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ABSTRACT

Introduction. This study aims to compare the molecular gene expression during ischemia
reperfusion injury. Several surgical times were considered: in the beginning of the har-
vesting (T0), at the end of the cold ischemia period (T1), and after reperfusion (T2) and
compared with graft dysfunction after liver transplant (OLT).
Methods. We studied 54 patients undergoing OLT. Clinical, laboratory data, and histo-
logic data (Suzuki classification) as well as the Survival Outcomes Following Liver Trans-
plantation (SOFT) score were used and compared with the molecular gene expression of the
following genes: Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, perforin, E-selectin
(SELE), Fas-ligand, granzyme B, heme oxygenase-1, and nitric oxide synthetase.
Results. Fifteen patients presented with graft dysfunction according to SOFT criteria. No
relevant data were obtained by comparing the variables graft dysfunction and histologic
variables. We observed a statistically significant relation between SELE at T0 (P ¼ .013)
and IL-1b at T0 (P ¼ .028) and early graft dysfunction.
Conclusions. We conclude that several genetically determined proinflammatory
expressions may play a critical role in the development of graft dysfunction after OLT.
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THE ISCHEMIA/REPERFUSION INJURY (IRI)
during liver transplantation (OLT) makes the graft more

vulnerable by increasing immunogenicity, and rejection epi-
sodes, both earlier and later after OLT [1]. The clinical rele-
vance of these phenomena is related to greater graft
dysfunction and loss after OLT [2].
From a hemodynamic standpoint, IRI is well-characterized

during OLT surgery, mainly by a decrease in systemic vascular
resistance and need for continuous infusion of vasopressors
[3e6]. However, the hallmark of IRI is the inflammatory
response that lies beyond it.
A serial of molecular events occur after the depletion of

cellular adenosine triphosphate during cellular injury and
hypoxia. Under normal conditions, this dangerous molec-
ular signaling is directed toward organ preservation and
repair; because it is genetically determined, it can vary
from patient to patient. During IRI, however, organ
damage may be the result of an exacerbated inflammatory
reaction. Overproduction of reactive oxygen species
5
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occurs, acting during the reperfusion phase [7]. An in-
flammatory condition is then initiated, by activating
Kupffer cells and T lymphocytes, along with increased
production of proinflammatory cytokines (tumor necrosis
factor-a, interleukin [IL]-1b, interferon-g, and others),
chemokines (macrophage inflammatory protein-2, mono-
cyte chemoattractant protein-1), adhesion molecules, and
inflammatory cells recruitment, leading to liver infiltration
by neutrophils, and, ultimately, cell death [8].
The authors studied different proinflammatory mediators

to characterize the inflammation associated with liver IRI
during OLT, as well as their genetic expression, which may
result in different inflammatory profiles and different clinical
ª 2015 by Elsevier Inc. All rights reserved.
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Table 1. General Characteristics of the Studied Population
(n [ 54)
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outcomes, mainly regarding histologic characteristics and
post-OLT graft dysfunction.
Parameter Result

Age (y), mean � SD 45 � 14
Male, n (%) 42 (78)
Blood group, n (%)

A 28 (52)
B 3 (6)
AB 3 (6)
O 20 (37)

MELD (mean � SD) 16 � 8 (n ¼ 36)
CTP score, n (%)

A 20 (55)
B 10 (27)
C 6 (18)

Main disease, n (%)
FAP 15 (27)
HCV 16 (29)
Alcoholic cirrhosis 14 (25)
Biliary diseases 4 (7)
Autoimmune diseases 2 (3)
Metabolic diseases 4 (7)
Acute liver failure 3 (5)

SOFT, n (%)
Low risk 37 (69)
Low-moderate risk 12 (22)
High-moderate risk 5 (9)

Abbreviations: CPT, Child-Turcotte-Pugh; FAP, familial amyloid poly-
neuropathy; HCV, hepatitis C virus; MELD, Model for End-Stage Liver Disease;
SOFT, Survival Outcomes Following Liver Transplantation.
MATERIALS AND METHODS
Patients

From 2004 to 2011, 856 patients underwent OLT. Data collection
was highly dependent on the availability of the surgical team, as well
as on the transport of collected samples and laboratory conve-
nience. For this reason, 54 patients were included, not selected by
any method, and they expressed the average selection of recipients
during the considered period of time. The ages of both recipients
and donors were representative of the whole period considered.

