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In this study, a two-stage inexact-stochastic programming (TISP) method is developed for planning car-
bon dioxide (CO2) emission trading under uncertainty. The developed TISP incorporates techniques of
interval-parameter programming (IPP) and two-stage stochastic programming (TSP) within a general
optimization framework. The TISP can not only tackle uncertainties expressed as probabilistic distribu-
tions and discrete intervals, but also provide an effective linkage between the pre-regulated greenhouse
gas (GHG) management policies and the associated economic implications. The developed method is
applied to a case study of energy systems and CO2 emission trading planning under uncertainty. The
results indicate that reasonable solutions have been generated. They can be used for generating decision
alternatives and thus help decision makers identify desired GHG abatement policies under various eco-
nomic and system-reliability constraints.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, a large amount of electricity relies primarily on non-
renewable energy supplies, such as coal, natural gas and petroleum
[1]. Greenhouse gas (GHG) is primary gas emitted from these fossil
fuels combustion, and increasing concentration of GHG [e.g., car-
bon dioxide (CO2)] is likely to accelerate the rate of global warming
[2–8]. The present measured concentration of CO2 in the atmo-
sphere is approximately 30% higher than Pre-Industrial Revolution
(1850s) levels [5]. Many scientists concern about the increase of
global CO2 and other GHG emissions, which lead to the increase
in surface temperature, the change in the global climate, and the
rise in sea level. Some of them question that whether energy sup-
plies can meet GHG mitigation standards with increasing electric-
ity demands. Moreover, a number of researchers are in a puzzle
about how to balance increasing electricity demands (due to the
population growth and the economic development), less fossil fuel
consumption, and mandated requirement for reducing GHG emis-
sion [1].

A large number of research works were undertaken for the
planning of GHG mitigation in integrated energy and environmen-
tal management systems. For example, economic incentive (typi-
ll rights reserved.

. Li).
cally a carbon tax) was proposed to promote less carbon-
intensive fuels and to develop alternatives [9]. Renewable energy
sources or less GHG intensive fuels were used, such as nuclear
power and natural gas [10–12]. Sequestration facilities were built
up and used to capture GHG emitted from power plants during
electricity generation process [12,13]. Besides, GHG emission trad-
ing was envisaged within the Kyoto protocol as one of the so-called
flexible mechanisms, it was introduced to help attain reduction of
GHG emission in a cost-effective way [14–16]. Previously, deter-
ministic methods were extensively used for managing GHG emis-
sion in energy systems [17–23]. However, an integrated energy
and environmental management system often contains various
uncertainties that may exist in electricity demand and supply, elec-
tricity generation processes, related economic parameters, GHG
emission inventories, and errors in the measurement instruments.
For example, GHG emissions from the electricity generation sector
can be influenced by stochastic events such as electricity demand,
which may fluctuate from time to time. Meanwhile, the quality of
information on generated energy and cost/benefit coefficients are
not sufficient, which may vacillate within a certain interval.

As a result, a number of research efforts were conducted
for dealing with various uncertainties in the integrated energy
and environmental management systems, such as interval mathe-
matical programming (IMP) and stochastic mathematical program-
ming (SMP) [24–29]. IMP allows uncertainties to be directly
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communicated into the optimization process and resulting solu-
tions, it does not lead to more complicated intermediate models
and does not require distribution information for model parame-
ters [30]. Nevertheless, IMP has difficulties when the right-hand
sides of a model are highly uncertain, especially with uncertainties
expressed as possibilistic and/or probabilistic distributions, which
may lead to the loss of valuable information in many real-world
decision-making problems [31,32]. In comparison, SMP is effective
for decision problems whose coefficients (input data) are uncertain
but could be represented as chances or probabilities, which has
been extensively applied to energy systems planning [33–36].
Two-stage stochastic programming (TSP) is a typical SMP method,
which is an effective alternative for tackling problems where an
analysis of policy scenarios is desired and the right-hand-side coef-
ficients are random with known probability density functions
(PDFs) [3,37–39]. In TSP, the first-stage decision is to be made be-
fore uncertain information is revealed, whereas the second-stage
one (recourse) is to adapt to the previous decision based on the fur-
ther information; the second-stage decision is used to minimize
‘penalties’ that may appear due to any infeasibility [38,40–45].
However, the major problem of stochastic programming method
is that there are increased data requirements for the specification
of the probability distribution of the coefficients which may affect
the practical applicability [46]. For example, in an integrated en-
ergy and environmental system, a planner may know that the daily
pollutant and/or GHG emission rate fluctuates within a certain
interval, but he may find it is difficult to state a meaningful prob-
ability distribution for this variation [31,47]. Therefore, one poten-
tial approach for better accounting for the uncertainties and
economic penalties is to incorporate the interval-parameter pro-
gramming (IPP) and TSP techniques within a general optimization
framework. This will lead to a two-stage inexact-stochastic linear
programming method. For example, Li et al. [29] developed an
inexact fuzzy-robust two-stage programming model for managing
sulfur dioxide abatement in an energy system under uncertainty,
where fuzzy programming was introduced into a TSP framework
to deal with uncertainties presented in terms of fuzzy sets and ran-
dom variables. Huang and Loucks [39] proposed an inexact two-
stage stochastic programming (ITSP) model to address the uncer-
tainties. In their study, the concept of inexact optimization was
incorporated within a two-stage stochastic programming frame-
work. The model was applied to a case study of water resources
management. Moreover, few research works focused on the TSP
method for GHG emission trading planning within an integrated
energy and environmental management system.

Therefore, the objective of this study aims to develop a two-
stage inexact-stochastic programming (TISP) method for CO2 emis-
sion trading planning within an integrated energy and environ-
mental management system. The developed TISP will integrate
techniques of IPP and TSP into a general optimization framework.
Uncertainties expressed as probabilistic distributions and interval
values will be reflected. A case study will then be provided for
demonstrating applicability of the developed method. A number
of policy scenarios that are associated with different mitigation
levels of CO2 emission permits will be analyzed. The results can
help decision makers not only discern optimal energy-allocation
patterns, but also gain deep insights into the tradeoffs between
CO2 emission trading and economic objective.

