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Effects of LH on photosynthesis of Synechocystis sp. were investigated by a variety of in vivo chlorophyll
fluorescence. O2 evolution and the photosystem II (PSII) activity were clearly inhibited by LH. Exposure to
LH increased the proportion of PSIIb and this weakened the connectivity between PSII units and hindered
excitation energy-transfer between PSII units. LH decreased the density of the active photosynthetic reac-
tion centers, inhibited electron transport, and increased the dissipated energy flux per reaction center.
The inhibitory effect of LH on Q�A reoxidation process could be divided into several stages. LH first inhib-
ited the electron transfer from Q�A to QB by weakening the connectivity between Q�A and QB, and PQ bind-
ing began taking part in Q�A reoxidation. At the second stage, the connectivity between Q�A and PQ pool
was broken and inhibition on PQ binding occurred. At this stage, some Q�A began to be oxidized by
S2(QAQB)�. Finally, when the connectivity between Q�A and QB and PQ was completely broken, all Q�A
was oxidized through charge recombination.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Levofloxacin hydrochloride (LH), the l-form of the fluoroquino-
lone ofloxacin, is one of the most commonly used fluoroquinolone
antibiotics that have excellent activity against a broad spectra of
bacteria. LH inhibits bacterial DNA gyrase involved in unwinding
the DNA helix for replication and transcription (Salem et al.,
2005). The Levofloxacin excreted is largely unchanged as an active
drug in the urine (Croom and Goa, 2003). LH is very chemically sta-
ble to hydrolysis and high temperatures (Thiele-Bruhn, 2003) and
resistant to biodegradation. LH is discharged into the water envi-
ronment via human excretion, improper disposal of expired medi-
cations and agricultural and aquacultural activities. LH has been
detected in river waters in nanogram per liter to low microgram
per liter (Andreozzi et al., 2003; Khetan and Collins, 2007). LH
was found to be active phytotoxic agent at lg L�1 to mg L�1 (e.g.,
EC50 for Lemna gibba, was 0.185–1.41 mg L�1 (Brain et al., 2004).
LH was also shown to be highly toxic to the microalga (Yamashita
et al., 2006a,b).

Cyanobacteria occupy the lower trophic levels within food webs
and changes in their community could have an indirect but
significant effect on the rest of the freshwater community. In this
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context, they are usually used in environmental toxicity assess-
ment. Recent studies showed that some antibiotics are highly toxic
to cyanobacteria (Halling-Sorensen et al., 2000). Photosynthesis is
the principal mode of energy metabolism of cyanobacteria. Photo-
system II (PSII) is thought to be the primary and sensitive site of
inhibition induced by a wide range of environmental pollution
(Baker, 1991; Burda et al., 2003; Sigfridsson et al., 2004; Berden-
Zrimec et al., 2007). A few studies reported the toxic effect of anti-
biotics on O2 evolution of algae (Kviderova and Henley, 2005).
However, the mechanism of inhibition of photosynthesis is largely
unknown.

The aim of this study was to investigate the mechanisms in-
volved in the toxic effect of amoxicillin on the PSII of Synechocystis
sp., one species of common cyanobacteria, by in vivo chlorophyll
fluorescence measurements.
2. Materials and methods

2.1. Chemicals

LH (C18H20FN3O4�HCl, molecular weight = 397.83) with a chemi-
cal purity of 99.5% was supplied from Jiangsu Yabang Pharma Group
(Yancheng, China). A range of different nominal concentrations
(from 0 to 100 mg L�1) of exposure solutions of LH were prepared
by dissolution of LH in deionized water. All the exposure solutions
were filtered through a 0.22 lm filter membrane before use. Effects
of LH in the range of lg L�1 to mg L�1 on the photosystem II of

https://core.ac.uk/display/71583329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.chemosphere.2009.06.051
mailto:zhangdaoyong@vip.gyig.ac.cn
http://www.sciencedirect.com/science/journal/00456535
http://www.elsevier.com/locate/chemosphere


Table 1
Formula and items of selected JIP-test parameters.

