
Glaucoma is a progressive optic nerve neuropathy and 
the major cause of preventable and irreversible blindness 
worldwide. It is characterized by visual field defects and 
nerve head cupping due to the loss of retinal ganglion cells 
[1]. Despite its multifactorial genesis [2-4], the major risk 
factor for glaucoma progression is the elevated intraocular 
pressure (IOP) [5,6], which compresses the retinal ganglion 
cells at the optic nerve head [7]. The only treatment that slows 
glaucoma progression involves lowering the IOP [8].

Familial amyloid polyneuropathy (FAP) is caused by the 
extracellular deposition of amyloid fibrils of mutant trans-
thyretin (TTR) V30M in various tissues and organs [9-11]. 
TTR V30M mutation is the most common form of trans-
thyretin amyloidosis (ATTR) variant in Portugal as well as 
in the world [12]. The main clinical expression of FAP disease 
is a sensorimotor and autonomic neuropathy, but other mani-
festations, such as nephropathy and hematologic and ocular 

abnormalities can occur. Among the reported ocular FAP 
complications [13-15], glaucoma is the major cause of irre-
versible vision loss and is often difficult to control [16].

Erythropoietin (EPO) was identified as a hematopoietic 
cytokine that promotes proerythroblast survival and matura-
tion [17]. Recently, EPO was recognized as a member of the 
cytokine type 1 superfamily with multiple functions outside 
the bone marrow [18]. It provides direct protection against 
hypoxia by its anti-apoptotic, anti-oxidative, and anti-inflam-
matory properties and for its angiogenic capacity that allows 
the oxygen supply to ischemic tissues. Several studies have 
found that EPO protects photoreceptor cells, retinal ganglion 
cells, and retinal pigment epithelial cells from apoptosis 
[19-26]. Hernandez et al. [27] suggested that EPO is produced 
locally in the retina. Muller cells and retinal pigment epithe-
lium were identified by Fu et al. [28] and Garcia-Ramírez et 
al. [29], respectively, as the cells responsible for EPO produc-
tion in the eye.

Previous studies have shown a significantly increased 
EPO concentration in the aqueous humor of eyes with glau-
coma [30-32]; this is probably a defence mechanism against 
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Purpose: Glaucoma is the leading cause of irreversible blindness in familial amyloidotic polyneuropathy (FAP) patients. 
Erythropoietin (EPO) is a cytokine that has been shown to play a role in neuroprotection and is endogenously produced 
in the eye. EPO levels in the aqueous humor are increased in eyes with glaucoma. In this study, we evaluated the EPO 
concentration in the aqueous humor of FAP and non-FAP patients, with and without glaucoma.
Methods: Undiluted aqueous humor samples were obtained from 42 eyes that underwent glaucoma surgery, phacoemul-
sification, or vitrectomy. EPO concentration in the aqueous humor and blood were measured using the Immulite 2000 
Xpi using an automatic analyzer (Siemens Healthcare Diagnostics).
Results: The mean EPO concentration in the aqueous humor of non-FAP glaucoma eyes group 2 (75.73±13.25 mU/ml) 
was significantly higher than non-FAP cataract eyes (17.22±5.33 mU/ml; p<0.001), FAP glaucoma eyes (18.82±10.16 
mU/ml; p<0.001), and FAP nonglaucoma eyes (20.62±6.22 mU/ml; p<0.001). There was no statistically significant 
difference between FAP nonglaucoma eyes versus non-FAP cataract eyes (p = 0.23) and FAP glaucoma eyes versus 
FAP nonglaucoma eyes (p = 0.29). In the glaucoma groups, there was no correlation between the aqueous humor EPO 
concentration and the ocular pressure (p = 0.95) and mean deviation (p = 0.41). There was no correlation between the 
EPO serum concentration and EPO aqueous humor concentration in our patients (p = 0.77).
Conclusions: Unlike other glaucomatous patients, FAP patients with glaucoma do not show increased and potentially 
neuroprotective endocular EPO production in the aqueous humor and may need more aggressive glaucoma management.
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glaucomatous damage [33] caused by hypoxia, ischemia, 
oxidative stress, and reduced pro-inflammatory cytokine 
production [34-39]. Although hypoxia/ischemia is the major 
stimulus for endocular and systemic EPO production [21,40-
43], other incompletely understood factors may be involved 
[27,29].

FAP patients and even presymptomatic carriers have an 
inappropriately low EPO production [44]. In vitro studies 
suggest that the dissociated mutant TTR that polymerizes into 
misfolding amyloidogenic intermediates, protofilaments, and 
nonfibrillar aggregates of TTR rather than mature amyloid 
fibrils may induce cellular toxicity [45,46]. We propose that 
these amyloid precursors may be toxic to EPO-producing 
cells. This study was performed to evaluate the ocular EPO 
response in FAP patients with glaucoma.

