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Abstract The mechanism of human cognition and its computability provide an important theoretical foun-

dation to intelligent computation of visual media. This paper focuses on the intelligent processing of massive

data of visual media and its corresponding processes of perception, memory, and judgment in cognition. In

particular, both the human cognitive mechanism and cognitive computability of visual media are investigated

in this paper at the following three levels: neurophysiology, cognitive psychology, and computational modeling.

A computational cognition model of Perception, Memory, and Judgment (PMJ model for short) is proposed,

which consists of three stages and three pathways by integrating the cognitive mechanism and computability

aspects in a unified framework. Finally, this paper illustrates the applications of the proposed PMJ model in

five visual media research areas. As demonstrated by these applications, the PMJ model sheds some light on

the intelligent processing of visual media, and it would be innovative for researchers to apply human cognitive

mechanism to computer science.
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1 Introduction

The mysteries of the human mind have attracted considerable attentions in natural sciences. For nearly

half a century, cognitive science has emerged as a new discipline that focuses on the various scientific

issues of the human mind. Cognitive science is the interdisciplinary scientific study of human perception

and thinking process, which includes all of cognitive processes from sensory input to complex problem

solving, individual human being to intelligent activity of human society, as well as the nature of human
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intelligence and machine intelligence. Cognitive science research not only promotes the understanding of

the nature of the human mind, but also promotes the development of modern science and technology.

Recently, computer science has become increasingly prominent in cognitive science, and the knowledge

of theoretic computer science provides a solid basis for considering what the functional architecture of a

computational brain is [1].

The visual media, including digital images, video and three-dimensional models, contains superfluous

visual information. Since the intelligent processing of visual media utilizes a combination of cognitive

mechanism and computation, visual media is a good example to integrate cognitive mechanism into

an intelligent computation [2–4]. Marr’s visual computing theory is the most representative cognitive

computing model, which plays an important role in guiding intelligent computer image processing [5].

The algorithmMarr proposed is not only in line with the results of neurophysiology experiments conducted

in primate animals, but also explains the characteristics of the human visual system [5]. Marr’s model

was the most successful model that combined human cognitive mechanisms and computer algorithms.

However, with the rapid development of science and technology, the pending visual media information

from the Internet is massive, unordered, uncertain, and interactive in social groups. Thus, it is imperative

to propose new theories and methods to process massive amounts of visual media.

Over the past decade, a large number of neurophysiological and cognitive neuroscience researches have

provided in-depth and detailed experimental data and theoretical models to reveal the brain’s informa-

tion processing mechanisms. Because of the complexity of information processing in the human brain,

cognitive scientists recognize that computational models can enhance our understanding of the cognitive

system functions and provide a theoretical foundation and technical support [6]. For example, Science,

Nature, and Neuron recently published a series of studies [7–12] that showed the role of the bottom-up

and top-down visual attention selection in the process of human visual perception. Different neural path-

ways as well as corresponding computational models that successfully simulated their neural mechanisms

were discussed. Further neurophysiology research and computational modeling research indicated that

the perceptual significance of stimuli depends on the background information in the environment [13];

background information is also shown to be very important in object recognition process [14]. Poggio et

al. proposed a systematical computational model based on the perception principles of biological visual

system [15–17]. However, the researches on the neural mechanisms of visual information processing still

lack a quantifiable cognitive model and a corresponding mathematical theory to explain the internal

mechanism clearly. All of these problems obstruct the practical application in engineering. How could

cognitive mechanisms and computational models simulating human cognitive functions be applied to the

intelligent sensing of machine perception in the natural environment? How could they be applied to solve

practical problems of intelligent computing? All of these questions would be answered by the fundamental

scientific exploration of intelligent information process computing.

