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On the Accuracy of Surface Spline
Interpolation on the Unit Sphere

Simon Hubbert and Tanya M. Morton

Abstract. This paper considers a novel modification to the surface
splines that have previously been used on the unit sphere. The surface

splines considered are a natural analogue of surface splines in IR? and
possess a unique Fourier expansion in terms of an orthonormal basis of
spherical harmonics. Knowing the decay of the associated Fourier co-
efficients is important because they enable error estimates for spherical
interpolation. In this paper we explicitly compute the Fourier coeffi-
cients of the surface splines and employ a recent theoretical result [8]
to provide a useful error bound. We illuminate our theoretical findings
by performing numerical experiments on the sphere and also on the
hemisphere.

§1. Surface Spline Interpolation in Euclidean Space

Let m,d € IN := {1,2,...} be such that m > d/2. The surface spline basis
function ¢ : [0,00) — R is defined to be

_ J(=1)r?m—d]ogr, ifd is even;
olr) = { (—1)np2m—d, if d is odd, M)

where n is a positive integer defined by

2

2
m— 221 if d is odd. (2)

m— 92 if d is even;
n:=
2

Let X = {z1,...,zn} be a finite subset of distinct points in RY that
satisfy the following condition:

if p€,_1(R%) satisfies p(z;) =0 (1<j < N) then p=0, (3)
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where II,_1(IR%) denotes the space of d—variate polynomials of degree at
most n— 1. Let f : R — IR be an arbitrary function. The unique surface
spline interpolant to f at X, denoted by s¢, has the form

sp(@) = Y Ao(llz — z5]) + p(e), (4)

j=1

where p € TI,,_; (R?) and where the ); (1 < j < N) satisfy
N
> Ajp(z;) =0, for all p € II,_;(RY). (5)
j=1

The surface spline basis function (1) has the property that it is condition-
ally positive definite of order n (2) on R?. This means that, for any set
X = {z1,...,zn} of distinct data points in RY, the matrix A € RY*V
given by

Aji = ¢(llzj — zxl]), 1 <4,k <N,

is positive definite on the following subspace

N
Vo1 = {)\ eRYN D Nip(w;) =0 for all pe Hn_l(]Rd)}. (6)

=1

For most practical applications we assume that we have we have a bounded
open domain Q C IR? for which X C closure(Q). We measure the density
of X in 2 by assigning the mesh norm

h:=sup inf |z — z]. (7)
sup inf, o
Let p € [1,00] and let f : @ — R be chosen from a sufficiently smooth
class of functions. The surface spline interpolant is said to provide an
L,—approximation order of A > 0 if

If = s¢llz, @) = O(RY), as h— 0. (8)

The largest possible value of A such that (8) holds is called the optimal
approximation order.

In the late 1980s, Buhmann [2] investigated the special case of surface
spline interpolation where @ = IR% and X = h - Z¢, i.e., the data points
are the vertices of a scaled integer lattice. In this framework it is shown
that, given a function f € C?™(R?), its unique surface spline interpolant
sy at h- 7% satisfies

Isf = fllo,@may = O(h*™), p€[1,00]. (9)
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Furthermore, 2m is the optimal approximation order.

At the present time, the optimal L,—approximation orders (p €
[1,00]) are not known for the case of surface spline interpolation on a
smooth bounded domain Q@ C R?. Indeed, numerical evidence suggests
that, in such cases, the accuracy is badly affected by the presence of a
boundary. There has been a great deal of research into understanding
(i.e., quantifying) the boundary effect, most notably by Michael Johnson.
Indeed, a combination of Johnson’s results from [9], [10] and [11] demon-
strates that, for a suitably smooth domain Q C R?, the surface spline
interpolant to a smooth enough target function f over a data set X C Q
with mesh morm h satisfies

If = s¢llz, @ = O(R*), as h—0,

xem—-9+944 1 my 1] € (2,00[;
where ! 2or 2 p] pel ]
)\:m—l-E, p€[1,2]

Thus, the optimal L,—approximation orders are known for p € [1,2].
Furthermore, the numerical evidence presented in [11] strongly suggests
that m + % is the optimal L, —approximation order for p > 2.