The paper is organized as follows: Section 2 describes the state-
ment of energy and environmental management problem, and for-
mulates the CO2 emission trading and non-trading models; Section
3 provides the results analysis of the case study; Section 4 dis-
cusses the potential limitations and extensions of the proposed
TISP method; Section 5 presents conclusions of the work; Appen-
dix A depicts the detailed methodology of the proposed model.
2. Modeling formulation

In an integrated energy and environmental management sys-
tem, uncertainties may exist in CO2 generation process and various
impact factors, such as CO2 emission inventory, control measures,
and related costs. These uncertainties may affect the endeavors
in modeling CO2 emissions in a power system, which is important
for making the integrated energy and environmental management
planning. For example, CO2 emission inventory from the electricity
generation sector may vary with the electricity demand, which can
be represented as a random variable; the information of cost and
benefit coefficients is not sufficient, thus these coefficients can be
expressed as interval numbers. An integrated energy and environ-
mental management system can be generally characterized by one
or several sources (i.e., the power plant). A large number of CO2

emissions from these power plants may lead to adverse impacts
on climate change. For example, increasing amount of CO2 in the
atmosphere may affect weather condition changes, sea/land ice
cover decreases, biodiversity changes, and ecosystem changes.

Since it is generally either technically infeasible or economically
impossible to design processes leading to zero emission of CO2,
authorities and decision makers always seek to control the CO2

emission to level at which the effect is minimized [29]. Therefore,
CO2 mitigation strategy for a power system should include a crite-
rion of allowable levels of CO2 emissions (i.e., the CO2 emissions
permits) and a scheme for making effective employ of the CO2

emissions permits. In order to effectively use of emissions permits,
it is necessary to carry out the CO2 emissions trading scheme.
Moreover, amounts of CO2 emissions vary qualitatively and quan-
titatively from one power plant to another, which can result in
huge variations in the cost of achieving targets of emission limits.
This difference in cost can also encourage managers of power
plants to carry out CO2 emissions trading scheme [48]. Through
trading scheme, each power plant is no longer constrained by its
own emission permit but theoretically by the aggregate number
of CO2 emission limit from the power system, which can maximize
the system benefit at a certain level of CO2 emission permit. Since
potential energy-demand may vary with the population increase
and economic development, which can be expressed as random
variable with probability Pih in one case; besides, some uncertain
parameters in power system may be expressed as discrete inter-
vals (e.g., the target amount of generated energy, the energy sys-
tem cost and benefit, the range of CO2 emission permit, the
handling capacity of control measure); furthermore, decisions need
to be made periodically over time, and a link to a predefined policy
is desired [5,29,49,50]. Therefore, the question under consideration
is how to maximize the net benefit of the power system under CO2

trading scheme while meeting CO2 emission permit. Thus, the
application of TISP model in CO2 emission trading scheme is con-
sidered to be feasible for: (i) meeting the CO2 emission permit
requirement; (ii) maximizing the net benefit of the power system
with trading scheme; (iii) recognizing appropriate mitigation plan
for CO2 emissions.

A hypothetical problem is advanced to illustrate the applicabil-
ity of the TISP approach. The planning horizon of this study is
15 years with three planning periods. This is because, from a
long-term planning point of view, CO2 emission rates may keep
increasing due to economic development and energy-demand in-
crease, and the related cost of power system may also vary among
different time periods. In this study, three power plants (i.e. one
gas-fired power plant, one petroleum-fired power plant, and one
coal-fired power plant) are considered as major CO2 emission
sources over the planning horizon. In each power plant, two mea-
sures are used to reduce the amount of CO2 emission: (i) capture
and storage (CS), and (ii) chemical absorption (CA). The climate



Table 1
The list of scenarios.

Abbreviation Trading scheme

S1 Scenario 1 without mitigation of total CO2 emission permit
S2 Scenario 2 with 10% mitigation of total CO2 emission permit
S3 Scenario 3 with 20% mitigation of total CO2 emission permit
S4 Scenario 4 with 30% mitigation of total CO2 emission permit
S5 Scenario 5 with 40% mitigation of total CO2 emission permit
S6 Scenario 6 with 50% mitigation of total CO2 emission permit
S7 Scenario 7 with 60% mitigation of total CO2 emission permit
S8 Scenario 8 with 70% mitigation of total CO2 emission permit
S9 Scenario 9 with 80% mitigation of total CO2 emission permit
S10 Scenario 10 with 90% mitigation of total CO2 emission permit

Note: In the manuscript, symbol ‘‘Si-T” means scenario i under the trading scheme,
and symbol ‘‘Si-NT” denotes scenario i under the non-trading scheme.

Table 2
The target of generated energy and net benefit in each power plant.

Power plant k = 1 k = 2 k = 3

The target of generated energy in each power plant (109 kW h)
Gas [25.00, 30.00] [25.50, 30.50] [26.00, 31.00]
Petroleum [23.00, 23.50] [23.50, 24.00] [24.00, 24.50]
Coal [27.00, 27.50] [27.50, 28.00] [28.00, 28.50]

The net benefit of each power plant ($/kW h)
Gas [0.065, 0.070] [0.070, 0.075] [0.075, 0.080]
Petroleum [0.055, 0.060] [0.060, 0.065] [0.065, 0.070]
Coal [0.060, 0.065] [0.065, 0.070] [0.070, 0.075]

Table 3
The operating costs of pollution control techniques ($/tonne).

Power plant Measure k = 1 k = 2 k = 3

Gas CS [13.00, 15.00] [18.00, 20.00] [23.00, 25.00]
CA [28.00, 30.00] [33.00, 35.00] [38.00, 40.00]

Petroleum CS [14.00, 16.00] [19.00, 21.00] [24.00, 26.00]
CA [29.00, 31.00] [34.00, 36.00] [39.00, 41.00]

Coal CS [15.00, 17.00] [20.00, 22.00] [25.00, 27.00]
CA [30.00, 32.00] [35.00, 37.00] [40.00, 42.00]
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may be adversely affected by the emitted CO2 from three sources.
The study system is shown in Fig. 1. The target level of generated
energy from each power plant in three periods are different, while
different amounts of generated energy can result in varied CO2

emission levels that are expressed as random variables.
In this study, a number of scenarios with different mitigation

levels of CO2 emission permits will be considered (i.e., the value
of l will change from 0% to 90%). Abbreviations and scenarios
are given in Table 1. Ten typical scenarios (i.e., S1-T, S3-T, S5-T,
S7-T, S9-T, S1-NT, S3-NT, S5-NT, S7-NT, and S9-NT) are described
as follows:

(i) S1-T, S3-T, S1-NT and S3-NT are based on an aggressive pol-
icy for system benefit maximization. The power system con-
siders developing the power generation with loose CO2

emission limit. In addition, 0% and 20% reductions of CO2

emission permit should be obtained over the planning per-
iod. Thus, these scenarios correspond to decisions that can
satisfy the region’s increasing power demand.

