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Abstract: Heart failure (HF) and atrial fibrillation (AF) are two growing epidemics 

associated with significant morbidity and mortality. They often coexist due to common risk 

factors and shared pathophysiological mechanisms. Patients presenting with both HF and 

AF have a worse prognosis and present a particular therapeutic challenge to clinicians. This 

review aims to appraise the common pathophysiological background, as well as the 

prognostic and therapeutic implications of coexistent HF and AF. 
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1. Introduction 

In developed countries, heart failure (HF) affects 2% to 3% of the population and is a major cause of 

morbidity and mortality [1]. Despite the therapeutic progress observed in past decades, the prognosis of 

HF patients remains poor [2]. Atrial fibrillation (AF) is the most common heart rhythm disorder with an 

overall prevalence of 1% [3]. Similarly to HF, it is also associated with significant morbidity, mortality 

and an economic burden [4]. These two diseases often coexist because they share common risk factors 

(older age, hypertension, diabetes mellitus, valvular and ischemic heart disease) and pathophysiological 
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mechanisms. In addition, they can promote each other by inducing neuro-hormonal, electrophysiological 

and hemodynamic changes. Notably, the development of the second is associated with a worse prognosis 

regardless of which condition comes first [5]. There are several specific therapeutic implications to each 

disease when they coexist. 

This review aims to appraise the common pathophysiological background, as well as the prognostic 

and therapeutic implications of coexistent HF and AF. 

2. Combined Heart Failure and Atrial Fibrillation: Epidemiological and Prognostic Implications 

Among HF trials and registries, the prevalence of AF ranged from 13% to 41%, depending in part 

upon age and the severity of HF [5,6], with no differences between heart failure with preserved or 

reduced ejection [7]. Conversely, the prevalence of HF in recent trials involving AF patients varied from 

30% to 65% [8,9]. In reference to their temporal relationship, Framingham cohort study [5] showed that 

the frequency of HF preceding AF was similar to AF preceding HF. 

The prognostic importance of the presence of AF in HF patients is well established in different 

settings. Both observational studies [5] and randomized clinical trials [6,10] showed that the presence of 

AF was associated with increased hospitalization, hospital stay and mortality of HF patients. A recent 

meta-analysis that included more than 30,000 HF patients showed that those with AF had a 33% increase 

in mortality [11]. 

Together, these data show that HF and AF often coexist and when together they are associated with 

worse prognosis. 

3. Common Pathophysiological Background for Heart Failure and Atrial Fibrillation 

3.1. Hemodynamic Mechanisms 

An increased left ventricular filling pressure (LVFP) is a hallmark feature of the HF hemodynamic 

profile, which can be caused by either a systolic or diastolic dysfunction [1]. This increased LVFP is 

transmitted to the left atrium, which will lead to several macro- and microscopic changes in this chamber. 

The elevated atrial pressure is further increased when functional mitral regurgitation develops along the 

LV remodeling. This increased stress in the atrium wall is mechanotransduced and will drive several of 

the cellular and molecular mechanisms discussed below. 

On the other side, AF can interfere with the ability of the heart to pump or accommodate blood. An 

increased resting heart rate and an exaggerated hear. rate response to exercise shorten the LV filling 

time. Together with the concomitant loss of an effective atrial contraction, AF can significantly 

compromise diastolic function. In addition, a sustained rapid heart rate can impair systolic function by 

reducing myocardial contractility [12] (Table 1 and Figure 1). 
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Table 1. Common pathophysiological mechanisms of heart failure and atrial fibrillation. 

Items Pathophysiological Mechanisms 

Hemodynamic Increased left ventricle filling pressure 
 Increased resting heart rate 
 Exaggerated heart rate response to exercise 
 Loss of atrial contraction 
 Reduced myocardial contractility 

Neuro-hormonal Renin-angiotensin-aldosterone system activation 
 Adrenergic activation 
 Increase of transforming growth factor-β1 

Cellular Extracellular matrix alteration 
 Intracellular calcium overload 

 

Figure 1. Common pathophysiological background for heart failure (HF) and atrial fibrillation 

(AF). LA: left atrial. 

3.2. Neuro-Hormonal Mechanisms 

Atrial stretch results in an increased neurohormonal activation. The renin-angiotensin-aldosterone 

system (RAAS) activation enhances signal transduction of downstream pathways such as mitogen-activated 

protein kinase (MAPK) [13–15], Janus kinase (JAK)/signal transducers and activators of transcription 

(STAT) [15], transforming growth factor-β1 (TGF-β1) [16,17], and angiotensin II activated platelet-derived 

growth factor-A (PDGF-A) pathways [18], which play an important role in fibrosis formation and 

cardiac remodeling. Additionally, increased levels of Rac1—a small guanosine triphosphate-binding 
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protein, and nuclear factor-kappa B (NF-κB)—a transcription factor, are increased in AF tissues [19,20]. 