We collected patient age, gender, main pathology, blood group,
preoperative Model for End-Stage Liver Disease (MELD) score,
ChildePugh score, and Survival Outcomes Following Liver Trans-
plantation (SOFT) score [9]. The highest aminotransferase value
after OLT, cold ischemia time, warm ischemia time, and donor age
were also collected, as well as the number of red cell packed units
and fresh frozen plasma units used during the operation. Most
donors were on pressors at the time of harvesting, but there were no
detailed data on this issue. All donors had a body mass index
of <30 kg/m2.

Tissue Sample Collection

Tissue harvesting was performed by experienced surgical teams in
the 4 OLT centers in Portugal, and in all the cases the preservation
solution was Celsior (SangStat, Lyon, France) and the rapid Starzl
technique was used [10]. Needle biopsies were collected from 54
liver grafts at 3 different times: at the beginning of the harvesting
(T0), at the end of the cold ischemia period (T1), and post-
reperfusion, at the end of the operation (T2).

In the case of familial amyloidotic polyneuropathy (FAP) grafts,
informed consent of the donor patients and agreement of the
ethical commission of the hospital was obtained.

All biopsy fragments were divided in half; 1 sample was pro-
cessed for molecular marker expression and the other submitted to
a comparative study by usual histologic procedure, following our
hospital protocol.

Histologic Analysis

Tissue fragments were collected in vials containing formaldehyde, and
processed in classic hematoxylin and eosin cuts. The histologic classi-
fication Suzuki classification [11] was used to quantify the lesions. In
addition to the parameters integrating this classification (sinusoidal
congestion, vacuolization/ballooning, and necrosis), 2 additional pa-
rameterswere studied in this issue: the grade of steatosis and neutrophil
infiltration. For steatosis, 4 grades were considered: none (0%,
0 points), slight (<30%, 1 point), moderate (30%e60%, 2 points), and
intense (>60%, 3 points). Both macrovesicular and microvesicular
steatosis were evaluated. Macrovesicular steatosis was considered a
reversible condition, defined as a single vacuole pushing the nucleus
aside; microvesicular steatosis was associated with deficiency of
b-oxidation of the lipids, and defined as fine and multiple droplets
dispersed in the cell cytoplasm. Both were considered able to amplify
the IRI in a more relevant way, and enough to induce the phenomena
of interference in the hepatic microcirculation (lipopeliosis, especially
macrosteatosis).

Neutrophils infiltration was graded as scarce (�5 cells per high-
power field [HPF; 0 points]), 5e30 cells per HPF (1 point), or >30
to <60 cells per HPF (2 points). To the score provided by the
Suzuki classification, we added 2 parameters (steatosis and
neutrophil infiltration). According to this final score, the patients
were divided in 2 groups: scores of 0e5 or �6.

Molecular and Gene Expression

The tissue fragments were collected in vials containing RNA later
solution (Ambion, Austin, TX). In all the samples, total RNA was
extracted and converted in cDNA by reverse transcriptase, and
gene expression analysis of a panel of proinflammatory genes was
obtained: IL-1b, IL-6, tumor necrosis factor-a, perforin, E-selectin
(SELE), Fas-ligand, granzyme B, heme oxygenase-1, and inducible
nitric oxide synthetase (iNOS2A) by quantitative polymerase
chain reaction (PCR) ct, using as reference the genetic expression
of sample 1 (nonischemic).

Whenever possible, the service “Assays-on-Demand Gene
Expression Products,” from Applied Biosystems (Foster City,
CA), was used, to synthesize the group of “primers e Taqman
probes” specific for each gene studied. A group of Taqman probes
for the so-called housekeeping genes (b-actin) were used for
normalization of the genetic quantification. The PCR kinetic
analysis was performed in the sequence detection system of
Applied Biosystems ABI Prism 7900. The relative analysis of ge-
netic expression was performed as described by Livak et al [16].
Analysis of relative expression data using real time quantitative
PCR and the 2 ct method were performed.

