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Abstract. We consider the phase-coherent transport of electrons passing
through an Aharonov–Bohm ring while interacting with a tunnel charge in a
double quantum dot (representing a charge qubit) which couples symmetrically
to both arms of the ring. For Aharonov–Bohm flux �AB = h/2e we find that
electrons can only be transmitted when they flip the charge qubit’s pseudospin
parity an odd number of times. The perfect correlations of the dynamics of the
pseudospin and individual electronic transmission and reflection events can be
used to entangle the charge qubit with an individual passing electron.
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1. Introduction

A scalable solid-state quantum computer has to rely on a hybrid architecture which combines
static and flying qubits [1]. Recent works propose the passage of electrons through mesoscopic
scatterers for the generation of entanglement between flying qubits [2]–[10], and charge
measurements by an electrometer [11] have been proposed and realized to entangle or manipulate
static spin and charge qubits [12]–[16]. Hence, it seems natural to exploit mesoscopic interference
and scattering to entangle flying qubits to static qubits [17].

In this paper, we demonstrate that prompt and perfect entanglement of a flying and a
static charge qubit can be realized when a double quantum dot occupied by a tunnel charge
is electrostatically coupled to the symmetric arms of an Aharonov–Bohm interferometer (an
Aharonov–Bohm double electrometer, see figure 1(b)). For anAharonov–Bohm flux �AB = h/2e

(half a flux quantum), each electron passing through the ring signals that the tunnel charge has
changed its quantum state, while each electron which is reflected signals that the tunnel charge has
maintained its state. This can be used to produce perfect entanglement between the static charge
qubit represented by the tunnel charge in the double dot [18], and the flying qubit represented
by the charge of the conduction electron in the exit leads [2]–[10]. Since this entanglement
mechanism does not require any energy fine tuning (for the implications of energy constraints
see [10]), the entanglement can be produced quickly by the passage of a single electronic wave
packet through the system.

Our proposal draws from both mesoscopic effects mentioned above —in essence, it consists
of two electrometers both coupling to the same charge qubit, and pinched together to form an
Aharonov–Bohm ring, which then represents a mesoscopic scatterer. Since we require that the
coupling of the tunnel charge to the arms of the ring is symmetric, our proposal falls into the class
of parity meters which have been discussed for the entanglement and detection of spin qubits
[13, 14] and charge qubits [15]. In the present paper, we are concerned with charge degrees
of freedom only, and the resulting entanglement should be detectable by current–charge cross-
correlation experiments [7, 8].

2. Scattering theory

In order to describe the properties of the Aharonov–Bohm double electrometer we start
with the scattering region which is depicted in figure 1(a). It consists of two quantum wire
segments labelled 1 and 2, which are symmetrically arranged around the double quantum
dot. The tunnel charge in the double dot is described by a pseudospin, associated to states
|↑〉 when the charge is in the upper dot and |↓〉 when the charge is in the lower dot. The
ground state is given by the symmetric combination |+〉 = 2−1/2(|↑〉 + |↓〉), and the excited
state is |−〉 = 2−1/2(|↑〉 − |↓〉). Both states are separated by a tunnel splitting energy �. The
orbital degree of freedom of the passing electron is described by basis states |1〉 and |2〉.
Via its electrostatic repulsion potential V(x), the tunnel charge impedes the current in wire 1
when it occupies the upper dot, while it impedes the current in wire 2 when it occupies the
lower dot.

New Journal of Physics 9 (2007) 67 (http://www.njp.org/)

http://www.njp.org/


3 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

ΦAB

1

2

V

V

∆ ∆

(a) (b)

Figure 1. (a) Schematic description of the double quantum dot (pseudospin
↑, ↓ depending on the occupation of the quantum dots, tunnel splitting �),
symmetrically coupled (via the potential V ) to two quantum wires. (b) The
Aharonov–Bohm double electrometer which results when the quantum wires are
pinched together into an Aharonov–Bohm ring which is pierced by a magnetic
flux �AB.