§2. Surface Spline Interpolation on the Unit Sphere

Suppose that we wish to interpolate scattered data which are known to lie
on a smooth compact (d — 1)—dimensional differentiable manifold M C
R%. One possible scheme would be to use a modified surface spline, that
is, we choose m,d € IN such that m > %, and consider
~ (—1)m=52p2m=(@=1) Jogr  if d is odd;
By = { O LT 8 ks edd g
(=1)m= 5 p2m=(d-1) if d is even.

In the special case of the unit sphere M = S9! we can use the relation

”6_77“ =V 2_2£T777 577)6 Sd_17 (11)

and completely specialise (10) to the sphere to give ¢ : [-1,1] = R as

- _ 12
(—1)’"_% (2— 2t)m_%, if d is even. (12)

d—3 d—1
—1)Ym—"7 192 _9p\m—"5 _ £ di .
w(t) = {( )T 5 ( t)™ 7z log(2 —2t), ifd is odd;
This introduces a new function that has not been considered previously
in the literature of basis function inteterpolation on spheres. We will
see that this basis function has several properties that make it a natural
analogue of surface splines in IR%. Taking the surface spline analogy one
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step further we dispense with the notion of polynomial reproduction and
replace it with spherical harmonic polynomial reproduction. A spherical
harmonic of order k on S%~! is the restriction to S of a d—dimensional
homogeneous harmonic polynomial of degree k. For a good account of the
theory of spherical harmonics see [14], we present here a brief review.

We let H}(S?~1) denote the space of spherical harmonics of order k
on S%-1. This space has a useful intrinsic characterisation. If we let Ag_;
denote the Laplace-Beltrami operator on S9! then the eigenvalues for
the eigenvalue problem

(Ag_1+ Nu=0 (13)
are Ay = k(k+d—2) k > 0, and H}(S?71) is precisely the eigenspace of
Ag_1 corresponding to Agx. The dimension Ny 4 of Hj (84-1) is given by
the multiplicity of A in (13), specifically

2k—i—d—2(k—|—d—3>7 k> 1

Nog=1, and Npg4= k P

Given an orthonormal basis {Vk; : I = 1,...,Ngq} for H;(S?1) the
collection
{JGJ:lzzl,“.,AGd:jiz(Ll,“.k}

is an orthonormal basis for the space of spherical harmonics of order at
most k, which we denote by H(S?1). Furthermore, the collection

{)&l:l:jL-H,AGJ:jQEO}

forms an orthonormal basis for Ly(S971). According to the celebrated
addition theorem [14]

Ng.,a

Pea(€7n) = 55 3 Vea(@Vialn), Eme s (14)
=1

k,d

where wg_1 denotes the surface area of S4~! and Py, q is the d—dimensional
Legendre polynomial of degree k which are defined on the interval [—1, 1]
via the Rodrigues formula

_ =Dk

== 1—¢2 ket 43 15
QkF(k4_g§l) ( ) ) ( )

sy dk
(1_t2)Tdd_

Py q(t

Spherical harmonics can be used to give a Fourier analysis for the sphere.
In particular, every function f € Lo(S%~1) has an associated Fourier series

Ng.a4

F=Y3" fradea (16)

k=0 [=1
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The Fourier coefficients are obtained by
foo= [ 1OVOISE) (7)

where dS represents a surface element of S9!, The square of Ly—norm
of f is given by

2

k,d

B siny = [, 1F@OPIS©O =Y fualfs (19

k=0 I=1

where the second equality is Parseval’s identity.
For a real number 8 > 0 the Sobolev space Wf (S9=1) of order B is
defined as

Ng,a

(7€ La(S™ ) 1 IByp sany = 30 D (L M) fiaf? <00} (19)

=0 l=1

The Sobolev embedding theorem holds true on the sphere, and asserts that
whenever 8 > 951 then W5 (S9=1) is continuously embedded in C(S%-1).

