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Coats plus is a highly pleiotropic disorder particularly affecting 
the eye, brain, bone and gastrointestinal tract. Here, we show 
that Coats plus results from mutations in CTC1, encoding 
conserved telomere maintenance component 1, a member 
of the mammalian homolog of the yeast heterotrimeric CST 
telomeric capping complex. Consistent with the observation 
of shortened telomeres in an Arabidopsis CTC1 mutant and 
the phenotypic overlap of Coats plus with the telomeric 
maintenance disorders comprising dyskeratosis congenita, 
we observed shortened telomeres in three individuals with 
Coats plus and an increase in spontaneous gH2AX-positive 
cells in cell lines derived from two affected individuals. CTC1 
is also a subunit of the a-accessory factor (AAF) complex, 
stimulating the activity of DNA polymerase-a primase, the only 
enzyme known to initiate DNA replication in eukaryotic cells. 
Thus, CTC1 may have a function in DNA metabolism that is 
necessary for but not specific to telomeric integrity.

Telomeres comprise long TTAGGG nucleotide repeats and associated 
proteins located at the ends of chromosomes. Telomeres both protect 
the chromosome terminus from unwanted nuclease and DNA repair 
activities and provide a mechanism to compensate for the inability 
of DNA polymerase to replicate the 5′ end of a linear chromosome. 
Telomeric DNA is packaged by a core group of proteins that bind the 
DNA duplex and the 3′ G overhang on the chromosome terminus. 
The associated telomere proteins form a protective cap that pre­
vents the chromosome end from eliciting a DNA damage response. 

Although it is essential to sequester the DNA end from nuclease 
and DNA repair activities for much of the cell cycle, during S phase 
the telomere must be made accessible to telomerase and the DNA 
replication machinery1.

The bone marrow failure syndrome dyskeratosis congenita repre­
sents a clinically and genetically heterogeneous collection of pheno­
types arising from telomeric protein dysfunction. Dyskeratosis 
congenita–associated mutations have been identified in the genes 
encoding DKC1, TERC, TERT, NOP10, NHP2 and TCAB1, which 
belong to the telomerase holoenzyme responsible for maintaining 
telomere length, and a member of the shelterin protein complex 
TINF2, which is responsible for maintaining the structural integrity 
of the telomere. Thus, dyskeratosis congenita is a disorder of telomere 
maintenance and is associated with shortened telomeres2,3.

Coats plus is a rare disorder of which the most characteristic 
features are retinal telangiectasia and exudates (Coats disease), a 
distinctive pattern of intracranial calcification with an associated 
leukodystrophy and brain cysts, osteopenia with a tendency to frac­
tures and poor bone healing, and a high risk of life-limiting gastro­
intestinal bleeding and portal hypertension caused by the development 
of vasculature ectasias in the stomach, small intestine and liver4–9 
(Fig. 1). These extra-neurological problems differentiate Coats plus 
from Labrune syndrome (leukoencephalopathy with calcifications 
and cysts), in which affected individuals otherwise show an identical 
neuroradiological appearance10. Of note, some individuals with Coats 
plus develop sparse, graying hair, dystrophic nails and a normocytic 
anemia that might reflect a degree of bone marrow failure. These latter 
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features are also observed in dyskeratosis congenita. Furthermore, 
individuals with Hoyeraal-Hreidarsson or Revesz syndrome, both  
of which are associated with telomeric shortening, can have  
intracranial calcification and, in the case of Revesz syndrome,  
an exudative retinopathy2.

In view of reports of both male and female affected siblings, we 
considered it most probable that Coats plus was an autosomal reces­
sive trait, although we noted that our collection of ten families fulfill­
ing strict diagnostic criteria (characteristic intracranial calcification 
with white matter changes, exudative retinopathy with telangiectasia 
and fractures with poor bone healing and/or gastrointestinal vas­
cular ectasia) included only one family in which the parents were 
known to be related. Because we were unable to define a disease-
associated locus using SNP arrays (data not shown), we undertook 
whole-exome sequencing of two siblings (F335_P1 and F335_P2) 
and two additional unrelated individuals (F332 and F336) showing 
classical features of Coats plus (Supplementary Table 1). We per­
formed whole-exome capture followed by massively parallel sequenc­
ing. Over 4.8 Gb of sequence was generated for each subject, such 
that >76% of the coding bases of the GENCODE-defined exome 
were represented by at least ten reads (Supplementary Table 2).  
We identified single-nucleotide substitutions and small insertion 
and/or deletion variants using our in-house variant calling pipe­
line. We analyzed the exome variant profiles under a model of a 
rare autosomal recessive disorder. Taking into account difficulties 
in identifying insertion and deletion variants, we looked for genes 
harboring at least one previously unobserved nonsynonymous 
or splice-site substitution or a coding insertion or deletion in the 
same gene in all four individuals, with the same variant(s) required 

