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Abstract 

Background: Peroxisomal disorders are classified in two major groups: (1) Peroxisome Biogenesis 

Disorders and (2) single Peroxisomal Enzyme/Transporter Deficiencies. D-bifunctional protein 

deficiency (DBP; OMIM #261515) included in this last group of rare diseases leads to an impaired 

peroxisomal beta-oxidation. D-bifunctional protein deficiencies are classified in four types based on 

the degree of activity of the 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase protein 

units. 

Case report/Result: The authors present the first portuguese reported type II DBP deficiency patient, 

whose neonatal clinical picture is indistinguishable from a Zellweger spectrum disease. The clinical 

features and the neuroimaging findings of polymicrogyria
 
raised suspicion of the diagnosis.

 
After 

biochemical analysis, DBP deficiency was confirmed with the identification of p.Asn457Tyr (N457Y) 

mutation, present in homozygosity in HSD17B4 gene. Parents were found to be carriers of the 

mutated allele, confirming the patient homozygosity status and allowing prenatal diagnosis to future 

pregnancies. 

Conclusion: D-bifunctional protein deficiency is a rare and severe disease and final diagnosis can only 

be accomplished after HSD17B4 gene sequencing. Treatment is generally of supportive nature, 

aimed at improving nutrition and growth, controlling the central nervous system symptoms and 

limiting the eventual progression of liver disease. 
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Introduction 

Peroxisomal disorders are currently classified in two major groups: (1) Peroxisome Biogenesis 

Disorders and (2) single Peroxisomal Enzyme / transporter Deficiencies
1-4

. D-bifunctional protein 

deficiency (DBP; OMIM #261515) included in this last group of diseases leads to impaired 

peroxisomal beta-oxidation.  

Peroxisomes catalyze the beta-oxidation of a different set of fatty acids and this process involves the 

participation of several enzymes, including two acyl-coenzyme A (CoA) oxidases, two multifunctional 

enzymes and two thiolases
3,4

.  

Enoyl-CoA esters of very-long-chain fatty acids (VLCFAs) like hexacosanoic acid (C26:0), pristanic acid 

and the bile acid intermediates di- and trihydroxycholestanoic acid (DHCA and THCA) are all handled 

by D-bifunctional protein. This 79 kDa protein, also called multifunctional protein 2, catalyzes the 

second (hydration) and third (dehydrogenation) steps of peroxisomal beta-oxidation. This protein 

also contains a sterol-carrier protein-2-like domain
2,3

. 

D-bifunctional protein deficiencies are classified into three types: type I - deficiency of 2-enoyl-CoA 

hydratase unit and 3-hydroxyacyl-CoA dehydrogenase unit, type II - isolated hydratase deficiency 

and type III - isolated dehydrogenase deficiency
2-4

. Recently, McMillan et al (2012) proposed a type 

IV phenotype, based on the presence of a missense mutation in each of enzyme domains resulting in 

markedly reduced but detectable hydratase and dehydrogenase activity of DBP
5
.  

A large cohort study, showed that type III was the most represented deficiency (45%), followed by 

type II (28%) and type I (27%)
4
. All three types are inherited in an autosomal recessive manner due 

to mutations in the gene (HSD17B4), mapped to chromosome 5q23.1
3,4

.  

Although prognosis is usually poor, with a mean age of death of 17.6 months on type III, 10.7 on type 

II and 6.9 months on type I, there are some reported patients which survive until the second decade 

of life
4
. 

The value of this article is two-fold. Firstly, remind the wide spectrum and etiology of peroxisomal 

disorders and secondly to explain step by step the diagnostic evaluation of this rare disease. 

Obtaining a specific mutation diagnosis does not help with patient treatment but is crucial for family 

counseling and future prenatal diagnosis.    
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Case report 

The patient, a male born after 35 weeks of gestation by vaginal delivery, was the first child of a non-

consanguineous couple. Family history was unremarkable. There was no reported information 

regarding exposure to known teratogens during pregnancy. Routine prenatal ultrasound screening 

was normal and the majority of congenital infections were excluded after serological prenatal 

testing.  

Newborn needed resuscitation intervention after birth, with positive airway pressure due to apgar 

scores of 5 and 6 at 1 and 5 minute, respectively. Despite apgar score increase to 8 at 10 minute, the 

newborn was sent to the neonatal intensive care unit (NICU) due to severe hypotonia. Birth weight 

was 2080g (P10 Fenton chart), length 47.5cm (P50-90 Fenton chart) and occipital-frontal 

circumference was 31cm (P10-50 Fenton chart). 