Let = = {&1,...,6n} be a set of distinct points on S¢~! that satisfy
the following condition

if €M, 1(ST ) satisfies V(&) =0 (1 <j < N) then Y =0. (20)

Let f : S%! — R be an arbitrary function. The unique specialised surface
spline interpolant to f at =, denoted by s, has the form

N
57(6) = ogw(€7&) + (), (21)
j=1
where J € H,,—1(5%71) and where the o (1 < j < N) satisfy
N
D V(&) =0, forall Y€ Hn 1(STT). (22)
7j=1

The new restricted surface spline (12) is conditionally positive definite
of order n on S?~!. This means, in analogy to the notion in R?, that
for any set = = {&;,...,&n} of distinct data points on S9!, the matrix
B € RM*¥ given by

Bjk =9(&] &), 1<,k <N,
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is positive definite on the following subspace

N
Wn—l = {O[ S ]RN : Zazy(gz) =0 for all y € Hn_l(Sd_l)}. (23)

=1

Using the work of Schoenberg [16], and extensions thereof [6], we can
deduce that 1 has the following unique representation

t) = ZakPk,d(t), with ag > 0 for k£ > n, (24)

where {Pj 4}r>0 denote the d—dimensional Legendre polynomials.

In recent years, a more general theory of interpolation using so-called
zonal basis functions has emerged [3], [5]; these are functions ) : [—1,1] —
IR which have unique Legendre expansions as in (24). Since the Legendre
polynomials satisfy the following orthogonality relation,

Wd—1

Oik, 25
wd—2Ng.d i (25)

1
/Pj,d )Proa(t)(1 — t2) 7 dt =
—1

it immediately follows that the associated expansion coefficients are given

by
1
N dawq—2

ak:T_l‘/Pk,d() YO -1 dt, k>0 (26)

To any zonal basis function the corresponding zonal kernel ¥({,n) =
¥ (¢Tn) has a spherical Fourier expansion

oo Ng,a

=> > &Ika(©)Vea(n)- (27)

k=0 I=1

Applying the addition theorem and (26) we deduce that the Fourier coef-
ficients are given by

= / t)(1— t2) “dt, k>0 (28).

Definition 1. A zonal basis function v is said to have a—Fourier de-
cay whenever there exists positive constants A,, Ay such that the Fourier
coefficients (28) of the zonal kernel ¥ (&, n) = ¢(¢Tn) satisfy

Ai(1+ k)@ <o < Ay(1+ k)@ o >0, k>n. (29)
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The accuracy of the method of interpolation with zonal basis functions
has received a great deal of theoretical attention (cf. [12],[7], [8]). A
typical error estimate takes into account 3 factors; the density of the data
set = C §971, the smoothness of the basis function 1, and the smoothness
of the target function f to be interpolated.

To measure the density of the data points we assign the mesh norm

h:=h(E,8% ") ;= sup min{cos ' (n7¢): & € EL (30)
’l’]ESd71

The smoothness of the underlying basis function is measured by the decay
rate of the corresponding Legendre coefficients; see Definition 1. Finally,
the smoothness of the target function f is captured by restricting attention
to functions which belong to a certain Sobolev space W2 (S4-1), see (19).
The following result is taken from [8].

Theorem 2. Let ¢ be a zonal basis function which has a— Fourier decay.
Let f € WP(S%1) where 8 = a+d—1. Let sy denote the unique y—based
ZBF interpolant to f over a set = C S% 1 of distinct data points with
mesh-norm h. Then, we have

d—1 d—1
= Ly = O T ), p e f2,00];
sy = floyson = { QL7 0 P e

For historical reasons, the research community tends to view the sur-
face splines as the prototype basis functions. In view of Theorem 2, it is
clear that in order to estimate the accuracy of surface spline interpolation
on the sphere, we only need to determine the decay rate of their Fourier
expansion coeflicients.

