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As well as the newly developed scaling diversity index, there are also eleven

traditional diversity indices to be found in the literature. Analyses show that

these eleven traditional indices are unable to formulate the richness component of

diversity. In particular, the most widely used index, the Shannon-Weiner index,

cannot express the evenness component. On the contrary, the scaling diversity

index is able to formulate both the richness aspect and the evenness aspect of

diversity. The scaling diversity index has been applied to developing scenarios of

ecological diversity at different spatial resolutions and spatial scales. A case study

in Fukang in the Xinjiang Uygur Autonomous Region in China shows that the

scaling diversity index is sensitive to spatial resolution and is easy to understand.

It is scientifically sound and could be operated at affordable cost.

1. Introduction

Species diversity has two components: richness, also called species density, based on

the total number of species present, and evenness, based on the relative abundance

of species and the degree of its dominance thereof (Odum 1983, Hamilton 2005).

This concept has been used to formulate ecological diversity (Pielou 1975, Harper

and Hawksworth 1996, Yue et al. 2001, 2002, 2003, 2004, 2005a,b).

Measuring ecological diversity has become a growth industry because of the great

significance it has in studies related to ecosystems, ecosystem services, and their

changes (Williams and Humphries 1996, Ibanez et al. 2005). Numerous indices of

ecological diversity have been proposed. Unsatisfying diversity indices (table 1) have

been criticized by many ecologists (Barrett 1968, Odum 1969, Pimm 1994, Harper

and Hawksworth 1996, Beeby and Brennan 1997, Mladenoff et al. 1997, Yue et al.

1998, Ricotta 2002, Hoffmann and Greef 2003, Ricotta et al. 2004, Roy et al. 2004,

Scholes and Biggs 2005). Odum (1969) stated that the Shannon-Weiner index

(formula 1 in table 1) may obscure the behaviour of the two rather different aspects

of diversity, richness and evenness. For example, in field experiments, an acute stress

from insecticide reduced the number of species of insects relative to the number of
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individuals, but increased the evenness in the relative abundance of the surviving

species (Barrett 1968). Thus, in this case, the ‘richness’ and ‘evenness’ components

would tend to cancel each other. Harper and Hawksworth (1996) pointed out that

the Shannon-Weiner index and the Simpson’s index (formula 3 in table 1) are

inadequate for some purposes because it is possible for high richness but less

evenness to have a lower index than one that is less richness but high evenness.

Beeby and Brennan (1997) described that various indices attempt to measure

diversity, but no single measurement of diversity has yet been adopted as being the

most effective under all circumstances.

Pimm (1994) reviewed the research history of the relation between diversity and

stability and concluded that many diversity indices ignore evenness of species and

Table 1. Unsatisfying diversity indices.

Ordinal
number Formula Explanation of parameters and variables Reference

1
H~{

Pm

i~1

pi In pi
pi is the proportion of individuals found
in the species i or the proportion of
ecotope number in type i; m is the total
number of species or ecotope types

Odum 1969

2
HB~

In N!{
P

In ni !

N

ni is the number of individuals in the
species i; N is the total number of
individuals

Pielou 1966,

3
d~

Pm

i~1

p2
i

� �{1 pi is the proportion of individuals or
biomass that contributes to the total in
the sample; m is the total number of
species in the community; d is Simpson’s
index

Harper and
Hawksworth
1996

4 HS~1{
P

p2
i

pi is the proportion of individuals found
in the species i

Simpson 1949

5
Na~

Pm

i~1

pið Þa
� � 1

1{a Na is the ath ‘order’ of diversity; pi is the
proportional abundance of the species i

Hill 1973

6

D~

Pm

i~1

pi In pi

In m

D is the measure of ecotope diversity; pi

is the proportion of the landscape in type
i; m is the total number of ecotope types

Mladenoff
et al. 1997

7 dMg~
m{1
In N

m is the number of species; N is the total
number of individuals summed over all
m species

Margalef
1957

8 dMn~
m

N
1
2

m is the number of species; N is the total
number of individuals summed over all
m species

Whittaker
1977

9 d~ m
log N

m is the number of species and N is the
number of individuals

McNaughton
1994

10
d~

N{
P

n2
ið Þ

1
2

N{N
1
2

ni is the number of individuals in the
species i; N is the total number of
individuals

McIntosh
1967

11 d~ Nmax

N
Nmax is the number of individuals in the
most abundant species; N is the total
number of individuals

Berger and
Parker 1970
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look only at the species list itself. Many measures focus on the richness aspect of

diversity. For instance, most policy-makers are used to seeing species diversity

simply as the changing number of species on a species list (Mace 2005). Many

studies (Yoshida 2003, Haberl et al. 2004, Uys et al. 2004, Hanski 2005, Hodgson

et al. 2005, Ibanez et al. 2005) equated richness to diversity. Richness is necessary,

but it is not sufficient to support the components of ecological diversity that underlie

the key functions and benefits of an ecosystem (Mace 2005).