Outside of the range of the potential V(x) one finds plane-wave scattering states

ψs =
∑

τ,σ,η=±
ψτ,s(ηkσ)

exp(iηkσx)√
2kσ

(|1〉 + τ|2〉)⊗|σ〉, (1)

where kσ = 1
h̄

√
2m(E + σ�) for states of total energy E. The symbol η = ± describes the

propagation direction along the wire, τ = ± describes the orbital parity of the passing electron
with respect to the wire segments 1 and 2, and σ = ± describes the pseudospin parity of the state
of the double dot. For a general scattering potential V(x), the incoming and outgoing components
are then related by an extended scattering matrix [19]

S̃ =




r̃++ r̃+− t̃′++ t̃′+−
r̃−+ r̃−− t̃′−+ t̃′−−
t̃++ t̃+− r̃′

++ r̃′
+−

t̃−+ t̃−− r̃′
−+ r̃′

−−


 , (2)

which takes the initial and final state of the tunnelling charge into account:



ψ+,l(−k+)

ψ−,l(−k−)

ψ+,r(k+)

ψ−,r(k−)


 = S̃




ψ+,l(k+)

ψ−,l(k−)

ψ+,r(−k+)

ψ−,r(−k−)


 , (3)




ψ−,l(−k+)

ψ+,l(−k−)

ψ−,r(k+)

ψ+,r(k−)


 = S̃




ψ−,l(k+)

ψ+,l(k−)

ψ−,r(−k+)

ψ+,r(−k−)


 . (4)

New Journal of Physics 9 (2007) 67 (http://www.njp.org/)

http://www.njp.org/


4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Analogously, the complete Aharonov–Bohm double electrometer in figure 1(b) is described
by an extended scattering matrix

S =




r++ r+− t′++ t′+−
r−+ r−− t′−+ t′−−
t++ t+− r′

++ r′
+−

t−+ t−− r′
−+ r′

−−


 . (5)

The amplitudes r±,± (r′
±,±) are associated to reflection from the left (right) lead, and the

amplitudes t±,± (t′±,±) are associated to transmission from left to right (right to left), while the
first (second) subscript denotes the state of the tunnelling charge after (before) the passage of
the electron through the ring.

The matrix S can be related to the internal scattering matrix S̃ by adopting the standard
model for an Aharonov–Bohm ring developed in [20]. The contacts to the left (s = L) and
right (s = R) lead are characterized by reflection amplitudes αs and transmission amplitudes
βs = √

1 − α2
s which describe the coupling into the symmetric orbital parity state 2−1/2(|1〉 + |2〉).

The Aharonov–Bohm flux �AB mixes the symmetric and antisymmetric orbital parities in the
passage from one contact to the other contact by a mixing angle φ = π�ABe/h. The lengths of
the ballistic regions between the scattering region and the left and right contact are denoted by
dL and dR, respectively.

The total scattering matrix is then of the form

S = −α + β(A† − α − B†[A† + 1]−1B†)−1β,

A = γ




r̃++ 0 ct̃′++ −ist̃′+−
0 r̃−− −ist̃′−+ ct̃′−−

ct̃++ ist̃+− r̃′
++ 0

ist̃−+ ct̃−− 0 r̃′
−−


 γ,

B = γ




0 r̃+− −ist̃′++ ct̃′+−
r̃−+ 0 ct̃′−+ −ist̃′−−
ist̃++ ct̃+− 0 r̃′

+−
ct̃−+ ist̃−− r̃′

−+ 0


 γ, (6)

α = diag(αL, αL, αR, αR), β = diag(βL, βL, βR, βR), γ = diag(eik+dL, eik−dL, eik+dR, eik−dR), c =
cos φ, s = sin φ.