Rac1 may itself activate NF-κB [21] and STAT [22], and angiotensin II can activate all these signaling 

pathways [23]. Activation of angiotensin II type 1 (AT-1) receptors initiates a cascade of phosphorylation 

processes that activate a family of mitogen-activated protein kinases (MAP kinases) that promote atrial 

hypertrophy, fibrosis, and apoptosis, contributing to the structural remodeling of this heart chamber [24]. 

The stimulation of AT-1 receptors also activates phospolipase C leading to inositol-1,4,5-triphosphate 

(IP3) that mediates the release of calcium from the sarcoplasmic reticulum which can have pro-fibrotic 

and arrhythmogenic effects [25]. Enhanced left ventricular wall stress also increases neurohormonal 

activation resulting in myocardial hypertrophy [26] and interstitial remodeling [27]. Transforming 

growth factor β1 is involved in maladaptive remodeling [28] and insulin-like growth factor 1 results in 

adaptive remodeling [29]. Matrix metalloproteinases that degrade extracellular matrix proteins can 

increase ventricular remodeling in HF. Adrenergic activation, an important feature of HF [30] may  

also be impact on AF pathophysiology. There are multiple lines of evidence linking high levels of  

β1-adrenergic signaling, as predicted for β1 389-arginine homozygotes, to the development of AF [31]. 

Higher adrenergic activity has been shown to increase the inducibility of AF in a dose-dependent  

manner [32,33]. Furthermore, in isolated human right atrial preparations, isoproterenol infusion has been 

shown to increase the frequency of atrial early and delayed after-depolarizations, phenomena that have 

been implicated in initiating AF [34] (Table 1 and Figure 1). 

3.3. Cellular and Intra-Cellular Mechanisms 

In the interstitial compartment, fibroblasts modify the extracellular matrix with effects on ventricular 

size, structure, and stiffness. If AF persists, further structural changes occur, promoting volume  

increase of atrial myocytes, sarcomeres misalignment, accumulation of glycogen, and gap-junctional 

remodeling [35]. In the presence of HF, the auricular stretch induced by volume overload largely 

contributes to AF pathophysiology [36]. Furthermore, HF can cause atrial dilatation that serve as  

a mold able to support a large number of re-entry wavelets that are essential for AF maintenance [7].  

In synthesis, HF creates a favorable structural background for atrial re-entry and ectopic activity [7], 

promoting further arrhythmogenesis [37]. 

Calcium overload of atrial myocytes occurs early in the development of AF and causes changes in 

gene expression that down-regulate the L-type calcium current, leading to atrial refractory period 

shortening in order to compensate for the calcium overload and consequently promoting multiple  

re-entry [38]. After depolarization, sarcoplasmic calcium is recaptured to the sarcoplasmic reticulum  

via the calcium ATPase (SERCA2a). In HF, SERCA2a is reduced leading to high cytosolic and low 

sarcoplasmic reticulum calcium concentrations [39]. Atrial fibrillation itself activates stretch-mediated 

channels that enhance calcium binding to cellular myofilaments that, in turn, can produce delayed  

after-depolarisations and triggered activity. Persistent and paroxysmal AF are associated with profound 

impairment in calcium metabolism [40–42]. Increased diastolic sarcoplasmic reticulum calcium leak and 

related delayed after-depolarizations/triggered activity promote cellular arrhythmogenesis in paroxysmal  

AF patients. Previous studies suggested that increased calcium uptake resulting from phospholamban 

hyper-phosphorylation, and ryanodine receptor channel dysregulation by sarcoplasmatic reticulum 

increased spontaneous cellular activity in paroxysmal AF [43]. These findings provide important 
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evidence for the role of calcium-dependent ectopic activity in paroxysmal AF, which are different from 

those of long-standing persistent AF patients that have profound alterations in L-type calcium currents 

and action potential durations [43]. These results provide opportunities to develop tailored therapeutic 

approaches for AF (Table 1 and Figure 1). 

4. Fibroblast Growth Factor-23: A Key Link between Chronic Kidney Disease,  

Atrial Fibrillation and Heart Failure 

Fibroblast growth factor-23 (FGF-23) is a bone-derived hormone that plays a central role in phosphate 

homeostasis. FGF-23 acts on the kidney to promote urinary phosphate excretion and to inhibit the 

production of 1,25-dihydroxyvitamin D, thereby reducing gastrointestinal absorption of dietary 

phosphate [44]. Circulating FGF-23 concentrations rise substantially with chronic kidney disease (CKD).  

In human studies, higher circulating concentrations of FGF-23 have been associated with increased left 

ventricular mass as well as incident heart failure, myocardial infarction, and cardiovascular death [45]. 