§3. The Fourier Coefficients of the Surface Splines

We can use equation (28) to compute the Fourier coefficients of the zonal
kernel (¢, n) = 1 (£Tn) induced by a zonal basis function ). In particular,
substituting the Rodrigues representation (15) for the Py 4 (k > 0), and
integrating by parts k£ times gives

1

@:w/ﬁwwu—ﬂ“%%a (31)
—1
where .
oy — CUd_QF(%) _ 2
TTkT(k+ 1) T ki (k+ )

(32)
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We can now use this formula to compute the Fourier coefficient of the
restricted surface splines and we begin with the case where d is even and

so, by (12), consider 9(t) = (2 — 2t)m_%. Substituting

d—1

(=1)k2m=F D(m — 452 + 1)
D=5 =k +1)

P ® (1) = (1—tym= T *,

into (31) yields

d—1

(-1)k2m=="T(m — %1 +1) ) /1
T(m— %L —k+1) 1)

Cr =

(1— )™= F (1) ar.

Letting 2u = 1 + ¢ allows us to write

—1)k22mtk=IT(m — 421 4 ! -
1) d—l( 2 )/@d/ (1- u)m_lu’“r%du.
P(m -5 —k+1) 0

Cr =

The integral in the above expression is the beta function

' I'(z)'(y)

B(z,y :/ 1—w)¥ u tdy = =2~
(z,y) ; (1-w) T+ y)
evaluated at z = m and y = k + 951. Thus we have that

. _ (=Dk22mHIn(m — 42 + ()T (k + 451)
I'm— %1 —k+ DI (m+k+ 52)

(33)

This can be simplified further by using the reflection formula ([1], 6.1.17)

T()D(1—2) =

(34)

sinmz’
In particular setting z = m — % — k + 1 yields

I'(m — % —k+1D)I'(-m+k+ d;) = (—1)k—m+%

ﬂ-’
2

furthermore, expressing I'(m + k + %) as

d—1 d—1 d—1
(m+k+—?——n~(m+k+—5——wMN—m+k+—7ﬂ

allows us to rewrite (33) as

A

(—1)m= 57 22m+h=1D(m — =1 L 1D (m)T(k + %51)
Cr = Kd

(m+k+2%52—1)---(m+k+ %L —2m)n
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Substituting the value for kg4 yields

. () F e r(m - S 4 )T(m) (35)
Cr. =
P mtk+ S ) (mtk+ S 2m),

We now turn attention to the case where d is odd and so, by (12), we con-
sider 9(t) = (2 — 2t)m_% log(2 — 2t). This function can be represented

2
as follows
i) = =2 (2 —2)8 (36)
N 2 8ﬂ ﬂ:m—%.

The Fourier coefficients of the more general function ¢ — (2 — 2¢)? can be
computed in the same way as above. Indeed, they are given by

ér(B) = (=1)*x "7 29 h(p) (37)
where
26T (B + )T (B + %52)
(k+B+d—-1DT(-k+p+1)

The Fourier coefficients {czk}kzo of the zonal kernel induced by (36) are
given by

(38)

hB) = ¢

A 10 .
di = 5@%(5)

_ d—1
ﬂ—m_T .

Since the function (—1)"‘_%1& is conditionally positive definite of order

m— % we shall restrict attention to the coefficients cik where k > m— %.