Statistical Analysis and Groups for Comparison

An exploratory analysis was carried out for all variables. Categorical
data are presented as frequencies and percentages, and continuous



Table 2. Results of Genetic Expression for the Different Studied
Genes Related to the Variable Organ Dysfunction

Parameters Dysfunction Med (P25eP75) P

iNOS at T0 No 0.14 (0.03e0.30) .381
Yes 0.21 (0.03e0.68)

iNOS at T1 No 0.10 (0.03e0.19) .512
Yes 0.06 (0.01e0.57)

iNOS at T2 No 0.06 (0.04e0.10) .779
Yes 0.05 (0.03e0.38)

SELE at T0 No 0.84 (0.44e2.98) .013
Yes 2.69 (1.35e4.18)

SELE at T1 No 1.45 (0.54e5.10) .310
Yes 2.05 (0.99e6.02)

SELE at T2 No 2.34 (1.57e4.69) .724
Yes 2.35 (1.20e4.25)

FASL at T0 No 0.97 (0.72e1.86) .745
Yes 1.00 (0.70e2.81)

FASL at T1 No 0.70 (0.43e1.68) .209
Yes 0.45 (0.27e1.33)

FASL at T2 No 0.22 (0.10e0.47) .573
Yes 0.29 (0.13e0.64)

GRZB at T0 No 1.42 (0.86e2.70) .566
Yes 2.96 (0.58e4.91)

GRZB at T1 No 1.36 (0.65e3.78) .900
Yes 0.53 (0.44e9.76)

GRZB at T2 No 1.68 (0.96e4.41) .742
Yes 2.65 (0.78e5.33)

HO-1 at T0 No 266.29 (146.74e385.47) .323
Yes 289.80 (179.39e652.55)

HO-1 at T1 No 193.79 (147.75e275.31) .798
Yes 202.33 (135.82e460.55)

HO-1 at T2 No 164.32 (125.05e353.36) .742
Yes 160.16 (99.72e270.90)

IL-6 at T0 No 0.37 (0.10e2.50) .354
Yes 0.60 (0.20e3.54)

IL-6 at T1 No 2.26 (0.74e4.85) .423
Yes 1.62 (0.23e4.97)

IL-6 at T2 No 6.40 (2.38e14.36) .634
Yes 7.82 (3.31e12.10)

IL-1 Beta at T0 No 9.84 (2.54e19.39) .028
Yes 19.53 (12.10e40.88)

IL-1 Beta at T1 No 22.67 (8.47e46.82) .682
Yes 25.39 (7.87e217.55)

IL-1 Beta at T2 No 36.35 (17.96e89.83) .171
Yes 61.38 (53.19e86.65)

Table 3. Multivariate Analysis for Clinical Variables and
Demographic Data for Graft Dysfunction

Variables OR 95% CI P

Male gender 0.13 0.01e0.25 .077
Cold ischemia (min) 1.74 0.95e3.18 .074
Warm ischemia (min) 1.64 0.91e2.94 .099
SELE expression in T0 1.93 1.06e3.50 .030

Abbreviations: OR, odds ratio; SELE, E-selectin.
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variables as mean or median, standard deviation (SD) or interquartile
range (25the75th percentile). Univariable analysis was done using
nonparametric tests (c2 or Fisher exact test, ManneWhitney and
KruskaleWallis) because of the existence of outliers, high variability,
and skewed distributions.

The significance level a ¼ 0.05 was considered and 95% CI were
calculated as appropriate. All data were analyzed using the Statis-
tical Package for the Social Sciences for Windows version 19.0
(SPSS Inc, Chicago IL). The main outcome considered was de graft
dysfunction according to SOFT criteria, compared to histologic
data and data from studied gene’s expression. The preservation
injury and early graft dysfunction according to Howard and
PloegeMaring criteria were also evaluated, although not subjected
to specific analysis.
RESULTS

