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Radial basis functions for the sphere

Simon Hubbert and Brad Baxter

Abstract

In this paper we compute the ultraspherical series expansions for the
more commonly used radial basis functions. In several special cases we
provide asymptotic estimates for the decay rate of the coefficients in-
volved. Knowledge of the decay of these coefficients is useful because
they enable error estimates for spherical interpolation.

1 Introduction

The multivariate interpolation problem is as follows. Given values {f;}Y,
of a function f : R? — TR at distinct locations (nodes) {z;}Y, in RY, find
an interpolant s : IR — IR, in a suitable linear space of functions T  (the
interpolation space), satisfying

s(zi) = fi, 1<i<N. (1.1)

1.1 Radial basis function method

One of the most promising ways of solving this problem is to employ the Radial
Basis Function (RBF) method. This method specifies the interpolation space

T, = span {$(d(-,a1)), .., (d( )}, (1.2)

where d(z,y) = ||z — y||, ||| usually being the Euclidean norm (other norms
have been considered; see, for example, [2] and [3]), and ¢ : [0, 00) — R is the
radial basis function.

Now posing the interpolation problem in 7T} amounts to finding a function of
the form

N
s(z) =Y Ajpld(z, z))), for \; eIR, 1<j<N,
j=1
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satisfying conditions (1.1). This is equivalent to solving the following linear
system:

AN =f, (1.3)
where A € RV*" is defined by

Aij = Ppld(z;, z5)), 1<i,j<N. (1.4)

Thus a unique interpolant s € Tj exists for any f if and only if the interpolation
matrix A is non-singular.

Definition 1.1. A function ¢ : [0,00) — IR is said to be:

(i) Strictly positive definite (SPD) on IR? whenever its associated inter-
polation matriz (1.4) is positive definite on RN, for all distinct {z;}Y, in
RY.

(ii) Conditionally strictly positive definite of order m (CSPD(m)) on
IR¢ whenever its associated interpolation matriz (1.4) is positive definite on
the subspace of RY defined by

N
Vet ={A= (A1, .. An)T € RY 0 Nip(w) =0 for all p € Ty (RY)},
=1

for all distinct {z;} Y, in RY. Here I1,,_1(IR?) denotes the space of all d-variate
polynomials of degree at most m — 1.

If ¢ is SPD on IR%, then there exists a unique interpolant s € Ty since the
interpolation matrix is, by definition, positive definite and hence non-singular.
If ¢ is CSPD(m) on IR? however, it can be shown that if the interpolation
nodes are IT,,,_1 (IR%)-unisolvent — the only element of IT,,,_1 (IR%) that vanishes
at every node is the zero polynomial — then there exists a unique interpolant
s € Ty ® 11,1 (IRY), that is

N
s(z) = Y Ajgld(z, z5)) + pl),

J=1

where A = (A1,...A\x)T € V;, 1 and p € 11,1 (IRY); see [13] for details.

The functions used in the RBF method are usually either SPD or CSPD(m)
on IR%. The following is a list of the more common examples.

(Gaussian) : (r) = e a > 0;
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(Potential Spline) : $(r) = (=1)PH1428 3> 0 and ¢ Z, ={1,2,..};
(Thin Plate Spline) : ¢(r) = (—1)¥1r?* log(r), k € Z;

(Multiquadric) : $(r) = (=1)BH(r2 428, >0, B¢ Z,, and ¢ > 0;
(Inverse Multiquadric) : ¢(r) = (r? +c*)?, —d/2 < <0, B¢ Z, and ¢ > 0.

1.2 Zonal basis function method

The RBF method can be specialised if attention is turned to the case where
the distinct locations 1,...zx are known to lie on the unit sphere S%~! in
IR?, d > 2. To transfer the method we consider the interpolation space

Ty = span {¢(g(-,z1)), ..., ¥(g(- zn))}, (1.5)

where g(z,y) = arccos (z”y) denotes the geodesic metric, and 1 : [0, 7] — IR
is called a zonal basis function (ZBF).