(ii) S5-T and S5-NT are mainly based on a balance between sys-
tem benefit and CO2 emission reduction. There is a tradeoff
among economic objective, power energy-demand, and
CO2 emission mitigation.

(iii) S7-T, S9-T, S7-NT and S9-NT are mainly based on a policy for
the CO2 emission minimization. The study system considers
developing the power generation plans subject to strict CO2

emission permission. Under these scenarios, 60% and 80%
CO2 emission mitigation should be achieved over the plan-
ning horizon.

In the study system, gas-fired, petroleum-fired and coal-fired
power plants are considered, where petroleum-fired and coal-fired
power plants are major sources of CO2 generation. Table 2 shows
the targets for energy generated and net benefits in each power
plant during different periods when required CO2 emission permits
are satisfied. Table 3 shows operating costs of pollution control
techniques during different periods, which may vary with the type
of power plant. Table 4 lists power demand and supply indices un-
der different probability distributions. Besides, total CO2 emission
allowances are regulated as [66.00, 73.70] � 106 tonnes in period
1, [66.55, 73.76] � 106 tonnes in period 2, and [66.11, 73.81] �
Fig. 1. The sketch map
106 tonnes in period 3, respectively. The capacities of CS technique
in gas, petroleum and coal power plants are [9.90, 11.40] � 106,
of power system.



Table 4
The power demand and supply index under different probability distributions.

Power plant Level Pih b�ih

Gas h = 1 0.60 [1.034, 1.162]
h = 2 0.20 [0.945, 1.031]
h = 3 0.20 [0.862, 0.943]

Petroleum h = 1 0.60 [1.033, 1.161]
h = 2 0.20 [0.944, 1.030]
h = 3 0.20 [0.861, 0.942]

Coal h = 1 0.60 [1.032, 1.160]
h = 2 0.20 [0.943, 1.029]
h = 3 0.20 [0.860, 0.941]
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[9.30, 10.80] � 106 and [9.60, 11.10] � 106 tonnes, respectively.
Annual CO2 emission loadings for the three power plants (i.e.,
gas, petroleum and coal) are 0.0006, 0.0009 and 0.00095 tonne/
kW h, respectively. Efficiencies of CS and CA for CO2 emission mit-
igation are 1.0 and [0.80, 0.90], respectively. Although this is a
hypothetical case study, the representative cost and technical data
in Tables 2–4 are investigated and counted from a number of re-
lated literatures [51–53]. In fact, many factors may affect the value
of CO2 emission loading, the system benefit, and the treating cost.
For example, the values of CO2 emission loading are affected by the
types of fuels, the combustion conditions, the amount of electricity
generation, and the labor fee; the benefit for the power plant may
change according to the fuel quality, the prices of fuels, and the lev-
els of regional economic development; cost for the excess CO2

treating are estimated based on raised collection, storage, trans-
portation, and disposal costs. Correspondingly, CO2 emission load-
ing, system benefit and operating costs could be sensitive variables
which can be defined as intervals with known upper- and lower-
bounds but unknown distribution information.

In order to reduce the cost for CO2 treatment, emission trading
is considered for the three power plants. Based on the local CO2

emission management policies, a target quantity of CO2 emission
quota is allocated to each power plant. If this quantity is satisfied,
the power generation system will bring net benefits. If this quan-
tity exceeds the regulated level, power plants will have to take
measures to decrease the CO2 emission. In response to such regu-
lation, the power plants need to optimize CO2 treated to achieve a
maximized system net benefit while to satisfy the GHG emission
requirement. Through the program of CO2 emission trading, each
power plant can sell credit to other power plants with higher elec-
tric power profitability. The CO2 emission permits can thus be real-
located to the most efficient power plants instead of proportionally
allocated to each power plant. Consequently, the proposed TISP
method is suitable for tackling such a problem. When CO2 is trad-
able, the TISP model can be formulated as follows:

Maximize f�1 ¼
X3

i¼1

X3

k¼1

C�ikM�
ik �

X3

i¼1

X2

j¼1

X3

k¼1

X3

h¼1

PihD�ijkY�ijkh ð1aÞ

subject to 0 6
X2

j¼1

gjY
�
ijkh 6 E�ikh; 8 i; k;h ð1bÞ

E�ikh �
X2

j¼1

gjY
�
ijkh 6 S�ik; 8 i; k; h ð1cÞ

X3

i¼1

S�ik 6 ð1� lÞT�k ; 8 k ð1dÞ

Y�i1kh 6W�
i1; 8 i; k; h ð1eÞ

M�
ik P 0; 8 i; k ð1fÞ

Y�ijkh P 0; 8 i; j; k; h ð1gÞ
where M�
ik, Y�ijkh, C�ik, D�ijk, T�k , E�ikh, W�

ij , g�j and S�ik denote the sets of
inexact numbers. i is the name of power plant (i.e., gas-fired units,
petroleum-fired units and coal-fired units, respectively); j is the
type of the CO2 control measure (CS, CA); k is the time period
(k = 1, 2, 3); h is the CO2 emissions level (h = 1, 2, 3); f�1 is the net
benefit of the power system with CO2 emissions trading scheme
($); M�

ik is the target amount of energy to be generated from power
plant i during period k, which is derived based on the power target
of each power plant pre-regulated by the authorities (kW h) (i.e.,
the first-stage decision variable); Y�ijkh is the amount of excess CO2

treated by control measure j during period k under level h, which
is related to the randomness of energy-demand (tonne); Pih is prob-
ability of occurrence of CO2 emissions; C�ik is net benefit per kW h to
power plant i if required CO2 emission allowance is satisfied ($/
kW h); D�ijk is operating cost for excess CO2 released from power
plant i which is treated by control measure j during period k ($/
tonne); T�k is discharge limit of total CO2 emissions for the whole
power system during period k (tonne); E�ikh is the amount of CO2

emissions from power plant i during period k under level h (tonne);
W�

ij is the handling capacity of control measure j (tonne); g�j is the
efficiency of control measure j; S�ik is the reallocated emission per-
mit to power plant i with trading scheme (tonne); l is the percent-
age of reduced total CO2 emission permit (i.e., mitigation level).