VJ = (F2 ms�FO)/(FM�FO) Relative variable fluorescence intensity at
the J-step

MO = 4(F300 ls�FO)/(FM�FO) Approximated initial slope of the
fluorescence transient

WO = ETO/TRO = (1�VJ) Probability that a trapped exciton moves an
electron into the electron transport chain
beyond QA (at t = 0)

/Po = TRO/ABS = [1�(FO/FM)] = FV/FM Maximum quantum yield for primary
photochemistry (at t = 0)

ABS/RC = MO�(1/VJ)�(1//Po) Absorption flux per RC
ETO/RC = MO�(1/VJ)�WO Electron transport flux per RC (at t = 0)
ABS/CSO = F0 Absorption flux per CS (at t = 0)
RC/CS = /Po�(VJ/Mo)�ABS/CS Density of RCs (QA-reducing PSII reaction

centers)
DIO/RC = (ABS/RC) � (TRO/RC) Dissipated energy flux per RC (at t = 0)

Fig. 1. Photosynthetic O2 evolution of Synechocystis sp. treated with different
concentration LH for 24 h. Values represent mean ± SE of five independent
measurements. Bars indicate standard errors.
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cyanobacterium were investigated. The measured concentration
was 98.5–99.8% of the nominal concentration. Since nominal con-
centrations were close to the measured concentrations and the
aim of our study is the biological reaction of a plant to LH but not
the assessment of toxic doses, nominal concentrations were used.

2.2. Culture of cyanobacterium

The cyanobacterium Synechocystis sp., supplied by Institute of
Hydrobiology, Chinese Academy of Sciences, was precultured pho-
toautotrophically at 25 �C and about 25 lmol m�2 S�1 in BG-11
growth medium (Rippka et al., 1979). Exponentially grown cells
were diluted with fresh medium to achieve test samples at around
5 lg Chl a mL�1 for fluorescence measurement and cultured in
10 mm � 10 mm plastic cuvette at the volume of 3.4 mL each.

2.3. Measurement of O2 evolution

After 12 h of LH treatment, 5-min photosynthetic O2 evolution
was measured using a Clark microelectrode (Unisense, Denmark)
at 25 �C with illumination of 500 lmol m�2 S�1 (PAR) white light
intensity in 2-mL cuvettes. The photosynthetically active radiation
(400–700 nm) was measured at the surface of the culture vessels
by Li-192 SA quantum sensor (Li-COR, USA).

2.4. Chlorophyll fluorescence tests

A fluorometer FL3500 (PSI,CZ) was employed to measure the
polyphasic fast fluorescence induction, Q�A reoxidation kinetics,
the heterogeneity of PSII antenna and the proportion of active
and inactive reaction centers. All the samples were dark-adapted
for 5 min before each test.

2.4.1. Measurement of Q�A reoxidation kinetics
The measurement of Q�A reoxidation kinetics was performed by

a single turnover flash. The relaxation of the flash-induced increase
in Chl a fluorescence yield reflects the reoxidation of Q�A via for-
ward electron transport to QB and back reactions with the S2 state
of the oxygen evolving complexes (OEC) (Cao and Govindjee, 1990;
Dau, 1994). In this study the Q�A reoxidation kinetics curves after a
single turnover flash was measured in the 200 ls to 10 s time
range. Both actinic (30 ls) flashes and measuring (2.5 ls) flashes
were provided by red LEDs. The Q�A reoxidation kinetic data were
recorded with eight datapoints per decade.

2.4.2. Measurement of the heterogeneity of PSII antenna
The determination of PS II antenna heterogeneity was done by

the flash fluorescence induction which can cause transient closure
of PSII centers (Nedbal et al., 1999). A strong 50 ls flash was ap-
plied. The proportion of PSIIa and PSIIb was calculated by calculat-
ing the semi-log plot of complementary area over the fluorescence
induction curve (Melis and Homann, 1976). Two kinetic compo-
nents can be shown by the semi-log plot of the area growth with
fast sigmoidal component ascribed as PSIIa and a slow exponential
component ascribed as PSIIb, respectively (Warren et al., 1983).
The intercept of the linear phase in the semi-log plots was denoted
as the proportion of PSIIb.

2.4.3. Polyphasic fast fluorescence induction and JIP test
The chlorophyll fluorescence transients were recorded up to 1 s

on a logarithmic time scale, with a data acquisition every 10 ls for
the first 2 ms and every 1 ms thereafter. The polyphasic fluores-
cence induction kinetics was analyzed according to the JIP-test
(Strasser et al., 1995). The polyphasic fast-phase fluorescence
induction curve provides valuable information on the magnitude
of stress effects on photosystem II (PSII) function (Strasser and
Strasser, 1995). In the present study, the following data were di-
rectly obtained from the fast rise kinetic curves: F0, the initial fluo-
rescence, was measured at 50 ls, at this time all reaction centers
(RCs) are open; FJ and FI are the fluorescence intensity at J step
(at 2 ms) and I step (at 30 ms); FM, the maximal fluorescence,
was the peak fluorescence at P step when all RCs were closed after
illumination; F300 was the fluorescence at 300 ls. Selected param-
eters quantifying PSII behavior were calculated from the above ori-
ginal data as the formulae in Table 1.

