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Dynamical model for the quantum-to-classical crossover of shot noise
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We use the open kicked rotator to model the chaotic scattering in a ballistic quantum dot coupled by two
point contacts to electron reservoirs. By calculating the system-size-over-wave-length dependence of the shot-
noise power we study the crossover from wave to particle dynamics. Both a fully quantum-mechanical and a
semiclassical calculation are presented. We find numerically in both approaches that the noise power is reduced
exponentially with the ratio of Ehrenfest time and dwell time, in agreement with analytical predictions.
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I. INTRODUCTION

Noise plays a uniquely informative role in connectio
with the particle-wave duality.1 This has been appreciated fo
light since Einstein’s theory of photon noise. Rece
theoretical2–6 and experimental7 works have used electroni
shot noise in quantum dots to explore the crossover fr
particle to wave dynamics. Particle dynamics is determini
and noiseless, while wave dynamics is stochastic and no8

The crossover is governed by the ratio of two time sca
one classical and one quantum. The classical time is
mean dwell timetD of the electron in the quantum dot. Th
quantum time is the Ehrenfest timetE , which is the time it
takes a wave packet of minimal size to spread over the en
system. WhiletD is independent of\, the timetE increases
} ln(1/\) for chaotic dynamics. An exponential suppressi
} exp(2tE /tD) of the shot-noise power in the classical lim
\→0 ~or equivalently, in the limit system-size-over-wav
length to infinity! was predicted by Agam, Aleiner, an
Larkin.2 A recent experiment by Oberholzer, Sukhoruko
and Scho¨nenberger7 fits this exponential function. Howeve
the accuracy and range of the experimental data is not s
cient to distinguish this prediction from competing theor
~notably the rational function predicted by Sukhorukov9 for
short-range impurity scattering!.

Computer simulations would be an obvious way to t
the theory in a controlled model~where one can be certai
that there is no weak impurity scattering to complicate
interpretation!. However, the exceedingly slow~logarithmic!
growth of tE with the ratio of system size over wave leng
has so far prevented a numerical test. Motivated by a re
successful computer simulation of the Ehrenfest-time dep
dent excitation gap in the superconducting proxim
effect,10 we use the same model of the open kicked rotato
search for the Ehrenfest-time dependence of the shot no

The reasoning behind this model is as follows. The phy
cal system we seek to describe is a ballistic~clean! quantum
dot in a two-dimensional electron gas, connected by two b
listic leads to electron reservoirs. While the phase spac
this system is four dimensional, it can be reduced to t
dimensions on a Poincare´ surface of section.11,12 The open
kicked rotator10,13–15 is a stroboscopic model with a two
dimensional phase space that is computationally more t
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table, yet has the same phenomenology as open ball
quantum dots.

We study the model in two complementary ways. First
present a fully numerical, quantum-mechanical soluti
Then we compare with a partially analytical, semiclassi
solution, which is an implementation for this particul
model of a general scheme presented recently by Silves
Goorden, and one of the authors.5

II. DESCRIPTION OF THE MODEL

We give a description of the open kicked rotator, both
quantum-mechanical and in classical terms.

A. Closed system

We begin with the closed system~without the leads!. In
this section we follow Refs. 16,17. The quantum kicked
tator has Hamiltonian

H52
\2

2I 0

]2

]u2
1

KI 0

t0
cosu (

k52`

`

ds~ t2kt0!. ~2.1!

The variableuP(0,2p) is the angular coordinate of a pa
ticle moving along a circle~with moment of inertiaI 0),
kicked periodically at time intervalst0 ~with a strength
}K cosu). To avoid a spurious breaking of time-revers
symmetry later on, when we open up the system, we re
sent the kicking by a symmetrized delta function:ds(t)
5 1

2 d(t2e)1 1
2 d(t1e), with infinitesimal e. The ratio

\t0/2pI 0[heff represents the effective Planck consta
which governs the quantum-to-classical crossover. The s
boscopic timet0 is set to unity in most of the equations.

The stroboscopic time evolution of a wave function
given by the Floquet operatorF5T exp(2i*0

t0dt H/\), where
T indicates time ordering of the exponential. For 1/heff
[M , an even integer, F can be represented by anM3M
unitary symmetric matrix. The angular coordinate and m
mentum eigenvalues areum52pm/M and J,5\,, with
m,,51,2, . . . ,M . We will use rescaled variablesx5u/2p
andp5J/\M in the range (0,1).

The eigenvalues exp(2i«m) of F define the quasienergie
«mP(0,2p). The mean spacing 2p/M of the quasienergies
©2003 The American Physical Society13-1
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plays the role of the mean level spacingd in the quantum
dot. In coordinate representation the matrix elements oF
are given by

Fmm85~XU†PUX!mm8 , ~2.2a!