Since CO2 emission inventory from the electricity generation
sector may vary with the power demand, the relationship between
CO2 emission and power demand can be expressed as follows:

E�ikh ¼ b�ihliM
�
ik; 8 i; k;h ð2Þ

where b�ih is the power demand and supply index; li is the amount of
CO2 emission loading per kW h electricity for power plant i (tonne/
kW h).

In the TISP model, since the target of energy generation for each
power plant (M�

ik) is expressed as interval number, decision vari-
able zik is introduced to identify the optimal target values (i.e.,
the first-stage decision variables) [39]. Let M�

ik ¼ M�
ik þ DMikzik,

where DMik ¼ Mþ
ik �M�

ik and zik 2 ½0; 1�. Thus, when M�
ik reach their

upper bounds (i.e., when zik = 1), a higher net benefit of the power
system would be achieved. However, a high risk of violating the
emission permit for each power plant would be generated, leading
to higher operating costs of control measures for excess CO2 emis-
sion. When M�

ik approach to their lower-bounds (i.e., when zik = 0),
the system may have a relatively low net benefit with a low risk of
violating the CO2 emission permit. Then, according to Huang and
Loucks [39], model (1) can be transformed into the following two
deterministic submodels, which correspond to the upper- and low-
er-bounds of the desired objective function value.

Submodel (1)

Maximize fþ1 ¼
X3

i¼1

X3

k¼1

CþikðM
�
ik þ DMikzikÞ

�
X3

i¼1

X2

j¼1

X3

k¼1

X3

h¼1

PihD�ijkY�ijkh ð3aÞ

subject to 0 6
X2

j¼1

g�j Y�ijkh 6 E�ikh; 8 i; k; h ð3bÞ

E�ikh �
X2

j¼1

g�j Y�ijkh 6 S�ik; 8 i; k; h ð3cÞ

X3

i¼1

S�ik 6 ð1� lÞT�k ; 8 k ð3dÞ

Y�i1kh 6W�
i1; 8 i; k; h ð3eÞ

Y�ijkh P 0; 8 i; j; k;h ð3fÞ



Fig. 2. Net system benefits under different mitigation level.

W.T. Chen et al. / Applied Energy 87 (2010) 1033–1047 1037
Submodel (2)

Maximize f�1 ¼
X3

i¼1

X3

k¼1

C�ikðM
�
ik þ DMikzikÞ

�
X3

i¼1

X2

j¼1

X3

k¼1

X3

h¼1

PihDþijkYþijkh ð4aÞ

subject to 0 6
X2

j¼1

gþj Yþijkh 6 Eþikh; 8 i; k;h ð4bÞ

Eþikh �
X2

j¼1

gþj Yþijkh 6 Sþik; 8 i; k;h ð4cÞ

X3

i¼1

Sþik 6 ð1� lÞTþk ; 8 k ð4dÞ

Yþi1kh 6Wþ
i1; 8 i; k;h ð4eÞ

Yþijkh P 0; 8 i; j; k;h ð4fÞ

On the other hand, when CO2 is not tradable, the CO2 emission
for each power plant will be limited by its own emission permit.
Under this case, the TISP model (without considering CO2 trading)
can be formulated as follows:

Maximize f�2 ¼
X3

i¼1

X3

k¼1

C�ikM�
ik �

X3

i¼1

X2

j¼1

X3

k¼1

X3

h¼1

PihD�ijkY�ijkh ð5aÞ

subject to 06
X2

j¼1

gjY
�
ijkh 6 E�ikh; 8 i;k;h ð5bÞ

E�ikh �
X2

j¼1

gjY
�
ijkh 6

liM
�
ik maxP3

i¼1liM
�
ik max

ð1�lÞT�k ; 8 i;k;h ð5cÞ

Y�i1kh 6W�
i1; 8 i;k;h ð5dÞ

M�
ik P 0; 8 i;k ð5eÞ

Y�ijkh P 0; 8 i; j;k;h ð5fÞ

where f�2 is the net benefit of the power system without considering
CO2 emission trading ($); M�

ik max is the upper target of generated en-
ergy in period k from power plant i (kW h). Similarly, model (5) can
be converted into two submodels as follows:

Submodel (1)

Maximize fþ2 ¼
X3

i¼1

X3

k¼1

CþikðM
�
ik þ DMikzikÞ

�
X3

i¼1

X2

j¼1

X3

k¼1

X3

h¼1

PihD�ijkY�ijkh ð6aÞ

subject to 0 6
X2

j¼1

g�j Y�ijkh 6 E�ikh; 8 i; k;h ð6bÞ

E�ikh �
X2

j¼1

g�j Y�ijkh 6
liM

þ
ikP3

i¼1liM
þ
ik

ð1� lÞT�k ; 8 i; k;h ð6cÞ

Y�i1kh 6W�
i1; 8 i; k;h ð6dÞ

Y�ijkh P 0; 8 i; j; k;h ð6eÞ

Submodel (2)

Maximize f�2 ¼
X3

i¼1

X3

k¼1

C�ikðM
�
ik þ DMikzikÞ

�
X3

i¼1

X2

j¼1

X3

k¼1

X3

h¼1

PihDþijkYþijkh ð7aÞ

subject to 0 6
X2

j¼1

gþj Yþijkh 6 Eþikh; 8 i; k;h ð7bÞ

Eþikh �
X2

j¼1

gþj Yþijkh 6
liM

þ
ikP3

i¼1liM
þ
ik

ð1� lÞTþk ; 8 i; k;h ð7cÞ

Yþi1kh 6Wþ
i1; 8 i; k;h ð7dÞ

Yþijkh P 0; 8 i; j; k;h ð7eÞ
3. Results analysis

In this study, 20 scenarios corresponding to different CO2 miti-
gation levels and different trading schemes (i.e., trading and non-
trading) were examined by the TISP model. Fig. 2 shows the solu-
tions for optimized system benefits obtained from the TISP model,
which are the sum of the first-stage benefit from the energy gener-
ation and the second-stage random cost for mitigating CO2 emis-
sion. In Fig. 2, solid lines represent the benefit obtained from
trading scheme, and dashed lines represent the benefit obtained
from non-trading scheme. The results demonstrate that system
benefit under trading scheme is much higher than that under
non-trading scheme. Moreover, with the increase of the mitigation
level, the optimized net system benefits under trading and non-
trading schemes are both decrease. For example, the optimized
system benefit would be decreased from $ [16.07, 17.35] � 109

