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YELOMENINGOCELE is a clinically significant prima-
ry neurulation defect leading to significant mor-
bidity and mortality rates.7,21 The incidence of

MMC has changed during the past decades according to
geographic region and ethnicity.12,35 The precise worldwide
incidence of MMC has been difficult to assess given the
variations in prenatal diagnosis and in policies regarding
the elective termination of pregnancy.8,21 In more techno-
logically advanced countries, despite folic acid supplemen-
tation and routine prenatal screening, administered as early

as the first trimester, MMC still affects nearly 1 in 2000 live
births.1 Newborns with MMC present with various degrees
of lower-extremity paralysis, sexual and sphincter dysfunc-
tion, tethering of the spinal cord, skeletal deformation,
brainstem dysfunction, hydrocephalus, and ventriculoperi-
toneal shunt complications.19,25,26 Even with appropriate
neonatal treatment and multidisciplinary medical care,
MMC is still associated with a mortality rate that can range
between 14 and 35% in the first 5 years of age.36
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Object. Myelomeningocele (MMC) is a primary neurulation defect that is associated with devastating neurological
disabilities in affected newborns. To better characterize the in utero neurodegenerative process of MMC, the authors
investigated the changes in vascular organization, apoptosis, and the presence of inflammatory cells during gestation
by using a mutant mouse model of MMC.

Methods. The curly tail/loop tail (ct/lp) mutant mouse model of MMC was chosen to obtain fetuses at different
stages of gestation. Mouse fetuses harboring MMC were harvested by caesarean section at embryonic Days 14.5, 16.5,
and 18.5 (complete mouse gestation at 19 days, 6 mice/group); littermate fetuses with the same gestational age but
without an MMC were used as controls. Samples of the MMC placode or normal spinal cord were stained for immuno-
cytochemical labeling with caveolin antibody (endothelium marker) and activated caspase-3 antibody (apoptosis mark-
er). Samples were morphometrically analyzed with a computer-assisted image analyzer. 

Results. The MMC mice presented with an increase in vascular density from embryonic Days 16.5–18.5 and an
enhanced number of apoptotic cells at embryonic Day 18.5, compared with controls. There were scarce signals of an
inflammatory reaction in the MMC placode, as a few infiltrating neutrophils were seen only at embryonic Day 18.5.

Conclusions. Fetal placodes in MMC mice showed evidence of increased vascular density since embryonic Day
16.5 and increased apoptosis at embryonic Day 18.5. These new data support the view that in utero changes of the
MMC placode, occurring during the last stages of gestation, contribute to the neuropathological manifestations in full-
term newborns with MMC. (DOI: 10.3171/PED/2008/2/8/150)
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The exact origin and timing of MMC lesion formation
are not fully understood. Authors of several pathophysio-
logical studies have challenged the concept that an intrinsic
embryonic error is the sole determinant of an MMC lesion
and instead have favored the hypothesis that the intrauter-
ine environment is a major cause of injury to the placode,
through either trauma or chemical toxicity.5,9,13,15 Based on
the concept that neurological deficits caused by the MMC
lesion occur during the second half of gestation, in utero
surgical correction of MMC in humans was initiated a dec-
ade ago.4 The clinical outcomes of in utero surgery have
suggested clear improvement in some neurological lesions,
namely in the reversal of ectopic cerebellar tonsils of the
MMC-associated Chiari malformation, decreasing it from
95 to 38%, with a consequent reduction in the need for a
ventricular shunt from 91 to 59%.3,31–34 In contrast, deficits
in the lower limbs and in urodynamic function in patients
submitted to MMC correction, through either fetal or clas-
sic postnatal surgery, were similar to those of controls.14,30,27

Attending to these data, the potential benefits of in utero re-
pair of MMC are under scrutiny in a randomized trial de-
signed to compare the clinical outcomes of patients with
MMC treated with either fetal or postnatal surgery.2

Recently, using a mouse model of MMC, we document-
ed astrocytic proliferation during gestation together with
neuronal degeneration, after embryonic Day 16.5 (full-term
gestation: 19 days), predominantly in the dorsal part of the
placode.23 These findings are in accordance with clinical
and electromyography findings in newborn humans with
MMC who display a loss of leg movements during the first
2 postnatal weeks, suggesting that neuronal damage was
initiated before birth.27 To better characterize the cytological
dynamics in the MMC placode that could lead to neuronal
degeneration during gestation, we looked for other cytolog-
ical alterations not clearly evaluated in previous scientific
studies.10,11,15,17,23 In this way we evaluated the changes in
vascular structure, frequency of apoptotic cells, and inflam-
mation in the placode of MMC mutant mouse fetuses dur-
ing the final stages of gestation.

