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Changes of soluble CD40 ligand in the progression
of acute myocardial infarction associate to
endothelial nitric oxide synthase polymorphisms
and vascular endothelial growth factor but not to
platelet CD62P expression
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Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial
dysfunction and angiogenesis. However, whether sCD40L could exert that influence
in endothelial dysfunction and angiogenesis after injury in acute myocardial infarc-
tion (AMI) patients remains unclear. In the present study, we evaluated the associa-
tion of sCD40L with markers of platelet activation, endothelial, and vascular function
during a recovery period early after AMI. To achieve this goal, the time changes of
soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were
assessed in AMI patients and correlated with endothelial nitric oxide synthase
(eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations,
and platelet expression of P-selectin (CD62P). The association of soluble form,
platelet-bound, andmicroparticle-boundCD40L with CD62P expression on platelets,
amarker of platelet activation, was also assessed to evaluate the role of CD40L in the
thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of
CD40L in vascular dysfunction. This work shows for the first time that time changes of
sCD40L over 1 month after myocardial infarct onset were associated with G894T
eNOS polymorphism and with the VEGF concentrations, but not to the platelet
CD62P expression. These results indicate that, in terms of AMI pathophysiology, the
sCD40L cannot be consider just as being involved in thrombosis and inflammation
but also as having a relevant role in vascular and endothelial dysfunction. (Transla-
tional Research 2015;166:650–659)
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Abbreviations: AMI ¼ acute myocardial infarction; APC ¼ allophycocyanin; Asp ¼ aspartate;
cTNT ¼ cardiac troponin; CAD ¼ coronary artery disease; CRP ¼ C-reactive protein; CK ¼ cre-
atine kinase; eNOS ¼ endothelial nitric oxide synthase; ELISA ¼ enzyme-linked immunosorbent
assay; FITC ¼ fluorescein isothiocyanate; FAU ¼ fluorescence arbitrary units; Glu ¼ glutamic
acid; LME ¼ linear mixed effects model; MPs ¼ microparticles; NO ¼ nitric oxide; NT-proBNP ¼
N-terminal pro-brain natriuretic peptide; PCI ¼ percutaneous coronary intervention; PBS ¼
phosphate-buffered saline; PE ¼ Phycoerythrin; CD62P ¼ P-selectin; sCD40L ¼ soluble CD40
ligand; SA ¼ stable angina pectoris; VEGF ¼ vascular endothelial growth factor
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INTRODUCTION

CD40L is a signaling molecule,1-3 implicated in
thrombosis and inflammatory response to vascular
injury.4-6 The relationship of CD40L with coronary
artery disease (CAD) has been established,2,7-9 as also
its implication in endothelial dysfunction.10-14

However, whether the soluble CD40 ligand (sCD40L)
could also influence endothelial dysfunction after
acute myocardial infarction (AMI) injury remains
unclear.
In vitro studies have shown that sCD40L inhibits

angiogenesis and also growth factor–induced human
umbilical vein endothelial cell migration, which is
achieved by generation of free radicals and inhibition
of nitric oxide (NO) production.10 The authors hypothe-
sized that the sCD40L could inhibit reendothelialization
of an injured vessel, thereby affecting the restenosis.10

Research efforts have been directed toward the
finding of biomarkers to assess endothelial function
and its correlation with AMI. Genetic indicators, such
as the polymorphisms of endothelial NO synthase
(eNOS) gene,15,16 may provide insight into endothelial
cells function.
Vascular endothelial growth factor (VEGF) is a well-

known promoter of angiogenesis and an endogenous
regulator of endothelial integrity.17-19 The prognostic
information provided by VEGF independently of other
markers likely points toward an important role for
angiogenesis in regulating myocardial repair and
reperfusion after AMI.17,20

