabili ty hierarchy of PFin and use

this description to prow decidability.

\Vp claim that the probability hierarchy is the set A defined hy the following rules:

1. 1 E A:

2. If VI. P2· P» E A and P E [0.1] is a number such that there exist (11..... q, E

[0.1] satisfying

7-1

(a) ql + q2 + ... + q s = p;

(b) ~ = Pi for i = 1, s ,

then pEA;

The outline for the proof of this result is as follows. We start with several tech-

nical lemmas in section 6 ..5. In section 6.6 we give the proof that all probabilities

from A give different learning capabilities. Then, in section 6.7 we prove that A is

well-ordered and has a system of notations. Finally, in section 6.8 we use technical

results of section 6.7 to prove that all different learning capabilities are defined by

probabilities in A. Together, these results imply that A is the probability hiearar-

chy for PFin. Our diagonalization theorem uses methods from Kummer's paper on

PFin-tea.ms[34] but simulation part uses new techniques and is far more compli-

cated.

6.5 Technical lemmas

In this subsection. we study the properties of the rule that generates the set A. The

results of this subsection are used in various parts of section G.4. First, we show

that the rule 2 can be described without using variables qi.

Lemma 22 If tlure exist ql qs E [0, 1] satisfying q, + q2 + ... + qs

!J'+~;-P = P, for i = 1. s. then

p and

p=
(
.':i - 1) + ,,",05_ 1....

L..,,-l P,
(6. J)

PROOF. ~+l- = Pi is equivalent to qi = .E...+ p - 1. Hence.
q, P 'PI

s S P (s 1)
P = L q; = L(- + P - 1) = L ~ P +.~.P - S.

i=1 ;=1 P, ;=1 p,

(

s 1)
3= L- p+(s-l)p.

1=1 P,

I

7.)

We shall use both forms of the rule 2. The rule with qi is more natural in simulation

and diagonalization arguments but is less convenient for algebraic manipulations.

We also use a version of Lemma 2:3 where equality is replaced by inequality.

Lemma 23 If there exist Q1, ... ,qs E [0,1] satisfying q1 + q2 + ... + qs = P and
q.~_P <», [or i > 1, ... ,s, then

s
P<------- (s - 1) + ,",s_ 1.-'

LJ,-l 1',
(6.2)

PROOF. Similar to the proof of Lemma 22. with:::; or 2: instead of = where neces-

sary, I

Lemma 22 suggests that the rule 2 can be considered as a function of PI, ... , ps.
Next lemmas show that this function is monotonous and continous.

Lemma 24 If

1. pEA. [ollouis from PI EA. Ps E A by rule 8:

) p' E A [ollouis from P; E A ,P: E A by Tuff 2:

•.1 < I < I:.1. PI _ Pl····' Ps _ Ps'

then p :::;p'. I] p, < P; for at hast one i, th en p < p'.

PROOF. By Lemma 22

$ Eo

P = (5 - 1) + 2:s_ 1.- and p' = .
,-1 p, (5 - l) + 2:s_1 1,

1- PI

From Pi :::;p~ it follows that 1.- > 1, anel
p, - p,

SIS 1
(5 - l) + L ~2': (5 - l) + L "

i=l P, i=l P,

S 5 I

P = (l) ,",S 1:::; () ,",S 1 = P ..~- + LJ i= 1 P; oS - 1 + LJ i = 1 p;-
H Pi < p; for some i. then 1/ Pi > 1/ P~ and all inequalities are strict. I

Lemma 25 Let P, = lim,_x PJ.i a lid r = limi_x ri . If, for all i E 1\. r, E A follows
fl"O/II Pv.: E A P»: E .4 by nih J. tlu.n rEA follows from PI E .\. ... , Ps E A by
ruff .:

/6

PROOF.
5

r = lim r, = lim s 1
I-X ,~= (5 -1) + L- -

)-1 PJ,'

5 s
,,",S i :

(s - 1) + L."j=l PJ

I

The last result of this section relates the numbers generated by applications of

the rule 2 to PI E .4..... P» E A and 1!~1 E A, ... , l~~s E A.

Lemma 26 An application of the rule 2 to ;L'1 E A, Is E A qeneraies pEA

if and only If an application of the rule 2 to 1~~1 E A, 1~~, E A generates

l~P E A.

PROOF. Assume that 6.1 is true for PI = Xl •... , P» = XS' Then,

1 + r

s
(s - 1) + ,,",s_l .L + S

~l- XI

s .5

This is precisely 6.1 for PI = 1+X1
, ••• , Ps = l+xs .

.I Xl Is

The opposite direction (6.1 for PI = 1~~1' ... , Ps

PI = Xl, Ps = .r,) is similar.
~ implies 6.1 IS true for
l+J",

I

6.6 Universal diagonalization

"Ve consider sets of functions described by trees. Similarly to [31], we define trees as
finite nonempty subsets of Il'\~which are closed under initial segments. The root of
each tree is t he empty string f. :\ext. we define labelings of trees by positive rr-als.

Definition 32 Let 0 < p < q. Au (p. q)-labeling of a tree T is a pair of mappings!
/)1· /)2 : T -+ IR+ such that

lThis is a modification of the definition in [34] which had only one mapping v (our ill)' The

definition in [:~4]uses quantities <1 ... " .c ., a counterpart of li'.> In our opinion. specifying v'! as a

part of labeling makes notation easier. This modification is of technical character and dews not
change anyt hing import aut.

77

2. If t1 •...• t , are all direct successors of t , then Z=:=1 v2(ii) ~ vdi) + v2(i)2 and
vdt;) + v2(ii) ~ P for i = 1. ... , s,

:3. For each branch the sum of the VI-labels of all of its nodes is at most q.

PT denotes t he largest number such that there is a (p, 1) labeling of T.
This is an extension of definition in [34] that considered labelings by natural

numbers only. \lI/e shall consider both labelings by arbitrary positive reals and
labelings by natural numbers. Further, a "Iabeling" means a "labeling by positive
reals". If we consider labelings by natural numbers, it is specified explicitly.

"'Ie start by showing that for a tree T and its subtrees Ti, PT and PT. are related
similarly to rule 2.

Lemma 27 Let r > 0 and T be a tree with i p, q)-labeling. Then, there is a (pr, qr)-
labeluu; [or T.

PROOF. \iVe multiply all labels by r and obtain a t pr, qr)-labeling. I

Lemma 28 Let i1, ...• is be all direct successors o] the TOot in a tree T and TI. T2,

... , Ts be the subtrees with TOots tI, i2, •••. ts' Assmne then an qI , q, such

that Z=:=1 q, = P and
p = PT, (qi + 1 - p)

JoriE{1. s}. TlunpT=p.

PROOF. First. we construct a (p.1)-labeling. Let v~. v~ be a (PT,.l)-labeling for T,.
We define

Propert ies

vItt) = { ;'- q,.

(l + q, - p)v~(.l'),

{

O.
V2 (t) = q.. if t = t,

(1 + qi - p)v~(.r). if t is a descandant of t ,

1 and :2 can be checked direct II" from t he definitions of VI

if t = c

if t = i,

if t is a descandant of t i

if t = (

and V2'

:!Definition in [:n] incorrectly uses lldi) inst ead of vdi) + v:!(i) here.

We prove Property J. Let u be a direct successor of i.. Then. the sum of II;-Iabels

on any branch starting at u is at most 1 - PT,. (By Property 3 of v~, it is at most 1

for any branch start ing at t., and v~(t;) ~ PTi') Hence, the sum of v-labels for such

a branch 1S at most (qi + 1 - p)(1 - PT,). A branch starting at f consists of e , t i and

a branch starting at a direct descendant of ti. Hence, the sum of all its z--l abels is

at most

P + (p - q;) + (qi + 1 - p)(1 - PI'.,) = P + 1 - (1 + qi - p) + (qi + 1 - p)(1 - PI'.,) =

P + 1 - (qi + 1 - p)py, = p + 1 - p = 1.

By way of contradiction, assume that there is p' > p and a (p', I)-labeling (v;, v~)

for T. Let q: = V~(ti)' If we add V~(ti) to v;(t,), we obtain a (p', 1 - p' + qD-Iabeling

for Ti. By Lemma 27. there is a (p' /(1 - p' + q:).l) labeling for this subtree. Hence,

~ P i---- < Pi = ---- < ----,
1 - II + q: - 1 - p + q, 1 - p + qi

(1 - P' + q;) > (1 - P + qi),

We consider the sum of these expressions for all i .

s s

(05- l)p' < .s . p' - L q; = L(p' - q:) < L(p - q;) =
,=1 ;=1 i=1

=o5'P-Lqi=(o5-l)p
i=l

and p' :::;p. Contradiction. proving the lemma. I

By Lemma 22. t he relation between PI'. and PT, •.... PT., is also expressed by the

formula 6.1. Next. we show that the (PT. 1)-labeling of Lemma 28 uses only rational

numbers and. hence, can be transfomed into a labeling that uses only integers.

Lemma 29 For ([17.11 tree T. PI'. E ~.

PROOF. By induction OV{'f the depth of T. For a tree consisting of root only. p = 1.

Otherwise. let fl is be all direct successors of the root ill T and 1'1' J~..... J:..:
be the subtrees with roots fl. f2 , fs. The depth of these subtrees is smaller than

the depth of 1'. Hence. all PT, are rationals. Formula G.l implies that PI'. is rational.
too. I

79

Lemma 30 (PT, I)-labeling constructed in the proof of Lemma 28 uses only rational

numbers.

PROOF. By induction over the depth of T. Again, the lemma is evident for the tree

with the root only.

For other trees, notice that all qi can expressed by p and PT,· Hence, q-, ... , qs

are rationals. Label of the root is the rational number P, labels of i.,t , are

rationals P - ql, ... , P - 'l» and labels of other nodes are (1 - P + q;)vj(t). (I - p + q;)

is a rational number because p and qi are rationals and vj(t) is a rational number

because vj is a part of the (PT" l j-Iabeling for a tree of smaller depth. I

Corollary 4 Let T be a tree. Then there is n E IN such that T has (PTn, n)-labeling

with labels from IN.

PROOF. Let ri be the least common denominator of all rational numbers in the

(PT, l l-Iabeling VI, V2 of Lemma 28. Then, 1w1(t),nv2(t) is a (PTn,n) labeling and

uses only natural numbers. I

Next. we define sets of functions ST corresponding to trees T. K denotes the

halting set. \}{ denotes the characteristic function of K. (K5) denotes a recursive

enumeration of 1{.

Definition 33 [:34] Let T be a tree of depth d. ST is the set of all recursive functions

of the form

where each th = min{t: IU: ij E 1{dl2: h} is finite. (a1 at) E T. and either

I = I{j : ij E Kd I or (a 1, ... , ad is a leaf of T.