Following the development of the RBF method, it is clear that interpolation
is unique in Ty, if and only if the associated interpolation matrix B € IRV*N
defined by

Bij =(g(zi,z5),  1<4,7 <N, (1.6)

is non-singular.
Definition 1.2. A function 1 : [0,7] — IR is said to be:

(i) Strictly positive definite (SPD) on S%=! whenever its associated inter-
polation matriz (1.6) is positive definite on RN, for all distinct {z;}}X, on
Sd-1,

(ii) Conditionally strictly positive definite of order m (CSPD(m)) on
ST whenever its associated interpolation matriz (1.6) is positive definite on
the subspace of RN given by

N
Win-1={A=(A1,...2x)" € RV : Y NY(2;) =0 for all Y € Hp1(S™ 1)},
i=1

for all distinct {z;}; on S%1. Here H,, 1(S%™') denotes the space of all
spherical harmonics on S*1 of order at most m — 1.

With Definition 1.2, the specialisation of the RBF method to the sphere (the
ZBF method) is complete. In particular, interpolation is unique in Ty, if 4



4 Simon Hubbert and Brad Baxter

is SPD on S9!, If 4 is CSPD(m) on S?! however, it can be shown that
if the interpolation nodes are H,,_;(S%!)-unisolvent — the only element of
H,, 1(S97") that vanishes at every node is the zero spherical harmonic — then
there exists a unique interpolant s € Ty, @ H,,_1(S8%71), that is

N
7=1

where A = (A\y,... )T € Wy, 1 and Y € H,, 1(S%!); see [5] for details.
We remark that the role of the spherical harmonic space H,,_1(S%"!) within
the ZBF method is equivalent to the role of the polynomial space II,, ;(IR%)
within the RBF method, indeed H,—1(S9 1) = Mp—1 (IR?)|ga-1; (see [11] or
[14]).

Using the work of Schoenberg [16], and extensions thereof [5], we can formulate
the following theorem.

Theorem 1.3. If ¢ is CSPD(m) on SL, then ¢ has the following form

$(0) = D arPR(cos(9)), (1.7)
k=0
where -
ar, >0 for k>m and Z ap P} (1) < oo. (1.8)
k=0

Here { P}} denote the ultraspherical polynomials ([1], 22.2.3) and A = (d—2)/2.

Remarks 1.4. (i) The case 1p € SPD(m) is covered by setting m = 0 in
Theorem 1.35.

(ii) In [12], a framework is established for solving the interpolation problem on
a compact Riemannian manifold M using SPD kernels k : M x M — IR. The
ZBF method with ¥ SPD is a specific instance of this more general approach
for M= S%1,

(73i) In view of Theorem 1.8 we choose to consider each zonal function ¢ as a
function of the inner product, 'y, since cos(g(z,y)) = z'y.

The complete characterization of the class of functions of the form (1.7) sat-
isfying (1.8) that are CSPD(m) on S"! remains an open problem. Several
researchers have investigated this in recent papers; in particular, in [18], it is
shown that a sufficient condition is ay > 0, for k& > m. (See [15] for an extension
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of this work). One can use this condition to generate candidate zonal functions
to be used within the ZBF method. The following is a list of functions » SPD
on S? for example:

Y(t) = (14 h% — 2ht)~ /2, where aj, = h¥, for 0 < h < 1;
P(t) = (1 — h?)(1 + h? — 2ht)~%/2, where a; = (2k 4+ 1)hF, for 0 < h < 1;

(1) = 1 — /5L, where ag = 1/3 and a = gr—iprgys b = 1.

2 Radial Functions For Spheres

Most of the recent research regarding the ZBF method is of a theoretical nature,
and very little has been reported of its performance in practice (see, however
[6]). Much more is known about the RBF method and so a potential user may
wish to take a common radial function and use it as a zonal basis function;
indeed a radial function ¢ that is CSPD(m) on R? is also CSPD(m) on
S9=1, Furthermore, the RBFs remain well defined if the interpolation problem
is set on a perturbed sphere, which is likely to be the case for several practical
applications.