The first physical examination, after arrival in the NICU, revealed craniofacial dysmorphism,  

characterized by a high forehead, flat nasal bridge, microretrognathia, short neck and short toes 

(Figure 1). Severe generalized hypotonia, absence of spontaneous movements, absence of primitive 

reflexes and inconstant gaze were present since first day of life.       

During the time in NICU, he was asymptomatic for two days. At 3 days of life, subtle clonic 

movements of the left arm and leg were noticed, but the amplitude integrated 

electroencephalogram (aEEG) monitoring was insensitive and did not detect any abnormality. 

Coincidental with these seizure episodes he developed respiratory distress and needed nasal 

continuous airway pressure for 6 days.  

Cerebral ultrasound at 4th day of life was normal, but magnetic resonance imaging (MRI) at day 10th 

revealed cortical mantle malformation in both cerebral hemispheres and a cortical dysplastic area 

with polymicrogyria, more pronounced in the perisylvian region (Figure 2). 

At day 20th, he developed seizures characterized by initial crying with conjugate eye deviation to the 

right and myoclonus of the left eyelid, followed by chewing episodes with sialorrhea that lasted 1 

minute. By that time, the electroencephalogram displayed multifocal epileptiform discharges with a 

burst-suppression pattern, which was improved after phenobarbital treatment (Figure 3).  

By the end of the second month, there was aggravation with the development of clusters of epileptic 

seizures, characterized by clonic movements of the limbs with right head shifting. Phenytoin and 

levetiracetam were added at this time. 

During the first two months of live, periodic respiration was observed along with several apnea 

episodes. Continuous positive airway pressure (CPAP) was initiated. After swallowing therapy, 

bottle-fedding was achieved, by the end of second month.  
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At 3 months, he restarted seizures, characterized by clonic movements of the left limbs and valproic 

acid was introduced. However one week later, he started infantile spasms and vigabatrin was added.  

Two weeks later, focal seizures were registered and carbamazepine treatment was associated. 

At 11 months of age, in spite of being on combined treatment of valproate, carbamazepine and 

vigabatrin, parents reported a few daily brief focal seizures without cyanosis. On physical 

examination, the patient presented severe hypotonia without head control and poor spontaneous 

movements. He had horizontal nystagmus and an inconstant fixation and tracking of visual stimulus. 

Ophthalmological investigation did not detect any structural abnormalities, but the patient was 

unable to follow a moving object.   

The newborn hearing screening revealed deafness confirmed later on, at 5 months, by auditory 

evoked potentials.  

Prenatal laboratory studies including TORCH (toxoplasmosis, syphilis, rubella, cytomegalovirus, 

herpes simplex) serology, blood sugar, transaminases thyroid hormones and cortisol were normal. 

Karyotype was 46 XY and the fluorescence in situ hybridization (FISH) test for chromosome 15 and 

22 was normal. Neonatal screening for inborn errors of metabolism was performed. 

Blood lactate:pyruvate ratio, blood ammonia and plasma/urine amino acids levels were below the 

highest age-related reference value.   

A peroxisomal disorder or a congenital disorder of glycosylation was suspected due to the central 

hypotonia with craniofacial dysmorphism, epilepsy and the previously normal laboratory results. 

Most frequent congenital disorders of glycosylation were excluded by serum transferrin isoeletric 

focusing pattern that was found to be normal. The presence of polymicrogyria in the MRI was 

strongly suggestive of a peroxisomal disorder, and around 1 month of age very long chain fatty 

acids (VLCFA) plasma levels were found to be significantly increased (C26:0 of 4.22µg/ml, with 

reference range of 0.16-0.57) (Table 1). This finding was confirmed on cultured skin fibroblasts 

(C26:0 of 1.01µg/mg of protein, with reference range of 0.03-0.18) (Table 1).  

Erithrocyte plasmalogen levels were found to be normal and the activity of dihydroxyacetone-

phosphate acyltransferase (DHAP-AT), a peroxisomal enzyme catalyzing the first step in ether-

phospholipid biosynthesis, was also found to be normal on fibroblasts (Table 1). This last result 

allowed excluding a peroxisomal biogenesis disorder (Zellweger spectrum disorders or any type of 

rhizomelic chondrodysplasia punctata). Given these results, the patient was classified as having an 

enzymatic defect in peroxisomal β-oxidation. Although plasmatic bile acid intermediates (dihydroxy- 

and trihydroxycholestanoic acids) were within normal range, pristanic acid was increased (1.2µg/ml 

with reference range of 0-0.9) (Table 1).  
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This led the authors to consider a β-oxidation defect due to a D-bifunctional protein deficiency and 

initiate HSD17B4 gene molecular analysis by Sanger sequence. 