Lemma 31 f"J4J If T has an (m, n) -labelinq by uiieqers then

S'T E [m, n]PFin.

The next lemma is an extension of Kummer's results to probabilistic learning.

The proof is similar to Theorem 16 in [:34]. We give it here for completeness.

Lemma 32 If ·';"T E (p)PFin[.4.] and K is not Turing reducible to A. then T has a

(p - to 1) labelin q for any f > O.

80

PROOF. Let k be the depth of T. 1\I denotes an lIM that identifies ST with the

A-orade. For arbitrary iI, ... , ik we enumerate a set Tili»:

Initialization. Let t = o,e' = -l,Til, ... ,ik = 0.
St ep t. Search for the smallest s > t satisfying P(e, s) for some e > c'. If the

search terminates, enumerate (xK)id, ... , XKs(ik)) into Til,ik, set t = 8, e' = e

and go to Step 1+1.
P(e,s) is true iff c = IU : ij E Ks}1 and, for each (a1, ... ,ac) E T and (Je =

i1 ... idOtla1ot2a2'" otcae, the probability that MA outputs a program computing a

function with an initial segment (Je while reading (JeW is at least p - t.

Proposition 18 C\K(ir), ... , 'tl\"(ik)) E T'I, ...,ik•

PROOF. Let e = IU : ij E K}I. P(c,s) holds for all sufficiently large s be-

cause MA infers all functions (JeO°O. After discovering it, C\.l\"(ir),···. \K(ik)) =
(\l\"s(id,···, XKs(ik)) is enumerated into Kil, ...,ik• I

PROOF. If (\l\"(id'''',\K(ik)) E Til ,ik and ITil,ikl:::; A~for all i1..... ik, then K
is Turing-reducible to A (Fact 6 in [:34]). I

Hence. there exist 51 < ... < 5k+1 such that P(I - 1, Sl) for I = 1.... , k + 1. The

label vI(r) of r = (a1 al-d is the probability that:

1. 1\1 does not output a program while reading (J1_2OS1-2. and

2. 1\1 outputs a program computing a function with the initial segment 0"1-1 while

reading (J1_IOSI-l.

For T = e . there is no segment 0"-1 and V1(t) is just the probability that .\1 outputs

a program computing a function with the initial segment 0"0 while reading 0"0050.

The label V2(T) is 0 for T = E and the probability that M outputs a program

computing a function with the initial segment 0"1-1 while reading 0"1_205/-2 for T =
(al.···. 0/-1).

);ext. we verify that all conditions of Definition :32 are satisfied. Property 1 follows

from the definitions of vdtl. V2(t) and P(O.s).

Fur property 2. notice that vdt) + V2(t) is the total probability that Jf outputs a

function consistent with (jl-l while reading (J1_IOSI-I. vdtd are the probabilities that

81

a particular continuation of CTI-I is an initial segment of the function. These events

are mutually exclusive. Hence, L:=I Vl(ti) ::; VI(t) + V2(t). Vl(tI) + V2(tI) :::::P - E is

true because NJ outputs a program consistent with CT10Sl with a probability at least

P - E (cf. definition of P(c. s)).
Property 3 is true because the sum of all VI -labels on any branch is equal to the

probability that J\iJA outputs a conjecture while reading CTkOSk and, hence, is at most
1. I

If there is no oracle A, y.•.e get

Corollary 5 If ST E (p)PFin. then T has a (p - E, 1) labeling for any E > O.

Corollary 6 For a tree T. ST E (PT)PFin and ST tf: (PT + E)PFin for any E> O.

PROOF. Corollary 4 and Lemma 31 imply that ST E [pyn, n]PFin for appropriate

n, A [pyTl,n]PFin team can be simulated by a (PT)PFin probabilistic machine that

chooses one of n machines in the team equiprobably.

If ST E (py + E)PFin. then, there is a (PT + E/2, 1) labeling of T (Corollary

.)). This is impossible because PT is the largest number such that then> is a (PT' 1)

labeling of T. I

Lemma 33 A = {PT : T is a tree }.

PROOF. By" induction. If pEA follows from PI, ... ,ps E A by rule ? and PT, = Pi

for trees Ti, we construct a tree T consisting of the root. T] T, and make the

roots of T1, 1'2, ... , T, children of T's root. Then, PT = P (d. Lemma 28). Hence.

there is a tree T with PT = P for any pEA.

Similarly, we can show that PT E A for any tree T" I

Corollary 7 A < <Q.

PROOF. Follows from Lemmas 29 and :33. I

Theorem 18 If p. q E /1 and P i= q. then (p)PFin i= (q)PFin.

PROOF. Follows from Corollary' 6 and Lemma :3:3. I

6.7 Well-ordering and system of notations

It remains to prove that, for any probability p PFin(p)-type learning is equivalent

to PFIN-type learning with some probability belonging to A. Our diagonalization

technique was similar to [34]. The simulation part is more complicated. Simulation

techniques in [34] rely on fact that each team issues finitely many conjectures and,

hence, there are finitely many possible behaviours of these conjectures. A prob-

abilistic machine can issue infinitely many conjectures and these conjectures have

infinitely many possible behaviours. This makes simulation far more complicated.

We need an algorithmic structure for manipulating an infinite number of pos-

sibilities. We establish it by proving that A is well-ordered and has a system of

notations.

Theorem 19 ThE set A is well-ordered in decreasing ordering and has a susiem of

notations.

PROOF. Vv'e construct a system of notations for the set A inductively. First, we

construct a system of notations for A n [~, 1]. Then we extend it, obtaining system

of notations for A n [~.1], An [l.l] and so on.

Freivalds[22] proved

A n [~, 1] = {~} U {2nn
_ lin E IN&n 2 1} .

A. system of notations for A n [~.1] can be constructed easily from this description.

Below. we show how to construct a system of notations for A r [n~1 ' 1] using a system

of notations for An [;.1].

An outline of our construction is as follows:

1. Split the segment [n~1 . ~] into smaller segments h+l. 1';] so that, if p E h+I. ri]
and pEA follows from the rule 2. then PI 2 r, •... -P» 2 rio (This property

allows us to obtain a system of notations for An [7'i+I. 1';] from a given system

of notations for.4 n [ri.1] without using any knowledge about An [r;+I.1'i].)

We gin' the splitting and prove its properties in subsection 6.7.1.

2. l 'sing transfinite induction over the segments [Ti+l,Ti]. extend the system of

notations for An[~.l] to larger and larger segments An[ri+I.1]. finally obtain-

ing a system of notat ions for An [n~ 1 . 1]. This part is descri bed in subsect ions

6.7.2.6.7.:3.6.7.1 and 6.1 ..j.

6.7.1 Splitting the segment [n~l' *J
The splitting consists of two steps.

1. First, we take 1:1' for P E An[;, n~l]' These points split [n~l'~] into segments

[lfp, l:r]'

2. Each segment [l:p' l:r] is split further by the sequence

r 2
ro = 1 + r' ri+l = 1 + 1+ l'

I' r,

ro, rl, r2, ... is a monotonously decreasing sequence converging to TtP. It splits

[lfp, l:r] into segments h, ro]' [r2, rl],

An denotes the set consisting of all l:P and ro, rl,··· for all segments [lfp, l:r]'
Next, we prove several properties of the segments h+l, ri] that will be used further.

Lemma 34 Let [l:P' l:r] be a segment obtained in the first step of the splitting. If

rEA follows from Pl.· .. ,Ps E A by the rule 2 and x E [l:P' l:r] then

PI < P, P2 ~ P, ... , p, ~ p.

PROOF, We have
.r .r .r

Pj = <
1 - x + qJ 1 - x + 0

Pj(1 - .r) ~ z ,

Pj ~ r(l + Pj),

Pj-- <.T.
1 + Pj -

By definition of p, J~JpJ ~ l:P and r, ~ p.

1 -:r

I

Lemma 35 Let J' E An [Ti+l. r;]. If x E A follows from Pl .. , . , P» E A by the rule
2, then

PROOF. We prove PI 2: r , only. (P2 2: ri are proved similarly.]

Assume that [ri+l.r,] was obta.ined bv split tina [---E.-._r_]. Then. P1 < P.P1 <
. • b 1+7' 1+,-

p Ps ~ P (Lemma :~-!).

From

= Pj
1 - :r + qj

it follows that
x

qj = - - 1+ x,
Pj

We have P2 < p. Hence,
X

q2 2': - - 1 + x ,
P

X
PI = >1 - x + ql - 2 - x - ~

p

x 1
2 1 .--I--x p

From .r E [1'i+l' 1'i] we have that x 2': 1'i+1 and

I

'vVehave proved that all ;r E An [1';+1. 1';] are generated by applications of the rule

2 to PI, ... -P» E An [1';.1]. The next lemma bounds the number .s.

Lemma 36 Let l' E An [1'i+I' r.]. If a E A follows from PI,' .. -P» E A. by the rule
:2, then

x
s <-----~:!:+x~1

p

PROOF. From Lemma :34 we have

:r X
qj = - + .r - 1 ~ - + :r - 1.

Pj P

Hence.

x
'i<-~~~-
. - :£ + .I' - 1 .

p

I

6.7.2 Well-ordering

Lemma 37 An is well-ordered.

PROOF. A n [~,i is well-ordered by inductive assumption. Hence, A n [~,n~l] is
well-ordered, too. The set {l~plp E A n [~, n~l]} is order-isomorphic to An [~. n~l]'
Hence, it is well-ordered and the set of segments [l~P' l~q] into which it splits [n~l'~]
is well-ordered, too.

An is obtained by replacing each segment [l~P' l:r] with the sequence 1'0,1'1,····

Each sequence is well-ordered. Hence, the entire set An is well-ordered. I

Hence, we can use transfinite induction over this set.

Lemma 38 A n [n~l ,~] is well-ordered in decreasing ordering.

PROOF. By transfinite induction over An.

Base case. The set A n [~, 1] is well-ordered.
Inductive case. Let r E An. We assume that A n [x', 1] is well-ordered for x' > :r

and prove that An [.r, 1] is well-ordered, too. There are three cases:

1. x = It for pEA n [n~l ' ~] and p is a limit element.

Let p be the limit of PI, P2, Then, Ifp is the limit of l~~l' 1~~2' .•• because
the function l~r is continous. By inductive assumption. each [~'p,' 1] is well-

ordered. Hence, their union [l~P' 1] is well-ordered.

2. :r = l~p for p E ,4 n [n~l'~] and p is not a limit element.

\Ye take the segment [It, l:r] obtained in the first step of the splitting and
the corresponding sequence 1'0,1'1, l~P is the limit of 1'0,1'1.···· [1~p.1] is
well-ordered because each [ri, 1] is well-ordered.

:3. x =I- l~P for any pEA n [n~l' ~]. Thf'n,.r =I- 1'0 because TO

r E A n [n~l' ~]. Hence.:r = Ti+1 for some i ~O.