in the siblings examined. CTC1 (encoding conserved telomere 
maintenance component 1) was highlighted as the only candi­
date gene when using this strategy. Sanger sequencing confirmed  
the variants in these affected individuals, and all parents tested showed 
appropriate heterozygosity for a single variant. In light of these data, 
we proceeded to sequence an additional nine affected individuals 
from seven families showing typical disease characteristics.

We identified biallelic CTC1 variants that were likely to be path­
ogenic in the affected proband(s) from nine of the ten families  
with Coats plus that were sequenced (Table 1). We also identified  
two CTC1 variants in a Norwegian individual (F319) having exu­
dative retinopathy with a history of recurrent fractures but in 
whom cranial imaging had not been undertaken (and who there­
fore did not fulfill our initial inclusion criteria). In only one family 
with a prior clinical assignment of Coats plus were we unable to 
identify CTC1 variants. In the ten families with presumed biallelic 
mutations, six harbored a nonsense lesion in combination with a 
missense variant, while the consequences of the splice-site vari­
ant seen in F273 and the in-frame deletions observed in F367 and 
F382 are currently unknown. The probands from F342 carried two 
missense variants (c.775G>A and c.2518C>T). Of the 14 distinct 

Table 1  Ancestry, pedigree structure and sequence alterations in individuals with Coats plus

Family Ancestry Tested Nucleotide alterations Exons Amino acid alterations
Parental  
consanguinity

F273 Egyptian 1A, M, F Het. c.2831dupC | Het. c.3011+4A>C 17 | intron 18 p.His945Serfs*56 | splice donorb No

F319 Norwegian 1A Het. c.721C>T | Het. c.2923A>G 5 | 17 p.Gln241* | p.Arg975Gly No

F332a English 1A Het. c.724_727delAAAG | Het. c.2959C>T 5 | 18 p.Lys242Leufs*41 | p.Arg987Trp No

F335_P1a Scottish 2A Het. c.724_727delAAAG | Het. c.2959C>T 5 | 18 p.Lys242Leufs*41 | p.Arg987Trp No

F335_P2a Scottish 2A Het. c.724_727delAAAG | Het. c.2959C>T 5 | 18 p.Lys242Leufs*41 | p.Arg987Trp No

F336a English 1A Het. c.724_727delAAAG | Het. c.2611G>A 5 | 15 p.Lys242Leufs*41 | p.Val871Met No

F339 Canadian 2A – – – Yes (third cousins)

F340 European-American 1A Het. c.19C>T | Het. c.2959C>T 1| 18 p.Gln7* | p.Arg987Trp No

F342_P1 English and Italian 2A, M, F Het. c.775G>A | Het. c.2518C>T 5 | 15 p.Val259Met | p.Arg840Trp No

F342_P2 English and Italian 2A, M, F Het. c.775G>A | Het. c.2518C>T 5 | 15 p.Val259Met | p.Arg840Trp No

F345 Swiss and French 1A Het. c.724_727delAAAG | Het. c.1507G>C 5 | 9 p.Lys242Leufs*41 | p.Gly503Arg No

F367 African and European 1A, 1U, M Het. c.859C>T | Het. c.2954_2956delGTT 6 | 18 p.Arg287* | p.Cys985del No

F382 Portuguese 1A, 1U, M, F Het. c.2954_2956delGTT |  
Het. c.3586_3606del

18 | 23 p.Cys985del | p.Leu1196_ 
Arg1202del

No

A, affected; U, unaffected; M, mother; F, father; Het., heterozygous.
aUsed in the primary exome sequencing screen. bPredicted by SplicePort to significantly reduce the strength of the canonical donor site.

a b

d e

cFigure 1  Features of Coats plus. (a) Cranial axial computed tomography 
(CT) scan showing characteristic coarse and asymmetrically distributed 
calcification. Note the cyst in the left frontal cortex. (b) Cranial axial 
T2 magnetic resonance imaging (MRI) scan taken at similar level to a, 
highlighting the asymmetric, high signal of the deep and subcortical 
white matter. (c) X ray of knee illustrating mixed lytic and sclerotic lesions 
that are mainly metaphyseal. (d) Retinal photograph showing retinal 
microangiopathy. Scale bar, ~2.5 mm. (e) Endoscopy image showing 
areas of erythema, which represent vascular ectasia involving the gastric 
antrum. Scale bar, ~2.5 cm. The neuroradiological features of Labrune 
syndrome (leukoencephalopathy with calcifications and cysts) are 
identical to those in a and b.
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mutations observed, three were seen in 
more than one family (c.724_727del, four 
families; c.2954_2956del, two families; 
c.2959C>T, three families) (Table 1).