Diagnosis of a D-bifunctional protein deficiency was confirmed by the identification of a previously 

described deleterious mutation (van Grunsven et al. 1999), a c.1369A>T transversion, resulting in a 

p.Asn457Tyr (N457Y) substitution (gene/locus MIM number 601860.0004 allelic variant), present in 

apparent homozygosity
7
. 

Parents of the patient here reported were found to be carriers of the mutated allele, confirming the 

patient homozygosity status and allowing prenatal diagnosis in future pregnancies. 

Current treatment is of supportive nature, aimed at improving nutrition and growth, controlling the 

central nervous system symptoms and avoiding liver disease progression by giving oral bile acids.   

 

Discussion 

D-bifunctional protein deficiency is a rare, but severe peroxisomal disorder, and most affected 

children die in the first 2 years of life. The clinical picture, indistinguishable from that of a 

peroxisome biogenesis defect like Zellweger syndrome, is characterized by neonatal hypotonia, 

seizures presenting in the first two months of life, psychomotor delay, failure to thrive, neuronal 

migration defects and/or demyelination
4,6

.  

The majority of these patients, as the patient here reported, display facial dysmorphic features along 

with hearing or visual impairment. Suspicion of a peroxisomal disorder was raised both by the 

clinical features and by neuroimaging findings
9-10

, namely cortical dysplastic area with 

polymicrogyria. This is a relatively common malformation of cortical development, characterized by 

multiple small and partly fused gyri with abnormal cortical lamination. The different forms of 

polymicrogyria encompass a wide range of clinical, aetiological (prenatal infections, cerebral vascular 

insults, maternal drug ingestion, loss of a twin in utero, genetically determined syndromes) and 

histological findings. Advances in imaging studies have improved the diagnosis and classification of 

this condition and region specific polymicrogyria syndromes have been identified
10

.    

Patient MRI presented a combination of multiple gyri and white matter abnormalities especially over 

the frontal and lateral aspects of the brain, particularly in the area of the sylvian fissure. No 

inflammatory reaction was observed in the areas of disturbed myelination. 

These findings are present in other D-bifunctional protein deficiency reported cases and resemble 

those of Zellweger syndrome
9-10

. Recent data indicate that this overlap with Zellweger syndrome 

may not be due to deficiencies of substrate degradation by the D-bifunctional protein enzyme, but 

rather to other secondary peroxisomal deficiencies that occur as a consequence of the DBP defect
6,7

.   
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Despite most D-bifunctional protein deficiency patients have plasma accumulation of VLCFA, 

pristanic acid and bile acid intermediates, there have been some reports identifying patients without 

plasma abnormalities
6
. Therefore, a final diagnosis can only be established after performing 

molecular analysis of the HSD17B4 gene.  

The bile acid abnormalities in patients with a peroxisomal disorder have been shown to contribute 

to the liver disease associated with these disorders and also have been hypothesized to have an 

effect on the developing nervous system
11,12

.  

Unconjugated C27-bile acid intermediates (DHCA and THCA) are especially cytotoxic and they can be 

reduced by treatment with C24-bile acids, which downregulate bile acid biosynthesis via activation of 

the nuclear receptor farnesoid X receptor (FXR), resulting in reduced transcriptional activation of 

cholesterol 7α-hydroxylase (CYP7A1), which is the rate-limiting enzyme in bile acid biosynthesis. Bile 

acid therapy will also increase bile flow by replenishing the decreased levels of C24-bile acids and it 

will increase the intraluminal bile acid concentration, thereby facilitating the absorption of fats and 

fat soluble vitamins. Bile acid therapy can alleviate intrahepatic cholestasis and may also improve 

some aspects of central nervous system development. However, the therapy can exacerbate the 

degree of hepatic steatosis and worse the already severe mitochondrial and cellular damage in the 

liver
12

. 
 

Studies have shown that peroxisome-deficient hepatocytes are particularly sensitive to bile acid 

toxicity, indicating that bile acid therapy will be more beneficial in patients with a relatively mild 

peroxisome biogenesis disorder (neonatal adrenoleukodystrophy or infantile Refsum disease) or 

patients with a single enzyme defect (enzyme α-methylacyl-CoA racemase, D-bifunctional protein or 

sterol carrier protein X deficiency)
12

.  

As an alternative to oral bile acid therapy, treatment with an artificial FXR ligand should be 

considered. These artificial FXR ligands are not harmful for the hepatocyte but they will 

downregulate the synthesis of the toxic C27-bile acid intermediates
12

. 