Ecological diversity is the result of ecological processes acting at various spatial

and temporal scales (Alados 2004). Studies on scaling issues are burgeoning because

of the increasing need for ecological modelling and simulation. They are driven

by progress in remote sensing technologies to obtain data on various resolutions and

by the integration of geo-referenced data collected at various scales (Martin et al.

2005). However, all diversity indices in table 1 ignore the important parameter of

scale.

A useful measure of ecological diversity should be theoretically sound, be sensitive

to changes at policy-relevant spatial scales, allow for comparison with a baseline

situation and policy target, be usable in the simulation of scenarios, and be

amenable to aggregation and disaggregation on local, national, regional, and

international levels (Scholes and Biggs 2005). The soundness of the scaling diversity

index is theoretically proven, and the effects of spatial resolutions on diversity

calculation are analysed in this paper.

2. Theoretical analysis of diversity indices

2.1 Drawbacks of the unsatisfying diversity indices

Every diversity index in table 1 has no relation with the investigation area, so these

diversity indices are unable to formulate the richness aspect. Because in recent years

the Shannon-Weiner index is most widely used to formulate diversity (Alados 2004,

Mueller et al. 2004, Roy et al. 2005, Sandstroem et al. 2006), it is taken as an

example for analysing the drawbacks of the unsatisfying models in details.

2.1.1 If the Shannon-Weiner index were to be used, individuals of every species or

every ecotope type should be greater than 100. Suppose that ni is the individual

number of species i or ecotope type i, m is the total species number or total ecotope

type, and N is the total individual number of all species or total number of all

ecotopes. Then,

N~
Xm

i~1

ni ð1Þ

and

R~
N!

P
m

i~1
ni!

ð2Þ

then

H~
ln R

N
~

1

N
ln N!{

Xm

i~1

ln ni!

 !

: ð3Þ

Scaling diversity index 1613
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According to Stirling’s formula

n!~
n

e

� �n

2pnð Þ
1
2ew nð Þ ð4Þ

H~
1

N
ln

N

e

� �N

2pnð Þ
1
2ew Nð Þ

 !

{
Xm

i~1

ln
ni

e

� �ni

2pnið Þ
1
2ew nið Þ

� �
 !

~{
Xm

i~1

pi ln pize n1, n2, . . . , nmð Þ
ð5Þ

where e n1, n2, . . . , nmð Þ~ 1
2N

ln 2pNð Þ{
Pm

i~1

ln 2pnið Þ
� �

z

w Nð Þ{
Pm

i~1

w nið Þ

N
;

e52.7183; pi~
ni

N
; p53.1415; and

1

12 nz0:5ð Þvw nð Þv 1

12n
.

When ni>100, we can get an approximate formulation (Haken 1983), i.e.

H&{
Xm

i~1

pi ln pi: ð6Þ

Shannon and Weaver (1962) gave this formulation the name, entropy, in regard to
the mathematical form that expresses uncertainty (Peters 1975). This Shannon-

Weiner index has been widely used by ecologists to formulate biodiversity.

2.1.2 The Shannon-Weiner index does not include any information of the area under

investigation. Species number is closely associated with area or spatial scale

(MacArthur and Wilson 1967, Williamson 1981). ‘You will find more species if
you sample a larger area’ (Rosenzweig 1995). The Global Biodiversity Assessment

(Bisby 1995) states that ‘the central single measure of ecological diversity is species

richness’ and ‘species richness is related to area in a complicated way, so we must

exercise caution in comparing the diversities of areas that differ greatly in size’. The

relation between species number and area has been formulated as (Arrhennius 1921,

Preston 1960, 1962, Gorman 1979, Browne 1981)

m

C
~

1

A

� �{D0

ð7Þ

where m is the number of species, A is area, C is a constant, and D0 is the Hausdorff

dimension.

A research report, compiled by the World Conservation Monitoring Center in
collaboration with The Natural History Museum, the World Conservation Union,

the United Nations Environment Program, the World Wide Fund for Nature, and

the World Resources Institute, indicates that ‘a ten-fold decrease in area leads to a

loss of half the species present’ (Groombridge 1992). In this case, it is easy to get a

calculation result, D050.301.