METHODS

It was recruited 42 eyes of 42 patients (18 females) with a 
mean age of 56.8±7.4 years. A prospective, controlled, 
nonrandomized, nonblind comparative study was conducted 
from January 2008 to December 2011 at the Ophthalmic and 
Clinical Chemistry Departments from Centro Hospitalar do 
Porto, Porto. Written informed consent was obtained from 
all patients. This study was performed in accordance with 
the Declaration of Helsinki of the World Medical Association 
and was approved by the Ethics Committee of the Centro 
Hospitalar do Porto.

Presurgical assessment included Snellen best-corrected 
visual acuity (Snellen chart, Takagi chart projector CP-30, 
calibrated for approximately 6 m), slit-lamp biomicroscopy, 
intraocular pressure (IOP) measurement by Goldman appla-
nation tonometry (same person with AT-900 tonometer; 
Haag-Streit, Koniz, Switzerland), fundoscopy (90 D noncon-
tact slit-lamp lens; Volk Optical, Mentor, OH), Humphrey 
perimetry (Humphrey Field Analyzer; Humphrey Instru-
ments, San Leandro, CA), and the cup/disc ratio. All exami-
nations were performed within 2 weeks before the surgical 
procedure.

Exclusion criteria for all groups were: previous laser 
and/or intraocular surgery; history of systemic (e.g., diabetes 
mellitus, kidney disease, cardiovascular disorders, anemia, 
immune disease, except FAP in groups 1 and 3) or any ocular 
disorders (e.g., age-related macular degeneration); history 
of medications that could influence the level of EPO (e.g., 
iron preparations, chemotherapeutic agents, granulocyte 
colony-stimulating factor, or systemic therapy with EPO), and 
patients with any type of glaucoma except open-angle glau-
coma, such as angle-closure, pigmented, exfoliation, normo-
tensive, and neovascular glaucomas, or ocular hypertension.

To clarify the relationship between aqueous EPO produc-
tion and circulating blood EPO levels, we compared the 
aqueous and serum concentrations of EPO. Aqueous humor 
samples were obtained from each eye before the beginning 
of surgery (trabeculectomy, phacoemulsification, or vitrec-
tomy). The standard procedure involved collecting undiluted 
aqueous humor samples (50–150 µl) through a paracentesis, 
using a 30-gauge needle on a tuberculin syringe under an 
operating microscope. Samples were obtained carefully to 
avoid touching intraocular tissues or blood contamination. 
All samples were carefully protected from light and were sent 
immediately to the laboratory for EPO measurement. At the 
same time, 9 ml of venous blood samples were collected in 
EDTA tubes  from an antecubital vein immediately before 
sugery. The blood was immediately centrifuged and the blood 
serum put on the automatic analyzer.

Serum samples were obtained from the centrifugation of 
the blood sample. The samples of aqueous humor and serum 
had the same processing routine analysis. Serum and aqueous 
humor EPO concentrations were measured by a chemilumi-
nescent method in an automatic Xpi Immulite 2000 analyzer 
(Siemens Healthcare Diagnostics, Siemens AG, Munich, 
Germany).

Statistical analysis: Statistical analysis was performed using 
nonparametric tests. The Kruskal–Wallis test was used to 
compare the groups in relation to age, and the chi-square test 
was used in relation to gender. The Mann–Whitney U test 
was used to compare the nonglaucoma, glaucoma, and FAP 
groups in relation to aqueous humor EPO and serum EPO 
levels. The relation between EPO and serum was evaluated 
by Spearman correlation. Values of p<0.05 were considered 
statistically significant. Data analysis was performed using 
IBM SPSS Statistics software version 20.

RESULTS

A total of 21 glaucomatous eyes from 21 patients and 21 
control eyes (21 patients) were enrolled in the study. The 
demographic characteristics of the patients are summarized 
in Table 1. Of the glaucoma eyes, ten were from FAP patients 
(group 1, mean age 55.4±10.0  years mean and standard devia-
tion; five females) and 11 were from non-FAP patients (group 
2, mean age 55.8±7.0 years mean and standard deviation; four 
females). Of the 21 control eyes, nine were from FAP patients 
with an indication for vitrectomy due to amyloid deposition 
(group 3, 55.9±8.5 years mean and standard deviation; four 
females) and 12 were from non-FAP patients awaiting phaco-
emulsification and intraocular lens implantation (group 4, 
58.8±4.9 years mean and standard deviation; five females). 
Groups 1 and 2 presented indications for trabeculectomy, 
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had uncontrolled IOP (defined as IOP higher than the target 
pressure with maximally topical antiglaucoma medications: 
prostaglandin + beta blocker + anhydrase carbonic inhibitor 
+ alpha-2 agonist), abnormal visual field test results, and 
abnormal cup/disc ratio.