This paper addresses the intelligent processing of massive amounts of visual media and makes the

processing of perception, memory, and judgment in cognition correspond to the steps of analysis, model-

ing, and decision in computing, respectively. We review both human cognitive mechanism and cognitive

computability of visual media at three levels: neurophysiology, cognitive psychology, and computational

modeling. Then, the Computational Cognition Model of Perception, Memory, and Judgment (PMJ

model) is proposed, consisting of three stages and three pathways integrating cognitive mechanism and

computing in its framework based on the basic mechanisms of human cognition. In the framework of

PMJ model, we study the important cognitive mechanisms of human information processing on mass

visual media, build a neural network model based on PMJ model, achieve a quantitative description of

the visual cognition load, and further explore the mathematical formulation of the model. Finally, the

model is applied in the field of affective forecasting based on Internet images and image retargeting. PMJ

model would provide realizable cognitive basis for improving the efficiency of mass visual media processing

from the Internet and realizing visual media interaction, integration and presentation in accordance with

human perception and cognition. Furthermore, the model would effectively promote cognitive computing

from qualitative research to quantitative research, and enhance the research level of intelligent processing

of Internet visual media.
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2 PMJ model

Psychological research has reached a consensus that most cognitive processes are composed of a series

of successive processing stages [5]. These processing stages mainly include the following steps: When a

stimulus is presented, the cognitive system processes it by sensory and perceptual processing first, after

perceptual processing the information is then transferred to short-term memory; by rehearsal, some of

the information in short-term memory is transferred to long-term memory; finally, with the interaction

between cognitive system and the outside world, knowledge and experience in long-term memory, and

the perceptual processing information from the outside world influence the response of cognitive system

to the outside world in conjunction. However, could the processes described above be computed? To

answer this question, we need to discuss the theoretical basis of cognition computation first.

2.1 The computability of cognition

Computationalists from cognitive psychology proposed that cognition is a kind of computational form [18],

and the primary function of the brain is to process information [14]. The received information can

be represented in the brain. If such a representation of the brain is absent, it is impossible for the

brain to communicate with the world [1]. Representations of the brain are functioning homomorphisms;

that is, there are structure-preserving mappings (homomorphisms) from states of the outside world (the

represented system) to symbols in the brain (the representing system) [1]. Symbols are the physical

manifestation of computation and representation in cognitive processes. They carry information and

embody the results of those computations [1]. Therefore, it is essential to understand that the symbols of

the brain are physical entities and cognition is the computation of symbols and the information processing

of the brain [1]. Good symbols in a computational system must be distinguishable, constructible, compact,

and efficacious [1].

The computability of cognition could bind the mechanism of human cognition and computational

models realized by computers. It is the theoretical foundation for the research in which human be-

haviors could be explained by computational processes, and the basic principles of cognitive modeling

for instructing engineered computing (categorization, identification, and encoding) based on cognitive

hypotheses. The computability of cognition not only makes the quantification of cognitive properties

possible, but also serves as the basis for quantified data to be computed in the computing processes of

modeling and judgment.

2.2 The definition of PMJ model

Based on the fundamental principle of human cognition and the computability of cognition, we propose

the PMJ model in which perception, memory, and judgment of cognitive process correspond to anal-

ysis, modeling, and decision of computing, respectively. The theoretical framework consists of three

stages, multiple pathways, and a series of cognitive strategies which are the combination of cognition and

computation. PMJ model is shown in Figure 1.

As shown in Figure 1, the framework of the cognitive model is highlighted with the dotted lines that

include the main stages of cognition, such as perception, memory, and judgment [5]. In each stage,

the cognitive system would complete certain information processing tasks and provide information as

input for other stages, or receive the output of the other stages. All stages would interact with each

other to complete the cognitive processing tasks [5]. In the model, the arrowed lines with numbers

indicate the pathways of a certain cognitive function. The processings of perception, memory, and

judgment of cognition in PMJ model correspond to the stages of analysis, modeling, and decision in

computing, respectively.

In the stage of perception, through the processes of pre-attention selection [19,20] and selective atten-

tion [21–26], the cognitive load of cognition system is reduced [27,28], and then salient visual features

are extracted (as indicated by 1 in Figure 1) [13]. In the stage of memory, dynamic memory system is

achieved (as indicated by 2 in Figure 1) through the mechanisms of encoding and storing processes [29–32]

and the mechanisms of updating and consolidation [33–38]. In the stage of judgment, judgments and
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decisions are made efficiently (as indicated by 3 in Figure 1) through categorization learning [39–43] and

encoding based on action coding or abstract coding [44–53].

Cognition consists of a series of complex processes, and there are multiple processing pathways between

the various stages of cognition. The cognition system chooses pathways dynamically, depending on

the difficulty [54] and the goal [55,56] of the information processing tasks. These processing pathways

complete the transfer of information between the three stages of processing, ultimately achieving judgment

efficiently, and output the decision results. There are three kinds of pathways, summarized as the fast

processing pathway, the fine processing pathway, and the feedback processing pathway.