Current opinion suggests a differential role of CD40L
(both soluble and membrane-bound forms, which
includes microparticles in circulation)21 at different
stages of CAD, contrasting with the traditional view of
an unvarying function of the CD40L-CD40-sCD40L
system interactions in the disease.6 In that perspective,
no clear indication of the interplay of CD40Lwith endo-
thelial and vascular function markers and their impor-
tance in the pathophysiology of the AMI has been
obtained so far in human clinical studies. Therefore,
the aim of this study was to evaluate the relationship
of sCD40L with markers of platelet activation, endothe-
lial and vascular function during an early recovery
period after AMI. To achieve this goal, the time changes
over 1 month of sCD40L levels were assessed in AMI
patients and correlated with the CD40L expressed on
platelets and microparticles, CD62P expression on
platelets, and eNOS polymorphisms VEGF concentra-
tions. The association of soluble form, platelet-bound,
and microparticle-bound CD40L with CD62P expres-
sion on platelets was assessed to evaluate the role of
CD40L in thrombosis, whereas the association with
eNOS and VEGF was to evaluate the role of CD40L
in vascular dysfunction. The sCD40L serum concentra-
tions were measured and compared with the expression
of CD40L on platelets and microparticles. Healthy
volunteers (CTR) and longitudinally assessed stable
angina (SA) patients were used as predictors of altered
endothelial regulation in AMI.
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Table I. Baseline demographic and clinical characteristics of the study population

CTR (n 5 63) SA (n 5 48) AMI (n 5 89)

Sex (f/m) 23/40 13/35 21/67
Age (y) 55 (47–65) 63 (57–73) 63 (54–72)
BMI (kg/m2) 25 (24–28) 28 (25–29) 27 (24–30)
Waist perimeter (cm) 86 (82–94) 96 (91–102) 99 (89–106)
Genotyping polymorphisms

eNOS G894T (GG/T), % 38/62 37/63 38/63
eNOS T786C (TT/C), % 43/57 50/50 28/72*

Risk factors and comorbidity
Hypertension, n (%) 18 (29) 37 (77)† 58 (65)†

Hyperlipidemia, n (%) 29 (46) 35 (73)† 47 (53)*
Diabetes, n (%) 2 (3) 16 (33)† 35 (39)†

Family history of CAD, n (%) 5 (8) 12 (25)† 8 (9)
Smoking, n (%) 4 (6) 4 (8) 39 (44)*,†

Medication
Pre-event medication

Without previous treatment, n (%) 46 (73) 5 (10)† 27 (30)*,†

Aspirin, n (%) 4 (6) 32 (67)† 41 (46)*,†

ACE inhibitors, n (%) 9 (14) 24 (50)† 30 (34)†

b blockers, n (%) 3 (5) 22 (46)† 26 (24)*,†

Statins, n (%) 10 (16) 37 (77)† 35 (39)*,†

Postevent medication
Aspirin, n (%) — 28 (58) 77 (87)
ACE inhibitors n (%) — 12 (25) 64 (72)*
GP IIb/IIIa inhibitors, n (%) — 24 (50) 78 (88)*
ADP-receptor inhibitors, n (%) — 4 (8) 44 (49)*
b blockers, n (%) — 8 (17) 60 (67)*
Statins, n (%) — 26 (54) 72 (81)

Abbreviations: ACE, angiotensin-converting enzyme; ADP, adenosine diphosphate; AMI, acute myocardial infarction; BMI, body mass index;
CAD, coronary artery disease; GP IIb/IIIa, glycoprotein IIb/IIIa; SA, stable angina.
Data expressed as median and interquartiles (Q25–Q75), except when otherwise indicated.
*P , 0.05 vs SA group.
†P , 0.05 vs CTR group.
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MATERIALS AND METHODS

Study groups. A total of 200 subjects were recruited
from cardiology service and from the outpatient clinic
of cardiovascular risk in Santa Marta Hospital (Lisbon,
Portugal; Table I): (1) 89 AMI patients (with
documented ST-elevation changes, creatine kinase
[CK] .3 times normal and troponin positive)
undergoing percutaneous coronary intervention (PCI)
as reperfusion therapy were enrolled during the first
6 hours of the onset of chest pain (hospital admission);
(2) 48 age- and sex-matched patients with SA pectoris,
presenting typical chest discomfort and/or positive
stress tests, which were submitted to coronary
angiography; and (3) 63 healthy volunteers (CTR), with
negative stress test, absence of any history of coronary
disease, life-threatening diseases, or any other disease
or condition that would impair compliance. These
volunteers were not submitted to coronary angiography.
Patients’ exclusion criteria included age .85 years;

significant comorbidities as peripheral artery disease
or carotid artery disease; known antecedents of malig-
nant, infectious, and concurrent inflammatory diseases;
chronic renal insufficiency; and previous myocardial
infarction during the previous 5 years.
Core laboratory blood analysis for conventional tests

and clinical chemistry, including N-terminal pro-brain
natriuretic peptide, C-reactive protein, CK, and cardiac
troponin were measured in all patients and controls
(Table II).

