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Abstract The influence of NO3
−-N on growth and

osmotic adjustment was studied in Tamarix laxa
Willd., a halophyte with salt glands on its twigs.
Seedlings of T. laxa Willd. were exposed to 1 mM
(control) or 300 mM NaCl, with 0.05, 1 or
10 mM NO3

−-N for 24 days. The relative growth
rate of seedlings at 300 mM NaCl was lower than that
of control plants at all NO3

−-N levels, but the
concentrations of organic N and total N in the twigs
did not differ between the two NaCl treatments.
Increasing NO3

− supply under 300 mM NaCl im-
proved the growth of T. laxa, indicating that NO3

−

played positive roles in improving salt resistance of
the plant. The twigs of T. laxa Willd. accumulated
mainly inorganic ions, especially Na+ and Cl−, to

lower osmotic potential (Ψs): the contributions of Na+

and Cl− to Ψs were estimated at 31% and 27%
respectively, at the highest levels of supply of both
NaCl and NO3

−-N. The estimated contribution of
NO3

−-N to Ψs was as high as 20% in the twigs in
these conditions, indicating that NO3

− was also
involved in osmotic adjustment in the twigs. Further-
more, increases in tissue NO3

− were accompanied
by decreases in tissue Cl− and proline under
300 mM NaCl. The estimated contribution of proline
to Ψs declined as with NO3

−-N supply increased from
1 to 10 mM, while the contributions of nitrate to Ψs
were enhanced under 300 mM NaCl. This suggested
that higher accumulation of nitrate in the vacuole
alleviated the effects of salinity stress on the plant by
balancing the osmotic potential. In conclusion, NO3

−-
N played both nutritional and osmotic roles in T. laxa
Willd. in saline conditions.

Keywords Tamarix laxa willd . Salt stress . NO3
−-N .

Osmoregulation . Proline

Introduction

Salinity reduces plant growth through osmotic stress,
ion toxicity, and consequently nutritional stress
(Nublat et al. 2001). Many studies showed that
improving of the nutritional status of plants by
nitrogen or phosphorus fertilizers may mitigate the
negative impacts of increased salinity and promote the

Plant Soil (2010) 331:57–67
DOI 10.1007/s11104-009-0231-7

Responsible Editor: John McPherson Cheeseman.

X. Ding : S. Zhang : F. Zhang :G. Mi :G. Feng (*)
College of Resource and Environmental Science,
China Agricultural University;
Key Laboratory of Plant Nutrition, MOA;
Key Laboratory of Plant-Soil Interactions, MOE,
Beijing 100193, People’s Republic of China
e-mail: fenggu@cau.edu.cn

C. Tian
Xinjiang Institute Ecology and Geography,
Chinese Academy of Sciences,
Urumqi 830011, People’s Republic of China

J. Song
College of Life Science, Shandong Normal University,
Jinan 250014, People’s Republic of China

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of Xinjiang Institute of Ecology and Geography, CAS

https://core.ac.uk/display/71583107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


growth of plants (Ebert et al. 2002; Papadopoulos and
Rendig 1983). Such a role is believed as an indirect
effect of nitrogen on salinity resistance in plants.

Nitrogen (N) shortage is one of the main factors
limiting plant growth in many ecosystems, particular-
ly in saline soils (Albassam 2001; Botella et al. 1997).
Some saline soils, however, e.g. nitric saline soil
(belonging to the Typic Salorthids) in Turpan Basin,
Xinjiang, northwestern China, contain nitrate concen-
tration as high as 2–16 g kg−1 in 0–30 cm soil layer
(Wang et al. 1993; Yang 1999). Several plant species
grow in these nitric saline soils, such as Tamarix spp.,
Phragmites australis L., Suaeda pterantha (Kar.et
Kir.) Beg, Kalidium foliatum (Pall.) Moq, Halopeplis
pygmaea (Pall.) Bge, Saliconia europaea L.,
Halostachys caspica (Bieb.) C. A. Mey., Artemisia
anethifolia Web. ex Stechm, Aeluropus pungens (M.
Bieb.) C. Koch., and Karelinia caspica (Pall.) Less
(Xi et al. 2006).