(1) The fast processing pathway is the process from perception to judgment (the arrowed line of

8 as shown in Figure 1), which achieves judgment based on the output of perception. The process

of this pathway does not require too much knowledge nor experience involved [57,58] in which global

features and contour information of the input stimulus as well as the low spatial frequency information

are processed [59–61]. Based on coarse and primary processing of the input information, the cognition

system makes a fast categorization judgment [59–61].

(2) The fine processing pathways are the processes from perception to memory, and then from memory

to perception and judgment (the arrowed lines of 4+5 and 7 as shown in Figure 1), which achieves

both perception and judgment based on the knowledge stored in the memory system. Knowledge and

experience play an important role in the pathways [62–65], in which local features and detailed information

of the input stimulus as well as the high spatial frequency information are processed [59–61]. Based on

fine processing of the input information and matching them with the knowledge in long-term memory,

the cognition system makes a judgment.

(3) The feedback pathways are the processes from judgment to memory, and from judgment to percep-

tion (the arrowed lines of 6 and 9 as shown in Figure 1), which updates perception and memory based

on the results of judgment [66]. Based on the results of judgment the cognition system updates knowl-

edge stored in long-term memory. The output of judgment would serve as a clue for future perception

processes, and further improve their efficiency and accuracy [66].

This paper focuses on the intelligent process of massive amounts of visual media and investigates the

cognitive mechanisms, neural network, and application in computing of PMJ model. The mappings

from perception, memory, and judgment of cognitive processing to analysis, modeling, and decision of

computing are discussed. For example, the processing of judgment based on the output of perception in

the fast processing pathway (the arrowed line of 8 in Figure 1) is mapped to feature-based modeling and

decision, while the processing of perception and judgment based on the knowledge in memory system in

the fine processing pathways (the arrowed lines of 4+5 and 7 in Figure 1) is mapped to knowledge-based

learning and decision. Perception and memory updating based on the results of judgment in the feedback

processing pathways (the arrowed lines of 6 and 9 in Figure 1) is mapped to decision-based modeling

and optimization. In the remainder of this paper, the applications of PMJ model in five different visual

media research areas are presented.

3 Understanding cognitive psychology research based on PMJ model—visual
search

Visual search is a visual behavior to detect or locate a target item presented within a specified field. Like

other cognitive processes, visual search is a process consisting of several PMJ sub-processes.

In a rapid search, the observer first attends to the global layout, assessing the rough contents of the

search field (as shown in Figure 2). These processes are rapid and parallel processes carried out simul-

taneously across the search field and generally can be completed within a single glance [67]. Treisman’s

feature integration theory (FIT) [68–70] proposed that feature maps in mental representations encode the

simple attributes in pre-attentive stage (such as color, motion, orientation, and coarse aspects of shape,

where a single map is selective for a particular value such as “red” along a given stimulus dimension

“color”). If a target is highly conspicuous, like the case where the target is a single feature object, the

features of the target are quickly extracted leading to the immediate detection of the target. As such, it is
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Figure 1 The schematic representation of PMJ model.
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Figure 3 Optimized search.

much simpler to complete the search in the relevant feature map, if the detected target is a single feature

object. The underlying mechanism of rapid parallel search is the fast processing pathway of cognition.

If the target is not conspicuous (e.g., the target is a multidimensional object), the observer will have to

focally scan the image [68]. To detect such a specific multidimensional target, it is necessary to scan the

displayed items of the target one by one, where focal attention is necessary to bind stimulus properties

together [68]. The goal of scanning is to bring the target within the searcher’s visual lobe that is the region

around the point of regard within which information is gathered during each fixation [71]. A successful

target-present judgment requires accurate detection, by which the observer matches a pattern extracted

from the search field to a stored mental representation of the target stimulus in the memory and reaches

a yes–no decision [71]. These serial processes reflect the pathways as indicated by the arrowed lines of

4+5 and 7 in Figure 1.

In guided search, the information acquired in the parallel process can be used to guide the serial

process. Guided search is restricted to items with at least one dimension similar to the target [72]. Via

the feedback pathway, observers perform such a search by restricting attention to stimuli that possess

at least one of the target properties. The guided attention occurs within a “master map” of locations.