3. Degree of entanglement

3.1. Stationary concurrence

The scattering amplitudes of the extended scattering matrix (5) can now be used to assess how the
tunnel charge on the double dot becomes entangled with the itinerant electron during its passage
through the Aharonov–Bohm double electrometer. In particular, they describe by which lead the
passing electron exits and how this is correlated to the final state of the double dot. We assume
that the double dot is initially in the symmetric state |+〉 and hence uncorrelated to an arriving
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electron that enters the ring from the left lead. The degree of entanglement between the final state
of the double dot and the exit lead of the electron can then be quantified by the concurrence [21]

C = 2|r++t−+ − r−+t++|, (7)

which provides a monotonous measure of entanglement (C = 0 for unentangled states and C = 1
for maximal entanglement).

For the case of a vanishing flux �AB = 0, the mixing angle is φ = 0. It then follows from
equation (6) that the scattering matrix is of the form

S =




r++ 0 t′++ 0

0 r−− 0 t′−−
t++ 0 r′

++ 0

0 t−− 0 r′
−−


 . (8)

In this case the electron can only leave the system when the pseudospin of the scatterer has
flipped an even number of times, hence the final state of the scatterer is identical to its initial
state. There is no entanglement, and consequently the concurrence (7) vanishes, C = 0.

For �AB = h/2e, the mixing angle is φ = π/2, and the scattering matrix is of the form

S =




r++ 0 0 t′+−
0 r−− t′−+ 0

0 t+− r′
++ 0

t−+ 0 0 r′
−−


 . (9)

Now the electron becomes entangled with the double dot: the electron is reflected when the
double dot is finally in its symmetric state (the pseudospin of the double dot has then flipped
an even number of times), while the electron is transmitted when the double dot is finally in its
antisymmetric state (it then has flipped an odd number of times). The concurrence C = 2|r++t−+|
signals perfect entanglement, C = 1, when the probabilities of reflection and transmission are
identical, |r++|2 = |t−+|2 = 1/2. The condition for perfect entanglement corresponds to the case
of maximal shot noise [7, 8].

The entanglement in the Aharonov–Bohm double electrometer results because the total
parity στ is conserved in the scattering from the double quantum dot. This conservation law
yields the separate equations (3) and (4), which only couple wave components of the same total
parity. Since the scattering matrix S̃ for positive and negative total parity is identical, this realizes
a parity meter which entangles the orbital parity of the passing electron to the pseudospin parity
of the double dot. The role of the Aharonov–Bohm ring with flux � = h/2e is to convert the
orbital parity into charge separation in the exit leads. When the electron enters the ring at the
left contact, this prepares it locally in the orbitally symmetric state. Neglecting the scattering
from the double dot, the electron cannot leave at the right contact since it will end up there in the
antisymmetric orbital state. Transmission is therefore only possible if the orbital parity is flipped
by interaction with the tunnel charge. But since the total parity is preserved, this scattering event
is necessarily accompanied by a parity change of the double dot. Consequently, the final state
of the tunnel charge is perfectly correlated to the lead by which the passing electron leaves the
Aharonov–Bohm double electrometer.
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3.2. Time-dependent concurrence

The energy-dependent scattering matrix (5) and the expression (7) for the concurrence describe
the stationary transport through the system. A pressing issue for many proposals involving flying
qubits is that they require an energy fine tuning which entails a degrading of the entanglement
in the time domain [10]. As we will now show, the entanglement can in fact be increased above
the value of the stationary concurrence when a single electronic wave packet is passed through
the Aharonov–Bohm electrometer with �AB = h/2e.