Previous research on the relationship between N
and salt resistance in plants has mainly focused on the
assimilation of N and/or the secondary metabolism of
N-containing compounds. For example, increased N
supply can promote salt resistance in plants by
accumulation of soluble N containing organic com-
pounds (e.g., proline, glycinebetaine and free amino
acids) under salinity stress (Dubey and Pessarakli
1995). The possible role of these compatible solutes
is in protecting the plants against photoinhibition
(Hayashi et al. 1997; Holmström et al. 2000; Yang et
al. 2007), reactive oxygen species (Demiral and
Türkan 2004; Heidari and Mesri 2008) or osmotic
stress in plants growing under salt stress (Hasegawa et
al. 2000; Shen et al. 1999; Yancey 2005).

Salinity decreases NO3
− uptake by roots (Martinez

and Cerda 1989), inhibits the activity of nitrate
reductase (Campbell 1988), and reduces NO3

− trans-
location from roots to shoots (Gouia et al. 1994). On
the other hand, salinity stress tends to result in an
increase accumulation of proline (Moghaieb et al.
2004; Parida and Das 2005) in non-halophytic plants
(Albassam 2001) and also in halophytes (Khan et al.
2000), and the levels of nitrogenous solutes rises as N
supply increases, e.g., Spartina alterniflora (Colmer
et al. 1996).

NO3
− is the main form of N uptake by angiosperms

(Martinoia et al. 1981). When NO3
− absorption

exceeds reduction capacity, the excess NO3
− will be

stored in vacuoles (Blom-Zandstra and Lampe 1983).

Some ecological factors, e.g. light intensities (Blom-
Zandstra and Lampe 1985) or osmotic stress (Ourry et
al. 1992), may suppress the activity of nitrate
reductase and result in NO3

− accumulation in
vacuoles. Marschner (1986) had hypothesized that
the storage of NO3

− in vacuoles might play a role in
osmotic regulation when plants were growing in
osmotic stress. However, previous studies have
mainly focused on the nutritional function of NO3

−,
just a few studies have been conducted to assess
Marschner’s hypothesis by testing the direct contri-
bution of NO3

− to the salt resistance of plants, and the
results varied. For example, Stienstra (1986) showed
that NO3

− did not have a specific function in osmotic
adjustment in Aster tripolium L., a halophytic plant,
grown in a nutrient solution with either a continuous
or an intermittent NO3

− supply. By contrast, Song et
al. (2006a) suggested that NO3

− not only has a
nutritional role for growth of the euhalophyte Suaeda
physophora, but also directly contributes to osmotic
adjustment. In order to test Marschner’s hypothesis, a
recretohalophyte (a halophyte with salt excretion
glands), Tamarix laxa, was evaluated in hydroponic
culture under controlled conditions, with three NO3

−

treatments under low (1 mM) and high (300 mM)
NaCl-salinity.

Materials and methods

Plant material

Branches of T. laxa Willd. of 0.5±0.1 cm in diameter
were collected in November 2006, from Fukang,
Xinjiang, China (44°18′ N, 87°55′ E). Plant samples
were chopped into 10–12 cm segments, dipped in
water for 24 h, sterilized with 0.5% potassium
permanganate for 30 min, and then washed with tap
water. The basal part of each segment was dipped in
0.1% rooting powder (ABT Rooting Powder®, pro-
duced by ABT Research and Development Center of
Chinese Academy of Forestry, Beijing, China) for
10 h. The segments were then cultured in quartz sand
for rooting and supplied initially with tap water.
When new twigs appeared, the plants were cultured
with 1/10 strength nutrient solution for 30 d and then
with 1/2 strength nutrient solution renewed every
2 days for another 40 days. The nutrient solution
composition at full strength was: 0.05 mM Ca(NO3)2,
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2.95 mM CaCl2, 1 mM K2SO4, 2 mM MgSO4,
1 mM KH2PO4, 90 μM Fe-EDTA, 46 μM H3BO3,
9.1 μM MnCl2, 0.32 μM CuSO4, 0.76 μM ZnSO4,
0.56 μM Na2MoO4, 1 mM NaCl. The pH was
adjusted each day to 6.5±0.1 with KOH or H2SO4.
The pots were in a greenhouse with a light intensity of
480 μmol m−2 s−1, and temperature of 30±3°C in day
and 24±3°C in night. The relative humidity was 50–
60%. In order to prevent salt accumulation in the
quartz sand, relatively large volumes of fresh nutrient
solution was used to irrigate the pots to leach out any
excess salts every 2 days.