Study protocol and blood sampling. The AMI and SA
patients were monitored at 2 time points: day 0 before
PCI intervention and the administration of therapy,
such as antithrombotic agents and IIb/IIIa inhibitors;
1 month after PCI. This protocol was designed to eval-
uate AMI patients at the acute phase of AMI (rupture
and coronary occlusion) and at the early recovery phase
(left ventricular remodeling), 1 month after. Previous
studies indicated that the influence of medication in
the values of inflammatory markers lasted for several
days after PCI.22,23 Therefore, patients’ assessment at
1-month evaluation represents the period of time for
medication and clinical stabilization.

http://dx.doi.org/10.1016/j.trsl.2015.07.006


Table II. Biochemical data in the studied population groups

CTR

SA AMI

Admission 1 month Admission 1 month

Inflammatory markers
CRP (mg/dL) 3.1 (1.2–3.5) 3.2 (1.7–5.9) 1.4 (1.1–4.1) 6.3 (3.2–12) 3.2* (3.1–6.7)
sCD40L (ng/mL) 4.1 (2.2–6.5) 1.1† (0.68–2.2) 5.6†,‡ (3.0–8.5) 1.3† (0.73–3.4) 2.0*,† (0.79–3.3)

Vascular function marker
VEGF (pg/mL) 419 (212–758) 18† (1.1–295) 293‡ (192–442) 48† (0.27–266) 275* (161–493)

Cardiac function markers
CK (U/L) 111 (80–195) 82 (58–107) 97 (35–159) 315†,§ (113–1062) 79* (65–118)
cTnT (ng/mL) ,0.01i ,0.01i ,0.01i 0.33†,§ (0.07–2.4) ,0.01i

NT-proBNP (pg/mL) 38 (16–64) 98 (51–247) 155 (55–424) 356†,§ (145–1577) 637* (618–1404)

Abbreviations: AST, aspartate transaminase; AMI, acute myocardial infarction; cTnT, cardiac troponin T; CRP, C-reactive protein; CK, creatine

kinase; NT-proBNP, N-terminus pro-B-type natriuretic peptide; SA, stable angina; sCD40L, soluble CD40 ligand; VEGF, vascular endothelial
growth factor.
Data are expressed as median and quartiles (lower 25% quartile–upper 75% quartile). N.D.
*P , 0.05 LME for AMI group variations over time.
†P , 0.05 vs Control group.
‡P , 0.05 LME for SA group variations over time.
§P , 0.05 vs SA group at hospital admission.
iValues below detection limit.
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The study was conducted according to the principles
expressed in the Declaration of Helsinki. The Ethical
Committee Board of Centro Hospitalar de Lisboa Cen-
tral approved the investigation and the protocol. All pa-
tients and volunteers enrolled signed a written consent
following a full explanation of the study.
Blood samples were drawn into blood collection tubes

without additives. For AMI and SA patients at hospital
admission, the blood was collected immediately before
PCI. For the following time point and for healthy volun-
teers (CTR), fasting blood samples were collected in
early morning to avoid possible circadian variations.24

The serum was collected after centrifugation (500 g
for 10 minutes) within 15 minutes after sampling. Ali-
quots were stored at 280�C until further analysis (no
longer than 6 months). Samples were thawed only once.

Soluble CD40L determination. Concentrations of
sCD40L were measured in serum by enzyme-linked
immunosorbent assays (ELISA) commercial kit (R&D
Systems). Each sample was measured in duplicate.
The intra-assay variation among the duplicates for all
samples was ,10%, and concentrations were
expressed in ng/mL.
The choice of serum todetermine sCD40LbyELISA in

this study had into consideration published data,25,26 and
exploratory analysis performed by us. Ahn et al25 demon-
strated that as long as preanalytical conditions were kept
,4�Cneither blood origin (venous and arterial) nor blood
fraction could significantly modify analytical results.
However,Varo et al26 reported higher sCD40Lconcentra-
tions in serum than those in plasma. One of the sources
contributing to higher serum levels is platelets, therefore,
poor-platelet plasma is recommended.25
We have performed sCD40L determinations on
random blood samples (n 5 42) on both serum and
poor-platelet plasma fractions. For almost 40% of the
analyzed samples (n 5 15), sCD40L concentrations in
poor-platelet plasma were below the detection limit of
the ELISA assay, contrasting with none in serum.
Therefore, in the present study, the blood fraction
used was serum. To safeguard sCD40L, stability tem-
perature was kept at 4�C in all steps after blood collec-
tion, that is, transport and processing.