Methods

Mouse Strains and Breeding

The curly tail (ct) mouse strain was initially supplied to
us by the Jackson Laboratory, and the loop-tail (lp) lineage
was kindly given to us by Dr. Andrew Copp. These ct and
lp mouse lineages were housed as separated colonies in a
controlled-temperature room maintained on a daily 12-hour
light/dark period. Water and food were freely available
with no restriction. To obtain newborns with MMC, doubly
heterozygous males (lp/+, ct/+) were mated overnight with
homozygous curly tail females (+/+, ct/ct). Mating was
promoted during the dark phase, and the female mice were
checked for vaginal plugs in the next daylight period. The
day of copulation plugging was defined as embryonic Day
0.5. Mice harboring both curly tail and loop-tail mutations
(ct/ct, lp/+) are known to express severe MMC almost in-
variabily.29

Sample Collection and Experimental Protocol

Our goal was to study fetuses of ct/lp mice with MMC at
different gestational ages. Fetuses were harvested by cae-

sarean section at embryonic Days 14.5, 16.5, and 18.5 of
gestation (end of gestation: 19 days). Fetuses without MMC
with a straight tail and apparently normal hindlimb function
were used as controls for each of the 3 gestational age
groups. Each of the 6 groups of fetuses (3 MMC groups and
3 control groups) comprised 6 mouse fetuses. All experi-
mental protocols, including animal care, were reviewed and
approved by the Animal Care and Use Committee of our
institution (Abel Salazar Institute for Biomedical Sciences).
The directives set forth by the National Institutes of Health
Guide for the Care and Use of Laboratory Animals as well
as the guidelines from the European Union on animal pro-
tection (Directive 86/609/EC) were also followed. 

The pregnant mice were killed with a lethal dose of ket-
amine and xylazine hydrochloride, and fetuses were har-
vested through a caesarean section procedure. Newborn
pups were photographed, evaluated for muscular tonus,
killed, and fixed in a buffered solution of 4% paraformalde-
hyde with 14% picric acid for 1 hour. After fixation, the
fetuses were cut at the MMC level and further fixed for 24
hours in the same fixative solution. Tissue samples were
then routinely processed and embedded in paraffin. Sec-
tions were mounted on poly-L-lysine-coated glass slides,
dewaxed in xylene, rehydrated with grading ethanols, and
stained with H & E or immunocytochemical methods.

For immunocytochemistry labeling, antigen retrieval was
performed by boiling the mounted section in a pressure
cooker containing a 10 mM citrate buffer (pH 6.0) for 3
minutes. Samples were incubated at room temperature in
3% hydrogen peroxide in methanol to quench endogenous
peroxidase, followed by normal serum of swine (DakoCy-
tomation) for 20 minutes to block nonspecific staining. For
labeling of apoptotic cells, samples were incubated with the
cleaved caspase-3 antibody (Asp175, Cell Signaling Tech-
nology) in a 1:100 dilution for 1 hour. After rinsing with
tris-buffered saline, incubation with a second antibody was
performed using swine anti–rabbit antibody (DakoCytoma-
tion) for 30 minutes. Tissue sections were again washed in
tris-buffered saline and incubated in avidin-biotin-peroxi-
dase complex (DakoCytomation) at room temperature for
30 minutes. After several washes, the reaction product was
made visible with diaminobenzidine tetrahydrochloride
(DakoCytomation) treatment. Tissues sections were coun-
terstained with hematoxylin. 

To label endothelial cells, caveolin staining was used in a
manner similar to the aforementioned method for cleaved
caspase-3 staining. Briefly, nonspecific staining was
blocked by incubation with a postprimary block (Novocas-
tra Laboratories) for 5 minutes at room temperature, fol-
lowed by primary antibody incubation with caveolin anti-
body (caveolin, BD Biosciences) at a 1:400 dilution for 90
minutes before incubation with a secondary antibody bind-
ing system (Novocastra Laboratories). Before detection of
the reaction product with diaminobenzidine tetrahydrochlo-
ride, the samples were incubated with polymer from the
NovoLink Polymer Detection System (Novocastra Labora-
tories) for 30 minutes at room temperature. Background
staining of tissue sections was again done with hematoxy-
lin.