(S1-T) to $ [10.16, 11.98] � 109 (S10-T) under trading scheme. Un-
der non-trading scheme, the optimized system benefit would be
decreased from $ [16.06, 17.35] � 109 (S1-NT) to $
[10.14, 11.96] � 109 (S10-NT). All of the system benefits are inter-
vals; the actual value of each variable varies within its lower and
upper bounds, the resulting system benefit will change corre-
spondingly between its lower and upper bounds with varied reli-
ability levels. In practice, planning for the lower-bound system
benefit would lead to a lower risk of violating the allowable CO2

emission level. Conversely, planning with a higher benefit will cor-
respond to a higher probability of violating the allowance. There-
fore, there is a tradeoff between the system benefit and CO2

emission-allowance violation risk. In addition, the maximum dif-
ference of system benefits under trading and non-trading schemes
would occur in scenario 5 (i.e., the optimized system benefits
would be $ [14.39, 15.96] � 109 under S5-T and $
[14.31, 15.87] � 109 under S5-NT). This implies the high efficiency
of CO2 trading would be achieved under scenario 5. Consequently,
S5-T and S5-NT were chosen as two basic scenarios, and detailed
interpretation and analysis for the results under S5-T and S5-NT
would be provided as follows.

3.1. Solutions under scenarios S5-T and S5-NT

Figs. 3–5 show the optimal solutions for CO2 emission treated by
different measures for the three power plants under scenarios S5-T
and S5-NT. Under scenario S5-T (i.e., under trading scheme), for
gas-fired power plant in period 1, the CO2 emission permit would
be [8.71, 9.52] � 106 tonnes; the amounts of excess CO2 treated
by CS would be [9.90, 11.40] � 106 tonnes (probability = 0.6),
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[8.30, 9.04] � 106 tonnes (probability = 0.2) and [6.80, 7.46] � 106

tonnes (probability = 0.2). Under scenario S5-T, for petroleum-fired
power plant in period 1, the CO2 emission permit would be
[12.55, 14.25] � 106 tonnes; the amounts of excess CO2 treated by
CS would be [9.30, 10.31] � 106, [7.42, 7.54] � 106, and [5.66,
5.68] � 106 tonnes, respectively. Under scenario S5-T, for coal-fired
power plant in period 1, the CO2 emission permit would be
[18.34, 20.46] � 106 tonnes; the amounts of excess CO2 emission
treated by CS would be [8.62, 9.85] � 106, [6.30, 6.43] � 106, and
4.13 � 106 tonnes, respectively. The results indicate that, for the
three power plants, no excess emission would be allocated to
CA.

Under scenario S5-NT (i.e., under non-trading scheme), for gas-
fired power plant during period 1, the amounts of excess CO2 emis-
sion treated by CS would be [7.69, 8.72] � 106, [6.09, 6.36] � 106,
and [4.60, 4.78] � 106 tonnes, respectively; in comparison, the
CO2 emission permit under scenario S5-NT would be [10.92,
12.19] � 106 tonnes. For petroleum-fired power plant during period
1, the amounts of excess CO2 treated by CS would be [9.02,
10.23] � 106, [7.14, 7.46] � 106, and [5.38, 5.60] � 106 tonnes,
respectively; the CO2 emission permit would be [12.83, 14.33] �
106 tonnes. For coal-fired power plant during period 1, the amounts
of excess CO2 treated by CS would be [9.60, 10.91] � 106,
[8.79, 9.18] � 106, and [6.62, 6.89] � 106 tonnes, respectively; the
CO2 emission permit would be [15.85, 17.70] � 106 tonnes. For
gas-fired and petroleum-fired power plants, no excess CO2 would
be allocated to CA under scenario S5-NT; however, for the coal-fired
power plant, the amount of excess emissions treated by CA under
scenario S5-NT would be 1.89 � 106 tonnes when power generation
level is high.

The results indicate that CO2 emission and mitigation under
scenarios S5-T and S5-NT are different from each other. For



0

2

4

6

8

10

12

Level
1

Level
2

Level
3

Level
1

Level
2

Level
3

Level
1

Level
2

Level
3

Level
1

Level
2

Level
3

Level
1

Level
2

Level
3

Level
1

Level
2

Level
3

Trading Non-trading Trading Non-trading Trading Non-trading

Period 1 Period 2 Period 3

T
re

at
ed

 C
O

2 e
m

is
si

on
 (

10
6  t)

CO treated range by CS ( = 40%) Amount of  CO which is treated by CA ( = 40%)

Fig. 5. Solutions for CO2 emissions from the coal-fired power plant under S5-T and S5-NT (‘‘S5-T” and ‘‘S5-NT” denote the ‘‘scenario 5 under trading” and ‘‘scenario 5 under
non-trading”, respectively).

W.T. Chen et al. / Applied Energy 87 (2010) 1033–1047 1039
gas-fired power plant during period 1, the excess amount of CO2

treated by CS under S5-T is higher than that under S5-NT. For
petroleum-fired power plant during period 1, the excess amount
of CO2 treated by CS under S5-T is also higher than that under
S5-NT. For coal-fired power plant during period 1, the excess
amounts of CO2 treated by CS and CA under S5-T are lower than
those under S5-NT. This is mainly attributable to two facts: (i) CS
has the highest efficiency and lowest operating cost in treating
the excess CO2 emission; (ii) the policy for CO2 trading has effects
on the CO2 emission and mitigation.
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3.2. Solutions under scenarios S1-T and S3-T

Figs. 6–8 show the optimal solutions for CO2 emission treated
by different measures for the three power plants under scenarios
S1-T and S3-T. For the gas-fired power plant with different CO2

emission levels (Fig. 6). The amounts of excess CO2 emission trea-
ted by CS under S1-T would be [1.42, 2.08] � 106, 0 and 0 tonnes,
respectively; the CO2 emission permit under S1-T would be
[17.19, 18.84] � 106 tonnes. The amounts of excess CO2 emission
treated by CS under S3-T would be [6.49, 7.25] � 106, 4.89 � 106,
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and 3.39 � 106 tonnes, respectively; the CO2 emission permit under
S3-T would be [12.12, 13.67] � 106 tonnes. For the petroleum-fired
power plant with different CO2 emission levels (as shown in Fig. 7).
The amounts of excess CO2 emission treated by CS under S1-T
would be zero; the CO2 emission permit under S1-T would be
[21.85, 24.56] � 106 tonnes. The amounts of excess CO2 emission
treated by CS under S3-T would be [3.64, 4.53] � 106, 1.76 � 106,
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and 0 tonnes, respectively; the CO2 emission permit under S3-T
would be [18.21, 20.03] � 106 tonnes. For the coal-fired power
plant with different CO2 emission levels (Fig. 8). The excess CO2