Platelet activation. Platelet activation was assessed by
flow cytometry in whole blood samples within 3 hours
after sampling as described previously.27 Blood was
drawn into sodium-citrated blood collection tubes
under minimal tourniquet pressure to avoid artifact
platelet activation. A fluorescein isothiocyanate-
conjugate anti-CD42a antibody (BD) was used as an
activation-independent marker of platelets. The
expression of P-selectin was assessed by
allophycocyanin-conjugate anti-CD62P antibody
(BD). Platelets were identified on the basis of size and
of fluorescein isothiocyanate-CD42a binding.

Microparticles identification. Microparticles were
identified using an adjustment to the method previously
described by Bernal-Mizrachi et al.28 In brief, platelet-
poor plasma, obtained by double whole blood
centrifugation, was incubated with fluorochrome-
labeled antibodies, phosphate-buffered saline (PBS)
was added, and the sample was set to flow cytometry.
Microparticles were identified on the basis of size
defined by scattered light properties using platelets as
an internal individual size standard in each sample
(Fig. 1).29 The flow cytometer calibration and the

http://dx.doi.org/10.1016/j.trsl.2015.07.006


Fig 1. Identification of microparticles. (A) Representative flow cytometry zebra plot (contour and density)

showing the region within elliptic area ‘‘Microparticles’’ localized below ‘‘Platelets,’’ defined by scattered light

properties (FSC vs SSC). (B) Representative flow cytometry fluorescence histogram showing the surface

CD40L-positive microparticles gated on microparticles region. (C) Box-and-whisker plot of the percentage of

CD40L-positive microparticles for controls, SA, and AMI patients. Plots depict the dispersion of the numeric

values (box, 25%–75% interquartile; horizontal line, median; whiskers, minimum and maximum values). AMI,

acute myocardial infarction; FSC, forward scattered light; MPs, microparticles; PE, phycoerythrin; SA, stable

angina; SSC, side scattered light.
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microparticles gate were set using polystyrene
microspheres standards (Bangs Laboratories, Inc.) of
0.4 mm and 0.69 mm of nominal diameter.30,31 The
microparticles gate was positioned below platelets,
which were then used in each sample as a size internal
control. Only the events falling in this gate were
analyzed for fluorescence.

CD40L expression on platelets and microparticles.

CD40L surface expression on platelets and microparti-
cles was assessed by flow cytometry using PE-CD154
(BD).

Flow cytometry analysis. Flow cytometry was per-
formed on a FACSCanto (BD), and data processed
with FlowJo 7.6.5 (Tree Star Inc.). All samples were
analyzed using the same voltage settings, and the instru-
ment performance was daily monitored using BD Cali-
BRITE beads (BD). After correction for nonspecific
binding, CD154 and CD62P expression were presented
in fluorescence arbitrary units. Microparticles data were
expressed in percentage of positive events.

Endothelial and vascular function markers.

Polymorphisms G894T and T786C of eNOS protein
were analyzed as markers of endothelial function.
Genomic DNA was extracted from peripheral blood
cells collected in ethylenediaminetetraacetic acid
(EDTA) tubes using a PureLink Genomic DNA Mini
Kit (Invitrogen). A region containing each polymor-
phism32 was amplified by PCR using 1 mg of DNA
and 1 mM of specific primers. Amplicons were then
digested with specific restriction enzymes, and the
digested fragments were visualized in a 2% ethidium
bromide agarose gel.
The marker of vascular function chosen in this study

was VEGF. Serum concentrations of this growth factor

http://dx.doi.org/10.1016/j.trsl.2015.07.006
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were measured by specific ELISA assays (designed
to measure human VEGF-A) using the Quantikine
Human VEGF kit (R&D Systems) according to the
manufacturer’s protocol. Each sample was measured
in duplicate; the intra-assay variation among the dupli-
cates for all samples was ,10%. The concentrations of
VEGF were expressed in pg/mL.