2.5. Statistical analysis

Each treatment was at least triplicated and the results were pre-
sented as mean ± SE (standard error). Student’s t-test was em-
ployed for statistical analysis of experimental data. Statistical
significance was accepted when p-value is less than 0.05.

3. Results

3.1. Effect of LH on O2 evolution

It was observed that O2 evolution of Synechocystis sp. was inhib-
ited by LH and the inhibitory effect was concentration dependent
(Fig. 1). Treatment with 5.0 mg L�1 LH for 24 h reduced O2 evolu-
tion by 60.9%. It is clearly that the O2-evolving complex (OEC)
was a primary target site for LH toxicity.
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Fig. 2. Representative Q�A reoxidation kinetic curves for Synechocystis sp.: (a) Q�A reoxidation kinetic curves for Synechocystis sp. treated with 0.1 mg L�1 LH with different
exposure time; (b) Q�A reoxidation kinetic curves for Synechocystis sp. treated with different concentration LH for 24 h.
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3.2. Effect of LH on Q�A reoxidation kinetics

The Q�A reoxidation kinetics test (Fig. 2) was performed in order
to understand the inhibitory effect of LH on the function of the
acceptor side of PSII of Synechocystis sp. (Crofts and Wraight,
1983). The Q�A reoxidation kinetics curves were fitted by the
three-component exponential Eq. (1):

FðtÞ � F0 ¼ A1 expð�t=T1Þ þ A2 expð�t=T2Þ þ A3 expð�t=T3Þ ð1Þ

where F(t) is the variable fluorescence yield at time t; F0 is the fluo-
rescence level before the flash; A1–A3 are the amplitudes; T1–T3 are
the time constants. The nonlinear correlation between the fluores-
cence yield and the redox state of QA was corrected for using the
Joliot model (Joliot and Joliot, 1964) with a value of 0.5 for the
energy-transfer parameter between PSII units. The fast component
indicates electron transfer from Q�A to Q�B site occupied with QB

ðQ�B Þ before the actinic flash. The middle component is typical for
PSII complexes where Q�A reoxidation is limited by diffusion of PQ
molecules to an empty QB-site (Crofts and Wraight, 1983). The
slowest component reflects the charge recombination from the
S2Q�A state of the water oxidation to the S1QA (Cao and Govindjee,
1990).

Several changes about the Q�A reoxidation curves were observed
due to exposure to LH. The amplitude of the variable fluorescence
(Fv) decreased with increasing LH concentration and exposure time
and the decay phases were slowed down. The parameters of the Q�A
reoxidation kinetics are summarized in Table 2. The fast phase
component, with 113–184 ls time constant, absolutely dominated
the Q�A reoxidation for the control. The fast phase accounted for all
the Q�A reoxidation in the untreated Synechocystis sp. cells, indicat-
ing that almost all the Q�A was oxidized by electron transfer from
Q�A to Q�B site occupied with QB ðQ�B Þ. Short-term (10 min) treat-
ment with LH at all concentrations did not affect Q�A reoxidation
kinetics. 0.1 mg L�1 LH had no inhibitory effect on Q�A reoxidation
kinetics during the 96 h exposure.

The inhibition of the Q�A reoxidation kinetics induced by1.0 -
mg L�1 or higher concentration LH occurred step by step as expo-
sure time prolonged. LH exposure first resulted in drastic
decrease and even complete loss of the fast component accompa-
nied with increase of the amplitude of the middle phase compo-
nent, indicating the electron transfer from Q�A to Q B=Q�B was
inhibited. The higher the LH concentration, the shorter the time
needed for complete loss of the fast phase component. For
example, the time needed for complete loss of the fast phase com-
ponent for the cells treated with 1.0 mg L�1 and 5.0 mg L�1 LH
were 12 h and 6 h, respectively. At this step, when the fast phase
component was lost, most Q�A was oxidized through PQ binding
with the empty QB site. As exposure time prolonged forward the
middle phase component also decreased and even completely dis-
appeared, accompanied by the increasing amplitude of the slow
phase component. This change indicated that the PQ binding to
the QB site was blocked and more and more Q�A was oxidized via
charge recombination from the S2Q�A state of the water oxidation
to the S1QA. For example, exposure to 10 mg L�1 LH for 12 h in-
duced complete loss of the fast phase component and all the fast
phase component was converted into the middle phase component
(100%). At this time, all the Q�A was reoxidized by PQ binding. As
the cells were exposed to LH for another 12 h, the middle phase
lost completely and the Q�A was dominated by the slow phase com-
ponent (99.9%), indicating that almost all the Q�A was oxidized by
charge recombination between Q�A and the positively charged spe-
cies in the OEC in PSII centers, which are unable to perform the for-
ward electron transfer.