Reflecting apparently rapid evolutionary 
divergence, some telomeric proteins show 
poor interspecies conservation11. The human 
CTC1 protein sequence shares only 69% iden­
tity with mouse, 30% with zebrafish and 14% 
with Arabidopsis. Not unexpectedly, although 
the residues affected by nonsynonymous 
missense changes are well conserved across 
mammals, ClustalW alignment showed a  
relatively low level of residue conservation 
in other species (Supplementary Fig. 1). 
Related to this, 15 of the 20 CTC1 mutations 
we observed occurred in one of four exons 
(Fig. 2). However, although we suspect that this clustering is of func­
tional significance, it is difficult to model the domain structure of 
CTC1 because of the high degree of sequence divergence from other 
proteins12. Of note, none of the 14 distinct, putatively pathogenic 
CTC1 variants have been annotated as polymorphisms in dbSNP. 
Moreover, 13 of these variants were not seen in 1,730 European-
American and African-American subjects collated in the Exome 
Variant Server database, and the c.19C>T transition seen in F340 was 
recorded in only 1 of 1,497 European-Americans (the same ancestral 
background as the affected proband).

Cerebroretinal microangiopathy with calcifications and cysts 
(CRMCC) is a term coined to encompass the Coats plus and 
Labrune syndrome phenotypes, on the grounds that the neuro­
radiological characteristics of these two disorders are essentially 
identical7,8. Thus, we sequenced CTC1 in a collection of probands 
from 21 families showing stereotypical intracranial calcification 
and white matter changes in the absence of extra-neurological fea­
tures, but we were unable to identify any likely pathogenic variants 
(Supplementary Table 3).

Recently, it has been shown that CTC1 interacts with STN1 
and TEN1 to form the mammalian homolog of the yeast hetero­
trimeric Cdc13-Stn1-Ten1 (CST) telomeric capping complex13,14. 
Consequently, we also undertook Sanger sequencing of OBFC1 
(STN1) and TEN1 in our collection of individuals with Labrune 
syndrome and in the proband with Coats plus in whom we identified 
no CTC1 mutations. Again, sequencing identified no variants of likely 
pathogenic significance (Supplementary Tables 3 and 4).

In view of the finding of shortened telomeres in an Arabidopsis 
CTC1 mutant13 and the phenotypic overlap between Coats plus and 
the telomeric maintenance disorders comprising dyskeratosis con­
genita, we measured telomere lengths15 in F332, F367 and F382 at the 
ages of 20, 20 and 3 years, respectively. Samples were also available 
from the mother and heterozygous brother of F367 and from both 
parents of F332 and F382. Testing showed markedly shortened telo­
meres in lymphocytes and granulocytes from the peripheral blood 

of F367 and F382 and telomeric lengths at the lower range of normal 
in the heterozygous relatives of these individuals (Fig. 3). In F332, 
telomere length was recorded on the first percentile for age in both 
lymphocytes and granulocytes, with parental telomere lengths also 
at the lower range of normal.

Considering the enrichment for CTC1 variants in individuals 
with a predefined clinical and radiological diagnosis, we are confi­
dent that mutations in CTC1 represent the major cause of Coats plus. 
The observation of a single family, F339, in whom we were unable to 
identify mutations suggests possible genetic heterogeneity or a pheno­
copy. Of note, the parents of this child are related as third cousins, but 
there was no evidence of homozygosity around any of the three CST 
protein–encoding genes (data not shown).

Although Coats plus is rare and inherited as an autosomal recessive 
trait, none of the ten mutation-positive families we identified are con­
sanguineous. In keeping with this, all of the affected individuals in these 
families are compound heterozygotes for two different CTC1 variants 
(with six of ten families harboring a nonsense and missense mutation in 
combination). This observation helps to explain our inability to define 
a disease locus using autozygosity mapping and leads us to speculate 
that biallelic null mutations might be incompatible with development, 
whereas homozygosity for (most) missense variants may be associated 
with a normal phenotype or a different pathogenic one.