In this non-stationary situation, the entanglement is quantified by the time-dependent
concurrence

C(t) = 2
∣∣∣〈ψ+|ψ+〉〈ψ−|ψ−〉 − |〈ψ+|ψ−〉|2

∣∣∣1/2
, (10)

where ψ+ and ψ− are the orbital wavefunctions obtained by projection onto the symmetric and
anti-symmetric state of the double dot, respectively. The potential for entanglement enhancement
follows from the lower bound

C(t) > Cmin(t) = 2
√

PL(t)PR(t) − (1/4)P0(t)2 (11)

of the time-dependent concurrence, which can be derived directly from the form (9) of the
scattering matrix when one assumes that the wave packet has completely entered the ring. Here,
PL(t) is the weight of the reflected wave packet, PR(t) is the weight of the transmitted wave
packet, and P0(t) = 1 − PL(t) − PR(t) is the weight of the wave packet in the ring. For large
times P0(t = ∞) = 0, and the weights PL(t = ∞) = R and PR(t = ∞) = T give the reflection
and transmission probabilities of the wave packet, which can be obtained by an energy average
over the wave packet components. For the case that this energy average yields equal reflection
and transmission probabilities R = T = 1/2, the final value of the concurrence after passage of
the electron is C(t = ∞) = 1. In this case, maximal entanglement results during the passage
of the electron through the system—independent of the precise dependence of the stationary
concurrence in the energetic range of the wave packet. This entanglement enhancement is only
possible because the scattering matrix S retains its sparse structure (9) for all energies.

To give a specific example, we consider the case that the tunnelling charge induces a localized
scattering potential V = h̄2

2m
gδ(x) in the quantum wire. This problem can be solved exactly for

arbitrary values of the tunnel splitting �, scattering strength g, and ring parameters ds and αs,
using the technique of [19]. Here, we concentrate on the case of a vanishing tunnel splitting
� = 0, strong scattering g → ∞, transparent contacts with αR = αL = 0, and equal distance
dL = dR ≡ d of the double dot to the contacts. The extended scattering matrix is then of the form

S = −e3ikd




c̃ 0 is̃c −s̃s

0 c̃ −s̃s is̃c
is̃c s̃s c̃ 0
s̃s is̃c 0 c̃


 , (12)

where c̃ = cos kd and s̃ = sin kd.
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Figure 2. Time-dependent concurrence when an electronic wave packet passes
through the ring with Aharonov–Bohm flux �AB = h/2e, while the double
quantum dot is initially in its symmetric state. The scattering potential is V =
h̄2

2m
gδ(x) with g → ∞. The contacts to the ring are transparent, αR = αL = 0. The

distance dL = dR ≡ d of the double dot to the contacts is d = 125 a, where a is the
lattice constant. Time is measured in units of the average time of flight tD = 2d/〈v〉
of the wave packet between the two contacts. The centre of the initial wave packet
in the lead is at a distance of 2000 a to the ring. The initial widths w and the average
wavenumbers 〈k〉 are: w = 0.2d, 〈k〉d = 4π (solid curve), w = 2d, 〈k〉d = 4π

(dashed curve), w = 2d, 〈k〉d = 4.125π (dotted curve), w = 2d, 〈k〉d = 4.25π

(dashed-dotted curve).

At fixed energy, the stationary concurrence (7) is given by C = | sin φ sin 2kd|, and
the maximal stationary concurrence C = | sin 2kd| is attained at φ = π/2, corresponding to
�AB = h/2e. The factor | sin 2kd| arises from the energy dependence of the reflection probability
R = cos2 kd. For a narrow wave packet, the reflection and transmission probabilities average
to 1/2, and the time-dependent concurrence approaches the maximal value C(t = ∞) = 1 for
large times.

In order to assess the time scale on which the entangled state is formed we have performed
numerical simulations which are presented in figure 2. The wave packet was propagated by a
second-order Crank–Nicholson scheme, and theAharonov–Bohm ring and the leads were formed
by tight-binding chains at wavelengths much larger than the lattice constant. For a narrow wave
packet, the simulations confirm that the final state is perfectly entangled. For broader wave
packets, the final entanglement is not necessarily perfect and depends on the average wave
number, but is always attained on a time scale comparable to the propagation time of the wave
packet between the contacts in the ring.