The main characteristics of enrolled patients are presented
in Table 1. In the studied cohort, we observed graft pres-
ervation injury in 5 cases, early graft injury (according to
PloegeMaring criteria) in 9 patients, and 15 patients pre-
sented graft dysfunction according to SOFT criteria. The
comparison between graft dysfunction and clinical variables
are presented in Table 2. Although not attaining signifi-
cance, we observed male patients were 3 times less likely to
develop graft dysfunction. For cold ischemia time, graft
dysfunction occurred 1.9 more often in patients with a cold
ischemia time of >500 minutes, and 5 times more often in
patients with a warm ischemia time of >90 minutes. In 2 of
the 16 cases that experienced graft dysfunction, the liver
graft came from a living donor with FAP. In only 8 cases of
these 16 the donor was <50 years old. Among grafts that
developed dysfunction, there was a donorerecipient gender
mismatch, which affected female recipients (5/6) much
more often than male recipients (4/10).
The comparison between graft dysfunction and histologic

variables is presented in Table 3. No relevant associations
were found. Nonetheless, we observed that, in patients with
baloonization at T0 and T1, the possibility to develop graft
dysfunction was �7.5 times higher, and the presence of
necrosis at T0 and T1 conferred a 2.3 times greater prob-
ability to develop graft dysfunction.
Laboratory and gene expression data are presented in

Table 4. We observed a significant relationship between
SELE at T0 (P ¼ .013) and IL-1b at T0 (P ¼ .028) and early
graft dysfunction. Significant associations were confirmed on
multivariate analyses, but only regarding SELE expression at
T0 (odds ratio [OR], 1.93; 95% CI, 1.06e3.50; P ¼ .030).
Concerning the expression of IL-1b at T0, the comparison

between cases of patients with and without dysfunction
revealed a P value of .028 (Med [P25eP75], no 9.84
[2.54e19.39]; yes, 19.53 [12.10e40.88], ManneWhitney).
DISCUSSION

We have found that patients expressing higher levels of
SELE and IL-1b at T0 presented more severe early graft
function after OLT, before flushing with the recipient’s
blood, at T0. This suggests that inflammatory phenomena
may influence critically the severity of IRI during OLT.
Interestingly, no histologic data correlated with IRI,
although baloonization and necrosis were more frequent at
T0, as well as with a cold ischemia time of >500 minutes and



Table 4. Univariate Analysis of Gene Expression in All Time Points Based on Graft Dysfunction

Gene All Patients (n ¼ 54) Patients Without Graft Dysfunction Patients With Graft Dysfunction P*

FASL median (P25eP75)
T0 0.98 (0.72e2.16) 0.97 (0.72e1.86) 1.00 (0.70e2.81) .873
T1 0.68 (0.34e1.50) 0.70 (0.43e1.68) 0.45 (0.27e1.33) .776
T2 0.25 (0.11e0.52) 0.22 (0.10e0.47) 0.29 (0.13e0.64) .366

GRB median (P25eP75)
T0 1.51 (0.61e3.70) 1.42 (0.86e2.70) 2.96 (0.58e4.91) .677
T1 1.33 (0.47e5.72) 1.36 (0.65e3.78) 0.53 (0.44e9.76) .857
T2 2.08 (0.94e4.52) 1.68 (0.96e4.41) 2.65 (0.78e5.33) .282

HO1 median (P25eP75)
T0 276.60 (153.41e419.45) 266.29 (146.74e385.47) 289.80 (179.39e652.55) .167
T1 198.06 (139.91e291.16) 193.79 (147.75e275.31) 202.33 (135.82e460.55) .801
T2 162.24 (120.97e315.76) 164.32 (125.05e353.36) 160.16 (99.72e270.90) .900

IL-6 median (P25eP75)
T0 0.48 (0.15e2.64) 0.37 (0.10e2.50) 0.60 (0.20e3.54) .282
T1 1.62 (0.50e4.77) 2.26 (0.74e4.85) 1.62 (0.23e4.97) .571
T2 7.19 (2.76e13.42) 6.40 (2.38e14.36) 7.82 (3.31e12.10) .662