An [ri.1] is well-ordered because ri+1 < rio Hence, it is enough to prove that

A n ["i+1' I'd is well-ordered.

J +r for

By way of contradiction. assume that An [1';+1, I'd contains an infinite increas-
ing sequence .fl' .f2..... ""e use

Lemma 39 if! .f] E An h+]. 1';]. X2 E An [1',+]. T',]. There is an .';E N
an d sequence» .1';, .1';, ... and Pj.l.Pj.2 for j E {l. s} sucli that

86

() .,.1 'pI . b 1a ..•.1' ..•.2' ... is a su sequence 0 Xl,x2,""

(b) :r~ E A follows from PI,k, ... ,Ps,k and the rule 2, and

(c) Pi.1 = P j,2 = . .. or Pj,l > pj,2 > ... for all j E {I, ... , 5} .

PROOF. Denote

r x 151 = .
~+x-l
r,+l

Consider the applications of the rule 2 that prove 1'1 E A, r2 E A,.... By

Lemma 36,
x x

5 :::; ---- < ----- :::;051
!.+x-l ~+x-l
p r.+I

In each of these applications, Hence, there exists an So E {I, ... , 51} such

that infinitely many of Xl,' .• are generated by applications of the rule 2 with

W d hi b . (0) (0)s = so. e enote t IS su sequence Xl , X2 ,

N 1 (1) (1) b f (0) (0) Th 1ext, we se ect Xl 'X2 , •.. , a su sequence 0 Xl , X2 ,.... en, we se ect
(2) . (2) b f (1) (1) W' til bt.aiXl , X2 , ., ., a su sequence 0 Xl 'X2 , e continue so un 1 we 0 t.am

.1.(50) x(so)
1 ' 2

.(k) .(k) . . (k-l) . (k-l) f 11 ..The subsequence 11 1 X2 , ... IS generated from Xl 1 X2 , ... as 0 ows:

L . (k-l) (k-l) b h . 1 f . h 1" f h 1et PI" , p. e t e va ues 0 PI, ... , Ps« III t e app ication 0 t e ru e.J so.)

2 that proves ;rjk-l) E A. We use a following modification of well-known

theorem.

Theorem 20 Lei Yl,Y2,." be a sequence of real numbers. Then Yl, Y2

contains

• a subsequence YnI , Yn21 ... such that Ynj = Yn2 = ... , or

• an infinite monotonously increasing subsequence, or

• aii infitut e monotonously decreasing subsequence

Th (k-l) (k-l) d . fi 1e sequence Pk.l ,Pk.2 oes not contain an III nite monotonous '\' in-

creasing subsequence because all elements of this sequence belong to A. n [rio 1]

and A n [ri.1] is well-ordered in decreasing ordering. Hence, this sequence

contains an infinite subsequence consisting of equal elements or a.n infinite

monotonously decreasing subsequence.

87

L hi b b (k-l) (k-l) W h (k-l) (k-l) het t IS su sequence e Pk,nl ' Pk,n2 ' e c oose rnl , rn2 , ... as t e
(k) (k)sequence Xl ' X2 ,

(so) (so) • th d d "\XTe haveJ'l 'X2 , ... IS enee e sequencexI'x2' ... · vv

PI,k = P2,k = ... or PI,k > P2,k > ...

ds f h (k) (k) d (so) (so)because such property hoi s lor t e sequence Xl , X2 , ••. an Xl , X2 ,

• (k) (k)
IS a subsequence of Xl , X2 , •.•. I

We have

Pl,1 2 P2,1 2 ...

PI,s 2 P2,s 2

By Lemma 24,

Hence, Xl, X2,'" contains an infinite monotonously decreasing subsequence.
A contradiction with the assumption that Xl, X2, ... is monotonously increas-
mg. I

Next, we construct a system of notations 5 for An[n~l ' ~]. We start with technical
results necessary for our construction. In section 6.7.3, we show how to distinguish
limit elements from successor elements. In section 6.7.4, we define (x, d)-minimal
sets and show that such sets can be computed algorithmically. Finally, in section

6.7.5, we use these results to construct a system of notations.

6.7.3 Distinguishing elements of different types

The maximal element of the set A is 1. It does not belong to An [r;+l, 1'J Hence.
A n [1';+1, r;] does not contain the maximal element and, constructing a system of
notations. we should distinguish numbers P of three types:

1. pEA n [ri+l.r;] and P is a successor. Then ks(p) = 1.

2. pEA n [r'+I' r;] and p is a limit element. Then A's(p) = 2.

88

Two lemmas below shows how to distinguish between limit and successor elements.

Lemma 40 Let x E An [r;+l, ri]' Then x is a limit element if and only if it can be

generated by rule 2 so that at least one of PI, ... , P» is limit element.

PROOF.

"if' part. Assume that Pj is a limit element. Let pj,l, pj,2, ... be a monotonously

decreasing sequence converging to Pj and Xk be the number generated by the ap-

plication of the rule 2 to PI, ... , pj-l, pj,k, Pj+l, ... , Ps. Then, Xl,X2,'" is a

monotonously decreasing sequence converging to x. Hence, x is a limit element.

"only if' part. Let:r be a limit element and Xl, X2, ... be a monotonously de-

creasing sequence converging to x. We apply Lemma 39 to Xl, X2, ..• and obtain a

subsequence X~, .r~,

We consider the sequences pj,l, pj,2, Let

I l'Pj = irn pj,k·
k•co

J.' can be generated from P; , P;, ... ,P: by application of rule 2 (d. Lemma 2.5). We

have

pj,l = pj.2 = ... or pj,l > pj,2 >

for any j E {I, m}. If Pi: = pj,2 = ... for all j. then, .r~ - J.'; - A

contradiction with the assumption that Xl, X2, ... is monotonously decreasing.

Hence,

pj,l > pj,2 > ...

for at least one j and pj = limk_00 pj,k is a limit element. I

Lemma 41 Let x E An. Th en x is a limit element.

PROOF. We have three cases.

1. .1'= 1~1' for p E An [n~I'~]'
L t 1 th 1· . f Th ---.P..-' h l' . f PI 1'2 because p)e e irrut 0 PI,P2.·... en. H1' IS t e mut 0 1+1'I' 1+1'2.... e(ause

the function I~J' is continous.

2 .. 1' = I~P for pEA n [n~l . ~] and P is not a limit element.

Vie take t.he segment [1~P' I~T] obtained in the first step of the splitting and

the corresponding sequence 1'0,1'1, If; is the limit of "0. "1 .. , ..

89

:3. I i- It for any pEA n [n~l' !;-].

Then, ,1' = r.. We prove the lemma by induction over i.

Base Case. If i = 0, then r, = l:r and we already know that l:r is a limit
element.

Inductive Case. Lemma 22 and the definition of Ti+l imply that 1';+1 E A

follows from r, E A and pEA by the rule 2. If Ti is a limit element, then, by
Lemma 40, Ti+l is a limit element, too. I

6.7.4 (x, d)-minimal sets

In the algorit.hms of subsection 6.7.5, we will often need to compute t.he largest

element. of A n [Ti+l, Ti] which is less than some given I. This will be done by
checking PI E An [Ti' 1], P2 E An [1';, 1], ... , Ps E An [Ti' 1] that can generate x E A
by rule 2. There are infinitely many possi ble combinations of PI, ... , ps' Hence, we

1neeo

• to prove that it is enough to check finitely many combinations PI E An [Ti, 1],

P2 E A II [1';,1], ... , Ps E An [Ti' 1], and

• to construct an algorithm finding the list of combinations PI E A n [Ti, 1],
P2 E An [Ti, 1], ... , P» E An [1';,1] which must. be checked when the functions

ks, Ps- qs are computed.

We do it below. First, we give formal definitions.

Definition 34 A tuple (PI,'" ,Ps) is said to be (I, d)-allowed if PI E An [Ti, 1], ... ,

ps E An [Ti' 1] and L:;=l(~ +.r - 1) S; d.

Definition 35 A tuple (PI, ... ,Ps) is said to be less than or equal to (p~, ... ,P:) if

PI < P'I' .. ., p S; P:'
Definition 36 A set of tuples P is said to be (.1'. d)-minimal if,

1. It contains only (.1', d)-allowed tuples:

2. For each (,r. d)-allowed tuple (Pl ,Ps) then> is a. tuple belonging to P which
is less than or equal to (PI, ... ,Ps)

90

Next three lemmas show why (x, d)-allowed tuples and (x. d)-minimal sets are

important for our construction.

Lemma 42 (PI, ... , Ps) is (x,:r)-allowed if and only if the application of the rule 2

to PI, ... , Ps generates a number p satisfying P 2:: x.

PROOF. Let d = 2:;=1 (x + ~ -1). (PI,"" Ps) is (x, x)-allowed if and only if d ~ x.

Hence, it is enough to prove that d ~ x if and only if x ::;p.

d = t '(x + x_i) = t (x + ~ -]) - p + P
j=l Ps j=l Pi

=t (x + ~ -1) - t (p + ~ - 1) + P = (t (1+ ~)) (x - p) + p.
j=1 Pl]=1 Pl]=1 Pl

We have
s_(1) 1L 1+:-:- 2::1+~>1.

j=] Pl Pl

Hence, if l' > p,then (x - p) > 0 and d> (x - p) + p = x.

andd~(x-p}+p=x.

If x < P, then (x - p) < 0

I

Lemma 43 Let P be a (x, x)-minimal set. Then, for any PI, .p, that generates

P 2:: x by an application of the rule 2, there exists a tuple (p;, , P:) E S such that

p; ~ Pl , P: ~ Ps·

PROOF. (Pl, ... ,Ps) is (x,x)-allowed (d. Lemma 42). By the definition of (x.x)-

minimal set, P contains a tuple (p;, ... ,P:) such that P; ~ PI, ... , P: ~ Ps· I

Lemma 44 Let P be a (l~,x)-minimal set, PI E An [r;,l], Ps E An [1';.1]. If

.r E A follows from PI, ... ,ps E A and the rule 2. then (PI, ...• Ps) E P.

PROOF. By Lemma 42, (PI, ... , Ps) is (.T,.T)-allowed. Hence, by Lemma 4:3, there

exists (.r,.r)-allowed (p;, P:) E P such that P; ~ Pl ,P: ~ P»-
Let 1" be the number generated by an application of the rule 2 to P; E A, ... ,

P: E A. If pj < Pj for some i, then x' < 1~ (Lemma 24) and (p; P:) is not

(1' .. r)-allowed (Lemma 42).

However. (.r .. r l-allowed set contains only (.r.x)-allowed tuples. Hence. PI =

p; Ps = P:' i.e. (PI ... "Ps) E P. I

Next lemma shows that (.r. d)-minimal sets can be computed algorithmically. Its

proof also shows that a finite (.1'. d)-minimal set always exists.