Increased cardiac hypertrophy induced by FGF-23 can lead to diastolic dysfunction and a rise in left 

ventricular filling pressures, resulting in left atrial dilation and fibrosis, an important structural  

substract for AF initiation [46]. Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and 

Cardiovascular Health Study (CHS) showed an association between circulating FGF-23 concentration 

and incident AF [44]. In multivariable analysis models, each two-fold-higher FGF-23 concentration was 

associated with a more than 30% AF risk increase. Therefore, higher circulating FGF-23 concentration is 

associated with incident AF and may partially explain the link between CKD, HF and AF [44] (Figure 2). 

 

Figure 2. Fibroblast growth factor-23 (FGF-23): A key link between chronic kidney disease, 

atrial fibrillation and heart failure. CKD: chronic kidney disease; LVH: Left ventricular 

hypertrophy; CV: cardiovascular; ↑ up-regulation; ↓ down-regulation. 
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5. Atrial Structure and Function Influence on Thromboembolic Risk and Heart Failure 

Understanding the association between atrial structure and function with thromboembolic and HF 

risk is very important to improve preventive and therapeutic strategies. The Effective aNticoagulation 

with factor xA next GEneration in AF-Thrombolysis In Myocardial Infarction 48 (ENGAGE AF-TIMI 48) 

study [47] evaluated left atrial (LA) size and function, according to the electrical burden of AF 

(paroxysmal, persistent, and permanent) as well as stroke risk expressed in the CHADS2 score 

(congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke). This study identified 

strong correlations between increasing abnormalities of LA structure and function with greater burdens 

of AF and higher CHADS2 score—an estimate of stroke risk. While the majority of AF subjects had LA 

enlargement, impairment of LA function was also demonstrated among a large number of subjects with 

normal LA size. These findings suggest that the assessment of LA function may add important 

information in the evaluation of the AF patient [48], in order to improve stroke risk stratification beyond 

that achieved with conventional clinical characteristics [49–51]. 

6. Obesity and Epicardial Fat Increase Atrial Arrhythmogenesis 

Obesity increases the risk of developing HF, ischemic heart disease, and AF [52,53]. Chamber 

dilatation and hypertrophy are associated with obesity and may explain the increased risk of AF [54]. 

This epicardial adipose tissue is also associated with AF, presumably due to higher levels of 

inflammatory mediators, such as adipocytocines [55] and neurally-mediated mechanisms such as  

vagal modulation [56,57]. The direct contact of epicardial fat with the atria may induce direct atrial 

arrhythmogenic effects [55,58]. In the context of HF, epicardial fat prolongs LA action potentials 

duration, increasing calcium influx and LA contractility and triggered activity [59]. Since the epicardial 

fat is not evenly distributed over the atrial wall, it is possible that the action potentials prolongation 

effects of epicardial fat may contribute to larger atrial electrical dispersions and facilitate the 

maintenance of re-entrant circuits [60]. Abnormal epicardial fat has been associated with endothelial 

dysfunction [61], which in turn is associated with higher risk of stroke [62] and lower probability of 

conversion to sinus rhythm [63]. Epicardial fat in contact with the LA correlated with levels of soluble 

intercellular adhesion molecule 1 (sICAM-1) and von Willebrand factor (vWF), suggesting that 

epicardial adipose tissue may modulate endothelial function in patients with AF possibly through  

a paracrine mechanism [64]. 

In contrast to AF, patients with HF were found to have less epicardial fat mass and smaller adipocytes 

than controls [65], possibly due to systemic and local catabolic derangements and impaired tissue 

oxygenation in HF [65]. Consequently, the smaller cells size of HF adipocytes would produce lower 

concentrations of inflammatory cytokines and adipokines [66,67], providing a potential explanation for 

the better prognosis found in obese HF with reduced ejection fraction patients (HF-REF)—the so-called 

“obesity paradox”[52,68]. The “obesity paradox” is only observed in obese HF-REF patients. On the 

other hand, obesity, particularly central and/or visceral adiposity, is independently associated with 

diastolic dysfunction [69–72]. 
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7. Abnormal Gene Expression in Atrial Fibrillation 

The mechanisms underlying susceptibility to most forms of AF remain unknown [73]. Some forms 

of atrial fibrillation, especially “lone AF” may have a heritable pattern [74,75]. At the molecular level, 

the onset of HF is associated with reprogramming of gene expression, including down regulation of the 

α-myosin heavy chain (α-MHC) gene and sarcoplasmic reticulum calcium ATPase genes and 

reactivation of specific fetal cardiac genes such as atrial natriuretic factor (ANF) and brain natriuretic 

peptide (BNP) [76]. Additionally, arrhythmias in general are frequent in patients with hereditary 

myopathies such as laminopathies, Emery-Dreifuss muscular dystrophy, myotonic dystrophy I, 

mitochondrial myopathies, fatty-acid oxidation defects, and dystrophinopathies which indicate that 

hereditary myopathies carry an increased risk for developing potentially severe arrhythmias and sudden 

death. Therefore, close follow-up and long-term rhythm surveillance may prevent fatal complications in 

these patients [77]. 