In figure 3, we assess how the degree of entanglement for a narrow wave packet depends on
the scattering strength g. Perfect entanglement is obtained for g � 0.1, hence, already for rather
weak coupling. For smaller g, the entanglement produced by a single passage of the wave packet
is reduced. As required, the entanglement vanishes altogether in the limit g → 0. For small but
finite g, one should expect that the entanglement can be enhanced by multiple passage of the
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Figure 3. Time-dependent concurrence for the narrow wave packet with w =
0.2d and 〈k〉d = 4π described in figure 2, but now calculated for finite values of
the coupling strength g = 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.1 (bottom
to top).

 0.0
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0  100  200

 

t/tD

C ( t)

P 0( t)

Figure 4. Solid line: time-dependent concurrence for the narrow wave packet
with w = 0.2d and 〈k〉d = 4π described in figure 2, but for g = 0.001 and a
set-up in which the wires are terminated by hard walls at a distance 4000 a to
either side of the ring. The concurrence is enhanced due to the multiple passages
of the wave packet through the ring. The dashed line shows the probability P0(t)

of the propagating electron to reside in the ring, which is revived in the multiple
passages through the ring.

wave packet through the ring, which can be achieved by isolating the system for a finite duration
from the external electrodes (e.g., by pinching off the external wires via the voltage on some split
gates). This expectation is confirmed in figure 4, which shows the time-dependent concurrence
for a narrow wave packet which passes through the ring and is reflected at hard-wall boundaries
in the external wires, at a distance of 4000 a to either side of the ring.
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Figure 5. Time-dependent concurrence for the narrow wave packet with w =
0.2d and 〈k〉d = 4π described in figure 2, but for asymmetric coupling to the
double dot. In one arm, the coupling strength is g = 0.1 while in the other arm it
is reduced by a factor α = 1, 0.1, 0.05 and 0 (top to bottom).

3.3. Sensitivity to decoherence and asymmetries

The time-dependent scattering analysis of the entanglement mechanism reveals an important
and rather unique feature of the proposed device: As the entanglement can be generated in a
single quasi-instantaneous scattering event, the proposed mechanism is rather robust against
decoherence from time-dependent fluctuations of the environment (decoherence, however, will
always become important in the subsequent dynamics of the system [1]). The main source of
entanglement degradation hence comes from imperfections in the fabrication of the device itself,
and here especially from imperfections which break the parity symmetry of the set-up. Arguably
the most critical part of the set-up is the requirement of symmetric coupling to the double dot,
as other asymmetries (in the arm length and contacts to the external wires) are just of the same
character as in the conventional Aharanov–Bohm effect and can be partially compensated, e.g.,
via off-setting the magnetic flux. The sensitivity to asymmetries in this coupling is explored in
figure 5, where the coupling strength to one arm is fixed to g = 0.1 while in the other arm the
strength is reduced by a factor α. Astonishingly, a rather large degree of entanglement remains
even for much reduced α, which indicates that the proposed mechanism is rather more robust to
asymmetries than it could have been expected.

4. Discussion and conclusions

In conclusion, we have demonstrated that a tunnel charge on a double quantum dot can
be entangled to an individual electron which passes through an Aharonov–Bohm ring with
flux �AB = h/2e. Ideal operation requires symmetric electrostatic coupling of the tunnel
charge to the two arms of the ring. The entangled state is produced quickly, on time scales
comparable to the passage of the electron through the ring. Since the entanglement in principle
is generated in a single quasi-instantaneous scattering event, the proposed mechanism is robust
against decoherence.