We and others have noted the highly stereotyped neuroradiological 
features common to Coats plus and Labrune syndrome, leading to the 
introduction of the umbrella term CRMCC. However, a recent analysis of 
our cohort (data not shown) suggested that the two groups might be dis­
tinguished according to the presence or absence of extra-neurological fea­
tures, as, in our experience, individuals without retinal abnormalities have 
never shown any skeletal or gastrointestinal manifestations over extended 
time periods. The genetic data presented here support this conclusion, 
indicating that Coats plus and Labrune syndrome are not allelic.

CTC1 comprises 23 exons and encodes a 134.5-kDa protein. Because 
of rapid evolutionary divergence, the human CST complex was only 
defined recently13,14. This led to the recognition that mammalian 
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Figure 2  Schematic representation of the 
human CTC1 gene. (a) CTC1 spans 23,273 bp 
of genomic sequence on chromosome 17p13.1 
(8,128,140–8,151,413). Neighboring genes 
are also shown. Tel., telomere; cen., centromere. 
(b) Position of identified mutations within  
the CTC1 gene. Protein alterations are given  
in brackets.
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CTC1 is identical to one subunit of α-accessory factor (AAF-132), 
whereas a second subunit of AAF (AAF-44, also known as OBFC1) 
corresponds to mammalian STN1 (ref. 16).

The AAF complex stimulates the activity of DNA polymerase-α  
primase, the only enzyme known to initiate DNA replication in 
eukaryotic cells17. AAF functions by binding single-stranded DNA 
(ssDNA) and enhancing DNA polymerase-α primase association with 
a DNA template. The finding that human CTC1-STN1 modulates 
DNA polymerase-α primase activity indicates that, as for budding 
yeast CST, mammalian CTC1-STN1 provides a link to the lagging 
strand replication machinery. Thus, it can be proposed that a con­
served function of CST is to promote efficient priming of telomeric 
C-strand synthesis. In addition, given the role of Cdc13 in budding 
yeast, another conserved function of the CST complex could be to 
regulate telomerase. All of these processes may contribute to main­
taining telomeric DNA integrity and could couple the conventional 
replication process to telomere-specific priming and telomerase-
dependent elongation steps18 (see Supplementary Fig. 2).

Experiments in budding yeast and Arabidopsis have identified  
a functional role for the CST complex in maintaining telomeric structural 
integrity, and our finding of shortened telomeres in individuals with CTC1 
mutations confirms an important role for the CST complex in mammalian  
telomere metabolism. However, the CST complex only partially localizes 
to telomeres and binds to ssDNA in a sequence-independent manner 
(through the oligonucleotide/oligosaccharide-binding (OB) fold domains 
predicted to be present in all three subunits)13,14. Of note, knockdown 
of CTC1 in human cells resulted in an increase in the number of γH2AX 
foci not confined to telomeres13. Although we did not study chromo­
somal localization, we observed a significant increase in spontaneous 
γH2AX-positive cells in cell lines from the two affected individuals (F332 
and F382) that we were able to examine (P = 0.0001 and 0.0007, respec­

tively), indicative of an ongoing DNA damage response (Supplementary 
Fig. 3). Consequently, it is possible that the CST complex may have a more  
general role in DNA replication and repair that is frequently required by 
but not specific to telomeres.

Our interest in Coats plus and Labrune syndrome derives from 
ongoing research into disorders associated with the presence of intra­
cranial calcification. As such, our cohort is biased toward individuals  
with obvious neurological involvement. It is possible then that 
the phenotypic spectrum associated with CTC1 mutations may be 
broader than that presented here. Of note, phenotypic overlap with 
dyskeratosis congenita was appreciated at the time of the first clinical 
description of Coats plus, leading us to speculate that cohorts of indi­
viduals with a diagnosis of dyskeratosis congenita may be enriched for 
pathogenic variants in CTC1, OBFC1 (STN1) and/or TEN1.

URLs. National Heart, Lung, and Blood Institute (NHLBI) Exome 
Sequencing Project (ESP) Exome Variant Server, http://evs.gs.washington.
edu/EVS/; SplicePort, http://spliceport.cs.umd.edu/; GENCODE,  
http://www.gencodegenes.org/; ClustalW, http://www.ebi.ac.uk/tools/
msa/clustalw2/; Primer3Plus, http://www.primer3plus.com/.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturegenetics/.