91

Lemma 45 Assume that a system of notations for A n [ri, 1] 1S gwen. There is

an algorithm xdminimal(x, d) which receives x E A n [ri+l' r;] and d E [0, x] and

returns a (x,d)-minimal set.

PROOF. We use an auxilary procedure findsmallest(P, x, d). It receives numbers
z , d and an (x, d)-minimal set P and returns the smallest d' such that d' > d and

L::==l(:: + x-I) = d' for some PI, ... , Ps E A.
Both findsmallest and xdminimal use a constant Po. po is defined as the smallest

number in A n [ri, 1] such that x + .E. - 1 > O. Equivalently, Po is the number in
Po

An [ri' 1] with the smallest x +.E. -1 such that x + .E.- 1 > O. ~ denotes .E..+:r - 1.~ ~ ~
Algorithm findsmallest(P, x, d):

1. Let d' = 0;

2. For each (PI, ... ,Ps) E P do:

(a) For each j E {I, ... , s} :

i. pj = max{plp E An [ri, 1] and P < Pj};

ii. dl = L:~:~(~+:r-1)+(p~ +x-1)+L:~==j+l(:: +x-1). Ifdl > d,
)

then d' = min(d', dl).

(b) d2 = L:;==I(~ + X -1) + (:0 + x-I); If d2 > d, then d' = min(d',d2).

3. Return d' as the result;

Algorithm xdminimolt x, d)

1. Let P = 0:

2. If d < ~, return the empty set as the result:

3. Let y = Po.

4. while (~ + x-I> 0) do:

(a) d' = d - (; + x-I);

(b) PI = xdm inimal(z , d');

(c) If P, = 0, add (y) to P. Otherwise, for each (PI, ... , Ps) E PI, add
(Y.PI, ... ,fJ,,) to P:

(d) Replace y by a greater element of A n [rill]:

92

1. If y is a successor element, replace y by PSj (y);

II. If Y is a limit element, replace y by y' where s' is the smallest element
of An [rz.1] such that

x, + x _ 1 :::;d - [indsmallesti Pc, x, d').
y

5. Return P.

Proof of correctness for xdminimal(x, d). We prove the correctness by induction

over l~J.
Base Case. dE [0, .6[.

Then, ~ + x -1 2 ~ for any y. Hence, I:;=I(~ + x -1) 2.6 for any (PI, ... ,Ps)
and there are no (x, d)-allowed tuples. In this case, the algorithm returns the empty

set. Hence, it works correctly.
Inductive Case. We assume that the lemma holds for d E [0, k~[and prove it for
d E [k~,(k + 1).6[. We use

Lemma 46 If :rdminimal(x, d) calls xdminimal(x, d'), then d' :::;d - .6

PROOF. From the description of xdminimal we have d' = d - ("'- + x - 1). Byy

definition of po and ~, ~ + x-I ~ ~ and d' < d - ~. I

Hence, xdminimali x, d) calls only xdminimal(x, d') with d' < (k+ 1).6 -~ = k~.

The correctness of such xdminimal(x, d') follows from the inductive assumption.

First, we prove that the computation of xdminimal(x, d) always terminates. Each
xdminimolt i ,d') called by xdminimal(x, d) terminates because x dminimali x. d')

is correct. Hence, each while loop terminates and, if xdminimal(x,d) does not stop
then while loop is executed infinitely many times.

Let Yj be the value of y during the jth_th execution of while loop. y is increased

at the end of each while loop. Hence, YI < Y2 <
YI E An [ri, 1], Y2 E An [ri, 1]..... If while loop is executed infinitely many times.

then YI. Y2 ... is an infinite monotonously increasing sequence. However, A n h. 1]
does not contain such sequences because it is well-ordered.

Hence. while loop is executed finitely many times and xdminimoli x; d) terminates.
Let P = :rdminimal(.r. d). Next. we prove that P is a (.1". d)-minimal set.

Assume. by way of contradiction, that it is not. Then, there exists an (.r. d)-

allowed tuple (PI, Ps) such that P does not contain any tuple that is less than
or equal to (Pl Ps).

93

We assume that (p~, P2, ... , Ps) is not (x, d)-allowed for any p~ E A n [ri, 1] satis-
fying p~ < Pl. (Otherwise, we can replace PI by the smallest p~ E A n [ri, 1] such
that (p~, P2, ... , Ps) is (x, d)-allowed.)

Consider two cases:

1. In xdminimal(:r, d), while loop is executed with Y = Pl'

Denote d' = d - (.£ + X - 1). The tuple (P2, ... ,Ps) is (x, d')-allowed.
PI

xdminimal(x,d) calls xdminimal(x,d'). xdminimal(x,d') works correctly,

i.e. returns an (x,d')-minimal set Pl' Hence, PI contains a tuple (p~, ... ,p:)
that is less than or equal to (P2, ... ,Ps)'

:rdminimal(x, d) adds (PI'P~, ... ,P:) to P because (p~, ... ,p:) belongs to the

set returned by xdminimal(x, d'). Hence, P contains the tuple (PI, p~, ... , P:)
that is less than or equal to (PI, P2, ... , Ps). A contradiction.

2. While loop is not executed with Y = Pl.

Let YI be the greatest number such that YI < Pl and while loop is executed
with Y = YI' Let Y2 be the number by which Y2 is replaced in the end of while
loop.

YI < Y2 because Y is always replaced by a greater number. By definition of YI,

Y2 > Pl· (Otherwise Y2 would have been instead of YI.)

(a) YI is a successor element.

Then, YI, Y2, PI all belong to A and YI < PI < Y2. When xdminimal(x, d)
replaces YI by a greater element of A, it chooses the smallest element of

A that is greater than YI' It can be PI or some number between YI and
PI but not Y2. A contradiction.

(b) ro is a limit element.

We assumed that (P~,P2o""Ps) is not (x. d)-allowed for any p~ E An
[rio 1] satisfying P; < Pl. Hence, (YI' P2, ... 0 Ps) is not (x. d)-allowed i.e.

()
s ()

;1' x- + x-I + L ~+ ;1' - 1 > d.
YI j=2 PJ

t (~+ .r - 1) > d - (~+ .1' - 1) = d'
j=2 P, YI

9-1

Hence, t (~+X-I) 2 findsmallest(x,d',PI)
j=2 Pl

where PI is the (x, d')-minimal set obtained by xdminimal(x, d'). How-
ever, t (~+ X-I) < d

j=l Pl

because (PI, P2, ... , Ps) is (x, d)-allowed. Hence,

~ + x-I:;' d - t(~+ X-I) < d - findsmallest(x, d', PI)'
PI j=2 ~

By the definition, Y2 is the smallest number such that

~ + x-I::; d - findsmallest(x, d', Pd.
Y2

This implies Y2 :;, Pl' A contradiction with Y2 > p-: I

6.7.5 System of notations

We extend the system of notations S from A n [~,1] to A n [n~l .1]. Below, we give
the algorithms computing ks(x), ps(x) and qs(x) for x E [n~l' ~]. These algorithms
use the procedure xdminimal(z , d) defined in the previous subsection. They also
use the system S for A n [~,1].

Fun ction ks (x) .

1. Use the system for An[~, n~l] to find whether x = l:P for some P E An[~, n~l]'
If yes, then J..'s(x) = 2.

2. Otherwise, find the segments [l~P' l:r] and [1';+1. I'd containing x. If x = 1';+1

or l' = r., then I..-s(x) = 2.

:3. Otherwise. find a (.r.x)-minimal set P using xdminirnal(x,x).

4. If there exists (Pl ,Ps) E P such that x is generated by an application of

the rule 2 to Pl• Ps and at least one of Ph ... , P» is a limit element. then
ks(J') =2.

,j. Otherwise. if there exists (Pl •.... PsI E P such that .r IS generated bv an

application of the rule 2 to Pl ... "ps, then /"'5('1') = 1.

6. Otherwise, ks(:l') = 3.

Function ps(:r).

1. Find the interval [ri+I' ri] containing x. Execute xdminimal(z , x) and find a
(:T,x)-minimal set.

2. Let Pt be the set consisting of all tuples (PI, ... ,Ps) such that

(a) (Pl, , Ps) E P or

(b) (PI, ,Pj-I,Pj,Pj+I, ... ,Ps) E Pandpj =ps(Pj)forsomej E {1, ... ,s}

or

(c) (PI, ... ,Pj-I,P',Pj, ... ,ps) E Pforsomej E {l, ... ,s} andp' E An[r"l].

:3. For each tuple (PI, ... , Ps) E PI find the number pEA generated by an

application of the rule 2 to Pl, ... ,Ps·

ps(x) is the smallest of those p which are greater than x.

Function qs(x).

1. If x = ~I· ,p E A n [1, -L
I
] and p is a limit element, qs(x) IS a program+p n n-

ti ""q"lp)(O) 'Pqs(p)(I)
compu mg l+'P-qSIP)(O)' l+'Pqs(p)(I)' ••••

2. If r = I:P' p E An [;, n~l] and p is a successor element, find r = ps(p). qs(x)

is a program computing the sequence ro, rl, ... corresponding to [lfp, l~T]'

3. Otherwise. search the set P returned by xdminimal(x,:r) and find Pl E A. n

[r;, 1] , ... , P» E A n [1';,1] such that x is generated by an application of the
rule 2 to PI, P» and Pj is a limit element.

qs(:r) is a program computing the sequence XI, 1.'2, ... where Xk is generated

by an application of the rule 2 to pi , ... , pj-I. yqsl(PJ)(k), Pj+l, ... , Ps·

Lemma 47 .5 is a sysftm of notations f07>A n [n~l' 1].

PROOF. By transfinite induction oyer An.
Base Cast. It is clear that S is a correct system of notations for A n [~.1].
lnductive Case. Let.IJ E An. Vv'eassume t hato' is correct for all An [y'.l] with

!i' > Y and prove that it is correct for An [y.l]. We consider two cases:

96

1. If = --.E.- and pEA n [1.., _1_] .
. l+p n'n-1

y is a limit of a sequence consisting of elements of An (d. proof of Lemma 41).

Hence, if x > y, then x > y/ where y/ is some element of this sequence. The

functions ks(x), ps(x), qs(x) are correct because 5 is correct for An[y', 1] (by

inductive assumption). It remains to prove the correctness of ks(x), ps(x),

qs(x) for a = y.

ks(y) = 2. This is correct because, by Lemma 41, y is a limit element. The

function ps (x) is defined only for successor elements. Hence, we do not need to

check its correctness for the limit element y. The correctness of the sequence

computed by qs(Y) is proved in the proof of Lemma 41.