The master map of locations contains all of the locations in which features have been detected, with each

location in the master map having access to the multiple feature maps [68].

In optimized search (as shown in Figure 3), the fine process during the serial stage may form the
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memory representation of the stimuli such as properties and locations. For example, the recognition

performance of the target and distracter items in the search task is above chance [73]. In addition, the

target foreknowledge may enable top-down or knowledge-driven search processes. When the target is

well specified, knowledge-driven processes can amplify or attenuate the activation within feature maps,

allowing the searcher to bias attentional scanning towards those objects within a scene that contain

known target features [71,74]. The preview search, where selection of new items is impaired when these

items share features with the old items, provides another piece of evidence for top-down search processes.

Such top-down processes are modulated by the target properties (e.g., the angry expression of the target

face) [75,76]. The processes in optimized search reflect the role of memory representation, depicting the

top-down process as indicated by the arrowed line 7 in Figure 1.

As mentioned above, visual search is accompanied with the processes of decision and judgment. The

visual system needs to make a decision on target-present or target-absent judgment to terminate or

continue the search. A search can be classified as either self-terminating or exhaustive [77]. In self-

terminating searches, a search ends once a target has been discovered. Exhaustive searches, in contrast,

continue through the full search field even if a target is already discovered. Search on target-present trials

can be either self-terminating or exhaustive, regardless of whether the processing is parallel or serial. But

in both the parallel and serial searches, exhaustive processing is required to determine that a target is

absent—that is, all items must be inspected.

4 Neural computing based on PMJ model—Neocortex

It is well known that behavior could be explained by the activity of neurons. Intelligent activity could

be taken as a kind of behavior; thus, intelligence could be also explained by the activity of neurons. A

brain contains around 100 billion neurons, among these neurons, the neurons located in the neocortex

play important roles in intelligence. Research on neural science shows that almost everything we think

of as intelligence such as perception, language, imagination, mathematics, art, music, planning, etc. all

occurs in the neocortex [78]. The neocortex is the set of intelligence. Generally speaking, the typical

human neocortex is with size around 1,000 cm2 and 2 mm thick; it contains about thirty billion neurons.

About 100,000 neurons are contained in a tiny square millimeter consisting of 100 trillion of synapses [79].

Memories, knowledge, skills, and one’s life experience are all stored in the neurons of the neocortex. The

neocortex is divided into many neocortex functional regions. Physically, these regions are arranged in

an irregular patchwork quilt with nearly identical architecture. Functionally, the regions are connected

in a branching hierarchy [78,80]. Mountcastle’s proposal suggests that there may have a single powerful

algorithm implemented by every region of cortex. The way the cortex processes signals from the ear is

the same as the way it processes signals from the eyes [81]. Each region could be looked upon as an

information processing unit.

The information processing algorithm implemented by each region should complete three cognitive

tasks: perception, memory, and judgment. To understand how a neocortex region completes these three

tasks, it is necessary to know that the information flows in the neocortex are actually the temporal

and spatial patterns. Each region uses the input temporal and spatial patterns continuously to conduct

perception, memory and judgment. Figure 4 shows how the three cognitive tasks are completed in a

region.

Firstly, a region will make a prediction based on its existing knowledge. However, is such a prediction

correct? It is only the event itself that can answer this question. Then, after the event, information

of what really happened and the prediction will intersect and generate a feedback, which answers the

question whether the prediction is correct. Next, neocortex region updates its knowledge based on this

response. Updated knowledge will be used for the next prediction, and repeat the whole process. Take the

weather forecast as an example. Brian will first generate a prediction based on the weather knowledge

of the past. Correctness of this prediction will be judged in the next day when it really comes. The

real weather condition in the next day together with the prediction will generate a feedback, which is

exactly the state of the region. The brain can use this feedback for updating its ability of prediction, or
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Figure 4 Procedures of completing the perception, memory and judgment in neocortex.
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Figure 5 The PMJ model in neocortex.

knowledge, and then make further prediction.

Figure 5 shows a PMJ model for cortex region algorithm. Perception takes place when input infor-

mation gets sparsely represented by cortex neurons as spatio-temporal pattern. Cortex neuron network

memorizes input patterns constantly by learning. Knowledge is stored on the connection weight of the

network. Judgment part contains three functions: prediction, learning, and feedback. New input pattern

and previous prediction intersect and generate feedback information. A region learns from the feedback

information to update its prediction ability, i.e. update connection weights. The process will be repeated

until the region has satisfactory prediction ability.