In order to differentiate h(f3) it is useful to express it as

d=18(8-1)-(B=k+1)

) v(B)
2 TB+k+d—1)

h(B) = 2*°T (B + o(3)

= u(p)

Differentiating with respect to 8 gives
w(B){u' (B)v(B) + v'(B)u(B)} — u(B)v(B)w'(B)

h(B) =

) w (B
We observe that v(m — 251) = 0 whenever k¥ > m — 251 and so the
expression above, evaluated at 8 =m — % simplifies to

d— d—
W (m — d— 1) _ v'(m — Tl)ugzll— Tl)
2 w(m — 55%)

Furthermore,

d—1 — d—1 d—1

o (m—=5=) = (DT (m — o= DE(k - =),
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from which we can see h'(m — %51) equals
- d—1 ['(k—m+
-1 k+m—d2322m—(d—1)r r -~ 11

Using the fact that
L(k—m+%1) 1
T(k+m+ %) (m+k+ 952 —1)--(m+k+ 5L —2m),

we can deduce that, for k > m — %, we have

. (~1)m 5221 S T (m — 451 4 1)D(m)
i = =1 _qy... =1 _ (39)
m+k+%—-1)---(m+k+ %S —2m).

In summary we have proved the following result.

Lemma 3. For d even the restricted surface spline
(1) = (-7 T 2 -2)m T

is conditionally positive definite of order m — d%Z on 841 and the Fourier

coefficients of its associated kernel are given by

22mr 3" T(m — 951 4+ 1)T(m)
(m+k+%t 1) (m+k+ 5L —2m).

Similarly, for d odd the restricted surface spline
a1 _
(1) = (-1 S (2 - 20" log(2 - 21)

is conditionally positive definite of order m — d%?’ on S%1 and the Fourier
coefficients of its associated kernel are given by

- 22m—17 55 T (m — 451 4+ 1)T(m)
C(mA k45— 1) - (mt k4 95— 2m).

In both cases the restricted splines have a—Fourier decay where o =
2m — (d —1).
With the decay rates established, we can appeal to Theorem 2 and

formulate the following result concerning the accuracy of surface spline
interpolants on the sphere.

Theorem 4. Let m,d € IN be such that m > %51, Let f € W2™ (S 1)
and let sy denote the unique surface spline interpolant to f over a set
= C S%1 of distinct data points with mesh-norm h. Then, we have

d—1 d—1
~ = JomP AT, pe2,00); 40
”sf f||Lp(Sd ) {O(h2m), p € [1,2]. (40)
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§4. A Numerical Investigation

In this section we investigate the numerical performance of employing
surface splines to fit scattered data on the sphere. Attention is devoted to
the circle S*, where we shall use the linear and cubic splines, that is,

Y(t) =—(2—20)"% and (t) = (2—2t)*/7, (41)
and the 2-sphere S2?, where we shall use the thin plate spline

Y(t) = (1 —1t)log(2 — 2t). (42)

For a thorough investigation it is important that we have some control
on the distribution of the data points on either S* or S2. The important
quantity to consider is the mesh norm A (30). In view of this we perform
numerical testing on S with equally spaced points, where doubling the
number of points causes h to halve. For S2, we use the spiral points of Saff
and Kuijlaars [15]. Here the data points uniformly fill up the sphere by
tracing out an imaginary spiral from the south pole x; to the north pole
xn. Numerical experiments suggest that doubling the number of spiral
points causes h to decrease by a factor of approximately 1/+/2.

For testing purposes we choose to interpolate the following infinitely
smooth target functions

f(a;,y):1+:v8+e2ys, for St (43)
and
f(z,y,2) =sinz -siny -sinz, for S2 (44)

In order to measure the interpolation error we generate 10,000 points
(equally spaced for S and randomly distributed for S?) and approximate
as follows,

s = fllz.(se1) = max{[s(&) — f(&)] : 1 <4 < 10,000},

and

10,000
1 9

s = FI12, sy ~ To o002 |56 — F@)IP, pe1,00).
? i=1

With this test environment in place, we ask the following question.
Question: How close are the theoretical L,—convergence orders, given
by Theorem 4 to those observed by experiment 7

Let €, v denote the L,—error measure achieved using /N data points
with mesh norm Apx. The aim of our experiment is to examine how the
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Tab. 1. Accuracy of linear spline interpolation on S L