In order to take advantage of the extant ZBF theory (especially convergence
results [7] and [10]), it is desirable to have the ultraspherical series expansions
(1.7) for all the common radial functions. The remainder of this section ad-
dresses precisely this issue. In order to use radial functions on the sphere one
usually employs

d(z,y) = e —yll = /2 - 22Ty, z,yesh (2.1)

In particular, if ¢ is SCPD(m) on IR? then the zonal function ¢ (t) = ¢(v/2 — 2t)
is SCPD(m) on S ', and so, by Theorem (1.1), has an expansion

P(t) = 3 anPNE),  —1<t<1,

where the coefficients (a,,) satisfy (1.8). The ultraspherical polynomials P are
given by Rodrigues’ formula ([1], 22.11.2)

n
PMt) = ca(V)(1 — t2)1/2’)‘5?(1 — A2 e N =40,1,...}, (22)

where
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(_l)n,ﬂ_l/22(17n72)\)1'1(,n} + 2)\)

cn(A) = L(n+ X+ %)F(n + 1IN

(2.3)

We note that these are simply the Legendre polynomials when A = 1/2. They
satisfy the orthogonality relation ([1], 22.2.3)

[ 11 PARPM1)(1 — 2 2at — {0’ m 7 n, (2.4)

dp, m=mn,

where
wl'(n + 2X)

222=1(n 4+ A\)T(n 4+ 1)D(A)?

d,, = : (2.5)

and thus the series coefficients are given by
an =7 / b(t) HA2pAH)dt, ne€NN. (2.6)

Employing (2.2) and integrating by parts n times gives
an = C” / P ()(1 — 2y 24y, (2.7)

2.1 Multiquadrics

Here we consider the function ¢(r) = (r? + ¢?)?, ¢ > 0, where 8 € R\Z. Tt is
known that ¢ is SPD for —d/2 < 8 < 0, and (—1)F1*1¢ is CSPD([] + 1) for
B > 0 (see [13]). To use the multiquadric on the sphere we consider 1 (t) =
(2 + c? — 2t)8. Applying (2.7) for n € IN gives

207" (B +1) cn(N)

2
/(1 + % — ) (1 — 2)n P12y,
-1

Setting A = % and u = t"'l ,we find

an(B,A) =
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1
22022482 1 A)B—T(B + 1) / 2u 5 n(l_u)n+>\_1/gun+/\—1/2du_
T(B—n+1) 2+ a)

0

Using the identity (see [1], 15.3.1)

1
L'(b)I'(c—
/(1—zu)_“(l—u)c_b_lub_ldu: (B)(c —b) (a,b;c; 2)
I'(c)
0
witha=n—-0,b=n+A+1/2, c=2band z = 2+LA’ we see that

an(B,A) = an(B,NF(n = fin+ A+ 1/22(n + A+1/2); ), (28)
where
2B 4 AT (B 4+ DD (n 4 A+ 3)7 en(N)
(P, ) = T(B—n+1T2(n+X+1)) d, (29
which on substituting (2.3) and (2.5)
:(_D@mmwﬂ2+AWﬂ%n+MrQﬂma+n D(n+A+3) (2.10)

(B —n+1)rl/2 T2(n+A+3))
and F'(a, b; c; z) is the Gauss Hypergeometric series (see [1], 15.1.1) defined by

I'(c) & T(a+kT(b+Ek)F

N@ng% T(c+k) kU

F(a,b;c;2) = (2.11)

This series is absolutely convergent for |z| < 1 provided (¢ —a —b) > 0, that
is, —d/2 < f8. Thus (2.8) holds for all multiquadrics.

2.2 Potential splines

Here we consider the function ¢(r) = r2#, for 8 > 0 and § ¢ Z,. It is known
that (—1)P+1¢ is CSPD([B]+1) (see [13]). To use the potential splines on the



8 Simon Hubbert and Brad Baxter

sphere we consider, 1(t) = (2—2t)%. This can be derived from the multiquadric
case above by simply setting A = 2 =0 ie. 2%4 = 1. Using the results from

Section 2.1 and the following identity ([1], 15.1.20)

N

L(c)T'(c—a—Db)
['(c—a)l(c—0b)’

F(a,b;c;1) =

we can deduce the ultraspherical coefficients of the potential splines

226T(B+ 1)T(B+ A+ 3)
(B+1=—n)T(B+n+1+2))

an(B,A) = (=17~ 1/222 (0 + NI(N) - . (2.12)

2.3 Thin plate splines

Here we consider the function ¢(r) = r?*logr, for k € Z,. It is known that
(—1)k*1¢is CSPD(k+1) (see [13]). To use the thin plate splines on the sphere
we consider, ¢(t) = (2 — 2¢)¥ log(2 — 2¢). This function can be derived from
the potential spline using the observation

10

b(t) = 5%(2 - 2t)5‘6:k. (2.13)