Statistical analysis. Data were summarized as median
and interquartiles 25% and 75% (Q25–Q75) for contin-
uous variables and as proportions for categorical vari-
ables. Noncontinuous variables were analyzed using a
2 3 2 table and Fisher exact test. General linear model
ANOVA with Bonferroni correction was used for
continuous variables.
In AMI and SA groups, bloodmarkers were measured

in the same patient repeatedly in 2 different time points.
Therefore, the set of observations are intercorrelated,
and appropriate statistical methods were mandatory.
A linear mixed effects (LMEs) model was applied.
This statistical model describes the longitudinal varia-
tions of each patient allowing to estimate differences
in average slopes between baseline (day 0) and the other
time point, giving a measure of the variation of each
blood marker over time. To apply LME, a logarithm
transformation was applied to sCD40L, CD40L expres-
sion on platelets and microparticles, C-reactive protein,
cardiac troponin, N-terminal pro-brain natriuretic pep-
tide, aspartate transaminase, and CK, whereas a square
root transformation was applied to VEGF.
The LME model was also used to assess the correla-

tions between sCD40L concentrations and CD40L
expression over time and other blood markers, demo-
graphic and clinical characteristics, and ongoing therapy.
Linear regression analysis was used to estimate the

effect of confounders (risk factors, previous medication,
comorbidities, etc) on sCD40L levels for each popula-
tion and each evaluation point. Each model was crossva-
lidated with the baseline model.
Values of P ,0.05 were considered statistical signif-

icant. The calculations were performed using SPSS
(version 22.0) and R (version 2.11.1) software.
RESULTS

Soluble concentrations of CD40L. To investigate the
sCD40L changes over time in AMI patients, the concen-
trations were also measured in SA and CTR groups.
Soluble CD40L concentrations were reduced in AMI
and SA patients at admission compared with CTR
(Table II). In AMI and SA patients, sCD40L
concentrations increased to 1 month.
The models of the average time changes of sCD40L

were highly significant in both AMI (F 5 5.3;
P 5 0.01) and SA (F 5 10.1; P 5 0.003). Although the
sCD40L longitudinal increase was significant in both
AMI and SA patients, the time-changes profiles were
different (F 5 13.5; P 5 0.001), being the rise greater
in SA patients that reach values similar to CTR (Table II).
In the 3 groups studied (AMI, SA and CTR), the con-

centrations of sCD40L measured at admission were not
significantly influenced by demographics, risk factors,
and comorbidities. In addition, these factors did not
modify the average changes of sCD40L over 1 month
in AMI and SA groups.
The medication intake is summarized in Table I. The

percentage of variability of sCD40L associated to medi-
cation at each evaluation point was relatively small in
AMI patients and only significant at D30 5 34.8%,
P 5 0.02, being statins the major contributing factor
exerting a positive effect on sCD40L levels. This
weak influence of medication in sCD40L at discrete
time points in AMI group did not reach significance
when introduced in the regression model of sCD40L
changes over time. Therefore, the average changes of
sCD40L through time in AMI and SA patients were
not altered by medication intake.

CD40L expression on platelets and
microparticles. Platelets continue to be reported as the
major source of sCD40L11,33 in spite previous studies
had shown that platelets do not contain enough amount
of sCD40L to be responsible for the circulating
sCD40L.34 Recently studies considered sCD40L as a
pool of free soluble and microparticle-bound forms.21

In this perspective, the CD40L expression on platelets
and microparticles was assessed.
At hospital admission, the platelet CD40L expression

inAMI patientswas similar to that in SA andCTR groups
(Fig 2). However, the values increased significantly to 1
month on AMI patients (F5 6.2; P5 0.03; Fig 2).
The percentage of microparticles expressing CD40L

was also determined. Although no major changes
were verified in AMI comparing to SA and CTR groups,
the CD40L1 microparticles were also significantly
increased to 1 month after PCI intervention (F 5 6.2;
P 5 0.03; Fig 1).
Moreover, the expression of CD40L on platelets and

on microparticles was not influenced by demographics,
risk factors, and comorbidities or medication intake
previous to admission.
The association of sCD40L with CD40L expression

on platelets and microparticles were also evaluated in
the studied groups. Soluble CD40L levels did not corre-
late with the expression of CD40L neither on platelets
(F , 3.2; P. 0.32 and r5 0.27; P 5 0.90) nor on mi-
croparticles (F, 1.1; P. 0.76 and r5 0.39; P5 0.10).