2. y = Ti+1 for i ~O. In this case, we assume that S' is correct for An [Ti, 1] and

prove the correctness for An h+l, TJ
By Lemma 45, xdminimal(x, d) returns an (x, d)-minimal set if it has access

to a system of notations for An [Ti, 1]. We know that 5 is correct for An [Ti, 1].
Hence, the set P returned by xdminimal(x,x) is (x,x)-minimal.

2.1. Proof of correctness for ks.

If x E A n [1';+1, Til, then x E A follows from Pi E A, ... , P» E A and

the rule 2, for some PI, .. ' ,Ps' By Lemma 35, PI E An [Ti. 1], ... ·ps E

An h.1]. By Lemma 44, (Pl •... ,Ps) belongs to P.

Hence, if z E A, the algorithm computing ks finds PI, ... ,ps such that

pEA follows from Pi E A, ... , p, E A and the rule 2.

Hence. it distinguishes x E A and x t/:. A correctly. By Lemma 40. it

distinguishes limit and successor elements correctly.

2.2. Proof of correctness for Ps-

We prove that ps(x) returns the element of An [ri+1,Ti] immediately

preceding .z i.e. (\".: E An [Ti+1,Ti])(X < Z ~ Ps(x) :S z).

Let z E An h+1' 1';] and x < z. Consider Pi, ... , P» that gener ate .c E A

by rule 2.

P contains a tuple (p; , P:) such that p; :S Pi, p: :S ps (Lemma

.t:3). AIl applic at ion of the rule 2 to p; p: generates pEA "vit h p ~ .r

(Lemma 12). Consider two cases:

97

(a) p> .r ,

The algorithm computing PS adds (p~, ... , p~) to the set Pl. Later, it
sets PS (x) equal to a number that is less or equal to p. (It is so because
(p~, ... ,p~) E PI and p~, ... ,P~ generates P > x. The algorithm
selects ps(x) as the smallest of all P satisfying these conditions.)
By Lemma 24, p:S; z. Hence, ps(x) :s; p:S; z.

(b)p=:r
If PI = P~, ... , Ps = P~ then P = z. However, P < z. Hence, Pj < pj

for some i. Let p'j = PSj (pj). We have p'j < Pj because PSI (pj) is
the smallest element of A that is greater than pj. Let P denote the

number generated by the rule 2 from P~, ... , Pj-l, pj', Pj+l' ... , p~.

By Lemma 24, x < p. Hence, the algorithm for Ps(x) adds the tuple

(, , '" ')PI' ... ,Pj-l' Pj , Pj+l , ... , Ps

to the set PI and, then, checking tuples in g, sets PS(x) equal to a
number which is greater than or equal to p. This implies Ps(x) :s; p.

From P~ :s; PI, ... , Pj-l :s; Pj-l, p'j :s; Pi- PJ+I :s; Pj+l, ... , P: :s; ps it
foJlows that p:S; z (Lemma 24). Hence, ps(:r) :s; p:S; z.

So, in both cases ps(x) is less than or equal to any z E A satisfying x < z ,
On the other hand, ps(x) E A and x < ps(x). (It call be seen from the

algorithm computing ps.)

Hence. ps(.r) is the smallest element of A satisfying x < ps(:r). i.e. the
algorithm computes PS correctly.

2.3. Proof of correctness for qs.

\Ve already proved that. if there exist Pl , Ps such that x E /1 fol-
lows from PI EA. ... , P» E A. then such combination is found by
xdrninimal(,r,x) (cf. proof of correctness for ks). If there exists such

a combination with one of PI, ... , p, being limit element, it is found.
The algorithm computing os generates a program computing required
sequence from such combination correctly.

The correctness of S' for An [-;-.1] follows by transfinite induction. I

By Lemmas :38 and n. An [~.l] is well-ordered and has a system of notations
for any n.. Hence . .4 is well-ordered and has a system of notations. This completes
the proof of TIIPon-'Il119. I

98

6.8 Universal simulation

Theorem 21 For any pEA there exists k such that PFin(x) <::;;; [pk, k]PFin for all

x which are greater than any p/ E An [0, p[. There exists an algorithm which receives

a probabilistic machine M and a probability x and outputs a team LI, .•. , Lk which

identifies the same set of functions.

PROOF. By transfinite induction.
Base Case. For p > t, the theorem follows from the results of [22].
Inductive Case. We assume that the theorem is true for all pEA such that p > Po

and prove it for p = Po.
p~ is the smallest element of A which is greater than or equal to I~~o' p~ can be

computed effectively when x is known(d. Section 6.2.2). ~ = ~ + x - 1. P is a
Po

(x,x)-minimal set (d. Section 6.7.4). P can be computed from z , too (Lemma 4.5).
Next, we give a technical lemma which is very important part of our simulation

technique. It expresses relevant results of section 6.7.4 in a form appropriate for the
proof of this theorem.

Lemma 48 Let PI, ... , Ps, qI, ... , 'I» be such that

1 x x
r r , PI = -1 + , ... , Ps = -1 + .-x ql -x qs

There exist (p;, ... , P:) E P and q;, ... , q~ such that

1. For any i E {l, ... ,s}, Pi :2: pi or (Pi < pi and AnJpi,p;[= 0).

~ /- ~ / ~
PI - I-po+q; •. " . , Ps = I-po+q~'

PROOF. Let pi' be the smallest element of A such that Pi ::; pi' and q;/ be such that
" - 1" < . n > l' 1 . "Pi - I-x+q'" Pi - Pi Imp res - x + qi :2: q - x + q; and qi :2: q;/. We replace all Pi

I

and qi by pi' and q;'. Then, q;/ + ... + q~ ::; .1' because q;/ ::; q..

Let x'' be the number generated by an application of the rule 2 to p~ E A , p~ E
A. Then, «">» (Lemma 24). P contains a tuple (p;, ... ,p:) such that p; ::; p~.... ,
P:::; p~ (Lemma '1:3). By definition of (.r,.r)-minimal set, this tuple is (x,x)-allowed

99

and P; E A, ... , p~ E A. Hence, an application of the rule 2 to it generates x' ~ x.

More, x' ~ po because Po is the smallest element of A such that x :s: Po-
Let q~/,. " . , q~' be the values of qi ; .. ", q, in the application of the rule 2 to P;, ... ,

p~. We have q:' = x' + ~ - 1 (d. proof of Lemma 22). Let q: = Po + p~ - 1. Then,
P, P,

q~+ ... + q~= (po + ~~- 1) + ... + (po + ~ - 1) <

(x + ~ - 1) + (Po - x) + ... + (x + ~ - 1) + (Po - x) :s:

q~' + .. "+ q~' + s(Po - x) = x + s(Po - x) :s: x + (Po - x) = Po,

proving 2. 3 follows by substituting the expression for q',

If P; < pi', then P; < Pi because Pi' is the smallest element of A such that Pi :s: p;'. If
, 1/ d 1/ th I If I 1/ d /I t h ']' []' /I [Pi = Pi an Pi = Pi' en Pi = Pi" Pi = Pi an Pi < Pi' , en Pi < Pi' Pi-P. = Pi-P;

and An]p;, p;'[= 0 by the definition of p;'. In all three cases, 1 is true. I

In the simulation algorithm for P = po, we use several simulation algorithms for
P > Po as subroutines. Namely, we use:

1. A simulation algorithm for P = p~.

2. Simulation algorithms for P = P;, for (PI, ... p~) E P and i E {I, ... , s}.

The existence of these simulation algorithms is implied by the assumption that

Theorem 21 holds for P > Po.
A [pk, kJPFin-team L = {L1 •... , Lk} simulates a probabilistic PFin(x)-machine

M as follows:

1. LI,."., Lk read f(O), f(1), ... , simulate AI and wait until the probability that
M has issued a conjecture reaches x. Then pk machines (LI, ... ,Lpd issue
conjectures hI, ... , hpk.

2. The first values of the functions computed by h], ... , hpk are identical to the
values of f, i.e.

for i :s: m where f(rn) is the last value of f read by L before issuing conjectures.
The next values of these functions are computed as fo11O\\1s:

lOG

(a) Simulate the conjectures of A1 issued before L outputs hI, ... , hpk. If all

these programs output the same f(n), hl, ... , hpk output this value, too.
Otherwise, for each possible value of f(n) compute the probability that
M has issued conjecture with this value.

If there is only ene value with the probability at least 6., all programs
hI, ... , hpk output this value.

(b) Otherwise, dI, ... , ds denote these values and qI, ... , qs denote the prob-
abilities that f(n) = dI, .•. , f(n) = ds, respectively. Let

x X
PI = , ... ,Ps = .1 - x + qI . 1 - x + qs

The programs hI, ... , hpk compute PI, ... , Ps, search the set P and find
the tuple (p;, ... , P:) E P (cf. Lemma 48). Then, they compute

I Po 1 I Po 1qI ::;;:;Po + I - .tI, .•• , qs = P + - - .
PI ~

q~k of programs hI, ... , hpk output f(m)
f(m) = d2 and so on.

Further, q;k programs together with (1 - Po)k machines Lpok+I' ... , Lk

sirnu late .M on functions with f (m)= d, according to the algorithm for
p=p';.

dI, q~k programs output

3. After LI, •..• Lpok have issued conjectures, all remaining machines in the team
L read the next values of the input function and simulate the conjectures
issued by the probabilistic machine !vI before conjectures of LI, ... ,Lpok' They

wait until the splitting of conjectures in step 2b happens or the probability of
conjectures consistent with the input segment becomes less than il.

(a) If the splitting in 2b happens, Lpok+1' .•. , Lk (i.e. all machines which
have not issued conjectures yet) read f(m). If it is equal to d: they

participiate in the simulation according to the algorithm for p = P';'

(b) If the probability of conjectures consistent with an input segment be-

comes less than ~ (i.e. almost all conjectures of .\1 have different initial
segments). Lpok+I Lk start a simulation according to the algorithm

for p = p~. (We recall that p~ is the smallest element of A which is greater
than or equal to 1 Po .)

-Po

101

Proof of correctness. In our simulation algorithm, we use si.nulation algorithms

for the ratios of successful machines greater than Po. We must prove that

• these algorithms can do required simulations,

• these simulations give us at least pok correct programs.

1. Step 2b. Here, we use q:k programs and (1 - po)k machines Lpok+1, ... , Li;
to simulate M on functions with f(m) = d, according to the algorithm for

P = p~.

(a) The simulation is possible.

M can be transformed into machine M' with the probability of success
Pi. (We take a machine 1M' which, before outputing a conjecture, checks
whether its conjecture f has f(m) = d.. If f(m) = di, then it outputs
the conjecture. If f(m) =I d., then M' does not output the conjecture.

Instead, it begins the learning on the same input data once again. The
probability of success of M' is equal to the conclitional probability of

success of lv!, if it is known that M issues the conjecture with f(m) = di.