3.3. Effect of LH on the heterogeneity of PSII antenna size

The PSII antenna heterogeneity (PSIIa:PSIIb) is related to the
difference between PSII units in terms of energy transfer (Melis
and Homann, 1976). The a part was attributed to interconnected
groups of PSII units that could transfer excitation energy among
themselves. The b part was ascribed to individual, separate PSII
units that cannot transfer energy to other PSII units (Melis and Ho-
mann, 1976; Warren et al., 1983). The proportion of PSIIb centers
generally increased with increasing LH concentration (Fig. 3). The
proportion of the PSIIb of the control was about 12% and increased
after exposure to LH. At low concentrations (here 0.1 and
1.0 mg L�1), the proportion of PSIIb increased to the peak at 12 h
and then decreased with increasing exposure time, indicating that
the effect of low concentration LH on PSII antenna size heterogene-
ity was partially or completely reversible. More PSIIa centers were
converted into PSIIb under higher LH stress and most of the PSIIa
were converted into PSIIb within the first 24 h. Further increase
in the exposure time did not change this value markedly. The pro-
portion of PSIIb centers varied in the range of 45–55%, indicating
that the adverse effect of LH on PSII antenna size at high concentra-
tion was irreversible.



Table 2
Parameters of Q�A reoxidation kinetics of the samples untreated and treated with different concentration LH and with different exposure time.

Exposure time Total amplitudea(%) Fast phase A1(%)/T1(ls) Middle phase A2(%)/T2(ms) Slow phase A3(%)/T3(s)

The control
10 min 100 99.9/145.7 0.1/2.39 0/8.59
2 h 100 100/113.1 0/2.01 0/6.47
6 h 100 99.7/179 0.3/2.49 0/8.17
12 h 100 99.9/136.7 0.1/1.92 0/5.73
24 h 100 99.5/184.4 0.5/2.76 0.1/6.80
96 h 100 100/167.8 0/1.50 0/6.31

With 0.1 mg L�1 LH
10 min 101 ± 1 99.8/158.6 0.2/2.53 0/6.31
2 h 100 ± 1 100/108 0/1.97 0/5.39
6 h 101 ± 3 100/126.8 0/1.94 0/6.35
12 h 103 ± 3 99.8/163.4 0.2/2.19 0/5.73
24 h 90 ± 2 100/61.3 0/1.65 0/5.42
96 h 72 ± 1 0/139 97.5/0.57 2.5/2.69

With 1.0 mg L�1 LH
10 min 102 ± 1 99.8/147.8 0.1/2.39 0/6.80
2 h 103 ± 3 100/100.5 0/1.82 0/6.97
6 h 91 ± 2 100/93.1 0/1.98 0/7.80
12 h 81 ± 1 0/182.7 96/0.77 4/2.53
24 h 72 ± 3 0.1/6.2 99.2/0.25 0.7/0.0169
96 h 37 ± 2 0/7.8 67.3 /0.013 32.7/0.0169

With 5.0 mg L�1 LH
10 min 104 ± 3 99.7/166.9 0.3/2.48 0/6.94
2 h 98 ± 1 0/217.9 95.6/0.84 4.4/4.30
6 h 80 ± 2 0/148 95.5/0.81 4.5/2.35
12 h 66 ± 1 0/166.3 95.4/0.76 4.6/1.96
24 h 49 ± 3 0/18.7 36.1/0.074 63.9/0.001300
96 h 33 ± 3 0/30.3 12.4/0.101 87.6/0.000211

With 10.0 mg L�1 LH
10 min 100 ± 2 100/66.4 0/1.85 0/5.39
2 h 90 ± 3 98/271.1 1.6/3.02 0.4/5.75
6 h 70 ± 3 0.1/65.7 95.4/0.753 4.5/3.83
12 h 54 ± 1 0/41.9 100/0.076 0/1.09
24 h 40 ± 2 0.1/39.1 0/0.039.1 99.9/0.000067
96 h 22 ± 2 –/–b –/–b –/–b

a Values represent the amplitude of total variable fluorescence as a percentage of the control.
b The variable fluorescence was very weak and the decay curves were poor, therefore no reliable parameters were derived.
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3.4. Effect of LH on polyphasic fast fluorescence induction