The ages and gender distribution of the patients were 
similar between groups (Kruskal–Wallis test, p = 0.56; 
chi-square test, p = 0.94). All FAP patients had received an 
orthotopic liver transplant.

As summarized in Table 2, the mean EPO concentra-
tion in the aqueous humor of nonglaucomatous eyes (group 
3 versus group 4) was not significantly different between 
FAP and non-FAP patients (20.62±6.22 mU/ml in group 3 
and 17.22±5.33 mU/ml in group 4, p = 0.23) and corresponds 
presumably to the basal ocular production of EPO. In the pres-
ence of glaucoma, EPO concentrations in the aqueous humor 
showed a significant increase in the non-FAP group (group 2, 
75.73±13.25 mU/ml; group 1, 18.82±10.16 mU/ml; p<0.001), 
and when we compared the non-FAP glaucoma group (group 
2) with the nonglaucoma groups (FAP group 3 and non-FAP 
group 4), a similar finding was observed (p<0.001) (Table 

2). In the FAP groups (group 1 and group 3), we observed 
no significant difference between the mean EPO values   of 
patients with or without uncontrolled glaucoma (p = 0.29). As 
listed in Table 3, FAP patients with glaucoma (group 1) and 
non-FAP patients with glaucoma (group 2) were comparable 
in terms of the IOP (p = 0.39) and mean deviation (p = 0.75). 
The correlation between the IOP and the aqueous humor EPO 
was not significant in group 1 (mean IOP 26.20±1.93 mmHg; 
rs = 0.02, p = 0.95) and group 2 (mean IOP 26.82±1.72 mmHg; 
rs = 0.27, p = 0.41). There was also no significant correlation 
between the mean deviation and the aqueous humor EPO in 
group 1 (rs = –0.48, p = 0.16) or group 2 (rs = –0.07, p = 0.83).

Serum EPO levels among patient groups were not 
significantly different when multiple testing was taken into 
account (Bonferroni correction). No statistically significant 
correlation between the values   of EPO in the serum and in 
the aqueous humor was observed in any patient (Spearman 
correlation coefficient r = 0.047, p = 0.77).

Table 1. Demographic of The groups.

Age/Sex Group 1 FAP 
glaucoma

Group 2 Non-FAP 
glaucoma

Group 3 FAP 
non-glaucoma

Group 4 Non-FAP 
non-glaucoma

Age (year, 
mean±SD) 55.4±10.0 55.8±7.0 55.9±8.5 58.8±4.9

Female/Male 5 / 5 4 / 7 4 / 5 5 / 7

Table 2. epo in aqueous humor anD serum of The groups.

Aqueous humor/
serum EPO level

Group 1 FAP 
glaucoma

Group 
2 Non-FAP 
glaucoma

Group 3 FAP 
non-glaucoma

Group 4 Non-FAP 
non-glaucoma

Aqueous humor 
EPO level (mU/ml) 18.82±10.16 75.73±13.25 20.62±6.22 17.22±5.33

Serum EPO level 
(mU/ml) 13.44±4.82 9.99±2.84 15.04±5.87 8.73±4.12

Aqueous humor EPO (Mann–Whitney U test): Group 3 versus Group 4 p=0.23 ; Group 1 versus Group 2 
p<0.001; Group 1 versus Group 3 p=0.29; Group 2 versus Group 4 p<0.001

Table 3. inTraocular pressure anD mean DeviaTion in glaucoma groups.

IOP/mean deviation Group 1 FAP 
Glaucoma

Group 2 Non FAP 
Glaucoma

P value Mann–
Whitney test

N 10 11
IOP, mmHg, mean±SD 26.20±1.93 26.82±1.72 0.39

Mean deviation, dB, 
mean±SD −8.92±3.30 −8.26±3.63 0.75

http://www.molvis.org/molvis/v20/970


Molecular Vision 2014; 20:970-976 <http://www.molvis.org/molvis/v20/970> © 2014 Molecular Vision 

973

DISCUSSION

Glaucoma is a manifestation of a heterogeneous group of 
diseases with a very complex and multifactorial pathophysi-
ology [8]. Although hypotensive therapy is today the only 
possible therapeutic intervention, neuroprotective treatment 
strategies are emerging as a result of the advances in the 
comprehension of the pathophysiological mechanisms of 
glaucoma. In the future, neuroprotective agents will probably 
be part of the therapeutic arsenal available for the treatment 
of glaucoma. EPO has been shown to have a protective effect 
on ganglion cells against acute ischemia injury [28,47] and 
has been proposed as a potential neuroprotective treatment.

In this study we confirmed that the aqueous humor EPO 
level is higher in glaucomatous eyes than in nonglaucomatous 
eyes with cataracts, as previously reported [30-32,48,49]. This 
increase in aqueous humor EPO levels could be a result of 
local production and/or active transport through the blood–
ocular barrier. This observation lends support to the hypoth-
esis that EPO acts as an endogenous neuroprotector of retinal 
ganglion cells [19].