8. Heart Failure and Atrial Fibrillation: Treatment Implications 

In general, the evidence on HF or AF treatments is generalizable to patients presenting with both 

diseases because it is unlikely that the proven benefit to one disease disappears when the other is 

simultaneously present. In addition, most of the trials testing specific treatments to AF or HF included  

a subset of patients who had both diseases, which further strengthens their external validity to this 

specific group of patients. Nevertheless, there are some specific therapeutic implications when managing 

patients with coexistent HF and AF that clinicians should be aware. 

As previously discussed, AF is a robust and independent prognostic marker in HF populations. 

However, the conjectural benefit of rhythm control has never been empirically proved. The Atrial 

Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) [78] and the Atrial Fibrillation 

in Congestive Heart Failure (AF-CHF) [79] trials demonstrated similar all-cause HF incidence, 

hospitalization and overall mortality in both rhythm control and rate control groups. This discrepancy 

between the worse outcomes in AF patients compared to those in sinus rhythm is partially indicted to 

the limited efficacy, as well as to the significant adverse events of the available antiarrhythmic drugs. 

Other important determinant to this rhythm versus rate control decision is the presence of symptoms 

attributed to AF despite controlled heart rate. Despite some dissent results regarding quality of life (QoL) 

impact of these treatment strategies [80,81], the lower QoL in AF patients and its recognized detrimental 

hemodynamic impact legitimate the option for rhythm control in selected symptomatic AF patients. 

Conversely, it is appropriate to pursue rate rather than rhythm control if symptoms related to AF are 

deemed acceptable [82]. 

Several clinical trials have consistently shown the benefits of anticoagulation in AF, which is  

a powerful risk factor for stroke and thromboembolism. The decision to initiate anticoagulation therapy 

is adequately informed by thromboembolic risk stratification scores as CHADS2 (congestive HF, 

hypertension, age, diabetes, stroke) and CHA2DS2-Vasc (congestive HF, hypertension, age, diabetes, 

stroke, female gender, vascular disease) [82]. These scores assigns one point to each variable, other than 

age above 75 years or a previous history including a thromboembolic event, which gets two points. 

Hence, according to these scores HF and hypertension and coronary artery disease (CAD) carry the  
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same thromboembolic risk. However, HF seems to be associated with increased risk than diabetes or 

CAD [83], especially when LVEF is reduced [52]. Therefore, these scores may underestimate the 

thromboembolic risk in patients with AF and HF. In practical terms, when the score gives an intermediate 

risk (1 point), the AF patient who presents isolated HF should be considered at increased risk compared 

to others having 1-point due to diabetes, CAD or hypertension. 

The efficacy of conventional HF drugs in primary prevention of AF remind us how interconnected 

these diseases are. Angiotensin-converting enzyme inhibitors [84], angiotensin receptor blockers [85], 

β-blockers [86] and mineralocorticoid receptor antagonists [87] had all been shown to reduce AF 

incidence in HF patients. 

Cardiac resynchronization therapy (CRT) consists of a biventricular pacing in order to restore 

synchronicity of left and right ventricles activation. Several trials demonstrated a mortality benefit  

in HF populations, however the presence of AF has been significantly associated with a non-response to 

CRT [88]. This may be explained by a true smaller effect of CRT in AF patients, which usually are older, 

have more advanced HF and more comorbidities. An alternative explanation is the suboptimal delivery 

of biventricular pacing that AF patients are more likely to have because of the loss of biventricular 

capture due to pseudo-fusion or fusion beats. The underrepresentation of AF in CRT trials and 

underpowered studies to detect differences in HF populations with AF makes less clear the clinical 

benefits of CRT in this specific subgroup of patients [89]. Despite the weak evidence, the general opinion 

is that symptomatic AF patients (class III and IV of New York Heart Association) may benefit from 

CRT provided that biventricular pacing is close to 100%, using either drugs or atrioventricular junction 

ablation [90]. 

9. Conclusions 

AF and HF are two growing epidemics that often coexist due to common risk factors and shared 

pathophysiological mechanisms. The translation into the clinical practice of the significant advances in 

the comprehension of the underlying AF pathophysiology has been poor, as there is a lack of specific 

targeted treatments. Despite the numerous clinical trials that had addressed different aspects of treatment 

of patients with isolated HF or AF, few have focused on the management of patients with the 

combination of both diseases. Nevertheless, when managing a patient with HF and AF, the clinician 

should be aware of the prognostic significance and some therapeutic implications of this increasingly 

common disease combination. 
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