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Dynamical model for the quantum-to-classical crossover of shot noise
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We use the open kicked rotator to model the chaotic scattering in a ballistic quantum dot coupled by two
point contacts to electron reservoirs. By calculating the system-size-over-wave-length dependence of the shot-
noise power we study the crossover from wave to particle dynamics. Both a fully quantum-mechanical and a
semiclassical calculation are presented. We find numerically in both approaches that the noise power is reduced
exponentially with the ratio of Ehrenfest time and dwell time, in agreement with analytical predictions.
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I. INTRODUCTION table, yet has the same phenomenology as open ballistic
quantum dots.

Noise plays a uniquely informative role in connection We study the model in two complementary ways. First we
with the particle-wave dualityThis has been appreciated for present a fully numerical, quantum-mechanical solution.
light since Einstein’s theory of photon noise. RecentThen we compare with a partially analytical, semiclassical
theoreticad~® and experimentalworks have used electronic solution, which is an implementation for this particular
shot noise in quantum dots to explore the crossover fronmodel of a general scheme presented recently by Silvestrov,
particle to wave dynamics. Particle dynamics is deterministigoorden, and one of the authdrs.
and noiseless, while wave dynamics is stochastic and fioisy.

The crossover is governed by the ratio of two time scales, Il. DESCRIPTION OF THE MODEL
one classical and one quantum. The classical time is the ) o ) )
mean dwell timer, of the electron in the quantum dot. The e give a description of the open kicked rotator, both in
quantum time is the Ehrenfest timg , which is the time it ~duantum-mechanical and in classical terms.
takes a wave packet of minimal size to spread over the entire
system. Whilerp is independent ofi, the timerg increases A. Closed system

=In(1/4) for chaotic dynamics. An exponential suppression \ye begin with the closed systefwithout the leads In

 exp(—7e/7p) of the shot-noise power in the classical limit ;s section we follow Refs. 16,17. The quantum kicked ro-
fi—0 (or equivalently, in the limit system-size-over-wave- i5ior has Hamiltonian

length to infinity was predicted by Agam, Aleiner, and
Larkin.2 A recent experiment by Oberholzer, Sukhorukov, 2 2 *

. . . X : he a9 Klg
and Schaenbergetfits this exponential function. However, H=—5——+——cosf 2 Ss(t—kry). (2.1
the accuracy and range of the experimental data is not suffi- 2lo g6 o k=—o
cient to distinguish this prediction from competing theories
(notably the rational function predicted by Sukhorukder
short-range impurity scatteriing

The variablef e (0,27) is the angular coordinate of a par-
ticle moving along a circlewith moment of inertial ),
lkicked periodically at time intervals, (with a strength

Computer simulations would be an obvious way to tes d . . :
the theory in a controlled modéWhere one can be certain <K cosé). To avoid a spurious breaking of time-reversal
symmetry later on, when we open up the system, we repre-

that there is no weak impurity scattering to complicate the S i Do

interpretation. However, the exceedingly slo@ogarithmig selnt the k'CIf'ng by a s_ymnjet_rllzed_ delta funcUo@(t)

growth of 7z with the ratio of system size over wave length 20(t—€)+35(t+e), with |nf|n|te5|_mal e. The ratio

has so far prevented a numerical test. Motivated by a receﬁtﬁ?/ 2mlo=heq represents the effeqtlve Planck constant,

successful computer simulation of the Ehrenfest-time deperfYNich govers the quantum-to-classical crossover. The stro-

dent excitation gap in the superconducting proximity 0scopic timery, IS set to unity In most of the equations.

effect® we use the same model of the open kicked rotator to The stroboscopic time evolution of aTwave function is

search for the Ehrenfest-time dependence of the shot noiséliven by the Floguet operatdf=Texp(—i/'dt H/%), where
The reasoning behind this model is as follows. The physi-Z indicates time ordering of the exponential. Fohgl/

cal system we seek to describe is a ballistiean quantum =M, aneven integerF can be represented by anxM

dot in a two-dimensional electron gas, connected by two balunitary symmetric matrix. The angular coordinate and mo-

listic leads to electron reservoirs. While the phase space ghentum eigenvalues aré,=27m/M and J,=#¢, with

this system is four dimensional, it can be reduced to twon,£=1,2,... M. We will use rescaled variables= 6/2m

dimensions on a Poincamurface of sectioh'? The open andp=J/AM in the range (0,1).