IL-1b median (P25eP75)
T0 12.17 (2.83e24.01) 9.84 (2.54e19.39) 19.53 (12.10e40.88) .143
T1 22.67 (8.31e49.51) 22.67 (8.47e46.82) 25.39 (7.87e217.55) .342
T2 49.91 (22.40e85.84) 36.35 (17.96e89.83) 61.38 (53.19e86.65) .788

iNOS2A median (P25eP75)
T0 0.15 (0.03e0.32) 0.14 (0.03e0.30) 0.21 (0.03e0.68) .578
T1 0.09 (0.02e0.19) 0.10 (0.03e0.19) 0.06 (0.01e0.57) .791
T2 0.06 (0.03e0.13) 0.06 (0.04e0.10) 0.05 (0.03e0.38) .895

SEAL median (P25eP75)
T0 1.17 (0.49e3.26) 0.84 (0.44e2.98) 2.69 (1.35e4.18) .214
T1 1.53 (0.61e5.45) 1.45 (0.54e5.10) 2.05 (0.99e6.02) .517
T2 2.30 (1.40e4.56) 2.34 (1.57e4.69) 2.35 (1.20e4.25) .319

*P value obtained by comparison of genes between groups of patients with and without graft dysfunction by logistic regression model.
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a warm ischemia time of >90 minutes, a situation related to
donor’s condition and harvesting.
Unlike other selectins, SELE is expressed in an inducible

manner, not under basal conditions, but in response to in-
flammatory stimulations, both chronic and acute, by endothe-
lial cells, and not by hepatic sinusoids [12]. Among these stimuli
is IL-1b, a molecule involved in the precocious phases of the
inflammation cascade [13].
Interestingly, the association between these 2 proin-

flammatory genes and the tendency toward graft dysfunc-
tion was only documented at T0, without any influence of
recipient factors. It is recognized that any surgical manipu-
lation triggers a molecular reaction through activation of
Kupffer cells [14], explaining the enhanced expression of
those 2 genes even before reperfusion, as an intrinsic quality
associated with the graft itself [15]. The increase occurring
at T0 in association with graft dysfunction represents a
clinical implication with therapeutic potential.
In previous study [16] on this cohort, livers harvested

from FAP patients presented less neutrophil infiltration at
T0 (P ¼ .001). We linked the neutrophil infiltration with
gene expression of HO1 in biopsies taken at T2 (P ¼ .022),
as well as with the molecular expression of genes related to
an attenuated proinflammatory reaction during IRI,
namely, iNOS2A at T0 and HO1 at T2. We concluded that
livers from FAP donors express differently the genes related
to attenuating proinflammatory reactions, and present less
neutrophil infiltration during harvesting. These findings add
to the previous description of a better short-term outcome
in patients receiving FAP liver grafts. These differences
prompted us to try to identify these inflammatory responses
to organ dysfunction after OLT in the whole cohort.
The inflammatory process during IRI is well known

[17,18]. Nonetheless, patients can react differently, ac-
cording to a genetically mediated predisposition in the
release of proinflammatory cytokines, which can explain, at
least partially, the different and hardly preventable clinical
features (mostly hemodynamic) and consequences (graft
dysfunction and loss) of IRI. Nonetheless, obtained data
point in 2 different, but proximal, directions. SELE is ori-
ented to lymphocyte infiltration and IL-1b to inflammation.
Selectins are members of cell adhesion molecules, whether

those we studied are secreted by lymphocytes. They are
linked to lymphocyte homing and promote cellular-mediated
inflammation and infiltration, leading to acute and chronic
inflammatory processes. Because we could not demonstrate
these facts with histologic findings, it is hard to prove these
basic aspects of SELE as a reference for IRI. Nonetheless,
this description may reserve attention in further studies. The
most studied process evolving SELE is metastatic tumor
spread [19]. Diapedesis of tumor cells from the circulation
into secondary sites is believed to occur through amechanism
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similar to that of leukocyte extraversion, in which there must
be contact and then the cells roll along the endothelial cell
layer. SELE is an adhesion molecule that is not expressed on
normal endothelial cells; however, SELE is expressed tran-
siently on the surface of vascular endothelium after stimu-
lation with IL-1 and tumor necrosis factor-a. Their role in
IRI has been described in both cellular infiltration and mo-
lecular signaling. Interfering with selectin produces a pro-
tective effect against liver IRI [20]. The improvement of
hemodynamics and decreased leukocyte adherence after
treatment with N-acetylcysteine might result from the shed-
ding of selectins.
The role of IL-1b can more interesting. IL-1b is cleaved