Nodes Li—error Ls—error L,,—error
64 4.24_¢9 2.73_02 4.91_¢g2
128 1.07_p2 6.84_03 1.26_¢2
256 2.68_03 1.71_03 3.17_03
512 6.69_04 4.28 _o4 7.94_o4

1024 1.67_o4 1.07_o4 1.99_o4

Ratio Lq,—order Ly—order L,—order

64/128 1.99 2.00 1.96

128/256 2.00 2.00 1.99
256/512 2.00 2.00 2.00
512/1024 2.00 2.00 2.00

Tab. 2. Accuracy of cubic spline interpolation on S L

Nodes Li—error Ls—error L,,—error
64 2.00_p5 4.30_o5 2.57_oa
128 1.14_q¢ 2.45_p6 1.54_o5
256 7.05_o8 1.49_¢7 9.50_¢7
512 4.38 _o9 9.29_q9 5.92_os

1024 2.73_19p 5.80_1¢ 3.70_p9

Ratio Lq,—order Ly—order L,—order

64/128 4.12 4.13 4.06

128/256 4.03 4.03 4.02
256/512 4.01 4.01 4.00
512/1024 4.00 4.00 4.00

error measure changes as the interpolation nodes double. The theory

predicts that
om—_d-1d-1
SpN {(hN/th) Tt pe[2,00;
€p,2N (hn/han)?™, p € [1,2].

Using our data point distributions we know that hy /hon = 2 for the circle,
and hy/haon =~ /2 for the 2-sphere. Thus we can use our numerical results
to predict the optimal convergence orders. The results are displayed in
Tables 1-3.

Conclusions: The numerical results suggest that the optimal L,(S¢"1)
convergence order (p € [1, 00]), for restricted surface spline interpolation is
2m. This implies that Theorem 4 predicts the optimal orders for p € [1, 2].
We summarise our findings in the following conjecture.
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Tab. 3. Accuracy of thin plate spline interpolation on S 2,

Nodes Li—error Ls—error L,,—error
128 3.39_o4 4.38_o4 1.27_o3
256 7.99_p5 1.03_¢4 2.72_04
512 1.90_o5 2.46_o5 6.73_o5
1024 4.68 _og 6.08_o¢ 1.67_¢5

2048 1.14_g¢ 1.49_¢6 4.22_p6

Ratio Lq,—order Ly—order L,—order

64/128 4.17 4.17 4.45

128/256 4.15 4.14 4.02
256/512 4.04 4.04 4.02
512/1024 4.07 4.05 3.97

Conjecture 5. Let m,d € N be such that m > 452, Let f € W™ (54-1)
and let sy denote the unique surface spline interpolant to f over a set
2 C S9! of distinct data points with mesh-norm h. Then, we have

Isf = fllz,(sa-1) = O(R*™)  for all p € [1,00].
Moreover, the number 2m cannot be improved.

We now begin to investigate the impact of a boundary upon the accu-

racy of surface spline interpolation. Specifically we consider the following
question.
Question: For S' and S? consider the interpolation problem set on the
semi-circle and hemisphere respectively. In both cases, how does the pres-
ence of the boundary affect the convergence of the restricted surface spline
interpolants?

We tackle this question in the same way as for the global analysis of
the previous question. The results are displayed in Tables 4-6.
Conclusions: The results clearly show that the optimal orders are not
achieved for interpolation on the semi-circle and hemisphere and this cor-
roborates with the conjecture that the presence of a boundary causes a
deterioration in convergence orders. What is most interesting is that the
deterioration can be quantified. We express this as a conjecture.

Conjecture 6. Let sy denote the unique restricted surface spline inter-
polant to a target function f € W2™(S91) over a set E of distinct points
on a hemisphere H4=! C S?~1  (semi-circle for d = 2) then

s — fllz,(sa-1) = O(hm"'%) for all p € [1,00],

where h is the appropriate density measure of Z in H¢~ 1.
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Tab. 4. Accuracy of linear spline interpolation on the semi-circle.