It is -1 x+. = Pi.)-x q.

p~ is selected so that Pi is greater than any pEA n [0,p';[. Theorem
21 holds for P = p~ because p~ > Po. Hence, a probabilistic machine
with success probability Pi can be simulated by a team with the ratio of
successful programs p~.

(b) The simulation gives pok correct programs.

We have q:k programs and (1 - Polk machines which have not issued
conjectures yet. So, together we have (1 - Po + qn~'programs. If they
work as a team with success ratio p;, at least p';(1 - Po + q;)~~programs
are correct. By the definition of p~,

, Po d 't ')k kPi = 1. ,an Pi ~1 - Po + qi .~= Po c.
- Po + qi

2. Step :3b. The probability of conjectures consistent with input segment becomes

less than ~ and we use the simulation algorithm for p = p~.

(a) The simulation is possible.

102

Similarly to the previous case, M can be transformed into machine .M'
which identifies only functions consistent with input read so far. The
probability of success of M' is equal to the success ratio of AI.

The probability of issued conjectures is at most Do. Hence, the success

ratio is at least 1-:+~'By the definition of Do, it is greater or equal than
any pEA n [0,p~[. Hence, M' can be simulated by a team with success

. ,
ratio Po'

(b) The simulation gives pok correct programs.

(1- Po)k machines (Lpok+l,"" Lk) participate in this simulation. p~(l -
Po)k of them are successful. By the definition of p~, we have p~ ~ l~~o'

Hence,
p~(1 - Po)k ~ Po (1 - Po)k = pok.

1 - po

The size of L. We show how to select the size of the team L so that be it will
able to perform all described simulations. Two conditions must be satisfied:

1. When the machines of the team split, the amount of machines saying that
f(m) = d, must be integer for any d, i.e., q;k must be integer in all cases.

2. When the simulation algorithm for the success ratio Po uses another simulation

algorithm (with the ratio of successful machines p > Po). certain team size k'
is required for simulation with [pk', k']PFin-team. The amount of machines
partici piating in this simulation (when it is used as the subroutine of the
simulation for the ratio Po) must be multiple of k'.

Formally. it is equivalent to:

(a) For all (p~ ,p:) E P and i E {l, ... ,s}, (1 - Po + q;)A' must be a
multiple of k, where k, is the size of the team with the success ratio p;.

(b) (1 - Po)k must be a multiple of ko. the size of the simulation team with
the success ratio p~.

The set P is finite. Hence, we have only finitely many requirements about the size
of simulating team for p = Po.

All p; belong to ,4. and A is the subset of rational numbers(cf. Section 6.6). It
implies that all q; are rationals. too. Hence, all requirements about the size of
the team are equivalent to requiring that the team size is a multiple of some finite

103

number of integers kI, ... , km. If we select the size k so, the simulation algorithm
will be able to perform all required simulations. I

Theorem 21 implies

Corollary 8 Let z , y E [0,:1] and x < y. If there is no pEA satisfying x s: p < y,

then

PFin(x) = PFin(y).

PROOF. Any machine which succeeds with probability y, succeds with probability
x < y, too. Hence, it suffices to prove that any machine with the probability of

success x can be simulated by a machine with the probability of success y, i.e.

PFin(x) <;;;; PFin(y).

Let p be the smallest element of A which is greater than x. Theorem 21 implies

PFin(x) <;;;; [pk, J.~JPFin<;;;; PFin(p).

We have y s: p and, hence,
PFin(p) < PFin(y)

PFin(x) <;;;; PFin(y)

I

So, if Theorem 18 does not prove that the power of learning machines with prob-
abilities .1' and y is different, then these probabilities are equivalent. Hence,

Theorem 22 A is the probabilitu liierarcliu for probabilistic PFin-type learning in

the mnge [0, 1].

PROOF. Follows from Theorem 18 and Corollary 8. I

Theorem 22 has a following important corollary.

Theorem 23 Probabilistic PFin-type learning probability structure is decidable i.e.

there is all. algorithm that receives as input two probabilities PI and P2 and computes

whether PFin(Pl) = PFin(pz).

PROOF. rSf' the algorithm of Lemma 21 to find the intervals [fdPl), h(PI)] and

[fdPz). fl(P:Z)]' These two intervals are equal if and only if PFin(Pl) = PFin (P2)' I

104

6.9 Relative complexity

From Theorem 19 we know that PFin-type probability hierarchy is well-ordered. A
question appears: what is the ordering type of this hierarchy? To what particular
ordinal is it order-isomorphic? We analyse the proof of Theorem 19 step by step.

0'(x) denotes the ordering type of An]x, 1] for x :::; ~ and the ordering type of
A n [x, 1] for x > ~. If x 2:: y, then o(x) < O'(y) because An]x, 1] ~ An]y,l]. We
will often use this inequality.

Lemma 49 0'(~) = w.

PROOF. AnH, 1] consists of a single sequence 1, 2/3, 3/5, ... [22]. I

First, we prove lower bounds on the ordering type of A. l(p) is the largest ordinal
0' such that there is an wD-sequence in An]p,l] which converges to p. We define

l(p) = 0 if there is no such sequence for any o.
It is easy to see that O'(p) 2:: wl(p). However, there may be a large gap between

these two ordinals. For example, if An]p, l] has the ordering type WW + 1, there is
no infinite monotonous sequence converging to p and l(p) = O. We use the function
1 to prove lower bounds.

Lemma 50

l(l:P) 2::O'(p).

PROOF. Transfinite induction over pEA.

Base Case. Let p = 1. The ordering type of An [1,1] = {1} is 1. The ordering type
of An]1/2, 1] is wand 1(1/2) = 1.
Inductive Case. Consider two cases:

1. p is a successor element.

Let p E [;.. n~ 1]' r denotes the element immediately preceding p. We have
O'(p) = o(r) + 1 because p is the only element of A n [p, 1] which does not
belong to An [r, 1]. By inductive assumption, 1(l:") 2:: O'(p).

Consider the splitting of [n~l';'] in the proof of Theorem 19 (subsection 6.7.1).
In the first step, one of segments is [Jip, 1:"] because [p, r] does not contain
other elements of A.. vVe consider the sequence ro, r1, ... corresponding to
[

p ,.]
l+p' 1+,. .

10.)

Lemma 51 I(r;) ;:::o(r).

PROOF. By induction.

Base Case. Let i = O. Then, ro = l:r and I(ro) = l(l:r) ;:::o(r).

Inductive Case. We prove l(r;+l) ;::: I(r;). Then l(r;+1) ;:::o(r) follows from
I(r;) ;:::o(r). We use

Lemma 52 If a set is obtained from WO by removing a proper initial segment,
it still has ordering type WO .

PROOF. If we remove a segment with ordering type ;3, we obtain the set with
ordering type wa -;3 (Definition 11). We have we> - iB = wO: for all (3< u/": I

Let
2

f(x) = 1+1+1'
x P

f(x) maps :1' E A to the number generated from x and p by rule 2(Lemma
22). Let Xo be the number such that f(x) = rio The function f maps (xo, ri)
to (ri,7';+d. (ri+1 = f(r;) by the definition of 7'i+1')

We take an w/(r) sequence converging to ri and remove all x < Xo from it.
The remaining sequence is still w/(r) (Lemma 52). f maps it to a sequence

converging to 7'i+1 and preserves the ordering. Hence, l(ri+1) ;:::I(r). •

We take the union of 013 sequences converging to ro, 7'1, ... and obtain a 013+1

sequence converging to limi-+oori = l~P' Hence, IC~p) ;:::o(r) + 1 = o(p).

2. p is a limit element.

Let Po, Pv be a decreasing sequence converging to p. Then,

o(p) = lim O(Pi)'
l~OO

vVe take the union of wO:(p,) sequences converging to ~. It has the ordering
l+p,

type
lim WO(PI) = ",-,Iim,_oo a(p,) = war(p)
l-"X,

and converges to I:p' Hence./(l;p);::: o(p). I

106

Lemma 53 0' (-p_) > wo(p).
l+p -

PROOF. Follows from Lemma .50 and O'(I~P) 2: w/(Tfp). I

The upper bound proof is more complicated. We prove a counterpart of Lemma
5:3.

Lemma 54 0' (--l!....-) < wo(p).
l+p -

PROOF. Transfinite induction over pEA.

Base Case. Let p = 1. The ordering type of An [1, 1] is 1 and the ordering type of
An [1/2, 1] is w.

Inductive Case. Consider two cases:

1. p is a successor element.

Let r be the element immediately preceding p. Similarly to the proof of Lemma

.50, 1'0, 1'1, ... is the sequence in the splitting of [n~I'~] corresponding to

[1~P' l:r]'

Lemma 55 0(1';)::; wo(r). c, for some c, E IN.

PROOF. By induction.

Base Case If i = 0, TO = l:r and 0'(l:r) ::; wo(r) by inductive assumption.

Inductive Case. Let P be a (ri+1,ri+d-minimal set (cf. section 6.7.4). Let
A(P1, ... , Ps) denote the set of all T E An]ri+l, ri] generated by applications of

the rule 2 to P~ E A, ... , P: E A such that PI ::; p~, ... , P» ::; P:' O'(Pl, ... ,Ps)

denotes the ordering type of A(Ph ... , Ps)'

Lemma 56

o(T;+d::;o(ri)(+) L O"(Pl.···,Ps).
(PJ,···.p,)EP

PROOF. We have

An]ri+l, 1] = (An]r;, 1]) U(PI ,... ,Ps)EP A(Pl, ... ,Ps)'

By Lemma 1. the ordering type of An]r;+I, 1] is less than or equal to the

natural sum of the ordering types of An]r;.1] and all A(Pl,'" 'Ps)' I

\"exL we- hound each Q'(P1 Ps). vVe start with all auxilarv lemma.

107

Lemma 57 If pEA follows from an application of the rule 2 to PI E A ,

Ps E A. then

PROOF. Without the loss of generality, we assume that PI :::;P2 :::; '" :::;ps·
Then, o(pd ~ O(P2) ~ ... ~ o(Ps)' We prove the lemma by transfinite
induction over PI.

Base Case. PI is the maximum element, i.e. PI = 1.

Then, PI = ... = P» = 1. An application of the rule 2 to PI, ... , P» generates

P = S/(28 - 1).

An [8 ,1] = { 8 , 8 - 1 , ... ,~. I} .
28 - 1 28 - 1 28 - 3 3

The ordering type of this set is 8, i.e. o(p) = 8. On the other hand, O:(PI) =
... = o(Ps) = 1 and

o:(pd(+) ... (+)O:(Ps) = s.

Inductive Case. We have two possibilities:

(a) PI is a successor element.

j denotes the maximum number such that PI = ... = Pi- Let

/ = { predecessor of PI, if i :::;j
P, 'f' ..Pi, I 1 >)

We have o(pd = o(p~) + 1 fori:::; j and O(Pi) = o:(p;) for i > j. Hence.

o:(pd(+) .. ·(+)O(Ps) =

(0(p~) + 1)(+) ...(+)(Q (pj) + 1) (+)0(pj + I)(+) . . .(+)a (p:) =

o (p~)(+)... (+)0(P:) + j.