kicked rotatot®*®*~1%is a stroboscopic model with a two-  The eigenvalues expfis,) of F define the quasienergies

dimensional phase space that is computationally more trae, (0,27). The mean spacing72/ M of the quasienergies
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plays the role of the mean level spacidgn the quantum 1 if m=ne{mi®}
dot. In coordinate representation the matrix elements-of Pam= 0 herwi (2.7
are given by otherwise.
_ + The matriced® and F together determine the quasienergy
Foom = (XUTIUX) iy (2.29 dependent scattering matrix
Uy = M~ 2g2mimm’/M (2.2b S(e)=P[e '*— F(1-PTP)] *FPT. (2.8
X =8 e i(MKA)cos(2mmM), 2.20 Using PPT=1, Eq.(2.8) can be cast in the form
o, PAPT-1 1+e'°F ;
= Opye” ™M, (2.20 = = =—AT, 2.9

S= JA= — =
PAPT+1 1-e"“F
The matrix product) 'TIU can be evaluated in closed form,

resulting in the manifestly symmetric expression which is manifestly unitary. The symmetry &f ensures that

Sis also symmetric, as it should be in the presence of time-
UTMIVU) e =M Y2 1 mexd i (7/M)(m’ —m)?]. reversal symmetry. - .
( Jmm Hi(m/M)( ] 2.3 By grouping together th#l indices belonging to the same
' lead, the A X2N matrix S can be decomposed into four

Classically, the stroboscopic time evolution of the kickedSub-blocks containing thiiX N transmission and reflection
rotator is described by a map on the tofusp|modulo 1. ~ matrices:
The map relateg, 1,px. 1 at timek+1 to x,,py at timek: -

S= . 2.1
( t/ r 12 ) ( @

K
Xi41= X+ P+ =—Sin 27Xy, (2.49
am The Fano factoF follows from'®

Tretf(1—ttt
portd-tt)

K
Pk+1=Px+ =—(sin 2mXx+sin 27X, 41). (2.4b
4 Tritt

(2.1)

The classical mechanics becomes fully chaotic Koe7, This concludes the description of the stroboscopic model

Wr':h Lyapunqv exp%nenmtw_ln_(Klzg.thFor _smaII?rKh tht(—_:- rﬁtUdied in this paper. For completeness, we briefly mention
phase space IS mixed, containing both regions ot chaolic ang,,, 1, extend the model to include a tunnel barrier in the

of regular motion. We will restrict ourselves to the fully cha- leads
otic regime in this paper. '

For later use we give the monodromy mathk(xy ,py).,
which describes the stretching by the map of an infinitesimal g(¢)= — (1 - KKT)¥2+K[e ' — F(1-KTK)¥2]"17KT.

To this end we replace E@2.8) by

displacemen®x,, opy: (2.12
( 5Xk+1) Mix )( 5Xk> . The 2NXM coupling matrixK has elements
OPk+1 P Spk/” ' K [\/F_n if m=ne{m{”} 2.13
From Eq.(2.4) one finds "M 10 otherwise, '

with I',, e (0,1) being the tunnel probability in mode Bal-

M (X, pk):( AC4) ) (2.63 listic leads correspond td',=1 for all n. The scattering
' AXIAX:1) =1 A(Xep1) ) matrix (2.12 can equivalently be written in the form used
conventionally in quantum chaotic scatterffigf*
K
AX)=1+ Ecoszwx. (2.6b S(e)=—14+2W(A 1+W'w)wT, (2.19

with W=K(1+ y1—K'K) " and A defined in Eq(2.9).

B. Open system

. . 11l. QUANTUM-MECHANICAL CALCULATION
We now turn to a description of the open kicked rotator, Q

following Refs. 10,15,18. To model a pair bfmode ballis- To calculate the transmission matrix from EQ.8) we
tic leads, we impose open boundary conditions in a subspageeed to determine aNx N submatrix of the inverse of an
of Hilbert space represented by the indicre#’) in coordi- M XM matrix. The ratioM/2N = 7 is the mean dwell time

nate representation. The subscnipt 1,2, ... N labels the in the system in units of the kicking timg,. This should be
modes and the superscript=1,2 labels the leads. AN a large number, to avoid spurious effects from the strobo-
XM projection matrixP describes the coupling to the bal- scopic description. For largel/N we have found it efficient
listic leads. Its elements are to do the partial inversion by iteration. Each step of the it-
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FIG. 1. Dependence of the Fano facteron the dimensionality of the Hilbert spadé= 1/, at fixed dwell timerp=M/2N and
kicking strengthK. The data points follow from the quantum-mechanical simulation in the open kicked rotator. The soIidHiﬁéaii; the
M-independent result of random-matrix theory. The dashed lines are the semiclassical calculation using the theory of Ref. 5. There are no fit
parameters in the comparison between theory and simulation.