Nodes L1 L2 L3 L4 Loo
128 3.76_06 | 3.51_05 | 7.78_p5 1.17 04 | 3.93_04
256 47 g7 | 62105 | 1.54_0s | 2.45_05 | 9.80_os
012 5.88_08 1-10—06 3.06_06 5-14—06 2.45_05
1024 7.36_09 | 1.94_o7 | 6.08_o7 | 1.08_06 | 6.12_¢¢

Ratio L1 L2 L3 L4 Loo

128/256 3.00 2.50 2.33 2.25 2.00

256/512 3.00 2.50 2.33 2.25 2.00

512/1024 3.00 2.50 2.33 2.25 2.00

Tab. 5. Accuracy of cubic spline interpolation on the semi-circle.

Nodes Ll Lg L3 L4 Loo
128 376_0s | 351_05 | 77805 | L.17_01 | 3.93_oa
256 47 g7 | 6.21_05 | 1.54_0s | 2.45_05 | 9.80_o5
512 5.88 03 | 1.10_gs | 3.06_06 | 5.14_0g | 2.45_os
1024 7.36_09 | 1.94_o7 | 6.08_07 | 1.08_06 | 6.12_06

Ratio L1 Lg L3 L4 Loo

128/256 3.00 2.50 2.33 2.25 2.00

256/512 3.00 2.50 2.33 2.25 2.00

512/1024 3.00 2.50 2.33 2.25 2.00

Tab. 6. Accuracy of thin plate spline interpolation on the hemisphere.

Nodes L1 L2 L3 L4 Loo
128 1.13_03 3.46_03 6.26_o3 8.90_o3 3.87_02
256 4.53_p4 1.68_03 3.17_o3 4.58_03 2.09_02
512 1.60_04 | 6.89_04 | 1.39_03 | 2.07_03 | 1.02_¢
1024 5.50_0s | 2.86_04 | 6.14 g4 | 9.46_o4 | 5.05_g3
Ratio L1 L2 L3 L4 Loo
128/256 2.64 2.09 1.96 1.92 1.78
256/512 3.00 2.57 2.39 2.29 2.07
512/1024 3.08 2.54 2.35 2.26 2.02

§5. Final Remarks

The idea of using generalized surface splines on the sphere has also been
studied by Levesley [13], where the so-called ultraspherical expansion co-
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efficients are computed. The ultraspherical coefficients are related to the
Fourier coefficients that we have computed in this paper, however the
approach taken in [13] is distinct from the one given here.

The surface splines (1) for Euclidean space induce a d—dimensional
function ®(z) = ¢(||z||), z € R®. Depending upon the parity of the di-
mension, the function ® has a generalised Fourier transform which is given
by
. 22m T T (m — 4 + 1)T(m)
o= 63 ’

d odd,

and .
22m=1r2D(m — & + 1)I'(m)

€[> ’

We observe that the numerators appearing in the expressions of the
spherical Fourier coefficients (see Lemma 3) have the same form as the
numerators appearing above, where d is replaced by d — 1. This reveals
an interesting link between Euclidean and spherical Fourier analysis. This
may extend to more general basis function restrictions or even to more
general manifolds, and is an obvious topic for further research.

It is interesting to note that the known results for surface spline in-
terpolation in Euclidean space can be directly transfered to the sphere.
The optimal Lp(Sd_l) approximation order is conjectured to be 2m, this
is known to be true on IR%. The optimal L,—approximation order on a
hemisphere (and so for any suitable bounded open subdomain of S9-1)
is conjectured to be m + %. This is also the current conjecture on IRY.
The authors believe that the task of settling the 2m conjecture; that is,
replacing the factor % in (40) with %, is a challenging puzzle and one
which deserves further investigation.

d even.

d(¢) =
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