Associations of sCD40L to VEGF and eNOS
polymorphisms. To clarify the relationship of sCD40L
with endothelial dysfunction and angiogenesis in AMI

http://dx.doi.org/10.1016/j.trsl.2015.07.006


Fig 2. Expression of CD40L (A) and CD62P (B) on platelets for controls, SA, and AMI patients. *P , 0.05 vs

AMI group at hospital admission. Plots depicted the dispersion of the numeric values (box, 25%–75% interquar-

tile; horizontal line, median; whiskers, minimum and maximum values). AMI, acute myocardial infarction; SA,

stable angina; FAU, fluorescence arbitrary units.
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patients, the eNOS polymorphisms and VEGF concen-
trations were assessed. As AMI and SA patients were
monitored twice in 1 month, the LME regression model
was used to assess correlations between soluble and
bound CD40L, VEGF, and eNOS polymorphisms,
whereas a Spearman correlation method was used in
CTR group.
Noteworthy associations between sCD40L and endo-

thelial and vascular function markers were obtained for
AMI patients.
The G894T polymorphism of eNOS corresponds to a

modification of the coding sequence (Glu298 / Asp)
which results in the incorporation of aspartate in place
of glutamate.35 The T786C polymorphism results in
the replacement of thymine by cytosine.35

In our study, the eNOSG894Tpolymorphismwas asso-
ciated with the longitudinal variations of sCD40L in AMI
(F 5 6.9; P 5 0.01) but not in SA patients (F 5 0.001;
P 5 0.97) and in CTR subjects (r 5 20.35; P 5 0.79).
No significant associations were observed between
sCD40L and the eNOS T786C polymorphism in AMI
(F 5 0.21; P 5 0.65), SA (F 5 0.14; P 5 0.72), or
CTR groups (r5 20.11; P5 0.96).
Furthermore, sCD40L levels were correlated with the

time-changes VEGF concentrations in AMI (F 5 9.9;
P5 0.02) and SA groups (F5 9.0; P5 0.01). This sta-
tistical dependence was not verified in the CTR group,
as far as monotonic relationship between paired data
is concerned (r 5 0.19; P 5 0.21).
The CD40L expression on platelets and on micropar-

ticles was not associated with either of the eNOS poly-
morphisms or of the VEGF concentrations in AMI, SA,
or CTR groups.

Association of sCD40L to platelet CD62P
expression. This study also intended to investigate the
relation between sCD40L levels and markers of platelet
activation, such as P-selectin (CD62P) expression.
No significant correlations were verified between
sCD40L levels and the expression of CD62P on plate-
lets in AMI, in SA patients (F , 1.3; P . 0.42) and
in CTR group (r 5 20.30; P 5 0.13).
DISCUSSION

In the present work, we studied whether sCD40L was
related with markers of vascular function and of platelet
activation along disease progression in AMI patients.
Novel results were obtained highlighting the association
between the time changes of sCD40L over 1month after
myocardial infarct onset and markers of endothelial and
vascular function (G894T eNOS polymorphism and
VEGF concentrations), but not to the platelet CD62P
expression.
The time changes of sCD40L in AMI patients,

along disease progression, correlate positively with
the eNOS G894T polymorphisms, which is associated
with endothelial dysfunction. The G894T polymor-
phism leads to a conservative replacement of gluta-
mate with aspartate causing conformational
alterations in the protein, thereby enhancing its sus-
ceptibility to proteolytic cleavage in endothelial cells
and vascular tissues.36 Furthermore, this polymor-
phism has been associated with low plasma NO
concentrations and with higher risk of CAD develop-
ment.35,37 In our study, the longitudinal variations of
sCD40L were correlated with this polymorphism,
suggesting a relationship of G894T polymorphism
with endothelial dysfunction along disease
progression.
Moreover, the time changes of sCD40L also correlate

with the variations of VEGF. VEGF is an endothelial
cell-specific mitogen that has been reported to promote
collateral vessels formation in ischemic cardiac muscle
and tissue repair after injury.38 Circulating levels of