emission treated by CS under S1-T would be zero; the CO2 emission
permit under S1-T would be [26.96, 30.31] � 106 tonnes. The
amounts of excess CO2 emission treated by CS under S3-T would
be [4.49, 5.04] � 106, 2.17 � 106, and 0 tonnes, respectively; the
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CO2 emission permit under S3-T would be [22.47, 25.26] � 106 ton-
nes. The results indicate that, for the three power plants, no excess
emission would be allocated to CA under S1-T and S3-T. Generally,
when l is lower than 40% (i.e., S1-T and S3-T), more excess CO2

emission would be treated by CS, while less CO2 would be treated
by CA. Besides, the optimized net system benefits would be $
[16.07, 17.35] � 109 under S1-T and $ [15.33, 16.74] � 109 under
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S3-T, higher than the net system benefit obtained from S5-T (i.e.,
$ [14.39, 15.96] � 109).

3.3. Solutions under scenarios S1-NT and S3-NT

Figs. 6–8 also show the optimal solutions for CO2 emission
treated by different measures for the three power plants under
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scenarios S1-NT and S3-NT. For the gas-fired power plant with dif-
ferent CO2 emission levels (Fig. 6). The amounts of excess CO2

emission treated by CS under S1-NT would be [0.41, 0.59] � 106,
0 and 0 tonnes, respectively; the CO2 emission permit under S1-
NT would be [18.20, 20.32] � 106 tonnes. The excess CO2 emission
treated by CS under S3-NT would be [4.05, 4.66] � 106, 2.45 � 106,
and 0.96 � 106 tonnes, respectively; the CO2 emission permit un-
der S3-NT would be [14.56, 16.26] � 106 tonnes. For the petro-
leum-fired power plant with different CO2 emission levels
(Fig. 7). The excess CO2 emissions treated by CS under S1-NT would
0

5

10

15

20

25

30

35

0 20 40 60 80 0 20

Gas Pet

The percentage of reduced

Pe
rm

ite
d 

C
O

2 
em

is
si

on
 (

10
6  t)

Emission permit range w

Upper amount of emissio

Lower amount of emissio
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trading”, ‘‘S9-T” denote the ‘‘scenario 9 under trading” and ‘‘S9-NT” denote the ‘‘scenari
be [0.46, 0.68] � 106, 0 and 0 tonnes, respectively; the CO2 emis-
sion permit under S1-NT would be [21.39, 23.88] � 106 tonnes.
The amounts of excess CO2 emission treated by CS under S3-NT
would be [4.74, 5.45] � 106, 2.86 � 106, and 1.10 � 106 tonnes,
respectively; the CO2 emission permit under S3-NT would be
[17.11, 19.10] � 106 tonnes. For the coal-fired power plant with
different CO2 emission levels (Fig. 8). The amounts of excess CO2

emission treated by CS under S1-NT would be [0.55, 0.81] � 106,
0 and 0 tonnes, respectively; the CO2 emission permit under S1-
NT would be [26.42, 29.50] � 106 tonnes. The amounts of excess
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CO2 emission treated by CS under S3-NT would be [5.83, 6.71] �
106, 3.50 � 106, and 1.34 � 106 tonnes, respectively; the CO2 emis-
sion permit under S3-NT would be [21.13, 23.60] � 106 tonnes. For
the three power plants, no excess emission would be allocated to
CA under S1-NT and S3-NT.

In summary, when l is lower than 40% (i.e., S1-NT and S3-NT),
more CO2 emission surplus would be treated by CS, while less CO2

would be treated by CA. Besides, the optimized net system
benefits would be $ [16.06, 17.35] � 109 under S1-NT and $
[15.32, 16.72] � 109 under S3-NT, higher than the net system ben-
efit obtained from S5-NT (i.e., $ [14.31, 15.87] � 109). In addition,
Figs. 9–11 present the optimal results for CO2 emission treated
by different measures for the three power plants under scenarios
S7-T, S7-NT, S9-T and S9-NT. The analysis for the solutions these
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scenarios can be similarly interpreted based on the results pre-
sented in Figs. 9–11.

3.4. Comparisons of results under CO2 trading and non-trading
schemes

Figs. 12–14 show the CO2 emission permits of each power plant
obtained through trading and non-trading schemes. The results
indicate that CO2 emission quota allocation plan under trading
scheme is significantly different from that under non-trading. For
the gas-fired power plant in period 1 (Fig. 12), the amount of
allowable CO2 emission under trading scheme would be lower than
that under non-trading scheme except for scenarios S9-T and S9-
NT (l = 80%). For the petroleum-fired and coal-fired power plants
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during period 1 (Fig. 12), the allowable CO2 emissions under trad-
ing scheme would be higher than those under non-trading scheme
except for scenarios S9-T and S9-NT (l = 80%). The amounts of CO2

emission permits for gas- and petroleum-fired power plants under
S9-T are lower than that under S9-NT, while the CO2 emission per-
mit for coal-fired power plant under S9-T is higher than that under
S9-NT. This indicates that trading action is also appears in scenario
9, partial CO2 emission permits of gas- and petroleum-fired power
plant are assign to coal-fired power plant. Such reallocations of
emission permits denote that the CO2 emission is tradable, and
trading scheme can reallocate CO2 emission permits effectively.
In addition, total treatment costs of CO2 which surplus from three
power plants are decreased under trading scheme, even with in-
creased net power system benefit. These solutions suggest that
trading can maximize the system benefit under a certain level of
CO2 emission permit.

3.5. Comparisons of results under different mitigation levels

It can be seen that the allocation plans in scenarios S1-T, S3-T,
S7-T, S9-T, S1-NT, S3-NT, S7-NT, and S9-NT are significantly differ-
ent with plans in S5-T and S5-NT. Solutions shown in Figs. 6–8 sug-
gest that when the mitigation level is lower than 40% (i.e., S1-T, S3-
T, S1-NT and S3-NT), the change of mitigation level causes a great
transformations of excess CO2 treated by CS both under trading
and non-trading schemes. However, the change of mitigation level
has a little influence on the amounts of CO2 treated by CA. There-
fore, CO2 surplus from each power plant would be mainly treated
by CS. Besides, the lower the mitigation level, the lower the
amount of excess CO2 which should be treated. This is due to the
following facts: when the mitigation level is low, the CO2 emission
permits allocated to each power plant are relative high. So, less CO2

surplus from each power plant would be treated, and high system
benefit may be gained. However, these scenarios may lead to lower
degree of CO2 mitigation assurance for slowing climate change.

