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Background: Different mutations in the �1A-subunit of
the brain P/Q-type calcium channel gene (CACNA1A) are
responsible for familial hemiplegic migraine (FHM), epi-
sodic ataxia type 2, and spinocerebellar ataxia type 6
(SCA6). Missense and splice site mutations have been
found in FHM and episodic ataxia type 2, respectively,
whereas a CAG repeat in the CACNA1A gene was found
expanded in patients with SCA6.

Objective: To identify the disease causing mutation in
a large family of patients with phenotypes of hemiplegic
migraine with or without cerebellar signs or permanent
cerebellar ataxia without migraine inherited in a domi-
nant manner.

Patients and Methods: We examined 15 patients
from a large family identified through a systematic sur-
vey of hereditary ataxias being conducted in Portugal.
Linkage analysis was performed with CACNA1A gene
markers, and mutation analysis was performed by

single strand conformational polymorphism analysis
and sequencing.

Results: Genetic linkage analysis with CACNA1A intra-
genic markers showed positive LOD scores. The maximal
LOD score was obtained with the polymorphic CAG re-
peat (Zmax=4.47, �=0). By single-strand conformational
polymorphism analysis, a shift in exon 13 of the CACNA1A
gene was detected in all patients. A G-to-A substitution was
then identified, resulting in an arginine-to-glutamine change
at codon 583 of this calcium channel �1A-subunit.

Conclusions: The disease-causing mutation in this fam-
ily was identified, showing that a unique mutation in the
CACNA1A gene causes several phenotypes, including
those of SCA6 and FHM, thus suggesting that SCA6 and
FHM are not only allelic diseases but are the same dis-
order with a large phenotypic variability.
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F AMILIAL HEMIPLEGIC mi-
graine (FHM) is a subtype of
migraine with aura showing
autosomal dominant inheri-
tance. Episodes of FHM are

characterized by some degree of hemipa-
resis occasionally associated with other
symptoms, such as fever, drowsiness, con-
fusion, or coma, which can be prolonged
for days or weeks. Onset usually occurs dur-
ing childhood or adolescence, although later
onset has been reported.1 Permanent neu-
rological signs of the disease are present in
some patients, most often nystagmus and
ataxia. Genetic heterogeneity of FHM has
been established. A significant number of
FHM families show genetic linkage to chro-
mosome 19p13,2 including all those with
cerebellar signs.2-6 Some FHM families with-
out cerebellar signs have been assigned to
chromosome 1q, whereas others are not
linked to any known loci.7

Episodic ataxia is a dominantly in-
herited paroxysmal cerebellar neurologi-

cal disorder characterized by episodes of
cerebellar ataxia, often accompanied by
nausea, vertigo, and headache. Episodic
ataxia type 1 (EA1) presents interictal myo-
kymia during and between episodes due
to mutations in a potassium voltage-
gated channel gene, located on chromo-
some 12.8,9 Patients with episodic ataxia
type 2 (EA2) show interictal nystagmus,
and the disease gene maps to chromo-
some 19p.10 Migraine with or without aura
may be present in some patients from EA2
families.11,12

Spinocerebellar ataxias (SCAs) are
progressive neurodegenerative disorders
characterized by late-onset gait ataxia and
dysarthria. Seven dominantly inherited
SCAs are caused by polyglutamine expan-
sions: SCA1-2, Machado-Joseph disease,
SCA6, SCA7, SCA17, and dentatorubro-
pallidoluysian atrophy.13-23

The gene responsible for FHM, EA2,
and SCA6 encodes an �1A-subunit of the
brain P/Q-type calcium channel and is lo-
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cated on chromosome 19p13. Missense and splice site
mutations have been found in FHM and EA2, respec-
tively, whereas a CAG repeat in the CACNA1A gene was
expanded in patients with SCA6.2,21 A G293R missense
mutation in the CACNA1A gene is also responsible for
progressive cerebellar ataxia.24

To improve knowledge of the underlying mecha-
nism involved in hemiplegic migraine and progressive
cerebellar ataxia, we studied a large family in which
patients presented with phenotypes of either hemiplegic
migraine or progressive cerebellar ataxia, performed
genetic linkage analysis with chromosome 19p13 mark-
ers, and performed mutation screening in the CACNA1A
gene.