eration requires a multiplication b§, which can be done s 4 )

efficiently with the help of the fast-Fourier-transform F=z€ ™™=\ "In(N7M)+c, CHY

algorithm?>?*We made sure that the iteration was fully con-

verged (error estimate 0.196 In comparison with a direct

matrix inversion, the iterative calculation is much quicker:with ¢ being aK-dependent coefficient of order unity. As

the time required scalesM?In M rather thare-M?2, shown in Fig. 2, the data follows quite nicely the logarithmic
To study the quantum-to-classical crossover we reduce thgcaling withN?/M =M/(27p)? predicted by Eq(3.1). This

quantum parametér.=1/M by two orders of magnitude at corresponds to a scaling with’/ LA in a two-dimensional

fixed classical parametersp=M/2N=5,10,30 and K quantum dot(with N\ being the Fermi wave length and

=7,14,21.(These three values &f correspond, respectively, andL the width of the point contacts and of the dot, respec-

to Lyapunov exponents=1.3,1.9,2.4). The left edge of the tively). We note that the same parametric scaling governs the

leads is am/M =0.1 andm/M =0.8. Ensemble averages are quantum-to-classical crossover in the superconducting prox-

taken by sampling ten random values of the quasienergy imity effect!®%*

e (0,27). We are interested in the semiclassical, lakgyee-

gime (typically N>10). The average transmission

N~ XTrtt")~1/2 is then insensitive to the value b, IV. SEMICLASSICAL CALCULATION

since quantum corrections are of ordeN1and therefore . . .

relatively smalP* The Fano facto(2.11), however, is seen to _TO describe the da‘? from_ our quantum-mechanical simu-

depend strongly oh., as shown in Fig. 1. The line through lation we use the semiclassical approach of Ref. 5. To that

the data points follows from the semiclassical theory of Ref.end we first identify which points in thxe,_p phase space of
5, as explained in the following section. lead 1 are transmitted to lead 2 and which are reflected back

In Fig. 2 we have plotted the numerical data on a double!C 1€ad 1. By iteration of the classical méh4) we arrive at
logarithmic scale, to demonstrate that the suppression of sh ase-space portraits as shown_ n F!thﬁ) pf.i”_e."‘ Pomt_s
noise observed in the simulation is indeed governed by th@ different color (or gray scalg identify the initial condi-
Ehrenfest timerg . The functional dependence predicted for 1ONS that are transmitted or reflected.

N> (M is® The transmitted and reflected points group together in
nearly parallel, narrow bands. Each transmission or reflection
7 . . . . . —— band (labeled by an inde)) supports noiseless scattering
s L . ] channels, provided its areg in phase space is greater than
ot TK=7 he#=1/M. The total numbeN, of noiseless scattering chan-
5 T 1 nels is estimated by
— [P K=14
I4r .
l_-'c' 3 -/"-,;":/‘ —."!,E» -_
: 5 _{"' . ‘=-:;:l-- K=21 ] NOZMZ AJ 0(A]_1/M), (41)
gt |
P A
0 L L L L S0 f with (x)=0 if x<0 and#(x)=1 if x>0. In the classical
0 1 2 3 4 5 6 7

limit M—o one hasNy=N, so all channels are noiseless
and the Fano factor vanish@s.

FIG. 2. Demonstration of the logarithmic scaling of the Fano As argued in Ref. 5, the contribution to the Fano factor
factor F with the parameteN%M=M/(275)2. The data points from theN—Ng noisy channels can be estimated as\NLper
follow from the quantum-mechanical simulation and the lines arechannel. In the quantum limN,=0 one then has the result
the analytical predictior(3.1), with ¢ being a fit parameter. The F=1/4 of random-matrix theory? The prediction for the
slopex ~t=1/In(K/2) of each line is not a fit parameter. guantum-to-classical crossover of the Fano factor is

In(NZ/M)
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FIG. 3. (Color onling Upper panels: phase-space portrait of lead 17fp+ 10 and different values d€. Each point represents an initial
condition for the classical ma2.4), which is either transmitted through lead@ack/red or reflected back through lead(gray/greein
Only initial conditions with dwell times<3 are shown for clarity. Lower panels: histogram of the area distribution of the transmission and
reflection bands, calculated from the corresponding phase-space portrait in the upper panel. Areas grdater iisin correspond to
noiseless scattering channels.

M pare the quantum-mechanical eigenstatgs of t't’ with
F=1N > Aj(LM—A)) the classical transmission bands.
! Phase-space portraits of eigenstates are given by the Hu-
M (1M simi function
== Ap(A) dA, 4.2
4N Jo
. . _ L Hi(mxvmp):|<ui|mxamp>|2- (5.9
with band densnyp(A)—Ejﬁ(A—Af-). The quantum limit
F=1/4 follows from the total aredigAp(A) dA=N/M. The statem,,m,) is a Gaussian wave packet centered at

We have approximated the areas of the bands from the. _ - R
monodromy matrix(2.6), as detailed in the Appendix. The m,/M, p=mp/M. In position representation it reads
lower panels of Fig. 3 show the band density in the form of
a histogram. The solid curves in Fig. 1 give the resulting
Fano factor, according to E.2).