The fast kinetic induction curves of the control and the samples
treated with LH was measured (Fig. 4a). It was found that LH had
concentration-dependent inhibitory effect on the fast rise fluores-
cence transient of Synechocystis sp. F0 generally showed an increas-
ing trend with increasing LH concentration. JIP-test showed LH
treatment decreased the density of the active photosynthetic reac-
tion centers (RC/CSO) (Fig. 4b) and inhibited electron transport
(ETO/TRO) (Fig. 4c), which resulted in an increase in absorption flux
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per RC (ABS/RC) (Fig. 4d) and the dissipated energy flux per reac-
tion center (DIO/RC) (Fig. 4e). Finally, the maximum quantum yield
for primary photochemistry (FV/FM) was reduced (Fig. 4f).

4. Discussion

In the present work, we demonstrated that LH in lg L�1 and
mg L�1 range had an adverse effect on the PSII of Synechocystis
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further inhibited electron transport (ETO/TRO) (Fig. 4c) and
increased the absorption flux per RC (ABS/RC) (Fig. 4d). Finally
the dissipated energy flux per reaction center (DIO/RC) increased
(Fig. 4e) due to the low interconnectivity between PSII units.

Accumulation of PSIIb under stress was also reported elsewhere
(Sundby et al., 1986; Hill and Ralph, 2006). The reported values of
PSIIb centers of untreated and stressed photosynthetic organisms
varied with different species. In untreated higher plants leaves
about 30% of the total PSII centers are PSIIb centers (Sundby et
al., 1986; Bukhov and Carpentier, 2000). Heat stress increased
the proportion of PSIIb centers up to 60% (Bukhov and Carpentier,
2000) or over 80% (Sundby et al., 1986).

LH altered the Q�A reoxidation kinetics step by step as expo-
sure time prolonged forward. At the first step, the fast phase sig-
nificantly decreased and was even complete lost under LH stress,
accompanied with an increase of the amplitude of the middle
phase component, indicating electron transfer from Q�A to QB

was partially or completely inhibited. At this step, Q�A was oxi-
dized through the binding of plastoquinone (PQ) to vacant QB-
binding site before the Q�A to QB electron transfer can take place
(Dau, 1994). At the second step, with the cells continued to be ex-
posed to LH, this Q�A reoxidation way began to be modified, as
indicated by a drastic decrease in the amplitude of middle phase
and a significant increase of the slow phase. The connectivity be-
tween the Q�A and QB and the PQ pool was severely inhibited.
Therefore, Q�A was forced to be oxidized with back electron trans-
fer from Q�A to S2 state of the OEC, i.e., S2(QAQB)� charge recombi-
nation (Cao and Govindjee, 1990). In short, LH inhibited the
forward electron transfer via breaking the connectivity between
Q�A and QB and the PQ pool step by step. Since that PSIIb was as-
cribed to individual, separate PSII units that cannot transfer en-
ergy to other PSII units (Melis and Homann, 1976; Warren
et al., 1983), the decreasing connectivity between Q�A and QB

and the PQ pool might be attributed to the accumulation PSIIb
centers.

LH in lg L�1 and mg L�1 range may have similar inhibitory ef-
fects on PSII activity in green algae and higher plants since they
have similar photosynthetic apparatus to cyanobacteria. LH, there-
fore, might have adverse effect on the photosynthetic primary pro-
ducer. In addition, the in vivo chlorophyll fluorescence parameters
such as Q�A reoxidation kinetic constants and JIP-test parameters
can be useful in detecting toxicity of antibiotics to cyanobacteria,
algae and higher plants. Other biophysical and biochemical meth-
ods should be employed to study other possible targets of antibi-
otic substances in photosynthetic microorganisms.

5. Conclusions

(1) LH clearly has inhibitory effects on O2 evolution and PSII
activity of Synechocystis sp.

(2) The PSII heterogeneity was severely modified under LH
stress. LH resulted in increases increase in the proportion
of PSIIb centers and poor connectivity and poor excitation
energy-transfer between PSII units, and thus increased the
dissipated energy flux per reaction center.

(3) LH firstly inhibited the electron by weakening the connectiv-
ity between Q�A and QB. At this stage, PQ binding began taking
part in Q�A reoxidation. At the second stage, as the LH expo-
sure continued, the connectivity between Q�A and PQ pool
was reduced and inhibition on PQ binding occurred. At this
stage, some Q�A began to be oxidized by S2(QAQB)�. Finally, if
the connectivity between Q�A and QB and PQ was completely
broken, all Q�A was oxidized through charge recombination.
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