Equation (7) shows that species number, taking 1
A

as the scaling factor, has

statistical self-similarity. The self-similarity is the property that at every scale of
observation, new details are revealed; yet these details are reminiscent of details

elsewhere in the structure of the object or in the same part of the object, but at a

1614 T.-X. Yue et al.
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different scale (Iannaccone and Khokha 1996). The mathematician, Felix Hausdorff

(1919), statistically defined such self-similarity as D0~{ lim
e?0

In N
In e . When In N

In e is a

constant, N~ eð Þ{D0 where e is the scaling factor, D0 the Hausdorff dimension, and

N the fractal object. Obviously, area is so important that it has an essential effect on

the number of species, but it is not included in the Shannon-Weiner index and other

unsatisfying diversity indices (table 1).

2.1.3 The Shannon-Weiner index cannot express the ‘evenness’ component of

diversity. For the Shannon-Weiner index, the essential function f(x)52x In x is

not strictly increasing because
df xð Þ

dx
~{ In xz1ð Þ. Thus,

df xð Þ
dx

is, respectively, greater

than zero, smaller than zero, and equals zero when x is smaller than 0.3679, greater

than 0.3679, and equals 0.3679. In other words, f(x)52x In x is increasing when x is

smaller than 0.3679; it is decreasing when x is greater than 0.3679; and it reaches the

maximum value when x equals 0.3679 (table 2). Therefore, when the individual

proportion of the species i to total individuals of all species in the investigation

region, pi, is smaller than 0.3679, the contribution of pi to the Shannon-Weiner index

would increase with an increase of pi; when pi is greater than 0.3679, the

contribution of pi to the Shannon-Weiner index would decrease with an increase of

pi; and the contribution of pi to the Shannon-Weiner index reaches maximum when

pi equals 0.3679. However, the Shannon-Weiner index has its maximum value, In m,

when pi~
1
m

(Alados et al. 2004). In other words, the Shannon-Weiner index is

unable to express the evenness aspect of diversity.

2.2 The scaling diversity index

The scaling diversity index is expressed as (Yue et al. 2001, 2002, 2003, 2004)

D e, r, tð Þ~{

ln
Pm e, r, tð Þ

i~1

pi e, r, tð Þð Þ
1
2

 !2

ln e
ð8Þ

where pi(e, r, t) is a proportion of the area of the ith ecotope to the area of the whole

investigation region or the individual number of the ith species to the total

Table 2. Relation between the function f(x)52x In x and its independent variable x.

x f(x)52x In x

0 0
0.00001 0.0001
0.0001 0.0009
0.001 0.0069
0.01 0.0461
0.1 0.2303
0.2 0.3219
0.3679 0.3679
0.4 0.3665
0.5 0.3466
0.6 0.3065
0.7 0.2497
0.8 0.1785
0.9 0.0948
1 0

Scaling diversity index 1615
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individual number; m(e, r, t) is the total number of species or ecotopes under

investigation; t represents time; e5(e + A)21, A is the area of the investigation region

measured by hectares; r is the spatial resolution of the dataset used; and e equals

2.71828.

In terms of Method of Lagrange Multipliers (Kolman and Trend 1971), the
necessary condition, under which D(e, t) reaches the maximum value, is that

LD e, r, tð Þ
Lpj e, r, tð Þzl:

Lk p1 e, r, tð Þ, . . . , pm e, r, tð Þð Þ
Lpj e, r, tð Þ ~0 ð9Þ

where j51, 2, …, m; k p1 e, r, tð Þ, . . . , pm e, r, tð Þð Þ~1{
Pm e, r, tð Þ

i~1

pi e, r, tð Þ; and l is an

arbitrary constant.

The solution of the differential equation (9) is pj e, r, tð Þ~ 1
m e, r, tð Þ. In other words,

when every investigation species or ecotope has equal proportion, D(e, r, t) reaches

its maximum value, {
In m e, r, tð Þ

In e , under constraint condition,
Pm e, r, tð Þ

i~1

pi e, r, tð Þ~1. For

pj(e, t).0 (j51, 2, …, m),
LD e, r, tð Þ
Lpj e, r, tð Þ~

1

pj e, r, tð Þð Þ
1
2:
Pm

i~1

pi e, r, tð Þð Þ
1
2

w0. D(e, r, t) is a strictly

increasing function of pj(e, r, t). Therefore, the scaling diversity index can express the

‘evenness’ aspect of diversity.