METHODS

We studied a Portuguese family ascertained during a syste-
matic, population-based survey of hereditary ataxias and spas-
tic paraplegias, initiated in 1993 and covering half of the Por-
tuguese population (5.6 million people).25 This family
consisted of 17 patients with hemiplegic migraine and/or pro-
gressive cerebellar ataxia in 4 consecutive generations. Fifteen
patients were clinically examined by one of us (P.C., J.B., or
A.T.) (Table 1). Age at onset ranged from 3 to 23 years for
migraine episodes (mean, 13.4±7.2 years) and from 16 to 50
years for cerebellar ataxia (mean, 31.7±11.5 years). The age at
examination varied from 8 to 71 years. Clinical manifestations
were pleomorphic, including episodes of altered consciousness
precipitated by minor head trauma, focal neurological deficits
precipitated or not by minor head trauma, and migraine with-
out aura, besides progressive late-onset cerebellar ataxia in a
few patients. One of these patients (III-3) was studied by brain
magnetic resonance imaging, which showed atrophy of the
cerebellum.

Peripheral blood samples were collected from patients and
their relatives after written informed consent was obtained. Ge-
nomic DNA was obtained from peripheral blood leukocytes by

standard techniques.26 Molecular analyses of genetic markers,
exons, and intronic sequences of the CACNA1A gene were per-
formed by polymerase chain reaction (PCR) amplification us-
ing the published primer sequences.2,21 The PCR was per-
formed with 1µM of each primer, 200µM deoxynucleotides,
1mM magnesium chloride, 10mM Tris (pH 9.0), 50mM po-
tassium chloride, 1 U of Taq polymerase, and 2% formamide
in a final volume of 12.5 µL. The PCR products of markers were
radioactively labeled and analyzed on 6% polyacrylamide gels.
Allele sizes were determined by comparing migration relative
to an M13 sequencing ladder.

Polymorphic markers, within a 4-centimorgan (M) inter-
val containing the CACNA1A gene tel-D19S840-19S1150-
(CAG)n-D19S226-cen, according to the Fondation Jean Daus-
set Centre d’Études des Polymorphismes (Paris, France) data-
base, were selected for linkage analysis. Markers D19S1150 and
the polymorphic CAG repeat are intragenic. Analysis was per-
formed with the LINKAGE27 software program version 5.22.
The disease was considered autosomal dominant with incom-
plete penetrance (95%) and with a disease gene frequency of
0.0001. The PCR products of exons and intronic sequences of
the CACNA1A gene were screened for molecular variants by
single strand conformational polymorphism analysis28 and elec-
trophoresis in �0.5 Mutation Detection Enhancement gels (Bio-
Whittaker Molecular Applications, Rockland, Me) at 4°C. Con-
formational changes were confirmed by sequencing with Thermo
Sequenase cycle-sequencing kit (Amersham Pharmacia Bio-
tech, Uppsala, Sweden). Restriction analysis of exon 13 was per-
formed by PCR amplification, and products were digested with
the BanII restriction enzyme (New England BioLabs, Beverly,
Mass) according to manufacturer instructions.

RESULTS

The size of the CAG repeat, in the 3� end of the CACNA1A
gene, responsible for SCA6 was determined in all 25
subjects available for this study. The repeat size in 12
patients, 9 at-risk individuals, and 4 spouses, ranged from

Table 1. Clinical Features of the Patients

Patient No./
Sex/Age, y

Age at Onset, y
No. of

HM
Episodes
per Year

Duration of HM
Episodes, hHM PCA

Focal Neurological
Deficits Without

Headache

Migraine
Without

Aura

Triggered
Minor Head

Trauma*

Coma or
Impaired

Consciousness

I-2/F/† . . . 50 . . . . . . . . . . . . . . . . . .
II-1/M/† . . . 50 . . . . . . . . . . . . . . . . . .
II-6/F/64 . . . 40 . . . . . . . . . . . . . . . . . .
II-7/M/62 22 40 . . . . . . 22 22 8 8

II-10/F/58 23 23 . . . . . . 23 . . . 3 2
III-1/M/50 . . . 27 . . . . . . . . . . . . . . . . . .
III-3/F/39 . . . 34 . . . . . . . . . . . . . . . . . .
III-5/F/35 . . . 33 . . . . . . . . . . . . . . . . . .
III-6/M/44 . . . 30 . . . . . . 35 35 . . . . . .
III-9/F/29 . . . 25 . . . . . . 24 24 . . . . . .