by caspase 1 (IL-1b convertase) and is linked to inflam-
mation, cell proliferation and differentiation, and
apoptosis. This is an inflammatory process, now recognized
as an autoinflammatory process, and observed as a mech-
anism involved in some autoinflammatory diseases [21,22].
Autoinflammatory diseases diverge from autoimmune
diseases, mediated by abnormal cell-mediated injury,
mainly lymphocytes and macrophages. They are the result
of uncontrolled release of inflammatory mediators, as
the result of intracellular inflammasomes, a complex of
proinflammatory-producing protein complexes, produced
when cells sign the “danger” of damage. These phenomena
are mediated genetically and can vary from person to
person. The caspase 1 complex is a part of this inflamma-
tory pathway and it may be related to IRI phenomena,
regardless of the organ involved, including OLT. It origi-
nates in large, multiprotein complexes that sense danger
signals through specific receptors. These protein com-
plexes are known as inflammasomes, and are determined
genetically. Regarding liver inflammatory processes, a
number of conditions have been linked to this inflamma-
tory pathway. Inflammosomes regulate cell fate and
pyroptosis, which differ from apoptosis by damaging
plasma cell membrane and lack of chromatin condensa-
tion, leading to the secretion of various danger molecules.
The clinical entities involved are drug-induced liver injury,
endotoxin-induced liver injury, and alcoholic and nonal-
coholic fatty liver diseases [23]. IRI processes, which are
linked with liver resection, liver manipulation, hypo-
volemia, and OLT, have been linked to this proin-
flammatory pathway as well. The data presented herein
support these findings, demonstrating the importance of
inflammasomes and IL-1b release in the process of IRI.
Other known data, such as cold ischemia time, warm
ischemia time, and other specific donor conditions, cannot
be ignored and are described widely [24,25]. Nonetheless,
the different clinical outcomes of IRI and the different
clinical presentation, can be, at least partially, attributed to
different gene expression of IL-1b in donor livers, leading
to a more significant inflammatory process during IRI in
OLT [26,27].
In most cases of dysfunction in this cohort, there was a

gender mismatch, which affected female recipients (5/6) much
more than male recipients (4/10). There are in literature very
few reports on this issue, and most are related to lesser graft
survival, specifically regarding male recipients and female do-
nors [28,29]; however, the arguments presented are related
with the hormonal milieu of the donor and its action on the
colangiocytes [30].
The only recipient pathology directly implicated with

graft survival concerning gender mismatch is chronic he-
patic disease with hepatitis C virus infection [31], wherein a
female donor is an independent predictor of fibrotic evo-
lution and graft loss [32]. However, this issue does not apply
to this study, because only 1 of the 12 female recipients in
group of 54 patients presented with fibrosis. There are some
reports on poor prognosis in female recipients with donor
mismatch, which is considered an independent risk factor
for primary graft nonfunction [33]. The causes are yet to be
clarified, but the role of minor histocompatibility antigens
such as H-Y antigen, codified by genes from Y chromo-
some, has been suggested in literature; further studies are
awaited [34].

Study Limitations

The main limitation of this study is the small number of
patients enrolled. Many variables can be accounted for, but
no previous selection was performed, and patients were
enrolled randomly. In this regard, more studies with greater
numbers of participants are needed.
We decided not to exclude FAP grafts from deceased

donor grafts; it is well-known that FAP grafts experience
less damaging phenomena, all previous to harvesting. As we
previously described, histologic data differ in these 2 types
of graft. Accordingly, proinflammatory data can also differ.
It should be also pointed out that gene expression related to
histologic findings was different from that described herein.
This matter should be elucidated further.
In conclusion, several genetically determined proin-

flammatory expressions may play a critical role in the
development of graft dysfunction after OLT. We found that
gene expression of IL-1b and SELE in donor livers were
linked with liver dysfunction after OLT.
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