Let .1'0 be the number generated by an application of the rule 2 to p~.....

p~,and ,r,. for i E {1. j}. be the number generated by an application
f th . 1 .) t I / B . I' .o . e ruie z 0PI. ···.Pi.Pi+I ,Ps' y induct ive assumption,

vVr have Pi < p; for i :::;j. By Lemma 24. Xi < .fi-I' Hence.

108

We have Pi = p~ for i > j. Hence, Xj = P and

(b) PI is a limit element.

Again, j is the maximum number such that PI = ... = Pi- Let p~, p~, ...

be a monotonous sequence converging to PI and Xi be the number gen-
erated by an application of the rule 2 to p~, ... , p~, Pj+l, ... , ps. By
inductive assumption,

a(x;) ~ o(p:)(+) ... (+)o(p:)(+)o(pj+d(+) ... (+)o(Ps). (6.3)
,"------v '"

j times

~Wehave PI = ... = Pi = limi-+oop~ By Lemma 25, P = limi--+ooXi. Hence,
if we take i ~ 00 in (6.3) and apply the fact that (+) is continous, we

get

I

Lemma 58 Let (PI, .. " Ps) E P. Then

'() < a(r) to PI, ... , ps _ W . cons .

PROO F. Lemma 2 implies that 0'(PI, ... ,Ps) is at most the nat ural product of
O(PI), ... , o(Ps)' Let OJ be the largest ordinal such that o(Pj) ~ WOJ• Then,
o(Pj) :::;CjWoJ• (If there is no such Cj, then a(pj) :::;limwoJ • c = wOJ+I and OJ

is not the largest ordinal with such a property.) Hence,

'() < 01 (). 02 . as _ Od+)02(+) ... (+)os ()a Pl , Ps _ uJ . CI . W . C2 . " . w . Cs - W " CI C2 ... Cs .

Let pj be such that pj E A and o(pj) = OJ. We have OJ < a(r) because
Pj ~ rio O(Pj):::; a(ri)' O(Pj) 2: ",fJ and o(ri):::; wo(r) -const < wo(r)+l. Hence.

pj 2: r and both Lemma 50 and Lemma 54 are true for p = pj. This means
p', p',

that a(1W) = uJ°J• Hence, ~ 2: Pj because o(Pj) 2: c/>.
J 1

Let pi be the number generated by an application of the rule 2 to p; •.. ", p~. By

Lemma 26. I~'PI is generated by an application of the rule :2 to I~~;' ... , I~~'"

109

I!~'is greater than or equal to the number generated by an application of rule

2 to PI, ... , P» because 1:~'::::Pi- This number is at least ri+l because the
]

tuple (PI, ... ,Ps) belongs to the (/i+I' ri+I)-allowed set P. Hence, I:'p' :::: ri+l'
pi r [P r] '. . piWe have 1+p' :::: 1+r because 1+p' 1+r does not contain any points of type 1+p'

with P' E A. This implies P' ::::r.

By Lemma 57,

This implies

O'(p') () < O'(r) ()W . Cl .• ' Cs _ W . Cl.·· Cs .

I

Now, we are ready to finish the proof of Lemma 55. By Lemma 56, a(/i+l)

is less than or equal to the nat ural sum of a(r.) and a' (PI, ... , Ps). We have
a(Ii) ~ ",-,O'(r) . const by inductive assumption and

'() < O'(r) ta PI, ... , ps _ W . cons

by Lemma 58. Hence, the natural sum of these ordinals is at most Wo(r). const,

too. I

= lim a(/;) 'S lim wo(r) • c, 'S lim w . wO'(r) = ",./:*)+1 = uJ°(p).
l---..00 t---.."OO 1-0.:

2. P is a limit element.

Let Po, PI, ... be a decreasing sequence converging to p. By inductive assump-
tion, a(I:'p,) ~ wo(p,). We have

(p) l' (Pi)a -- = Ima --
I + P i-oo 1 + Pi

'S lim wo(p,) = wlim,-x O(Pi) = "-,,O'(p).
l-X>

I

Lemma 59 a(-fJ-) = wo(p)
l+p .

PROOF. Follows from Lemmas 5:3 and .54. I

110

Theorem 24 The ordering type of A is at least EO.

PROOF. The ordering type of AnH,I] is w (Lemma 49). The ordering type of
AnH, 1] is WW (Lemma 59 with p = 1/2), the ordering type of AnH, 1] is www and
so on. The ordering type of A is the limit of this sequence, i.e.

. w WW wwW
EO = hm(w,w,w ,w , ...).

I

It is known that the ordinal EO expresses the set of all expressions possible in
first-order arithmetic. It is also claimed that the ordinal EO is so large that it is very

difficult to find any intuitive description for EO.

SO, we see that PFin, a very simple learning criterion, generates a very complex
probability hierarchy.

Table below shows how the complexity of the hierarchy increases. All results in
this table can be obtained using Lemma 59.

I Interval ~ Ordering type of the probability hiearchy I

[~, 1] w

[~, 1] w·2

[¥, 1] 3w

[i, 1] w2

[~, 1] w3

[~, 1] WW

[~, 1] ."w'"

[0,1] EO
It shows that the known part of hiearchy ([~, 1]) is very simple compared to the

entire hierarchy.
Notes. The points of the probability hierarchy in the intervals [~, 1], [~, 1] and

[¥, 1] were explicitly decribed in [22], [19] and [16], respectively.

In [16], an w2 sequence of points converging to t was presented and it was con-
jectured that this sequence forms the backbone of the learning capabilities in the
interval [t, 1].

III

6.10 Probabilistic versus team learning

For Ex-identification, there is a precise correspondence between probabilistic and
team learners (Pitt's connection [42]). Any probabilistic learner can be simulated by
any team with the ratio of successful machines equal to the probability of success
for the probabilistic learner.

However, the situation is more complicated for finite learning (Fin and PFin).
Here, the learning power of a team depends not only on the ratio of succesful ma-
chines. Team size is also important.

Theorem 25 [5.'3, 30} [1, 2]PFin C [2,4]PFin.

So, a team of 4 learning machines where 2 machines are required to be successful
has more learning power than team of 2 learning machines where 1 must succeed.

However, in both teams the ratio of successful machines to all machines is the

same(~).
This phenomena is called redundancy. Various redundancy types have been dis-

covered for various ratios of successful machines(cf. [20, 16, 30]). The theorem below

is the example of infinite redundancy[16, 20].

Theorem 26 [16} It k mod 3 -I- 0, then

[2k, 5k]PFin C [8k,20k]PFin.

In particular,

[2, .5]PFin C [8,20]PFin C [32,80]PFin C

So, for the ratio of successful machines 2/5 there are infinitely many different
team sizes with different learning power.

However, even for PFin, any probabilistic machine can be simulated by a team
with the same ratio of success, if we choose the team size carefully. A simple corollary
of Theorem 21 is

Corollary 9 If p, q E N+, then there erisis k such that

PFin(E) = [pk, qk]PFin.
q

112

This shows that probabilistic PFin-learning and team PFin-learning are of the
same power.

Corollary 10 If p, q E IN+, then there exists k such that

[pi, ql]PFin ~ [pk, qk]PFin

for any I E IN+ .

PROOF. The team of ql machines can be simulated by single probabilistic machine
which equiprobably chooses one of machines in team and simulates it. Hence, The-

orem 9 implies that

[pi, q/]PFin ~ P F I N(E) = [pk, qk]PFin.
q

I

So, we see that redundancy structures can be very complicated but always there

is the "best" team size such that team of this size can simulate any other team with

the same ratio of successful machines. It exists even if there are infinitely many
team sizes with different learning power (like for ratio 2/5, Theorem 26).

6.11 Summary

We have investigated the structure of probability hierarchy for PFin-type learning.

Instead of trying to determine the exact points at which the learning capabilities
change, we focused on the structural properties of the hieararchy.

We have developed a universal diagonalization algorithm (Theorem 18) and a
universal simulation algorithm (Theorem 21). These algorithms are very general
forms of diagonalization and simulation arguments used for probabilistic PFin [16,
19] .

I.niversal diagonalization theorem gives the method that can be used to obtain

any possible diagonalization for probabilistic PFin. Cniversal simulation algorithm

can be used for any possible simulation.

These two results together give us a recursive description of the set of points A
at which the learning capabilities are different.

This set is well-ordered in decreasing ordering. (This property is essential to the
proof of Theorem :21.) Its structure is very complicated. ~ arnely, its ordering type

is (u, the ordering-type of the set of all expressions possible in first-order arithmetic.

11:3

It shows the huge complexity of the probabilistic P'Fin-hiearchy and explains why
it is so difficult to find the points at which the learning capabilities are different.

A simple corollary of our results is that the probabilistic and team P'Ein-type
learning is of the same power, i.e. any probabilistic learning machine can be simu-
lated by a team with the same success ratio.

Several open problems remain:

1. Unrestricted finite learning(Fin).

The major open problem is the generalization of our results for other learning
paradigms such as (non-Popperian) Fin-type learning and language learning
in the limit.

Theorem 18 can be proved for (nonPopperian) Fin-type learning, too. Hence,

if
PFin (PI) # PFin (pz),

then

So, the probability hierarchy of Fin is at least as complicated as the probability

hierarchy of Fin. It is even more complicated because it is known[18. 19] that

Fin(24/49) C Fin(I/2)

but

PFin(24/49) = PFin(I/2).

The simulation techniques for Fin are much more complicated than simulation
techniques for PFin. However, we hope that some combination of our meth-

ods and other ideas (d. [18. 17]) can help to identify the set of all possible

diagonalization methods for Fin and to prove that no other diagonalization

methods exists (i.e. to construct universal simulation for Fin).

A step in that direction was made in [3] by proving that Fin-hiearchy IS

well-ordered and recursively enumerable. It still remains open whether it IS

decidable. The proof technique in [3] is different from ours and uses capability
trees[17].

2. Probabilistic language learning.

114

The probability hierarchy of language learning in the limit[26] has some simi-
larities to Fin and PFin-hiearhies.

It is an interesting open problem whether some analogues of our results can
be obtained for language learning in the limit.

3. What is the computational complexity of decision algorithms for the PFin-
hierarchy?

4. How dense is the probability hierarchy?

Can we prove the result of the following type:

If PI,P2 E [n~l'~] and IPI - P21 < (1/2t, then

Other properties of the whole hierarchy can be studied, too.

115

Chapter 7

Conclusion

We have shown two applications of constructive ordinals in the theory of inductive
inference.