Solutions shown in Figs. 9–11 suggest that when the mitigation
level is greater than 40% (i.e., S7-T, S9-T, S7-NT and S9-NT), the
change of mitigation level causes great influence on the amount
of excess CO2 treated by CS and CA both under trading and non-
trading schemes. Moreover, the higher the mitigation level, the lar-
ger the amount of excess CO2 should be treated. CO2 surplus from
each power plant in these situations would be treated by CS and
CA. However, when mitigation level is greater than 60%, the
amounts of surplus CO2 which would be treated by CS are nearly
stable. This suggests that, when the mitigation level is high, the
CO2 emission permits allocated to each power plant are relative
low. Therefore, lots of CO2 surplus from three power plants should
be treated, which cause CS may reach their maximal handling
capacities. Thus a large amount of CO2 should be treated by CA,
and low system benefit would be gained. However, higher degree
CO2 mitigation assurance for slowing climate change will be got
at the same time.

Solutions of trading and non-trading models offer an effective
linkage between the predefined environmental policies and the
associated economic implications (e.g., low benefits and high costs
caused by improper policies). The net system benefit of power sys-
tem under trading scheme is obviously higher than that under
non-trading scheme. CO2 emission permits for each power plant
are optimized through CO2 emission permits trading scheme, and
the trading scheme would be more effectual under the condition
that the mitigation level of CO2 total emission permit is around
40%. Besides, the amounts of excess CO2 emission treated by CS
and CA are influenced by the mitigation level of CO2 total emission
permit, due to different CO2 management policies. This may also
lead to the changing of the net system benefit for power system.
These solutions suggest that CO2 emission trading is effective for
CO2 permit reallocation, and different policies for CO2 management
are associated with different levels of CO2 management cost and
CO2 mitigation-failure risk.
4. Discussion

Although the TISP method has been applied to CO2 emission
trading planning within an integrated energy and environmental
management system, there are also potential limitations and
extensions of the proposed method. Firstly, the TISP method can
hardly adequately reflect the dynamic variations of system condi-
tions, especially for sequential structure of large-scale problems
[44]. In fact, in the real-world problems, the credit surpluses in
the former period could be accumulated in the later period, but
the TISP model cannot reflect such a variation. To deal with such
a dynamic feature, a number of multi-stage stochastic program-
ming (MSP) methods were developed as extensions of dynamic
stochastic optimization methods. The multi-stage models im-
proved upon the two-stage stochastic programming methods by
permitting revised decisions in each time stage based on the uncer-
tainty realized so far. Therefore, it may be significant to extend the
TISP into multi-stage method. Besides, the proposed TISP method
can be incorporated with other inexact optimization techniques
to handle various types of uncertainties under trading scheme,
which will maximize system benefits and reinforce decision sup-
port for real-world problems.

Moreover, the proposed TISP method could also be applied to
the Kyoto Protocol (KP)’s flexible mechanism, including both the
clean development mechanism (CDM) and joint implementation
(JI). CDM and JI are two so-called flexible mechanisms of the KP de-
signed to allow its parties flexibility in achieving their quantified
emission limitation and reduction commitments [54]. Under these
mechanism projects that reduce emissions or remove carbon diox-
ide from the atmosphere generate emission certificates: Certified
Emission Reductions (CERs) in the case of the CDM, Emission
Reduction Units (ERUs) in the case of JI [54]. Although the basic
concept of CDM and JI is similar, it is important to bear in mind
that CDM and JI are completely independent from each other and
that there are significant differences between the two, particularly
with respect to the status of implementation and their scope. CDM
has the objective to support developing countries in achieving a
sustainable development path, while at the same time assisting
industrialized countries in achieving their Kyoto Protocol commit-
ments [55]. It typically results in a transfer of GHG abatement tech-
nologies to developing countries in exchange for the GHG emission
reduction credits [55,56]. For example, the developed countries can
offer money and technology to help developing countries establish
low-carbon energy demonstration projects (such as wind energy
demonstration project) to generate emission certificates. The cost
saving potential of wind energy is quite significant [57]. Moreover,
Wind generation also leads to a significantly lower market price
particularly during peak periods [57]. JI allows industrialized coun-
tries, who got binding Kyoto targets (Annex-I-Countries) to charge
reductions of greenhouse gas (GHG) emissions which they effected
in other Annex-I-Countries, e.g. by technology transfers, with their
own emissions-credits [58]. The recipient countries emissions-
credits are accordingly debited [58]. The CDM contrary to JI results
in an increasing of the total volume of emissions permits. When
implement the CDM and JI mechanisms, uncertainties may exist
in GHG emission and reduction processes, emission quota alloca-
tion, various impact factors (such as GHG emission inventory, con-
trol measures, emission reduction credits, wind speed forecasts,
and related costs). Therefore, the proposed TISP method can also
be applied to the KP’s flexible mechanism (both CDM and JI). This
is due to the facts that (i) the IPP technique can tackle uncertainties
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of emission quota allocation in CDM and JI; TSP can not only tackle
uncertainties of GHG emission, but also reflect the issue what deci-
sion should be made when the emission exceed the regulated quo-
ta; (ii) the TISP method can provide an effective linkage between
the pre-regulated environmental policies and the associated eco-
nomic penalties when the promised targets are violated. Therefore,
the application of TISP model to CDM and JI mechanisms could be
effective in: (i) developing new energy sources, mitigation technol-
ogies, and adaptation measures in the energy system [59]; (ii)
making a valuable contribution to enact and adjust international
climate policy [59]; (iii) designing a multi-level governance frame-
work for renewable energies that is attractive for foreign CDM
investment as well as for domestic industry development [56].
5. Conclusions

In this study, a two-stage inexact-stochastic linear program-
ming (TISP) method has been developed for planning CO2 emission
mitigation with trading scheme. The TISP method can effectively
deal with uncertainties presented as both probabilities and inter-
vals within a multi-period, multi-demand-level, and multi-option
context. Solutions of the model provide an effective linkage be-
tween the pre-regulated energy and environmental policies and
the associated economic implications (e.g., losses and penalties
caused by improper policies). The solutions are combinations of
deterministic, interval and distributional information, and can thus
facilitate the reflection for different forms of uncertainties. The
interval solutions can help managers obtain multiple decision
alternatives, as well as provide bases for further analyses of trade-
offs between system benefit and system-failure risk. The devel-
oped model can also help analyze various trading policies under
different CO2 emission allowances and mitigation efficiencies.