III-11/F/34 18 18 18 . . . . . . . . . 1 24
III-12/F/31 16 16 16 21 . . . . . . 3 1
III-14/M/24 7 18 18 7 7 7 2 72

IV-1/M/18 13 . . . . . . . . . . . . . . . 6 48
IV-2/M/16 14 . . . . . . . . . . . . . . . 2 48
IV-3/M/16 5 . . . 6 . . . 5 5 1 2
IV-4/M/9 3 . . . 3 . . . . . . . . . 2 12

Abbreviations: Ellipses, absence of the referred symptom; HM, hemiplegic migraine; PCA, permanent cerebellar ataxia.
*Focal neurological deficits precipitated by minor head trauma.
†No neurological examination was performed. Deceased.
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7 to 14 units, which is within the normal allele inter-
val for SCA6. Further screening excluded SCA1,
SCA2, Machado-Joseph disease, SCA7, SCA8,
SCA10, SCA12, SCA17, and dentatorubropallidoluysian
atrophy expansion.

Linkage analysis with polymorphic markers
D19S840, D19S1150, the polymorphic CAG repeat, and
D19S226 gave positive LOD scores (Table 2). The maxi-
mal LOD score was obtained with the intragenic CAG
repeat (Zmax=4.47, �=0). Haplotype construction with
chromosome 19p markers showed a common haplo-
type shared by all patients of this family (Figure 1), ex-
cept patient II-7, in whom a recombination occurred be-
tween the CAG repeat and marker D19S226, located 3
cM from the CACNA1A gene (Fondation Jean Dausset
CEPH database). His affected offspring shared the same
recombined haplotype.

Mutation detection was performed by single strand
conformational polymorphism analysis after PCR am-
plification of each exon and exon-intron boundaries. A
mobility variant was detected in the exon 13 fragment
that showed a 3-band pattern (Figure 2A). By direct se-
quencing, a G-to-A substitution at position 2023 was iden-
tified (Figure 2B). This substitution produces an arginine-
to-glutamine change at codon 583 in the CACNA1A gene.
By restriction analysis with BanII restriction enzyme, this
mutation was excluded in 100 control chromosomes from
the Portuguese general population. After BanII diges-
tion, fragments of 123, 122, and 67 base pairs (bp) were
detected for healthy individuals, whereas in the patients
an additional band of 245 bp was also present, resulting
from the loss of a restriction site on the mutated allele.

COMMENT

In this study, we describe the first family to our knowl-
edge in which patients presented phenotypes of hemiple-
gic migraine with or without cerebellar signs or perma-
nent progressive cerebellar ataxia without migraine due
to a unique missense mutation in the CACNA1A gene.
The disease locus in this family showed strong linkage
to intragenic markers in this gene. By mutation analy-
sis, we identified an R583Q substitution in all available
patients. This mutation had first been described in 2 af-
fected members from a family with hemiplegic migraine
and ataxia.3 We described a large family with 17 pa-
tients who presented with high clinical variability due
to this R583Q mutation.

The �1A-subunit of the P/Q-type calcium channel
gene is composed of 4 homologous domains (I-IV), each
containing 6 putative transmembrane segments (S1-S6)
and a pore-forming segment between S5 and S6.2 The mis-
sense mutation identified in this family is located in the
S4 transmembrane segment of protein domain II, which
is thought to be the voltage sensor of the channel.

Mutation R583Q replaces a conserved, polar, posi-
tively charged arginine by a neutral glutamine, which can
increase hydrophobicity and reduce polarity in this vol-
tage sensor segment. This mutation causes a shift in the
activation and inactivation voltage dependence of the
channel to more negative potentials.29 The hyperpolar-
ization shift increases intracellular calcium levels by al-

tering P/Q-type calcium channel activity at weak depo-
larizations in mutants with this substitution.29 Channel
recovery from inactivation in R583Q mutants is slower,
which can lead to an accumulation of inactivated chan-
nels during rapid depolarizations.29 Another FHM mu-
tation due to an arginine-to-glutamine substitution also
located in the S4 transmembrane segment, but of pro-
tein domain I at codon 192, also causes an excess of in-
tracellular calcium due to altered gating properties.30 The
abnormal calcium influx, mostly during high neuronal
activity, would explain the paroxysmal character of FHM
and the precipitation of episodes by sensory or emo-
tional stimuli.29 Calcium overload causes excessive re-
lease of excitotoxic neurotransmitters such as gluta-
mate, which can lead neurons to apoptotic death.