3. A case study in Fukang in the Xinjiang Uygur Autonomous Region

3.1 Fukang in the Xinjiang Uygur Autonomous Region in China

Fukang, in the Xinjiang Uygur Autonomous Region, is located in the northern foot
of the eastern part of the Tianshan Mountains, and occupies an area of 8767 km2.

The ranges of the geographical coordinates of Fukang are 43u459–45u309 N and

87u4659–88u449 E (figure 1). Fukang is 140 km in length from south to north and

75 km wide from west to east. The terrain of Fukang, slanting from southeast to

northwest, can be divided into three geomorphologic units that are mountainous,

plain, and desert. Bogda peak in the mountainous area has an elevation of 5445 m,

which is the highest peak in the eastern part of the Tianshan Mountains; the south

edge of the desert has an elevation lower than 460 m. The difference in elevation is
about 5000 m. The area proportions of the mountainous, plain, and desert areas to

the total area of Fukang are, respectively, 50.74%, 29.00%, and 20.26%. The Fukang

region from Bogda peak to the north edge of the desert, about 80 km, has a clear

vertical spectrum of natural zones that are alpine nival zone, alpine and sub-alpine

meadow zone, forest zone, hilly grassland zone, piedmont semi-desertification zone,

desertification zone in alluvial and diluvial plain, and fixed and semi-fixed sand

dunes in desert zone.

3.2 Data acquisition

The Landsat TM image of Fukang was taken in the fall of 2002, and the spatial

resolution is 30 m630 m. We applied unsupervised classification and generated

clusters using ISODATA clustering analysis. Investigation data on the spot were

used to identify training classes and to label and merge clusters for identification.
Signatures of identified clusters were subsequently used in a maximum likelihood

classification to generate a land cover map. The land cover types include woodland,

1616 T.-X. Yue et al.
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sparse woodland, shrub land, other woodland, dense grassland, moderately dense

grassland, sparse grassland, paddy field, dry farmland, lake, reservoir and water

pond, urban area, rural residential area, other built-up area, nival area, beach land,

sand land, saline–alkaline area, marshland, and bare rock and gravel area (figure 2).

The land cover dataset on a spatial resolution of 30 m630 m is transformed into a
series of land cover datasets on spatial resolutions of (k630)m6(k630)m (k51, 2,

3, …, 16) by an up-scaling process. The land cover type in each pixel of the new land

cover dataset is derived from the dominant land cover type of the transformed

pixels. When every new dataset is created, the boundary of every newly created

ecotope, the topological relationship, and the attributes of the new data are rectified.

Finally, the newly created dataset is exported to a vector polygon file of Coverage of

Arc/Info (figure 2).

Classification accuracy of the land cover was assessed by means of PCI
Geomatica Focus. Three hundred and ninety-six samples were stratified and

randomly selected from the land cover maps. Each sampled land cover type of the

classified image was identified on the basis of a topographical map of Fukang on a

scale of 1 : 50,000 and a land cover map on a scale of 1 : 100,000. Classification

accuracies for our final products were evaluated in error matrices and are

summarized in table 3. The overall accuracy achieved was 95.75%. The producer’s

and user’s accuracies and the conditional kappa coefficient for each individual land

cover type were also reported.

3.3 Results

Statistic analysis of ecotope diversity on different spatial resolutions shows that

ecotope diversity of the Fukang landscape, which is calculated by the scaling
diversity index, increases on average and converges to 0.210 with spatial resolution

becoming finer (table 4). Ecotope diversity change can be formulated as the

Figure 1. Location of Fukang.

Scaling diversity index 1617
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following regression equation (figure 3)

D~0:21z0:0406r{3:7275r2z37:088r3{162:47r4z260:07r5 ð10Þ

where D is ecotope diversity and r is spatial resolution of the dataset. Correlation

coefficient of the regression equation is R250.9922.

The change of ecotope density with spatial resolution can be formulated as

(figure 4)

Ri~0:1273e{3:2645r ð11Þ

where Ri is ecotope density and r is spatial resolution of the dataset. The correlation

coefficient of the regression equation is R250.9885.

Relationship between ecotope diversity and ecotope density (figure 5) can be

statistically expressed as

D~0:2984Ri0:1673 ð12Þ

where D is ecotope diversity and Ri is ecotope density. The correlation coefficient of

the regression equation is R250.9861.

The results show that more ecotope types and ecotopes could be found in a given

investigation region with spatial resolution becoming finer. Ecotope diversity has a

closely positive relation with ecotope density. Regression equation (12) can be

Figure 2. Land cover maps of Fukang on different resolutions: left map on resolution of
30 m630 m, middle map on resolution of 240 m6240 m, and right map on resolution of
480 m6480 m.