Umm85M 21/2e2p imm8/M, ~2.2b!

Xmm85dmm8e
2 i (MK/4p)cos(2pm/M ), ~2.2c!

Pmm85dmm8e
2 ipm2/M. ~2.2d!

The matrix productU†PU can be evaluated in closed form
resulting in the manifestly symmetric expression

~U†PU !mm85M 21/2e2 ip/4exp@ i ~p/M !~m82m!2#.
~2.3!

Classically, the stroboscopic time evolution of the kick
rotator is described by a map on the torus$x,pumodulo 1%.
The map relatesxk11 ,pk11 at timek11 to xk ,pk at timek:

xk115xk1pk1
K

4p
sin 2pxk , ~2.4a!

pk115pk1
K

4p
~sin 2pxk1sin 2pxk11!. ~2.4b!

The classical mechanics becomes fully chaotic forK*7,
with Lyapunov exponentl' ln(K/2). For smallerK the
phase space is mixed, containing both regions of chaotic
of regular motion. We will restrict ourselves to the fully ch
otic regime in this paper.

For later use we give the monodromy matrixM (xk ,pk),
which describes the stretching by the map of an infinitesim
displacementdxk , dpk :

S dxk11

dpk11
D 5M ~xk ,pk!S dxk

dpk
D . ~2.5!

From Eq.~2.4! one finds

M ~xk ,pk!5S L~xk! 1

L~xk!L~xk11!21 L~xk11!
D , ~2.6a!

L~x!511
K

2
cos 2px. ~2.6b!

B. Open system

We now turn to a description of the open kicked rotat
following Refs. 10,15,18. To model a pair ofN-mode ballis-
tic leads, we impose open boundary conditions in a subsp
of Hilbert space represented by the indicesmn

(a) in coordi-
nate representation. The subscriptn51,2, . . . ,N labels the
modes and the superscripta51,2 labels the leads. A 2N
3M projection matrixP describes the coupling to the ba
listic leads. Its elements are
11531
nd

l

,

ce

Pnm5H 1 if m5nP$mn
(a)%

0 otherwise.
~2.7!

The matricesP andF together determine the quasiener
dependent scattering matrix

S~«!5P@e2 i«2F~12PTP!#21FPT. ~2.8!

Using PPT51, Eq. ~2.8! can be cast in the form

S5
PAPT21

PAPT11
,A5

11ei«F
12ei«F 52A †, ~2.9!

which is manifestly unitary. The symmetry ofF ensures that
S is also symmetric, as it should be in the presence of tim
reversal symmetry.

By grouping together theN indices belonging to the sam
lead, the 2N32N matrix S can be decomposed into fou
sub-blocks containing theN3N transmission and reflection
matrices:

S5S r t

t8 r 8
D . ~2.10!

The Fano factorF follows from19

F5
Tr tt†~12tt†!

Tr tt†
. ~2.11!

This concludes the description of the stroboscopic mo
studied in this paper. For completeness, we briefly men
how to extend the model to include a tunnel barrier in t
leads.

To this end we replace Eq.~2.8! by

S~«!52~12KKT!1/21K@e2 i«2F~12KTK !1/2#21FKT.
~2.12!

The 2N3M coupling matrixK has elements

Knm5HAGn if m5nP$mn
(a)%

0 otherwise,
~2.13!

with GnP(0,1) being the tunnel probability in moden. Bal-
listic leads correspond toGn51 for all n. The scattering
matrix ~2.12! can equivalently be written in the form use
conventionally in quantum chaotic scattering:20,21

S~«!52112W~A 211WTW!21WT, ~2.14!

with W5K(11A12KTK)21 andA defined in Eq.~2.9!.

III. QUANTUM-MECHANICAL CALCULATION

To calculate the transmission matrix from Eq.~2.8! we
need to determine anN3N submatrix of the inverse of an
M3M matrix. The ratioM /2N5tD is the mean dwell time
in the system in units of the kicking timet0. This should be
a large number, to avoid spurious effects from the stro
scopic description. For largeM /N we have found it efficient
to do the partial inversion by iteration. Each step of the
3-2
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FIG. 1. Dependence of the Fano factorF on the dimensionality of the Hilbert spaceM51/heff , at fixed dwell timetD5M /2N and
kicking strengthK. The data points follow from the quantum-mechanical simulation in the open kicked rotator. The solid line atF5

1
4 is the

M-independent result of random-matrix theory. The dashed lines are the semiclassical calculation using the theory of Ref. 5. There
parameters in the comparison between theory and simulation.
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eration requires a multiplication byF, which can be done
efficiently with the help of the fast-Fourier-transfor
algorithm.22,23We made sure that the iteration was fully co
verged ~error estimate 0.1%!. In comparison with a direc
matrix inversion, the iterative calculation is much quicke
the time required scales}M2ln M rather than}M3.