In this family, the mean age at onset for hemiplegic
migraine symptoms was in the second decade and ap-
proximately 20 years earlier than that for the cerebellar
signs. This onset of migraine symptoms is close to that
reported in other clinical descriptions of FHM due to mu-
tations in the CACNA1A gene.6 The 2 patients previ-
ously described as having mutation R583Q began mi-
graine episodes at 17 and 40 years, respectively, whereas
cerebellar signs were first noticed in both patients when
they were in their 60s.3

Emotional stress was the most frequent triggering
factor of hemiplegic migraine in families with muta-
tions in the CACNA1A gene as described in a previous
study.6 In the present family, patients with hemiplegic
migraine did not refer to emotional stress as a triggering
factor, whereas minor head trauma was referred to in ap-
proximately 4 patients (44%). However, this family is
unique in which cerebellar progressive ataxia was also
triggered by mild head trauma.

Expansion of a CAG repeat in the CACNA1A gene
causes not only SCA6 but also EA2 phenotypes in pa-
tients from the same family.31,32 On the other hand, in a
family described by Yue et al,24 a point mutation in this
gene originates severe progressive ataxia in some pa-
tients and episodic ataxia in others. Moreover, some fami-
lies had members with either hemiplegic migraine accom-
panied by cerebellar signs or episodic ataxia with headache
due to a point mutation in the CACNA1A gene.3,4,33,34 In
this family, we found patients who only had symptoms of
progressive cerebellar ataxia, patients affected by hemiple-
gic migraine only, and patients with both hemiplegic mi-
graine and symptoms of progressive cerebellar ataxia. Thus,
the R583Q mutation causes phenotypes of SCA6 and FHM.
These results, in addition to those referred to herein,31,32

Table 2. Linkage Relationships Between the Disease Locus
and Chromosome 19p13 Markers

Marker

�

Zmax �0.0 0.1 0.2 0.3 .04

D19S840 2.29 1.94 1.43 0.83 0.24 2.29 0.0
D19S1150 2.67 2.20 1.61 0.94 0.29 2.67 0.0
CACNA1Ant2023 2.92 2.40 1.77 1.07 0.35 2.92 0.0

(CAG)n 4.47 3.80 2.95 1.96 0.80 4.47 0.0
D19S226 −7.22 2.69 2.25 1.53 9.62 2.74 0.069
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suggest that EA2, SCA6, and FHM are not only allelic dis-
eases but are the same disorder with a large phenotypic
variability. The presence of several different phenotypes
strongly suggests the involvement of modifying polymor-
phisms in either this or other genes.

Mutations in the �1A-subunit orthologous mouse
gene are responsible for 2 phenotypes: the tottering (tg)
and the leaner (tgla). The tgla mice phenotype presents
severe progressive ataxia caused by a mutation in a
splicing consensus sequence, which gives rise to

CACNA1A aberrant transcripts.35 On the other hand, the
tg mutant mice phenotype is caused by an amino acid
substitution in the pore-forming region of mice �1A pro-
tein domain II.35 This mutant expresses a milder pheno-
type and shows less functional changes.36 The tg and tgla
mutated channels exhibit a reduced calcium influx in Pur-
kinje cells.36-38

In conclusion, the mutation R583Q in the CACNA1A
gene causes a large variety of clinical phenotypes, in-
cluding hemiplegic migraine, permanent ataxia, and coma.
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Figure 1. Pedigree and haplotypes of the described family. Black circles and squares indicate affected individuals with progressive cerebellar ataxia and
hemiplegic migraine; right side black symbols, patients with hemiplegic migraine; and left side black symbols, patients with progressive cerebellar ataxia.
Haplotypes of 4 genetic markers spanning 4 centimorgans within the CACNA1A gene are shown. The additional 2-allele marker CACNA1Ant2023 polymorphism is
also represented. The haplotype that segregates with the disease is boxed, and the inferred haplotypes are bracketed.

A

B

II-3 II-4 II-6 II-7 II-8 II-10 II-11 II-12 II-13 III-1 III-3 III-5 III-6 III-7 III-8 III-9 III-10 III-11 III-12 III-13 III-14 IV-1

III-13 III-10 III-6 III-7

T
T
A
C
G
A
G
C
C

T
T
A
C
G/A
A
G
C
C

Figure 2. Single-strand conformational polymorphism (SSCP) and sequencing of exon 13. A, Polymerase chain reaction products were analyzed on Mutation
Detection Enhancement gel by SSCP. A 3-band pattern shift was detected in all patients and in an at-risk individual. B, Sequencing of exon 13 fragment in 2
patients and 2 healthy relatives. A G-to-A base substitution was detected at the 2023 position, causing an arginine-to-glutamine change in the CACNA1A protein.
Individuals are identified according to the family tree.
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Mutations not only in the pore-forming segments but
also in the voltage sensor transmembrane segments al-
ter the gating properties of neuronal P/Q-type calcium
channels, causing alterations in calcium influx through
neurons.
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