In spite of the inappropriately low renal EPO produc-
tion reported in FAP ATTR V30M [44], its basal level in the 
aqueous humor of FAP patients was not significantly altered. 
However, FAP patients seemed to be unable to increase 
endocular EPO production in the presence of glaucoma. In 
previous studies, we showed an inappropriate secretion of 
renal EPO in FAP and an inability to increase EPO produc-
tion in response to decreased serum hemoglobin levels, 
leading to a high incidence of anemia in these patients. The 
lack of response to glaucoma in FAP patients could be the 
ocular counterpart of the stunted renal EPO production in 
FAP in response to anemia.

It has been suggested that inhibition of EPO production 
could be caused by the toxicity of prefibrillar aggregates of 
TTR V30M [44,50,51]. These oligomers induce the expres-
sion of oxidative stress, pro-inflammatory cytokines, and 
apoptosis-related molecules [52,53] through the binding 
of TTR aggregates to the receptor for advanced glycation 
end products, activation of extracellular signal-regulated 
kinase cascades, and nuclear transcription factor kB [52-56], 
suppressing the EPO production. All our FAP patients had 
previously received an orthotopic liver transplant to elimi-
nate their main source of mutant TTR, their own liver [57]. 
After liver transplantation, mutant TTR is removed from 
systemic circulation; however, its local production in the 
eye remains presumably unaffected. Therefore, the ocular 
pathology related to FAP, which includes glaucoma, continues 
to progress after liver transplantation; presumably there is 

also continuing deposition of cytotoxic prefibrillar TTR 
aggregates.

Garcia-Ramirez found that other factors besides hypoxia-
inducible factors (HIF)-mediated hypoxia might be important 
in the upregulation of EPO. Hypoxia, ischemia, elevated 
reactive oxygen species, or increases in glutamate and nitric 
oxide caused by glaucomatous damage are probably the cause 
of elevated aqueous humor EPO concentration in chronic 
glaucoma [30]. The pro-inflammatory cytokines interleukin 
(IL)-1, IL-6, interferon-γ, and tumor necrosis factor (TNF)-α 
inhibit EPO production [58,59], but despite being increased in 
the aqueous humor of glaucoma eyes, as is especially the case 
for TNF-α [60], these cytokines do not prevent an increase in 
EPO levels.

Increased levels of TTR in the aqueous humor of glau-
coma patients have been documented [61-63]. If glaucoma 
leads to an increase expression of TTR in the aqueous 
humor, an increased concentration of the unstable TTR 
V30M in FAP patients’ eyes could contribute to the increased 
development of a mechanical barrier to the outflow of the 
aqueous humor [64], resulting in worsening the glaucoma. 
The association of open-angle glaucoma with autonomic 
nervous system dysfunction suggests that this could also 
play a role in the pathogenesis of the disease [65]. Patients 
with systemic sympathetic and parasympathetic neuropathies 
have a higher incidence of open-angle and normal-pressure 
glaucoma [66-69]. Because FAP patients have an early onset 
neuropathy with markedly autonomic involvement, it is 
likely that autonomic dysfunction plays a role in glaucoma 
pathophysiology. Other possible contributing factors are the 
hemodynamic instability often presented in FAP patients due 
to vascular deregulation and abnormal blood pressure that 
may compound the harmful effects of glaucoma, particularly 
during sleep [65].

In the groups with glaucoma, there was no correlation 
between the aqueous humor EPO concentration and the values   
of IOP and mean deviation. It seems that the concentration of 
EPO in the aqueous humor is not related to the IOP in eyes 
with glaucoma or previous eye injury caused by glaucoma.

In this study, patients with pseudoexfoliative and uveitic 
glaucomas were excluded because some studies pointed to 
blood–aqueous humor barrier breakdown in these situations 
[70,71]. EPO can cross the blood–brain barrier and blood–
retina barrier [41]. We did not found a significant correlation 
between aqueous humor and serum EPO concentrations as 
other authors have found [30,31]. The elevation of the aqueous 
humor EPO level in glaucoma was not associated with a 
parallel increase in blood EPO levels, corroborating the role 
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of local EPO production as already proposed by Fu [28] and 
Garcia-Ramirez [29].

In conclusion, our study confirmed that the level of 
EPO is increased in aqueous humor of open-angle glauco-
matous eyes, as found by other authors. This increase was 
not observed in FAP patients. With the increased survival of 
transplanted FAP patients, glaucoma prevalence is expected 
to increase dramatically with increased suvival of the trans-
planted patients. We showed lower endogenous neuroprotec-
tion in glaucomatous eyes of FAP patients, emphasizing the 
need for more aggressive glaucoma management to maintain  
vision through life.
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