The developed method has been applied to a case study of CO2

emission trading for a regional power system. The results obtained
indicate that CO2 emission scheme can be efficiently performed to
maximize the power net benefits through trading when the level of
CO2 emission permit is low. In addition, a number of scenarios cor-
responding to different CO2 emission management policies under
varied mitigation levels of total emission permits have been ana-
lyzed. The results indicate that CO2 emission trading is effective
for CO2 permit reallocation and different policies for CO2 manage-
ment are associated with different levels of CO2 management cost
and CO2 mitigation-failure risk. Although application of TISP model
to CO2 emission trading is a new attempt and the TISP may be fur-
ther enhanced or extended, the results obtained imply that the
developed model is applicable and effective in CO2 emission miti-
gation through coupled mechanism between emission trading and
control measure.
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Appendix A

When uncertainties of the right-hand-side of the model are ex-
pressed as PDFs and decisions need to be made periodically over
time, the problem can be formulated as a TSP model [60]. In the
TSP optimization framework, decision variables are divided into
two subsets: those that must be determined before the realizations
of random variables are known and those (recourse variables) that
are determined after the realized values of the random variables
are available [60]. Generally, a TSP model can be formulated as fol-
lows [29,42,61]:

z ¼ max CT X � Ex2X½QðX;xÞ� ðA:1aÞ

subject to

x 2 X

with

Qðx;xÞ ¼min f ðxÞT y

subject to

DðxÞy 6 hðxÞ þ TðxÞx ðA:1bÞ

y 2 Y

where X 2 Rn1 , C 2 Rn1 , and Y 2 Rn2 . Here, x is a random variable
from space ðX; F; PÞ with X # RK , f : X! Rn 2 , h : X! Rm 2 ,
D : X! Rm 2�n 2 , and T : X! Rm 2�n 1 . Eq. (A.1a) with variables x
composes the first-stage decision, which needs to be made before
the realization of uncertain parameters x. Eq. (A.1b) with variables
y composes the second-stage decision. For a given set of first-stage
variables x, the second-stage problem decomposes into indepen-
dent linear subproblems. Each subproblem corresponds to a realiza-
tion of the uncertain parameters. The above TSP model is generally
nonlinear, and the set of feasible constraints is convex only for some
particular distributions [29]. However, the TSP problem can be
equivalently formulated as a linear programming (LP) model.
According to Huang and Loucks [39] this nonlinear TSP model can
be converted into a LP one by letting random variables (i.e., x) take
discrete values xh with probability levels ph, where h = 1, 2, . . ., H
and

P
ph = 1. Consequently, model (A.1) can be converted as fol-

lows [29,60]:

Maximize f ¼ CT1 X �
XH

h¼1

phDT2 Y ðA:2aÞ

subject to Ar1 X þ Ar2 Y 6 wh; r1; r2 2 M;

M ¼ 1; 2; . . . ; m; 8 h ðA:2bÞ
xj P 0; xj 2 X; j ¼ 1; 2; . . . ; n1 ðA:2cÞ
yjh P 0; yjh 2 Y; j ¼ 1; 2; . . . ; n2 ðA:2dÞ

However, the parameter of a model may fluctuate within a cer-
tain interval, and it is difficult to state a meaningful probability dis-
tribution for this variation. Interval-parameter programming (IPP)
can deal with uncertainties in objective function and system con-
straints which can be expressed as interval without distribution
information. In this method, interval numbers are acceptable as
its uncertain inputs. An IPP model can be expressed as [62]:

Maximize f� ¼ C�X� ðA:3aÞ
subject to A�X� 6 B� ðA:3bÞ

X� P 0 ðA:3cÞ

where A� 2 fR�gm�n, B� 2 fR�gm�1, C� 2 fR�g1�n and X� 2 fR�gn�1

(R± denotes a set of interval numbers). An interval number X± can
be defined as an interval with known upper- and lower-bounds
but unknown distribution information [63]. It can be expressed as
[X�, X+], representing a number (or an interval) which can have a
minimum value of X� and a maximum one of X+ [63]:

X� ¼ ½X�;Xþ� ¼ fa 2 X X�j 6 a 6 Xþg ðA:4Þ

where X� and X+ are the lower and upper bounds of X±, respectively.
When X� = X+, X± becomes a deterministic number. An interactive
solution algorithm is developed to solve the above problem through
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analyzing the detailed interrelationships between parameters and
variables and between the objective function and constraints [30].
According to the algorithms proposed by Huang et al. [31,64], the
solution for model (A.3) can be obtained through a two-step meth-
od, where a submodel corresponding to f+ (when the objective func-
tion is to be maximized) is first formulated and solved, and then the
relevant submodel corresponding to f- can be formulated based on
the solution of the first submodel [30]. Therefore, the final solution
of f�opt ¼ ½f�opt ; f

þ
opt� and X�opt ¼ ½X

�
opt;X

þ
opt� can be obtained. A set of basic

definitions for interval numbers and an interactive solution process
was developed by Huang et al. [64]. Thus, integration of IPP and TSP
will be considered for dealing with uncertainties presented as prob-
abilities and intervals in the planning of energy planning and GHG
emission trading management systems. This will lead to a two-
stage inexact-stochastic programming model as follows [29]:

Maximize f� ¼ C�T1
X� þ

XH

h¼1

phD�T2
Y� ðA:5aÞ

subject to A�r1
X� þ A�r2

Y� 6 w�h ; r1; r2 2 M;

M ¼ 1; 2; . . . ; m ðA:5bÞ
A�r3

X� þ A�r4
Y� P B�; r3; r4 2 M;

M ¼ 1; 2; . . . ; m ðA:5cÞ
x�j P 0; x�j 2 X�; j ¼ 1;2; . . . ; n1 ðA:5dÞ
y�jh P 0; y�jh 2 Y�; j ¼ 1;2; . . . ; n2; 8 h ðA:5eÞ

where x�j and y�ih represent first- and second-stage decision vari-
ables, respectively; the right-hand side coefficients in (A.5b) are
presented as PDFs, and the left- and right-hand side coefficients
in (A.5c) are available as discrete intervals [29].
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