Negative controls for the specificity of immunolabeling
were performed by omitting the primary antibody. Verifica-
tion of the staining of anterior spinal artery and other ab-
dominal vessels of fetal samples and mouse thymus sam-
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ples were used as internal positive controls for caveolin and
cleaved caspase-3, respectively. For each antibody, staining
of the different sample sections was performed on the same
day for all tissue sections to minimize interassay variability.

Inflammatory reactions were evaluated by quantifying
the number of neutrophil cells in the MMC or normal spi-
nal cord on hematoxylin-stained sections.

Morphometric Analysis

Each spinal cord section was photographed using light
microscopy, and morphometric analysis was performed
with a computer-assisted imaging analyzer (Leica Qwin,
Leica Microsystems). Under the same magnification, im-
munolabeling was quantified in each sample of spinal cord
tissue with a square area of 13,100 µm2. The number of
immunoreactive cells for cleaved caspase-3 antibody was
counted in each sample, and the proportion of these cells per
µm2 was calculated. The number of stained capillaries in
each sample was counted, and its density per µm2 was cal-
culated. In each spinal cord section, high-magnification
photographs of 6 different areas were obtained: 3 from the
ventral area that included the white and gray columns and
from the area around the central channel. The procedure for
the dorsal area was similar. For the MMC groups, areas of
placode selected for morphometric analysis were 3 ventral
and 3 dorsal regions, according to the following criteria: the
first area was located on the basal plate (medial), the second
on the alar plate (lateral), and a third intermediate area
around the sulcus limitans.

Statistical Analysis 

A comparison of the means between MMC and controls
for each gestational age was performed using a two-tailed,
unpaired t-test. A probability value < 0.05 was considered
to reflect a statistically significant difference.

Results

Mating between doubly heterozygous curly tail/loop-tail
male mice and homozygous curly tail female mice resulted
in an average offspring of 6 newborn mice. In each litter,
one-third of the newborns exhibited the MMC defect. At
embryonic Days 14.5 and 16.5, fetuses in both the MMC
and control groups presented with hypotonic body posture
appropriate for the gestational age. In contrast, at Day 18.5
of gestation (full gestation: 19 days), only fetuses in the
MMC group showed hypotonic tonus of the hindlimbs
(Fig. 1).

Quantitative Immunolabeling of Spinal Cords in MMC and
Control Groups

At embryonic Day 14.5, the MMC placode exhibited an
elongated shape with a projection above the skin. These 2
features became less evident at embryonic Days 16.5 and
18.5. Near the end of gestation (embryonic Day 18.5), the
MMC placode was thin and had a flat surface (Fig. 2).
Cross-sections of MMC placodes at embryonic Days 14.5,
16.5, and 18.5 showed open neural tubes with disorganized
spinal cords and basal plates in a medial position and alar
plates located on the lateral regions.

A marked increase in blood vessel density was seen in
MMC placodes at embryonic Days 16.5 and 18.5. This vas-
cular arrangement of MMC placodes was significantly dif-
ferent from that in the spinal cords of control fetuses. The
increase in vascular capillary densities was better identified
by staining after immunocytochemical labeling by using
antibodies for caveolin, an antigen known to be present in
endothelial cells (Fig. 3).16,22 Blood vessel densities in the
placodes of MMC mice and the spinal cord of control fetus-
es (Fig. 4) were significantly different at embryonic Days
16.5 (p < 0.001) and 18.5 (p < 0.001).

Cells undergoing apoptosis were identified by staining
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FIG. 1. Photographs showing fetuses of MMC mice (B, D, and F) and normal controls (A, C, and E) at different embry-
onic days (A and B, embryonic Day 18.5; C and D, embryonic Day 16.5; and E and F, embryonic Day 14.5). Arrows indi-
cate the spina bifida aperta at the lumbar region.



immune-labeled cells for anti-cleaved caspase-3 antibody.6,18

At embryonic Day 18.5 the MMC placode presented scat-
tered apoptotic cells, whereas in the other groups of MMC
placodes (embryonic Days 14.5 and 16.5) as well as in the
spinal cords of control mice, apoptotic cells were seldom
found (Figs. 5 and 6A and B). Statistical analysis of morph-
ometric data confirmed that the increased number of apop-
totic cells was significantly different (p , 0.001) between
MMC placodes and the spinal cords of control group fetus-
es at embryonic Day 18.5.

The exposed dorsal surface of the MMC was limited by
a straight line of cells without any major signs of inflamma-
tion or necrosis (Fig. 7). These cells on the dorsal surface of
the MMC were neuroepithelial cells that would become the
mantle and marginal layers. In the MMC placodes, the neu-
roepithelial cells lose the fusiform shape that is commonly
observed in normal spinal cords, in particular on the lateral
area of the placode (Fig. 8); instead, they become hyper-
chromatic cells. These cellular changes in the MMC plac-
ode lining suggest a degenerative cytological process on the
surface of the placode. In some MMC placodes, vacuoliza-
tion of these surface cells was also detected at embryonic
Day 18.5 (Fig 8B).