Thus the ultraspherical coefficients of the thin plate splines b, (k, \) are given

by
10

bl \) = 5550 (B, M| (2.14)

B=k,
where a,, (3, \) are as in (2.12). In particular, we rewrite (2.12) as

an(B,X) = (=1)"7 22 (n + \)L(VA(B), (2.15)
where

2280(B+ DB+ A+ 3)
B+1—n)(B+n+1+2))

M) = (2.16)

In order to differentiate h(3), we consider the so called digamma function ([1],
6.3.1), which is defined by ¥(z) = I"(z)/I'(z) for z # 0,—1,—2,.... Then for
B=k>n

h' (k) :h(k){\lf(k+1)+\I/(k+>\+%)+210g2 (2.17)
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—U(k+1—n)— Uk +n+2x+ 1)}

We can also write T'(8+1) = (B —1)---(B—n+ DI (B—n+1) and so
consider h(f) as

8) = 2P(B+A+3)B(B—1)---(B—n+1)  uB)(B)
N (B+n+2X2+1) w(B)

where u(f) = 2*°T(8 + X +1/2), v() = BB — 1)+ (B —n+ 1) and w(B) =
I'(B+mn+2Xx+1). Thus

W(k) = w(k){v (k)v(k) + u(jzz’)g]ﬁ)} — u(k)v(k)w' (k)

and, since v(k) = 0, for all £ < n, this is simply

u(k)v' (k)

"0 =

Furthermore v'(k) = (—1)"~*+OD(k + 1)T'(n — k), from which we can see

(—1)n= 022D (k + X + H)D(k + 1)T(n — k)

! —
k) = L(k+n+2X+1)

(2.18)

We can now use equations (2.17) and (2.18) to deduce the ultraspherical coef-
ficients for the thin plate spline; for &£ > n

b (b, A) = an(k, \){T(k +1) + Tk + A+ %) +2log2 — U(k+1—mn) (2.19)

—U(k+n+2) + D}

whilst for k£ < n

(—1)H1225+N (n + TN (k + A+ 2)D(k + 1)T(n — k)
2127 (k +n + 1+ 2)) '

b (K, \) = (2.20)
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2.4 Gaussians

Here we consider the function ¢(r) = e ", for & > 0. It is well known
that ¢ is SPD (see [13]). To use the Gaussian on the sphere we consider,
P(t) = e 2?2, Again we apply formula (2.7) to obtain

1

_1\n,—2a n

an (ct, N) :( 1)"e d(2a) cn(A) /eQat(l_tZ)nJr)\fl/th‘
" -1

The integral in the above formula represents the modified Bessel function I, ;
specifically we have ([17], 3.71)

1
Ia(2a) = / 2YnA=1/2 gy (2.21)
-1

(n—i-)\—i-

Therefore we deduce the ultraspherical coefficients

(=1)"rt/22me 72T (n 4+ A + 3) ¢u(N) I

an(a, \) = nia(2a), meN,

o dp,
and, on substituting (2.3) and (2.5),

(n+ M (e 2

a

an(a,\) = I (20). (2.22)

3 Common RBF’s for the 2-Sphere

In this concluding section we specialise the results of Section 2 to the sphere
5?2, in which case A = 1/2. Furthermore we apply the results to the radial
functions in their more familiar form.

3.1 The Inverse Multiquadric: ¢(r) = (r? + ¢?)~'/2.

Here we apply (2.8) with A =1/2 and 8 = —1/2 giving, for n € IN,

4

an = an(—1/2,1/2) = a,(=1/2,1/2)F(n +1/2,n + 1;2(n + 1); g

T 3)
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Considering the following identity ([1], 15.1.13):
1
F(a, 5 tail+ 2 2) =221 41— 2)7%

setting a = n + % and z = 4;#02 allows us to deduce:

+ H(=1)» 2 2n-+1
o — (71% 2)(=1) il ( )" (3.1)
L(z —n)l'(n+35) \c+ vV4+c?
this can be simplified further, using the identity ([1], 6.1.17)
()T —2) = = (3.2
i ST '

In particular setting z = 1/2 — n yields
1 1
I'1/2—-n)I'(n+3/2) = (n+ §)F(1/2 —n)l'(n+1/2) = (n+ 5)(—1)”%
giving
a, = h?"t! (3.3)

2

vy e < 1, thus the coefficients decay at an exponential rate.

where h =

3.2 The Multiquadric: ¢(r) = (r? + ¢?)'/2.

Here we apply (2.8) again with A = 1/2, 8 =1/2, giving for n € IN,
4

an = au(1/2,1/2) = 0n(1/2,1/DF(n = 1/2,n + 12(n + 1); 7).