In this PMJ model, perception part generates the input to the region. Such a process is also encoding

data. Brain uses sparse coding for representing data. A mathematical model for sparse representation

can be formulated by

min‖z‖0, s.t. y = f(z),

where y is the input vector and z is the sparse code from perception part, ‖z‖0 denotes the number

of non-zero entries in z, and f is the perception mapping between input and output. In [82,83], many

research results can be found in the case where f is linear mapping.

Three variables can be defined in each region: neuron state variable, prediction variable and memory

variable. The three variables interact with each other over time. In this way, the evolution of neurons in

a region naturally forms a dynamic system. In a region at time t, denote neuron state by x(t), prediction

by p(t), memory by m(t). Dynamic modeling of the region can be described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= X (z(t), p(t− τ(t))) ,

p(t) = P

(

x(t),

∫ t

0

u(t, s)m(s)ds

)

,

dm(t)

dt
= M

(

m(t), p(t− τ(t)),

∫ t

0

v(t, s)x(s)ds

)

,

where τ(t) � 0 is time delay, u(t, s), v(t, s) are kernel functions of some kind, and X , P , M are linear or

non-linear functionals defined on corresponding function space. In the PMJ model described above, we

can get a computable model by choosing some suitable non-linear mappings. It is certainly not easy to

choose such mapping. In real applications, they can be chosen according to actual data.

The virtual significance of response in regions is that neuron state of the region is determined by both

previous prediction and current input of the region. New prediction closely depends on current feedback.
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Learning is the change on memory. It happens when updating acquired knowledge for more accurate

prediction in a region. Past predictions and states will influence learning. Neuron science believes that

memory is stored as attractors in the brain [84,85]. Attractors can be categorized by discrete attractors,

continuous attractors, strange attractors, etc. Discrete attractors are suitable for memory of isolated

events. There is a wealth of research with sophisticated mathematic tools in this field. Continuous

attractors are attractors distributed in a continuous manner. Some recent research results on neuron

science show that continuous attractor depicts many important nature of information process in brain to

a great degree. Continuous attractor model has been successfully used for storing and representing the

process of continuous variables in the brain, e.g. orientation of moving objects, space position information

etc. [86–89]. Not much has been done on the relationship between memory and strange attractors so far.

5 Formalized model based on PMJ model—speed control

Speed control consists of speed perception, memory, speed selection, and control. We have studied

human visual information processing speed and characteristics involved in the process of speed control.

Most of the time, in realistic driving situations, drivers are aware of their traveling speed relying on

perceptual cues, combined with occasional speedometer inspection. These perceptual cues may be visual,

auditory, or kinesthetic cues. While each category plays an important role in assessing traveling speed,

visual cues (e.g., optical flow), serve as the predominant reference that drivers use to estimate their

traveling speed. Optical flow is one of the key research areas in computer vision and its related fields.

It plays an important role in the study of the target object segmentation, identification, tracking, and

robot navigation. In a real driving situation, optical flows are transformed into physiological electrical

signals via the visual cells of the retina, transmitted to various regions of the brain through the optic

nerve and processed in corresponding regions. There are two major neural networks involved in the

visual information transmission. One mainly processes the changes in spatial visual information with

high-density spatial distribution but slow response time; the other primarily deals with the changes in

temporal visual information with low-density spatial distribution but fast response time. Image processing

algorithms in computer vision such as filtering, enhancement, and restoration can simulate the process

of how humans perceive optical flow.

Speed selection and memory involve multiple information processing pathways of the PMJ model.

First, when new drivers begin to drive for the first time, they must deliberate over each speed choice

presented to them and then make a quick decision using only basic attribute information (see the pathway

as indicated by 8 in Figure 1). For example, new drivers tend to adjust their traveling speeds according

to the posted speed limits only, ignoring the changes of traffic flow, road and weather conditions. With

repeated experience, complex cognitive activities involving multiple decision choices, multiple-attribute

weighting, attributes and rules competition begin to dominate the process of speed choice. Most drivers

begin to internalize a set of rules (e.g., decrease speed when snowing) that become applicable when

deliberating over a target speed (see the pathway as indicated by 4 and 5 in Figure 1). Finally, speed

control is a dynamic memory-based reinforcement learning process. Each deliberation process of speed

choice and its associated consequence will reinforce or update memory (see the pathway as indicated by

6 in Figure 1). For instance, after a driver speeds and receives a speeding ticket, the driver may change

his/her speed choices under similar driving conditions.