1618 T.-X. Yue et al.
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Table 3. Classification accuracy and conditional kappa statistics for each land cover type.

Land cover type
Reference

totals
Classified

totals
Number
correct

Producer’s
accuracy (%)

User’s
accuracy (%)

Kappa
statistics

Woodland 15 14 13 86.67 92.86 0.93
Shrub land 9 8 8 88.89 88.89 0.89
Sparse woodland 8 6 6 75.00 100.00 1.00
Other woodland 1 1 1 100.00 100.00 1.00
Dense grassland 34 37 32 94.12 86.49 0.85
Moderately dense

grassland
37 39 37 100.00 94.87 0.94

Sparse grassland 52 50 50 96.15 100.00 1.00
Lake 6 6 6 100.00 100.00 1.00
Reservoir and water

pond
9 9 9 100.00 100.00 1.00

Nival land 7 7 7 100.00 100.00 1.00
Beach land 7 5 5 71.43 100.00 1.00
Urban area 6 6 6 100.00 100.00 1.00
Rural residential

area
7 6 6 85.71 100.00 1.00

Other built-up area 5 6 5 100.00 83.33 0.83
Sand land 145 144 144 99.31 100.00 1.00
Saline–alkaline area 4 4 4 100.00 66.67 0.66
Marshland 2 2 2 100.00 100.00 1.00
Bare rock and gravel

area
14 15 14 93.33 93.33 0.93

Paddy field 3 3 3 75.00 100.00 1.00
Dry farmland 25 28 25 92.59 89.29 0.89
Totals 396 396 383
Overall accuracy (%) 95.75
Overall kappa

statistics (%)
0.95

Table 4. Changes of relative indices with spatial resolution becoming finer.

Spatial
resolution (km2)

Ecotope
number

Ecotope density
(ecotope number/km2)

Ecotope
type

Ecotope
diversity

0.2304 547 0.12673 18 0.186
0.2025 583 0.12581 18 0.189
0.1764 622 0.12239 17 0.192
0.1521 654 0.12228 19 0.193
0.1296 737 0.12205 19 0.199
0.1089 749 0.11931 19 0.199
0.0900 829 0.11098 20 0.201
0.0729 856 0.10494 18 0.203
0.0576 920 0.09764 18 0.206
0.0441 973 0.09456 19 0.207
0.0324 1046 0.08543 20 0.208
0.0225 1070 0.08407 20 0.210
0.0144 1072 0.07460 20 0.210
0.0081 1111 0.07095 20 0.210
0.0036 1103 0.06650 20 0.210
0.0009 1073 0.06239 20 0.210
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re-formulated as D
0:2984

~ 1
Ri

� �{0:1673
. Ecotope diversity, taking 1

Ri
as the scaling factor,

has statistical self-similarity and Hausdorff dimension is 0.1673. In other words, the

scaling diversity index can express the richness aspect of diversity.

Figure 4. Relationship between ecotope density and spatial resolution.

Figure 5. Relationship between ecotope diversity and ecotope density with spatial
resolution becoming finer.

Figure 3. Ecotope diversity change with spatial resolution becoming finer.
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4. Conclusions

As well as the scaling diversity index that has been newly developed, a further eleven

traditional diversity indices can be found in the literature. Our study demonstrates

that these eleven traditional diversity indices are unable to express the richness
aspect of diversity because they do not include any message on the area (or spatial

scale) under investigation, while the area or spatial scale under investigation is so

important that it, as the scaling factor, makes the species number have statistical

self-similarity. It has been proved that the most widely used index, the Shannon-

Weiner index, cannot express the evenness aspect.

However, in contrast, the scaling diversity index can formulate the evenness

aspect of diversity in terms of our theoretical proof. The case study in Fukang in the

Xinjiang Uygur Autonomous Region shows that the scaling diversity index can
express both the richness component and the evenness component of diversity.

The case study indicates that the finer the spatial resolution is, the more ecotopes

are found in the given region and the higher the ecotope diversity is on average. The

scaling diversity index is sensitive to spatial resolutions.

The scaling diversity index has been applied to simulate trends and scenarios of

ecological diversity at different spatial resolutions and spatial scales (Yue et al. 2001,

2002, 2003, 2004, 2005a,b). This index is usable in developing scenarios and is

amenable to aggregation and disaggregation at local and national levels. It is simple
and easy to understand.

In short, the scaling diversity index combines factors of spatial resolution, spatial

scale and temporal scale with the richness component and evenness component of

diversity together as a whole. It is scientifically sound and could be operated at

affordable cost.
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