The first was counting mindchanges (d. Freivalds and Smith[24]). Here, we ex-
amined the ordinal mindchange complexity of natural language classes and derived
various sufficient conditions for the existence of such bounds. These conditions
showed that ordinal bounds are strongly related to other notions of inductive infer-

ence. We also examined the role of the system of notations. Our results showed
that various systems of notation form very complicated structure. Together, all
these results show that the ordinal bounds on the number of mindchanges is rich

and interesting research area with both concrete and more abstract results.

The second was the probability hierarchy of PFin. Here, ordinals and well-
orderings were applied to obtain a global information about probability structure.
In future, we should find other applications for powerful techniques of chapter 6.
An extension of our results to criteria of success other than PFin is one possible
application.

U6

Bibliography

[1] A. Arnbainis, The power of procrasiitiaiion in inductive inference: how it de-

pends on used ordinal notations. Proceedings of the 2nd European Confer-
ence on Computational Learning Theory, Lecture Notes in Computer Science,

904:99-111, 1995.

[2] A. Ambainis, Probabilistic and team PFin-type learning: general properties.

Proceedings of the 9th Conference on Computational Learning Theory, pp.
1.57-168, ACM, 1996.

[:3] A. Ambainis, K. Apsitis, R. Freivalds. C.H. Smith, Matrix games and team

learning, accepted for ALT'97, 1997.

[4] A. Arnbainis, J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size pro-

gram inference. In preparation, extends [12].

[5] A. Arnbainis, S. Jain, A. Sharma, The ordinal mind change complexity of lan-
guage identification, in "Proceedings of EuroCOLT'9T'. Lecture Notes in Com-

puter Science, 1208:301-315. 1997.

[6] D. Angluin, Finding patterns commmon to a set of strings, Journal of Computer

and System Sciences, 21(1980), 46-62.

[7] D. Angluin, C.H. Smith. Inductive inference: theory and methods. Computing
Surveys. 15:237-269, 198:3.

[8] K. Apsit.is, Derived sets and inductive inference, In "Proceedings of AII'94··.

Lecture Notes in Computer Science, 872(1994), pp. 26-:39. Springer-Verlag.

[9] K. Apsitis, R. Freivalds. C.H. Smith, On duality in learning and the selection
of learning teams. Information and Computation, 129:53-62. 1996.

117

[lOJ S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, and A. Yamamoto. Al-
gorithmic learning theory with elementary formal systems. IEICE Trans. InI

and Syst., E7.5-D No. 4:40.5--414, 1992.

[UlJ J. Case and C. Smith. Comparison of identification criteria for machine induc-
tive inference, Theoret. Comput. Sci., 2.5(1983), 193-220.

[121 J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size program infer-
ence. In Klaus P. Jantke and Steffen Lange, editors, Algorithmic Learning

for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial Intel-

ligence, pages 77-96. Springer-Verlag, 1995.

[13J M. Changizi, Self-monitoring machines and an ur" hierarchy of loops. Inform.

and Comput., 128(1996), 127-138.

[14~ A. Church, The constructive second number class. Bulletin American Mathe-
matical Society, 44:224-232, 1938

[1-5JA. Church, S. Kleene, Formal definitions in the theory of ordinal numbers.

Fund. Math .. 28:11-2], 1937

[16J R. Daley, B. Kalyanasundaram, Use of reduction arguments in determining

Popperian FIN-type learning capabilities. Proceedings of the 4th International

Workshop on Algorithmic Learning Theory, Lecture Notes in Computer Science,
744:173-186,199:3

[17] R. Daley, B. Kalyanasundaram , FINite learning capabilities and their limits.

To appear at COLT'97. Full version available at http://www.cs.pitt.edu/ da-
ley /fio/fin.htm!.

[18] R. Daley, B. Kalyanasundaram , M. Velauthapillai, Breaking the probability ~

barrier in FIN-typf learning. Journal of Computer and System Sciences, 2.5:574-
599, 199.5.

[19] R. Daley, B. Kalyanasundaram, M. Velauthapillai, The power of probabilism
in Poppcruin FINite learning. Proceedings of the :3rd International Workshop
on Analogical and Inductive Inference, Lecture Notes in Computer Science.
642:1;'51-169. 1992.

118

http://www.cs.pitt.edu/

[20] R. Daley, 1. Pitt, M. Velauthapillai, T. Will Relations between probabilistic and

team one-shot learners. Proceedings of the 4th Conference on Computational
Learning Theory, pp. 228-239, Morgan-Kaufmann, 1991.

[21J S. Feferman, Classification of recursive functions by means of hierarchies, Trans.

Amer, Math, Soc., 104(1962), 101-122.

[22] R. Freivalds, Finite identification of general recursive functions by probabilistic

strategies. Proceedings of the Conference on Algebraic, Arithmetic and Cate-
gorical Methods in Computation Theory, pp. 138-145. Akademie-Verlag, Berlin,

1979

[23] R. Freivalds, J. Barzdins, K. Podnieks, Inductive inference of recursive func-
tions: complexity bounds, in "Baltic Computer Science", Lecture Notes in
Computer Science, 502(1991), pp.1l1-155, Springer-Verlag.

[24] R. Freivalds, C. H. Smith, The role of procrastination in machine learning.

Information and Computation, 107:237-271, 1993.

[25] E. M. Gold, Language identification in the limit. Information and Control.

10:447-477,1967.

[26J S, Jain, A.Sharma, Computational limits on team identification of languages.
Information and Computation, 130:19-60, 1996.

[27] S. Jain and A. Sharma. On the intrinsic complexity of language identification.
In Proceedings of the Seventh A nnual Conference on Computational Learning

Theory, IVew Brunsunck, New Jersey, pages 278-286. ACM-Press, July 1994.

[28] S. Jain, A.Sharma, On identification by teams and probabilistic machines. h.

P. Jantke, S. Lange, (eds.) Algorithmic Learning for Kiunoledqe-Bascd Systems

Lecture Notes in Computer Science, 961:108-145, 199.5.

[29~1S. Jain, A. Sharma, Elementary formal systems, intrinsic complexity, and pro-
crastination, in "Proceedings of 9th Annual Conference on Computational
Learning TheofY", pp. 181-192, ACM,]996.

[:30] S. Jain. A. Sharma, M. Velauthapillai, Finite identification of functions by

teams with success ratio ~ and above, Information and Computation. 121:201-

21:3, 199:).

119

[31] K. P. Jantke. Monotonic and non-monotonic inductive inference. New Getier-

ation Computing, 8:349-360, 1991.

[32] S. Kapur. Monotonic language learning. In Proceedings of the Third Workshop
on Algorithmic Learning Theory. JSAI Press, 1992. Proceedings reprinted as
Lecture Notes in Artificial Intelligence, Springer-Verlag.

[33] P. Kilpelainen, H. Mannila, and E. Ukkonen. MDL learning of unions of simple
pattern languages from positive examples. In Proceedings of the Second Euro-
pean Conference on Computational Learning Theory, Lecture Notes in Artficial
Intelligence 904. Springer-Verlag, 1995.

[34] M. Kummer, The strength of noninclusions for teams of finite learners, Pro-
ceedings of the 7th Conference on Computational Learning Theory, pp. 268-277,

ACM,1994.

[:3,5]S. Kleene, On notation for ordinal numbers. Journal of Symbolic Logic, 3:150-

155, 1938.

[36] K. Kuratowski, A. Mostowski, Set Theory. North-Holland Publishing Company,
Amsterdam, 1967.

[37] S. Lange and T. Zeugmann. Monotonic versus non-monotonic language learn-
ing. In Proceedings of the Second International Workshop on Nonmonotonic
and Inductive Logic, pages 254-269. Springer-Verlag, 1993. Lecture Notes in

Artificial Intelligence 659.

[:38] M. Machtey, P. Young, An Introduction to the General Theory of Algorithms.
North-Holland, 1978

[:39] T. Motoki, T. Shinohara, and K. Wright. The correct definition of finite elas-

ticity: Corrigendum to identification of unions. In 1. Valiant and M. Warmuth,

editors, Proceedinqs of the Fourth Annual Workshop on Computational Learn-

ing Theory, Santa Cruz. California, page 375. Morgan Kaufman, 1991.

[40] Y. Mukouchi. Inductive inference of an approximate concept from positive

data. In S. Arikawa and K. P. Jantke. editors, Algorithmic Learning Theory.
4th International Workshop on Analogical and Inductive Inference. AII'94 and
5th International Work.shop on Alqoriilim Learning Theory. ALT94, Lecture
Notes in Artificial Intelligence, 872, pages 484-499. Springer-Verlag, 199'1.

120

[41.] D. Osherson, M. Stob, S. Weinstein, Systems that Learn: An Introduction

to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cam-

bridge, MA, 1986

[42] 1. Pitt, Probabilistic inductive inference, Journal of the ACM, 36:383-433,1989.

[43] L. Pitt, C. H. Smith, Probability and plurality for aggregations of learning
machines. Information and Computation, 77:77-92, 1988.

[44] H. Rogers .Ir., Godel numberings of partial recursive functions. Journal of Sym-

bolic Logic, 23:331-341, 1958

[45] H. Rogers Jr., Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New-York, 1967. Reprinted, MIT Press, 1987.

[46] G. E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.

[47] M. Sato and T. Moriyama. Inductive inference of length bounded EFS's from
positive data. Technical Report DMSIS-RR-94-2, Department of Mathematical

Sciences and Information Sciences, University of Osaka Prefecture, Japan, 1994.

[48] W. Sierpinski, Cardinal and ordinal numbers. PWN - Polish Scientific Publish-
ers, 1965

[49] T. Shinohara. Studies on Inductive Inference from Positive Data. PhD thesis,

Kyushu University, Kyushu, Japan, 1986.

[.50] T. Shinohara. Rich classes inferable from positive data: Length-bounded ele-
mentary formal systems. Information and Computation, 108:175-186, 1994.

[.51] C.H. Smith, Three decades of team learning. Proceedings of the 5th Interna-

tional Workshop on Algorithmic Learning Theory, Lecture Notes in Computer
Science, 872:211-228, 1994

[52] R Scare, Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

[53] M. Velauthapillai, Inductive inference with bounded number of mind changes.

Proceedings of COLT'89. pp. 200-213, 1989

[54] K. Wright. Identification of unions of languages drawn from an identifiable
class. In R. Rivest, D. Haussler. and M. K. Warmuth, editors. Proceediuqs of

121

the Second Annual Workshop on Computational Learning Theory, Santa Cruz,
California, pages 328-333. Morgan Kaufmann Publishers, Inc., 1989.

[55] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning

recursive languages. In K.P. Jantke and S. Lange, editors, Algorithmic Learn-
ing for Knowledge-Based Systems, pages 190-258. Lecture Notes in Artificial
Intelligence No. 961, Springer-Verlag, 1995.

122