Experimental design

Plants were washed with deionized water, then
transferred into 1/2 strength nutrient solution for
7 days. The fresh weight of each seedling was
measured, and similar-sized seedlings with fresh
weight 5.0±0.2 g were selected before the pretreat-
ment. The experiment was arranged in a completely
randomized design with two factors: (1) two salinity
levels, 1 mM (control) and 300 mM NaCl (salinity);
(2) three nitrogen levels, 0.05, 1 and 10 mM NO3

−-N
supplied as Ca(NO3)2. The extra Ca2+ concentration
in different treatments was balanced by CaCl2. In
order to avoid osmotic shock, 300 mM NaCl was
applied gradually by adding 50 mM NaCl per day.
The plants were cultured in 2 L porcelain pots. Each
pot contained two seedlings. Three seedlings of
similar fresh weight per treatment were collected for
dry weight (DW) when the final salinity concentra-
tions were reached (as the initial dry weight for
calculating relative growth rate). There were six
replicates for each treatment, in which three replicates
were used for evaluating biomass, and the other three
were used for determining physiological parameters.
The experiment was terminated 24 days after final
salinity concentrations were reached. The twigs and
roots were separated, and fresh weight (FW) was
recorded. A sub-sample of fresh twigs samples of
each plant was frozen in liquid N2. The remaining
plant tissue samples were dried in an oven at 80°C for
72 h and dry weights (DW) were measured. Water
content (WC) was calculated as: (FW-DW) / DW. The
concentrations of Na+, K+ and organic N were
measured in oven-dried samples. Osmotic potential,
and the concentrations of Cl−, NO3

− and proline, were
measured in samples frozen in liquid N2.

Determination of the relative growth rates of plants

Plants were sampled at the beginning of treatments and
at the end of the experiment. Relative growth rate (RGR)
was calculated using the equation (Botella et al. 1997):

RGR ¼ logeW2 � logeW1ð Þ= t2 � t1ð Þ

Note: W1 and W2 represent plant fresh weight at
harvest 1 (1 day after the final salinity concentrations
were reached) and harvest 2 (at the end of the
experiment) respectively, over the harvest interval t1
to t2 (1 to 24 days).

Determination of inorganic ions, proline, amino acids,
and organic N in plants

Frozen plant material (vegetative branches and roots
of T. laxa) was extracted with boiling distilled water,
and Cl− and NO3

− were determined after the solution
was filtered. NO3

− was determined by the colorimetric
method (Cataldo et al. 1975) (UV-120-02 Spectro-
photometer, Shimadzu, Kyoto, Japan), and Cl− was
determined by 0.03 mM AgNO3 titration method,
with 5% K2CrO4 as indicator. Frozen plant tissue was
also ground in 10% acetic acid, and the ninhydrin
colorimetric method was used for the determination of
amino acids (Moore and Stein 1954), or the concentra-
tion of proline (Troll and Lindsley 1955). For cation
determinations, about 15-mg dry sample was put in a
muffle stove to be ashed. The ash was dissolved in
0.1 ml of concentrated nitric acid and then diluted to a
volume of 20 ml with deionized water. The concen-
trations of Na+ and K+ were determined by flame
photometry (Model 2655-00 Digital Flame Analyzer,
Cole-Parmer Instrument Company, Chicago, USA).
Dry plant samples were ground, and analyzed for
organic N using the Kjeldahl method (Shi 1994).

Determination of osmotic potential (Ψs)

The frozen plant tissues were put into a syringe to thaw.
The liquid squeezed from the plant tissues was analysed
using a freezing point osmometer (Fiske 210; Advanced
Instruments Inc., Norwood, MA, USA) to measure the
ic value (the value reading from the instrument). The
tissue osmotic potential of solutes was calculated as
Ψs = –icRT, where i is ionization constant of the solute,
c is the molar concentration of the solute, R is the
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universal gas constant and T is the temperature in
degrees Kelvin (Song et al. 2006a).