We integrated the Queuing Network - Modal Human Processor (QN-MHP) [90] with the Rule-based

Decision Field Theory (RDFT) [91] to quantify the processes of speed perception, memory, speed selection

and control. As illustrated in Figure 6, QN-MHP consists of perceptual, cognitive (involving memory

and decision making), and motor subnetworks. In QN-MHP, brain regions with similar functions are

represented as servers (e.g., Servers 1–4, Server A). Specific entities represent pieces of information that

pass through and are processed by the servers. An entity travels on routes which represent neural

pathways connecting the different brain regions. According to the QN-MHP, Server F in the cognitive

subnetwork performed complex cognitive functions such as multiple-choice decision, visuomotor choices,

anticipation of stimuli in simple reaction tasks, etc. Thus, we incorporated the deliberation process in
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Figure 6 Human speed perception and decision making model (effective servers and routes in QN-MHP that were used

in the model were highlighted).
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Figure 7 The framework of image affective prediction based on PMJ model.

RDFT in this Server F. We first formulated a metric to demonstrate the cognitive process of speed choice

and assumed that at each point in time during deliberation, the attention weights specifically selected

a single attribute which focused on the values of a single attribute from the metric (equal probability).

Based on the formulation methods of the momentary valence and preference, we calculated a driver’s

accumulated preference for each speed choice at each point. If any preference exceeded the pre-defined

decision threshold, such speed choice was selected without further deliberative process.

Speed perception and decision making model takes the task difficulty and individual driver differences

in the information processing speed and capacity into account. It can provide quantitative predictions of

a driver’s perceived speed and desired target speed (e.g., if a driver follows the speed limit or drives over

the speed limit at 10 mph or 20 mph). Additionally, this work can be further extended to model human

behaviors of speed perception, selection and control when they are moving (e.g., walking, running). For

a detailed description of the mathematical deduction and parameter settings, see Zhao et al. [92].

6 PMJ application—image affective prediction

As an efficient communication medium, images convey a wealth of information, especially emotions.

Based on the PMJ model, we first propose the emotion related color features and a relationship model

between the color features and image emotions. Then this model is applied to understand the emotional

impact of images [93,94]. Finally, we implement an affective image adjustment system that automatically
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adjusts image color to meet a desired emotion [95,96], completing the precision processing of the PMJ

model. The framework is illustrated in Figure 7.

According to the theories of color perception, there is an inherent connection between colors and

emotions. Artists and amateurs have the same emotional experience to art works. In art design, a color

theme which is a template of colors and also called a color combination is commonly used to describe

the color composition of a painting. Color themes play a more important role than color itself in human

visual perception. For instance, no matter what a color theme actually is, one with a strong contrast

tends to express the intense emotion; on the other hand, that with a weak contrast tends to express

the mild emotion. Based on the long-term psychophysical investigations, Kobayashi summarized the

relationship between color themes and affective words [97]. So based on the above foundation, we adopt

color themes as salient features. Color themes are extracted by considering two factors: the area and the

contrast. In other words, colors which have large areas and strong contrast with neighboring colors tend

to be selected. We propose an optimization algorithm to extract color themes.

We propose a partially labeled factor graph model (PFG) for modeling the relationship between emo-

tions and images. This model better utilizes the Internet images and their connections, and can overcome

the noise.

The relationship model can be used for the common affective cognition on images. For example, we

use our proposed model to infer the mood from van Gogh’s paintings “Starry Night over the Rhone” and

“Wheatfield with Crows”. The top three prediction categories are casual (probability: 19.3%), modern

(15.03%), chic (10.94%) and casual (19.09%), dapper (13.17%), chic (12.33%), respectively. These results

are almost consistent with the original users’ comments to the photos. The relationship model can also

be used for inferring emotions around special events. For example, we downloaded images from Flickr

around Thanksgiving 2011, and use our model to predict the affective category of each image. Figure 8

shows affective distributions before and during Thanksgiving.

Furthermore, benefited from the model, we implement a system called affective image adjustment.

The system supports automated changes on the emotional impact of an image driven by a single word.