A closed form representation for F(n—1/2,n+1;2(n+1); ﬁ) can be derived
quite easily ([1] Section 15). In particular, we have:

F(n—1/2,n+1;2(n+1);2) = (n+ %)x/(l 12; (1- %)22n+1(1+m),(2n+1).
nTa

Setting z = 4;% and multiplying by a,,(1/2,1/2) gives

E%)cx/ll + c?) ( 2 )2n+1‘ (3.4)
2

c+V4+c2
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Further simplification is possible, setting z = 3/2 — n in (3.2) gives

I'3/2—n)I'(n+5/2) = (n+ §)(n + 1)(n — 1)I‘(3/2 —n)l'(n—1/2)

2 2 2
3 1 1 -
= (n+35)(n+3)n— D",
thus
2+ ¢? n+ Hevd 4 2 2t
e ey o) 6

3.3 The Pseudo Cubic: ¢(r) =r?

Here we simply set § =3/2 and A =1/2 in (2.12) giving, for n € N,

an = an(3/2,1/2) = (—1)"2* (3.6)
I'(3 —n)l(n+ 1)
Simplification is again possible, setting z = 5/2 — n in (3.2) gives
5 3 1 1 3.
F'G/2—nn+7/2)=n+)n+ ) (n+ ) (n—2)(n—)(—1)"n,
2 2 2 2 2
thus 9
ORI T T )
3.4 The Thin Plate Spline: ¢(r) = r*logr
Here we simply set £ =1 and A = 1/2 in (2.20), for n > 1 this provides
_ _ L(2)*T(n —1)
an =b,(1,1/2) =4(n +1/2) T+ 3)
_ 4n+3) B 1
mrm ey = Os): (38)
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2

3.5 The Gaussian: ¢(r) =e "
Setting A = 1/2 in (2.22) yields, for n € N,
T —2a
ap = ap(a,1/2) = \/g(n +1/2)e? In+%(2a),

employing 2.21 gives

(n+3)e ™ [ o
== 1 —¢°)"dt. .
o= D /Ie (1— ) dt (3.9)

We can derive the asymptotic behaviour using the well-known method of
Laplace. However, we prefer a direct approach, which we present for the con-
venience of the reader. Consider the integral appearing in (3.9), that is

1
Gn = /e2at(1 — t3)"dt. (3.10)
-1

Setting 7 = /nt, we obtain
VnG, = / fun(T)dT
— 00

where

2at

() =dem (=T r|<vn 3.11
Falr) {0, 7| > V. .

Observing that 0 < f,(1) < e2%e~™ and limy,_, fulT) = e ™ allows us to
employ the dominated convergence theorem,

VnG, = /fn(T)dT — /6_72037:\/%, as n — oo. (3.12)

Also we have Stirling’s formula ([1], 6.1.38)
L(n+1) =n! ~V2mn"t2e™ as n— . (3.13)

Employing (3.12) and (3.13) together in (3.9) gives

e~2® eqyn
~ —21/2 (Z) y as n — OO,

Gn

i.e. the Gaussian coefficients decay at an exponential rate.
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3.6 Concluding Remarks

The motivation for this work stems from recent results on error estimates
for spherical interpolation ([4], [7] and [10]). These topics have been inves-
tigated by several mathematicians, in particular the Leicester group ([8] and
[9]). Specifically the report [8] calculates the ultraspherical coefficients for the
Duchon splines which are also contained in this paper, the approach taken
(private communication) however is quite distinct from the one given here.

For practical purposes a potential user would prefer to work with a basis func-
tion 1 with a closed form representation and with provably good approximation
properties. The results of this paper allow us to provide convergence results
for the common RBF’s restricted to the sphere.

The process of restricting radial functions to the sphere clearly provides suitable
ZBF’s. However the class of all suitable ZBF’s is much larger, containing, in
addition, the truly zonal functions i.e. those that are SPD or CSPD(m) on
S%=1 but not on IR? It is not clear whether choosing a truly zonal function
provides any advantages over a restricted RBF, and this is an obvious topic
for further research.
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