A few neutrophils were seen in MMC placodes but only
at embryonic Day 18.5. A few pyknotic inclusions were al-
so observed; they usually correspond to remnants of acti-
vated neutrophils. This scarce leucocyte infiltration was not
observed at early gestational fetal stages (embryonic Days
14.5 and 16.5) in the collected MMC placodes or control
samples (Fig. 9).

FIG. 2. Light microscopy micrographs and drawings demonstrat-
ing MMC placode cross-sections from mouse fetuses at embryonic
Days 18.5 (A), 16.5 (B), and 14.5 (C). The dorsal side of the fetus-
es is oriented at the top of each panel. The size of the protuberance
and the shape of the MMC placode diminishes during the gesta-
tional period after embryonic Day 14.5 and is clearly illustrated. 
H & E, bar = 300 µm. AP = alar plate; BP = basal plate; S = skin;
V = vertebral body.

FIG. 3. Light microscopy micrographs of immmunostained caveolin (endothelium marker) in paraffin-embedded tissue
sections (with hematoxylin background staining) showing vascular organization in the developing spinal cord of control
mouse fetuses (A–C) and vascular density in the placode of MMC mouse fetuses (D–I). All of the micrographs show cross-
sections of spinal cord with the posterior region of the fetuses oriented at the top of each panel. At embryonic Day 14.5
there were few vessels in both the MMC placode (F) and the normal spinal cord (C). The image in panel I is a magnifica-
tion of that in F. At embryonic Day 16.5, there is a clear increase in vessel density in the MMC placode (E) compared with
vessels in the normal spinal cord (B). The image in panel H is a higher magnification of that in E. At the end of gestation
(embryonic Day 18.5), the differences in vascular density are more evident between the MMC placode (D) and normal
spinal cord (A). The image in G is a higher magnification of that in D. Arrows indicate vessels on the MMC placode;
arrowhead, the anterior spinal artery. Bar = 150 µm (A–F) and 40 µm (G–I).
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Discussion
The ct/lp mutant mouse can be used as a genetic model

of MMC bearing resemblance to MMCs in humans, mak-
ing it one of the most popular experimental models of
MMC.23,24,28,29 Our study is the first in which fetuses of
mutant ct/lp mice have been used to evaluate the changes
that occur in vascular structure and apoptosis in the placode
of MMC mice during in utero development. To make such
determinations, we used immunocytochemical labeling of
endothelial and apoptotic cells of MMC placodes of fetus-
es at embryonic Days 14.5 to 18.5. 

We found a striking increase in capillary density in the
MMC placode at the final stages of gestation, starting at
embryonic Day 16.5. There has been a single report on al-
tered vascular organization in a human MMC, and it was re-
stricted to a newborn infant of 39 weeks.27 The herein re-
ported vascular density pattern of the MMC placode in utero
adds new cytoarchitectural alterations to the previously doc-
umented astrocytosis of human MMC10 and mouse MMC.23

Because in the MMC mouse both abnormalities start at the
same gestational period (embryonic Day 16.5), we postulate
that they reflect putative aggression to the placode starting
in the same gestational timing. The increased vascular den-
sity and the predominance of astrocyte proliferation on the
dorsal part of the MMC placode also suggest that this
response to a potential injury is more intense on the dorsal
side than in other areas of the placode. The cellular changes
of the MMC placode lining—namely the hyperchromatic
features of neuroepithelial cells—also suggest a degenera-
tive cytological process on the surface of the placode. These
findings may represent a progressive and tenuous degener-
ative response of neural tissue after exposure to an inappro-
priate environment.

We have found increased frequency of apoptotic cells in
the placode on the last day of gestation (embryonic Day
18.5) of MMC mutant mice. The scattered distribution of
the apoptotic cells in the MMC placode, their absence at
earlier MMC mice gestational ages (E14.5 and E16.5) and
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FIG. 4. Graphs demonstrating the results of morphometric analysis of vessels of fetuses collected during different ges-
tational periods in both MMC mice and controls. Data from both the anterior (left) and posterior regions (right) of the
MMC placode and normal spinal cord are shown in these graphs. Significant statistical differences were found between
the MMC and normal samples at embryonic Days 16.5 (p < 0.001) and 18.5 (p < 0.001) for both topographic regions (ante-
rior and posterior) of the spinal cord. E = exponential (scientific) notation.