New Journal of Physics 9 (2007) 67 (http://www.njp.org/)

http://www.njp.org/


10 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The mesoscopic components for the proposed entanglement circuit—double quantum dots,
ring geometries of quantum wires, and charge electrometers based on the electrostatic coupling
of quantum dots to quantum wires—have been realized and combined in numerous experiments
over the past decade, and recently the dynamics of static qubits in double quantum dots has been
monitored successfully [16, 18]. An initial experiment would target the finite conductance of the
mesoscopic ring at half a flux quantum, �AB = h/2e, where the conventional Aharonov–Bohm
effect would yield total destructive interference and hence no current. The shot noise provides an
indirect measurement of the underlying correlated dynamics of the tunnel charge and the mobile
electron. A direct experimental investigation of the ensuing entanglement requires to measure
the correlations between the individual transmission and reflection events and the pseudospin
dynamics of the double quantum dot. The cross-correlation measurements could be carried out
with a stationary stream of electrons, at a small bias V < tD/eh̄ (hence an attempt frequency less
than the typical dwell time tD of an electron in the ring). As in other proposals involving flying
qubits, the incoming stream of electrons can be further diluted by a tunnel barrier in the lead from
the electronic source. In a more sophisticated setting, a single charge would be driven into the
system via an electronic turnstile [22]. It also may be desirable to lead the reflected or transmitted
charges into dedicated channels via electronic beam splitters or chiral edge states [23].

Acknowledgments

We thank C W J Beenakker and T Brandes for helpful discussions. This work was
supported by the European Commission, Marie Curie Excellence Grant MEXT-CT-2005-023778
(Nanoelectrophotonics).

References

[1] Nielsen M L and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[2] Loss D and Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[3] Burkard G, Loss D and Sukhorukov E V, 2000 Phys. Rev. B 61 R16303
[4] Costa A T Jr and Bose S, 2001 Phys. Rev. Lett. 87 277901
[5] Oliver W D, Yamaguchi F and Yamamoto Y 2002 Phys. Rev. Lett. 88 037901
[6] Saraga D S and Loss D 2003 Phys. Rev. Lett. 90 166803
[7] Beenakker C W J, Emary C Kindermann M and van Velsen J L 2003 Phys. Rev. Lett. 91 147901
[8] Samuelsson P, Sukhorukov E V and Büttiker M 2004 Phys. Rev. Lett. 92 026805
[9] Bose S and Home D 2002 Phys. Rev. Lett. 88 050401

[10] Hu X and Das Sarma S 2004 Phys. Rev. B 69 115312
[11] Field M et al 1993 Phys. Rev. Lett. 70 1311

Buks E et al 1998 Nature 391 871
[12] Ruskov R and Korotkov A N 2003 Phys. Rev. B 67 241305
[13] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[14] Engel H-A and Loss D 2005 Science 309 586
[15] Trauzettel B, Jordan A N, Beenakker C W J and Büttiker M 2006 Phys. Rev. B 73 235331
[16] Elzerman J M et al 2004 Nature (London) 430 431

Petta J R et al 2004 Phys. Rev. Lett. 93 186802
Petta J R et al 2005 Science 309 2180
Koppens F H L et al 2005 Science 309 1346

New Journal of Physics 9 (2007) 67 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.84.1035
http://dx.doi.org/10.1103/PhysRevB.61.R16303
http://dx.doi.org/10.1103/PhysRevLett.87.277901
http://dx.doi.org/10.1103/PhysRevLett.88.037901
http://dx.doi.org/10.1103/PhysRevLett.90.166803
http://dx.doi.org/10.1103/PhysRevLett.91.147901
http://dx.doi.org/10.1103/PhysRevLett.92.026805
http://dx.doi.org/10.1103/PhysRevLett.88.050401
http://dx.doi.org/10.1103/PhysRevB.69.115312
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1038/36057
http://dx.doi.org/10.1103/PhysRevB.67.241305
http://dx.doi.org/10.1103/PhysRevLett.93.020501
http://dx.doi.org/10.1126/science.1113203
http://dx.doi.org/10.1103/PhysRevB.73.235331
http://dx.doi.org/10.1038/nature02693
http://dx.doi.org/10.1103/PhysRevLett.93.186802
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1113719
http://www.njp.org/


11 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
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