Although D-bifunctional protein deficiency clinical presentation is considered severe (Ferdinandusse 

et al, 2006), type II and III are less severe than type I, once mutations in those types are associated to 

residual, rather than null enzyme activity
4
.  

On the basis of genotype analysis, patient here reported was classified as type II DBP deficiency due 

to homozygosity for p.Asn457Tyr (N457Y) mutation in HSD17B4 gene, which leads to a disturbance 

in folding domain of hydratase unit. This mutation, according to the 110 patients’ report of 

Ferdinandusse et al (2006) was described as the most frequent within type II DBP deficiency 

patients, as well as the second most frequent DBP deficiency causing mutation
7
.  The missense 

mutation N457Y had an allele frequency of 11% and was found in 13 patients. This mutation had 
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already been reported as causing an isolated defect of the enoyl-CoA hydratase domain of the D-

bifunctional protein. It was firstly reported in patients born of consanguineous parents, presenting 

abnormalities of peroxisomal beta-oxidation with elevated very long chain fatty acids and branched 

chain fatty acids, but normal levels of bile acid intermediates
7
. Expression studies of p.N457Y 

mutation in Saccharomyces cerevisiae confirmed that is a disease-causing mutation
8
. Moreover, in 

this study, patient’s fibroblast immunoblot analysis showed that D-bifunctional full-length protein 

levels were severely reduced and enoyl-CoA hydratase domain was undetectable within the 

peroxisome. 

DBP deficiency is a rare disease with an estimated prevalence of 1:100 000 and a complete final 

diagnosis can only be accomplished after HSD17B4 gene sequencing
7
.  

Two other Portuguese patients have a DBP biochemical and molecular diagnosis, although they may 

be classified as type I e III based on their genotype. 

Family pedigree performed during genetic counseling of this family revealed a common related 

background, as the grandparents were from the same small village. Probable ancestor consanguinity 

could explain why the same rare mutation was found in both parents. 
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Figure legends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – MRI at day 10th revealed cortical mantle malformation and 

polymicrogyria ( ), more pronounced in the perisylvian region.  

Figure   1 – Newborn with severe hypotonia and facial dysmorphism.  

Figure   3 – The electroencephalograms on the left side (20
th

 day of life) displayed 

multifocal epileptiform activity with sharp and slow waves or spikes followed by long 

periods of suppression of electric activity. The electroencephalograms on the right 

side (30
th

 day of life, under therapy with phenobarbital) showed scarce focal right or 

left central epileptiform activity and disappearance of suppression-burst pattern.  
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Diseases

ZSDs (ZS,NALD,IRD)

ACOX1 

deficiency

D-BP 

deficiency RCDP type 1 RCDP type 2 RCDP type 3 X-ALD RD SCPx AMACRD

Plasma

β-oxidation

Very-long chain fatty acids ↑ ↑ ↑ (↑) N N N ↑ N N N

Di- and trihydroxycholestanoic acid ↑ N N-↑ - (N) N N N N N ↑ ↑

Pristanic acid N-↑ N N-↑ (↑) N N N N N ↑ ↑

α-oxidation

Phytanic acid N-↑ N N-↑ (N) N-↑ N N N ↑ ↑ N-↑

Erythrocytes

Etherphospholipid biosynthesis

Plasmalogens levels ↓ N N ↓ ↓ ↓ N N N N

Fibroblasts

Enzyme − ACOX1 D-BP − DHAPAT ADHAPS ALDP PhyH SCPx AMACR

DHAPAT activity ↓ N N ↓ ↓ ↓ N N N N

Mutated gene
PEX1,2,3,5,6,10, 

12,13,14,16,19,26
ACOX1 HSD17B4 PEX7 GNPAT AGPS ABCD1 PAHX SCP2 AMACR

Table 1: Differential diagnosis of peroxisomal disorders and patient data analysis

Legend: ACOX 1 - Peroxisomal acyl-coenzyme A oxidase 1; ADHAPS - Alkyldihydroxyacetone phosphate synthase; ALDP - Adrenoleukodystrophy protein; AMACRD - Alpha-methylacyl-CoA

racemase;  D-BP - D-bifunctional protein; DHAPAT - Dihydroxyacetonephosphate acyltransferase;  IRD - Infantile refsum disease; NALD - Neonatal adrenoleukodystrophy; 

PhyH - Phytanoyl-CoA 2-hydroxylase; RCDP - Rhizomelic chondrodysplasia punctata; RD - Refsum disease; SCPx - sterol carrier protein X; ZD - Zellweger disease
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