Accession codes. Nucleotide sequences are available from Entrez 
PubMed for human CTC1 (NM_025099.5), human OBFC1 (STN1) 
(NM_024928.4) and human TEN1 (NM_001113324.2), as is the 
human CTC1 protein sequence (NP_079375.3).

Note: Supplementary information is available on the Nature Genetics website.
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Figure 3  Telomere length analysis in subsets of leukocytes as measured by automated multicolor flow-FISH. Telomere lengths were assessed in 
lymphocytes and granulocytes from F332, F367 and F382 at the ages of 20, 20 and 3 years, respectively, and from unaffected family members 
harboring a single CTC1 mutation. Telomere lengths were markedly shortened in two affected individuals (F367 and F382) and were at the lower range 
of normal in their heterozygous relatives. In F332, telomere length was recorded on the first percentile for age in both lymphocytes and granulocytes, 
with parental telomere lengths at the lower range of normal (being less than the first percentile in the father in granulocytes). The reference range for 
telomere length over age in percentiles was derived from telomere length analyses in lymphocytes and granulocytes from 400 healthy individuals.
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ONLINE METHODS
Subject ascertainment. Subjects were ascertained internationally through col­
leagues in pediatric neurology and clinical genetics. Written informed consent 
was obtained for all participants. The study had full ethical approval from the 
Leeds Multicentre Research Ethics Committee (07/Q1206/7).

Exome sequencing. Genomic DNA was extracted from lymphocytes from 
affected individuals, parents and siblings by standard techniques. For whole-
exome analysis, targeted enrichment and sequencing were performed on 
DNA extracted from peripheral blood from four individuals (F332, F335_P1, 
F335_P2 and F336). Enrichment was performed using the SureSelect Human 
All Exon Kit v.1 (Agilent) for the Applied Biosystems SOLiD system. Emulsion 
PCR (ePCR) was conducted on the resultant sample library, and products were 
then sequenced on a SOLiD 4 sequencer (Life Technologies). Sequence data 
were mapped using SOLiD Bioscope software (Life Technologies), with the 
hg18 human genome as a reference. SNPs were called using the diBayes tool 
in the BioScope software suite with the medium stringency setting and then 
filtered to remove those SNPs with less than 5× coverage. A total of 4.8 Gb of 
sequence mapped uniquely to the hg18 genome reference, with 76.4% of the 
targeted exome covered at tenfold or higher (Supplementary Table 2).

Sanger sequencing. Mutation analysis was performed by direct sequencing 
of purified genomic PCR products using the BigDye Terminator v3.1 cycle 
sequencer system (Applied Biosystems). Primers were designed for indivi­
dual exons and intron boundaries of CTC1, OBFC1 (STN1) and TEN1 using 

Primer3Plus and the reference sequences of each gene (primer sequences are 
provided in Supplementary Table 5; details of experimental conditions are 
available on request).

Telomere length measurement. Telomere length was measured in white blood 
cell subsets by automated multicolor flow-FISH analysis15 of granulocytes, 
CD45RA+ lymphocytes (naive T cells), CD45RA− lymphocytes (memory  
T cells), CD20+ lymphocytes (B cells), CD57+ lymphocytes (NK/NKT cells) 
and total leukocytes, and compared with age-matched controls. ‘Markedly 
short’ was defined as less than the first percentile for age.

FACS for measurement of gH2AX positivity. Lymphoblastoid cells from 
two affected individuals (F332 and F382) and three control individuals were 
seeded at a density of 5 × 105 cells per well of a six-well plate (Sigma) and 
maintained at 37 °C overnight. Cells were pelleted and washed in PBS and 
fixed in 500 µl of 1× Fixation Solution (Millipore γH2AX Phosphorylation 
Assay Kit) for 20 min at 4 °C. Cells were pelleted and washed in 1 ml of 
PBS, pelleted again and resuspended in 50 µl of 1× permeabilizing solution  
(Millipore γH2AX Phosphorylation Assay Kit), and 3.5 µl of appropri­
ate antibody was added (FITC-conjugated antibody to γH2AX or control 
FITC-conjugated rabbit IgG) and incubated at 4 °C for 20 min. We added 
100 µl of 1× washing solution to each sample, and cells were pelleted and  
resuspended in 400 µl of PBS. Samples were analyzed using the BD 
Biosciences FACSCalibur using CellQuest Pro software, and data were  
analyzed using FlowJo.
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