[

<m| m, ,mp>0< kz e~ w(m—my+ kN)ZlNGZWimpm/N_ (5.2)

V. SCATTERING STATES IN THE LEAD . e
The summation ovek ensures periodicity im.

To investigate further the correspondence between the The transmission bands typically support several modes,
guantum-mechanical and semiclassical descriptions we conthus the eigenvalues; are nearly degenerate at unity. We

1 1 1
\ FIG. 4. (Color onling Contour plots of the

K=7 K=14 Husimi function (5.3 in lead 1 for M =2400,
N 10 modes 7 modes - 75=10, andK=7,14,21. The outer contour is at
= the value 0.15, inner contours increase with in-

K=21 =

A crements of 0.1. Yellow regions are the classical

transmission bands with areal/M, extracted
from Fig. 3.

Q Q
0.1 x 0.15 0.1 X 0.15 0.1 X 0.15
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choose the group of eigenstates with>0.9995 and plot the
Husimi function for the projection onto the subspace

spanned by these eigenstates: B : initial
H(mmp)=_ > H(m,,mp). (53
T,>0.9995
P
As shown in Fig. 4, this quantum-mechanical function in- I
deed corresponds to a phase-space portrait of the classical

transmission bands with areal/M.

VI. CONCLUSION

We have presented compelling numerical evidence for the
validity of the theory of the Ehrenfest-time dependent sup-
pression of shot noise in a ballistic chaotic systetithe key
predictiorf of an exponential suppression of the noise power € e e e >
with the ratio 7/ of Ehrenfest time and dwell time is w
observed over two orders of magnitude in the simulation. We FIG. 5. Phase space of a leasidth w) showing two areagin

have also tested the semiclassical theory proposed reéentI)(he shape of a parallelograrthat are mapped onto each other after

a”_d find that it describes f[he fully quantum mech_anical_ dat% iterations. They have the same b&eso the same area, but their
quite well. It would be of interest to extend the simulations;j; angle « is different.

to mixed chaotic/regular dynamics and to systems which ex-
hibit localization. ciably within the band at each iteratidn=1,2,...n. An
initial vectoréi within the parallelogram is then mapped after

n iterations onto a final vect(ﬁf given by

We have benefitted from discussions with Ph. Jacquod R
and P. G. Silvestrov. This work was supported by the Dutch  e;=Me; , M=M(X,,pn) - - - M(X2,p2) M (X1,pP1),
Science Foundation NWO/FOM. J.T. acknowledges the fi- (A1)

nancial support provided through the European Community Svith x,,p, inside the initial parallelogram.

Human Potential Program under Contract No. HPRN-CT— .
2000-00144, Nanoscale Dynamics. . .\.Ne apply. Eq(A1l) to the vectors that form theﬁsldesA qf the
initial and final parallelograms. The base vec&gs=Bp is

APPENDIX: CALCULATION OF THE BAND AREA mapped onto the vectd; = +w(x+ ptanx), with « being
DISTRIBUTION the tilt angle of the final parallelogram. It follows that

B|M,,|=w, hence

We approximate the bands in Fig. 3 by straight and nar-
row strips in the shape of a parallelogram, disregarding any A=W2/|./\/lxp|. (A2)
curvature. This is a good approximation in particular for the
narrowest bands, which are the ones that determine the shot We obtain the Fano factdf by a Monte Carlo procedure.
noise. Each band is characterized by a mean dwell tigie ~ An initial point x;,p; is chosen randomly in lead 1 and
units of ;). We disregard any variations in the dwell time iterated until it exits through one of the two leads. The prod-
within a given band, assuming that the entire band exitsict M of monodromy matrices starting from that point gives
through one of the two leads afteriterations.(We have the areaA of the band to which it belongs, according to Eq.
found numerically that this is true with rare exceptions. (A2). The fraction of points withA<1/M then equals

The case of a reflection band is shown in Fig. 5. Thew 1fMAp(A) dA=4F, according to Eq(4.2).
initial and final parallelograms have the same height, set by To assess the accuracy of this procedure, we repeat the
the widthw=N/M of the lead. Since the map is area pre-calculation of the Fano factor with initial points chosen ran-
serving, the bas8 of the two parallelograms should be the domly in lead 2(instead of lead JL The difference is about
same as well. To calculate the band afeaBw we assume 5%. The dashed lines in Fig. 1 are the average of these two
that the monodromy matrii (x, ,p,) does not vary appre- results.
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