Vacuoles account for most of the volume of the twigs,
particularly in recretohalophyte plants which have large
water storage cells (Bosabalidis and Thomson 1985;
Thomson 1975). For the present analyses, the volume
of the cytoplasm is assumed to occupy 10% of cells.
Therefore we calculated the average concentration of
each inorganic ion in vacuole or organic solute in
cytoplasm by the content of each individual osmolyte
and the tissue water content with the volume ratio of
vacuole vs cytoplasm 9:1. The osmotic potential (Ψ) of
each individual osmolyte, such as Na+, K+, Cl−, NO3

−,
or proline, was calculated by Ψ = -nRT/V, where n is
the number of solute molecules, R is the universal gas
constant, T is temperature in °K, and V is the volume
in liter. Osmotic coefficients of the solutes in tissue
water were assumed to equal 1 (Song et al. 2006a).

The estimated contributions of each individual
solute (Ces) to the tissue osmotic potential was
calculated using the equation: Ces(%) = Ψ/Ψs × 100.

Statistical analysis

All data were subjected to a two-way ANOVA using
the SAS™ software (SAS Institute Inc. 1989).
Treatment means were compared by least significant
differences (LSD) at P=0.05.

Results

Effect of NO3
−-N on the growth of T. laxa

under salinity stress

No differences were observed in the growth of T. laxa
twigs growing at 1 and 10 mM NO3

−-N at either NaCl
level (P<0.05) (Table 1). However, twig fresh
weights were much lower when grown at
0.05 mM NO3

−-N under either NaCl level (Table 1).
There were no significant differences in root fresh
weights among the three levels of NO3

−-N under
either NaCl levels (Table 1). Root / twig ratios
were significantly higher in plants grown at
0.05 mM NO3

−-N, compared to values for plants
grown at 1 and 10 mM NO3

−-N under either NaCl
levels. These results indicated that increased NO3

−

supply improved twig growth to some degree regard-
less of salinity level.

The average twig growth of plants at 300 mM NaCl
was reduced compared to the low salt treatment, at
all NO3

−-N levels (Table 1). Twig growth at
0.05 mM NO3 was similar at both 1 and 300 NaCl
but differed between the two salt levels at 1 and
10 mM nitrate. Twig fresh weight under 1 mM NaCl at
1 and 10 mM NO3

−-N was 121% and 133% higher
respectively compared to values obtained at
300 mM NaCl, whereas average root fresh weight

Table 1 Effects of NaCl and NO3
−-N on the growth of root and twig, root/twig ratio and relative growth rate of T. laxa seedlings.

Plants were treated with 1 or 300 mM NaCl and 0.05, 1 or 10 mM NO3
−-N for 24 days

NaCl (mM) NO3
−-N (mM) increments of f. wt (g/plant) Root / Twig RGR (g·g−1·day−1)

Twig Root

1 mM 0.05 3.90 ba 1.39 a 0.36 a 0.083 b

1 11.64 a 2.16 a 0.19 b 0.111 a

10 13.07 a 2.49 a 0.19 b 0.103 a

Meanb 9.54 A 2.01 A 0.24 B 0.097 A

300 mM 0.05 3.08 b 1.08 a 0.35 a 0.051 b

1 5.27 a 1.60 a 0.30 b 0.094 a

10 5.60 a 1.58 a 0.28 b 0.083 a

Mean 4.65 B 1.75 A 0.31 A 0.080 B

All data are means of 3 replications

Increments of f. wt (g/plant) were calculated by fresh weight at the end of the experiment minus fresh weight at the beginning of treatments
a Values marked with different letter represented significant difference at P=0.05 level across all NO3

− -N levels at a given NaCl level
bMeans value for each NaCl level. Means values marked with different capital letter indicate significant differences at P=0.05 level
between NaCl levels
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under 300 mM NaCl did not differ from that at
1 mM NaCl (Table 1). Compared with 1 mM NaCl, the
average root/twig ratio was increased under the
300 mM NaCl treatment, but the average relative
growth rate (RGR) decreased (Table 1). These results
indicated that 1 mM NO3

−-N was enough to support
maximal twig growth of T. laxa under high salinity.