To study the quantum-to-classical crossover we reduce
quantum parameterheff51/M by two orders of magnitude a
fixed classical parameterstD5M /2N55,10,30 and K
57,14,21.~These three values ofK correspond, respectively
to Lyapunov exponentsl51.3,1.9,2.4.! The left edge of the
leads is atm/M50.1 andm/M50.8. Ensemble averages a
taken by sampling ten random values of the quasienerg«
P(0,2p). We are interested in the semiclassical, large-N re-
gime ~typically N.10). The average transmissio
N21^Tr tt†&'1/2 is then insensitive to the value ofheff ,
since quantum corrections are of order 1/N and therefore
relatively small.21 The Fano factor~2.11!, however, is seen to
depend strongly onheff , as shown in Fig. 1. The line throug
the data points follows from the semiclassical theory of R
5, as explained in the following section.

In Fig. 2 we have plotted the numerical data on a doub
logarithmic scale, to demonstrate that the suppression of
noise observed in the simulation is indeed governed by
Ehrenfest timetE . The functional dependence predicted f
N.AM is5

FIG. 2. Demonstration of the logarithmic scaling of the Fa
factor F with the parameterN2/M5M /(2tD)2. The data points
follow from the quantum-mechanical simulation and the lines
the analytical prediction~3.1!, with c being a fit parameter. The
slopel2151/ln(K/2) of each line is not a fit parameter.
11531
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F5
1

4
e2tE /tD,tE5l21ln~N2/M !1c, ~3.1!

with c being aK-dependent coefficient of order unity. A
shown in Fig. 2, the data follows quite nicely the logarithm
scaling withN2/M5M /(2tD)2 predicted by Eq.~3.1!. This
corresponds to a scaling withw2/LlF in a two-dimensional
quantum dot~with lF being the Fermi wave length andw
andL the width of the point contacts and of the dot, respe
tively!. We note that the same parametric scaling governs
quantum-to-classical crossover in the superconducting p
imity effect.10,24

IV. SEMICLASSICAL CALCULATION

To describe the data from our quantum-mechanical sim
lation we use the semiclassical approach of Ref. 5. To
end we first identify which points in thex,p phase space o
lead 1 are transmitted to lead 2 and which are reflected b
to lead 1. By iteration of the classical map~2.4! we arrive at
phase-space portraits as shown in Fig. 3~top panels!. Points
of different color ~or gray scale! identify the initial condi-
tions that are transmitted or reflected.

The transmitted and reflected points group together
nearly parallel, narrow bands. Each transmission or reflec
band ~labeled by an indexj ) supports noiseless scatterin
channels, provided its areaAj in phase space is greater tha
heff51/M . The total numberN0 of noiseless scattering chan
nels is estimated by

N05M(
j

Aju~Aj21/M !, ~4.1!

with u(x)50 if x,0 andu(x)51 if x.0. In the classical
limit M→` one hasN05N, so all channels are noiseles
and the Fano factor vanishes.8

As argued in Ref. 5, the contribution to the Fano fac
from theN2N0 noisy channels can be estimated as 1/4N per
channel. In the quantum limitN050 one then has the resu
F51/4 of random-matrix theory.25 The prediction for the
quantum-to-classical crossover of the Fano factor is

e

3-3
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FIG. 3. ~Color online! Upper panels: phase-space portrait of lead 1, fortD510 and different values ofK. Each point represents an initia
condition for the classical map~2.4!, which is either transmitted through lead 2~black/red! or reflected back through lead 1~gray/green!.
Only initial conditions with dwell times<3 are shown for clarity. Lower panels: histogram of the area distribution of the transmissio
reflection bands, calculated from the corresponding phase-space portrait in the upper panel. Areas greater thanheff51/M correspond to
noiseless scattering channels.
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F5
M

4N (
j

Aju~1/M2Aj !

5
M

4NE0

1/M

Ar~A! dA, ~4.2!

with band densityr(A)5( jd(A2Aj ). The quantum limit
F51/4 follows from the total area*0

1Ar(A) dA5N/M .
We have approximated the areas of the bands from

monodromy matrix~2.6!, as detailed in the Appendix. Th
lower panels of Fig. 3 show the band density in the form
a histogram. The solid curves in Fig. 1 give the result
Fano factor, according to Eq.~4.2!.