http://dx.doi.org/10.1016/j.trsl.2015.07.006
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VEGF could affect the outcome of AMI.20,38,39We have
previously reported depressed serum VEGF
concentrations immediately after AMI which increase
over 1 year,20 with a similar trend to that observed in
this study for sCD40L. The association between
sCD40L and circulating VEGF was also described by
Lim et al40 in CAD patients; however, in this case, the
levels of both markers were increased in those patients.
In addition, conflicting data were reported in studies us-
ing in vitro or animal models. Urbich et al10 observed a
blockage of VEGF-induced angiogenesis by CD40L
that could affect endothelial regeneration after plaque
disruption.10 Other authors had shown that sCD40L
transcriptionally regulates VEGF expression in endo-
thelial cells, favoring growth and proliferation, and
also promoting angiogenesis in mouse.41 Our results
for AMI patients show a concomitant increase in
sCD40L and VEGF levels along AMI progression.
Therefore, the association of sCD40L with VEGF in
AMI pathophysiology may suggest a role of sCD40L
in angiogenesis.
The levels of sCD40L did not significantly correlate

with the expression of platelet activation markers,
such as CD62P. This may suggest that, along the disease
progression in AMI patients, the sCD40L is not related
to platelet activation or thrombosis.
Furthermore, no association of sCD40L with

membrane-bound CD40L was found, which was not un-
expected results. In fact, previous studies suggested that
a variety of cells might be the source of sCD40L,42 what
justifies the lack of correlation of sCD40L with a spe-
cific cell-type marker verified by us.
As far as cross-sectional testing is concerned, we

observed that patients at hospital admission, regardless
the acute or stable nature of coronary disease, showed
remarkably low levels of sCD40L when compared
with healthy subjects. After 1 month, the levels of
sCD40L of SA patients rose to levels similar to those
of CTR, whereas in AMI patients, the increase of
sCD40L was also significant, but less marked. The dif-
ferences between sCD40L concentrations in CAD
(AMI and SA) patients at hospital admission and in con-
trols could be related with the disparity in medication
intake. Statins and combined antiplatelet therapy had
been referred to lower sCD40L concentrations.43-47

However, in our study, there was no influence of pre-
and postevent medication intake in the longitudinal
variations of sCD40L levels, suggesting that the
differences observed in the rate of sCD40L increase
with time in AMI and SA patients were not related to
medication intake. It can be hypothesized that low
levels of sCD40L in CAD patients at hospital
admission may reflect a persistent binding of CD40L.
This may implicate a continuous activation of the
signaling pathways in which CD40L is involved. The
increase of sCD40L in AMI patients after 1 month
proved to be slower than that in SA patients, probably
reflecting the magnitude of injury and of involved
territories.
In the last 2 decades intensive literature has been pub-

lished reporting higher sCD40L in patients with both
stable and unstable CAD (including AMI).2,7-9,48-50

However, published results are difficult to compare.
Time from disease onset to sample collection is often
unspecified, which may cause strong deviations on
absolute values of measured parameters.24-26

Nevertheless, we argue that in the present study,
rigorous protocols were applied to mitigate sources of
error originated from preanalytical and analytical
methods.
Although the sCD40L had been implicated in the

endothelial dysfunction and angiogenesis,3,10-14 there
were no data available for AMI patients. Our results
for AMI patients show a concomitant increase in
sCD40L and VEGF levels along AMI progression and
temporal variation of cardiac function markers toward
stabilization. Therefore, the association of sCD40L
with VEGF in AMI pathophysiology may suggest a
role of sCD40L in endothelial dysfunction and
angiogenesis. Our results show that, regarding AMI
pathophysiology, sCD40L cannot be considered just
as a marker of platelet activation. In fact, our results
corroborate previous in vitro studies that implicate
sCD40L in endothelial dysfunction and vascular
function, demonstrating for the first time this
association in a clinical observational study. The
pathophysiologic implications of these findings are
very important. A prognostic value for the sCD40L
could be hypothesized along the progression of the
disease in AMI patients. However, further studies are
mandatory to clarify the time evolution of the link
between sCD40L and VEGF in patients after AMI.
Exploring this connection may support endothelial
dysfunction assessment in AMI and eventually
contribute to the establishment of a prognostic value
to that link.
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