Figure 8 shows some examples.

7 PMJ application—image retargeting quality assessment

Image retargeting (also known as image resizing) technique can adjust an input image into one of arbitrary

image size without serious content distortion to fit different displaying devices. Image retargeting has

a wide range of applications in image transformation over the Internet, adaptive mobile displaying,

webpage design, etc. A number of image retargeting methods have been proposed [98–100] and now the

evaluation of these methods becomes important. The most accurate method of evalution is to invite

human participants with normal color vision to assess the quality using the mean opinion scores (MOSs)

metric. However, subject assessment using MOS is time-consuming and expensive. Thus an objective

image retargeting assessment (OIRA) that uses computer program to simulate the human vision system

(HVS) is much desired.

Based on the proposed PMJ model, we develop an HVS-simulated objective assessment algorithm

in [101]. As illustrated in Figure 9, in this algorithm, at the perception stage, we extract the SIFT

features in a scale-space on both original and retargeting images. At the top level of the scale space, the

SIFT features are used to establish a coarse match between original and retargeting images. This coarse

match provides a structure matching which can be constructed very fast due to the few SIFT features

at the top level, and this behavior well simulates the fast processing pathway (the arrowed line of 8 in

Figure 1) in the proposed PMJ model (cf. Figure 1). SIFT structure matching is important but not

sufficient alone for a high quality objective assessment. Then at the memory stage, we adapt the SSIM

metric to establish a memory unit that takes illumination, contrastness and structural information for

each pixel into account. The fine granularity correspondence using SSIM metric can provide accurate

correspondence for each image pixel and well simulates the fine processing pathways (the arrowed lines

4+5 in Figure 1) in the proposed PMJ model. Finally at the judgment stage, by combining the bottom-up
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SIFT correspondence for structure matching and the top-down SSIM correspondence for each pixel, we

obtain a high quality image retargeting assessment value using the algorithm proposed in [101].

The above-mentioned objective image assessment method has two distinct features in applying the

proposed PMJ computational cognition model. First, we take the hypothesis in [102]: the human visual

system is sensitive to global topological properties and extraction of global topological properties is a basic



Fu X L, et al. Sci China Inf Sci March 2014 Vol. 57 032114:12

factor in perceptual organization. In a spatio-temporal continuous scene, the topological properties include

spatial relationships in a geometric structure and the structural stability under temporal changes, in a

manner similar to Klein’s hierarchy of geometries. For static images, we limit the scope with spatial

geometric structures which is reflected in the bottom-up SIFT correspondence for structure matching.

Secondly, we take the hypothesis on human vision system that its intermediate or high level process seems

to selectively focus on salient regions. Accordingly, every pixel in an image needs not to have the same

importance for assessment: We reflect this hypothesis in the top-down SSIM correspondence for each

pixel. Experiments on the measurement of the performance of objective assessments with the proposed

OIRA metrics were developed in [101] and the results show good consistency between the proposed

objective metric OIRA and subjective assessments by human observers.

8 Conclusion

With the recent rapid development of computer technology, it is a major breakthrough for cognitive

science to apply cognitive psychology research in computer science to enhance the level of intelligence

processing of modern day massive visual media information. Based on a review of cognitive science

research over the past two decades, we proposed a computable model for the intelligent processing of

visual media.

A PMJ model is proposed in this paper, with the applications of the PMJ model in five different visual

media research areas. Future work on the PMJ model includes referring to and learning from other

cognitive models. For example, adaptive control of thought–rational model (ACT-R Model) proposed by

Anderson et al. [103] simulated nearly all of cognitive tasks of human brains, even predicted the activation

patterns of the brain.

In the proposed PMJ model, cognitive processes are divided into perception, memory, and judgment.

Three kinds of pathways among these stages were introduced, namely the fast process pathway, the fine

process pathway, and the feedback process pathway. Perception, memory, and judgment of cognitive

process in PMJ model correspond to analysis, modeling, and decision of computing, respectively. The

proposed model provides a new direction for the intelligent process of visual media information, and

it would be innovative for researchers to apply human cognitive mechanism to computer science. The

future work on PMJ model will focus on the hypotheses underlying the stages and pathways in the model.

Furthermore, it is crucial to transform the psychological hypotheses to principles for computation. All

of these principles for computation will shed light on analysis, modeling, and decision of visual media

computing.
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