V. SCATTERING STATES IN THE LEAD

To investigate further the correspondence between
quantum-mechanical and semiclassical descriptions we c
11531
e

f

e
m-

pare the quantum-mechanical eigenstatesuUi& of t8†t8 with
the classical transmission bands.

Phase-space portraits of eigenstates are given by the
simi function

Hi~mx ,mp!5u^Ui umx ,mp&u2. ~5.1!

The stateumx ,mp& is a Gaussian wave packet centered ax
5mx /M , p5mp /M . In position representation it reads

^mumx ,mp&} (
k52`

`

e2p(m2mx1kN)2/Ne2p impm/N. ~5.2!

The summation overk ensures periodicity inm.
The transmission bands typically support several mod

thus the eigenvaluesTi are nearly degenerate at unity. W
t
n-
al
FIG. 4. ~Color online! Contour plots of the
Husimi function ~5.3! in lead 1 for M52400,
tD510, andK57,14,21. The outer contour is a
the value 0.15, inner contours increase with i
crements of 0.1. Yellow regions are the classic
transmission bands with area.1/M , extracted
from Fig. 3.
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DYNAMICAL MODEL FOR THE QUANTUM-TO- . . . PHYSICAL REVIEW B 68, 115313 ~2003!
choose the group of eigenstates withTi.0.9995 and plot the
Husimi function for the projection onto the subspa
spanned by these eigenstates:

H~mx ,mp!5 (
Ti.0.9995

Hi~mx ,mp!. ~5.3!

As shown in Fig. 4, this quantum-mechanical function
deed corresponds to a phase-space portrait of the clas
transmission bands with area.1/M .

VI. CONCLUSION

We have presented compelling numerical evidence for
validity of the theory of the Ehrenfest-time dependent s
pression of shot noise in a ballistic chaotic system.2,5 The key
prediction2 of an exponential suppression of the noise pow
with the ratio tE /tD of Ehrenfest time and dwell time i
observed over two orders of magnitude in the simulation.
have also tested the semiclassical theory proposed rece5

and find that it describes the fully quantum mechanical d
quite well. It would be of interest to extend the simulatio
to mixed chaotic/regular dynamics and to systems which
hibit localization.
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APPENDIX: CALCULATION OF THE BAND AREA
DISTRIBUTION

We approximate the bands in Fig. 3 by straight and n
row strips in the shape of a parallelogram, disregarding
curvature. This is a good approximation in particular for t
narrowest bands, which are the ones that determine the
noise. Each band is characterized by a mean dwell timen ~in
units of t0). We disregard any variations in the dwell tim
within a given band, assuming that the entire band e
through one of the two leads aftern iterations.~We have
found numerically that this is true with rare exceptions.!

The case of a reflection band is shown in Fig. 5. T
initial and final parallelograms have the same height, se
the width w5N/M of the lead. Since the map is area pr
serving, the baseB of the two parallelograms should be th
same as well. To calculate the band areaA5Bw we assume
that the monodromy matrixM (xk ,pk) does not vary appre
11531
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ciably within the band at each iterationk51,2, . . . ,n. An
initial vectoreW i within the parallelogram is then mapped aft
n iterations onto a final vectoreW f given by

eW f5MeW i ,M5M ~xn ,pn!•••M ~x2 ,p2!M ~x1 ,p1!,
~A1!

with x1 ,p1 inside the initial parallelogram.
We apply Eq.~A1! to the vectors that form the sides of th

initial and final parallelograms. The base vectoreW i5Bp̂ is
mapped onto the vectoreW f56w( x̂1 p̂tana), with a being
the tilt angle of the final parallelogram. It follows tha
BuMxpu5w, hence

A5w2/uMxpu. ~A2!

We obtain the Fano factorF by a Monte Carlo procedure
An initial point x1 ,p1 is chosen randomly in lead 1 an
iterated until it exits through one of the two leads. The pro
uct M of monodromy matrices starting from that point giv
the areaA of the band to which it belongs, according to E
~A2!. The fraction of points withA,1/M then equals
w21*0

1/MAr(A) dA54F, according to Eq.~4.2!.
To assess the accuracy of this procedure, we repea

calculation of the Fano factor with initial points chosen ra
domly in lead 2~instead of lead 1!. The difference is abou
5%. The dashed lines in Fig. 1 are the average of these
results.

FIG. 5. Phase space of a lead~width w) showing two areas~in
the shape of a parallelogram! that are mapped onto each other aft
n iterations. They have the same baseB, so the same area, but the
tilt angle a is different.
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