FIG. 5. Light microscopy micrographs showing apoptotic immunostained cells that were detected with cleaved caspase-
3 antibody labeling in the MMC placode (B, D, and F) and control spinal cord (A, C, and E) during embryonic Days 18.5
(A and B), 16.5 (C and D), and 14.5 (E and F). The immunolabeling appears brown, and the dorsal structures of the sec-
tions are oriented at the top of each panel. Most of the samples showed few apoptotic cells (A and C–F). The MMC plac-
ode at embryonic Day 18.5 had a higher number of apoptotic cells with a homogeneous distribution (B). Bar = 75 µm.



in control mice, and an almost normal neurogenesis of the
MMC placode at earlier gestational stages in ct/lp mice
(embryonic Day 14.5)17,23 support the hypothesis that en-
hanced cell death in the MMC placode occurs only at the
end of gestation. Clearly, this apoptotic degeneration had a

different timing than vascular proliferation or astrocytosis
and could be caused by the loss of trophic factors or neu-
ronal connections on the MMC placode during the degen-
erative process. 

We found only a scarce number of infiltrating leukocytes

FIG. 6. Graphs revealing quantification of the number of apoptotic cells per µm2 of spinal cord in comparing samples
from MMC and normal mouse fetuses during gestation. Data from the anterior (left) and posterior regions of the spinal
cord (right) are expressed. At the end of gestation (embryonic Day 18.5), there were significant differences between the
MMC and normal mouse fetuses for both the anterior and posterior regions of the spinal cord (p < 0.001).

FIG. 7. Light microscopy micrographs of MMC placodes at embryonic Days 18.5 (A), 16.5 (B), and 14.5 (C). There is
apparent preservation of the dorsal surface of the MMC placode without major signs of inflammation such as edema, infil-
trated inflammatory cells, or necrosis. There is evidence of a higher vascular density during the late stage of gestation (A,
arrows). H & E, bar = 40 µm.

FIG. 8. Light microscopy micrographs showing the dorsal aspect of the MMC placode at embryonic Days 18.5 (A and
B), 16.5 (C and D), and 14.5 (E and F). Panels A, C, and E represent the dorsal and medial structures of the MMC plac-
ode; and B, D, and F, the dorsal and lateral regions of the same placode. At early gestational stages (embryonic Day 14.5)
the dorsal cell lining of the MMC placode has a cuboidal or fusiform shape (E and F) on the placode surface (arrowheads).
At later gestational stages (embryonic Days 16.5 and 18.5) there was progressive flattening of these lining cells (A–D) with
some nuclear shrinkage and changing into a small and densely wrinkled mass (arrows). This change is evident earlier on
the dorsolateral aspect of the placode (B and D) and at the end of gestation; some cells also presented with vacuolizations
that suggest atrophy (B, arrows). All of the images are oriented with the dorsal part of the placode at the top of each panel
and the lateral part of the placode to the right side of the panel. H & E, bar = 40 µm. 
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in the MMC placode and only on embryonic Day 18.5.
Possible reasons for the scarcity of inflammatory cells in a
degenerating placode include the physiological immune-
suppressive status of fetuses during gestation or alterna-
tively progressive degeneration of the placode without the
classic inflammatory components. Authors of some previ-
ous studies have described inflammatory signs in the late
gestational stages of MMC fetuses.13,20 George and Cum-
mings10 have described significant inflammatory infiltrates
in specimens obtained during surgical correction of MMC,
and Hutchins et al.15 have reported that MMC placodes
from stillborn infants have evidence of erosion, but Sival et
al.27 have found only inflammatory tissue on the MMC sur-
face in a 39-week-old newborn. These inflammatory find-
ings in cases of MMCs in humans are difficult to interpret
given that these inflammations can be caused by surgery or
lesions occurring during delivery. The absence of necrosis
in the MMC samples in the present study coupled with vas-
cular proliferation is a finding that argues against the con-
tribution of an ischemic factor for the development of the
MMC placode lesion.

Conclusions

The data on increased vascular density and apoptosis at
the late stages of gestation in MMC mouse fetuses further
support the hypothesis that MMC lesions, at least in part,
could be derived from changes that occur during the last
stages of gestation—namely in response to putative aggres-
sion from external factors. Thus, these findings may pro-
vide an additional rationale for the use of fetal surgery in
the treatment of MMC aimed at placode protection from
aggression by the intrauterine environment during the final
stages of gestation.
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