The concentrations of NO3
−-N, Cl−, Na+, K+ in twigs

and roots of T. laxa

NO3
− concentrations in twigs of T. laxa were

enhanced with increasing NO3
−-N supply under 1 or

300 mM NaCl (Fig. 1a). Similar trends of NO3
−

concentrations were found in roots (Fig. 1b).
Compared with plants growing at 1 mM NaCl,
300 mM NaCl reduced the NO3

− concentration in
twigs of plants growing at both 1 mM NO3

−-N and
10 mM NO3

−-N (P<0.05), but did not affect the
NO3

− concentration in roots (Fig. 1a, b).
The concentration of Cl− in the twigs decreased with

increasing NO3
−-N under both NaCl level except at

10 mM NO3
−-N and 300 mM NaCl treatment where

Cl− concentration showed no significant difference
comparing to 1 mM NO3

−-N and 300 mM NaCl
treatment (Fig. 1c). In roots, the concentrations of Cl−

were significantly higher at 300 mM NaCl than those
in 1 mM NaCl at all NO3

−-N levels (Fig. 1d).
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Fig. 1 NO3
− (a, b) and Cl− (c, d) concentrations in the vacuole in twigs and in roots of T. laxa, which were treated with 1 or

300 mM NaCl and 0.05, 1 or 10 mM NO3
−-N for 24 days
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Comparing to low NO3
−-N supply, medium and high

NO3
−-N levels reduced Cl− concentration in root at

300 mM NaCl, while no significant differences were
observed between the three NO3

−-N levels at
1 mM NaCl (Fig. 1d). These results implied that
higher NO3

−-N supply reduced Cl− uptake.
Salinity increased the concentration of Na+ in

both twigs and roots (Fig. 2a, b). At 1 mM NaCl,
the concentration of Na+ in twigs and in roots
did not differ with increasing NO3

−-N supply. At
300 mM NaCl, the Na+ concentration was higher at
0.05 mM NO3

−-N than at 1 or 10 mM NO3
−-N

(Fig. 2a, b). These results indicated that supply of
higher NO3

−-N levels might have reduced the

concentrations of Na+ in both twigs and roots under
higher salinity.

K+ concentration both in twigs and in roots were
not significantly different among NO3

−-N treatments
under either NaCl level (Fig. 2c, d).

Contents of total N, organic N, and NO3
−-N in twigs

and roots of T. laxa with increasing supply of NO3
−-N

at 1 and 300 mM NaCl

The contents of total N (Ntotal), organic N (Norg) and
NO3

−-N in both twigs and roots were all enhanced
with increasing supply of NO3

−-N under both NaCl
levels compared to the values at 0.05 mM NO3

−-N
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−-N for 24 days
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supply (Table 2). In the high salinity treatment
(300 mN NaCl), the contents of either total N (Ntotal),
or organic N (Norg) in twigs were similar between
treatments of 1 and 10 mM NO3

−-N, whereas NO3
−-N

contents in twigs were significantly different across
all three NO3

−-N levels at this salinity
The concentrations of total N (Ntotal) and organic N

in twigs were enhanced in the 300 mM NaCl treat-
ment compared with those at 1 mM NaCl, whereas
NO3

− concentrations were reduced (P<0.05). Salinity
had no significant effect on the concentrations of total
N (Ntotal) and NO3

−-N in roots.

Effect of NO3
−-N supply on the osmotic potential

(Ψs) and the estimated contribution (Ces) of Na
+,

K+, Cl− and NO3
− to Ψs in twigs of T. laxa

The NO3
−-N supply had no effect on the Ψs in twigs

of T. laxa, while salinity significantly reduced the Ψs
(Table 3). The estimated contribution of Na+ to Ψs
(CNa) decreased with increasing NO3

−-N supply at
300 mM NaCl (Table 3). However, there were no
significant differences in the CNa among the three
NO3

−-N levels at 1 mM NaCl. CNa increased with

salinity, from about 7.23% at 1 mM NaCl up to
35.78% at 300 mM NaCl (Table 3).

The estimated contribution of Cl− to Ψs (CCl)
declined with the increasing NO3

−-N at both NaCl
level. The decrease in contribution of Cl− with
increasing NO3

−-N was more marked at 1 mM NaCl
than at 300 mM although the interaction was not
statistically significant (Table 3).

The estimated contribution of K+ to Ψs (CK)
decreased with increasing NO3

−-N supply at low
salinity, but there were no significant differences among
the different NO3

−-N levels under 300 mM NaCl
(Table 3). CK decreased with increased NaCl supply.

The estimated contribution of NO3
− to Ψs (C NO3

−)
increased with the increase of NO3

−-N at both 1 mM
and 300 mM NaCl, whereas it was lower at high
salinity at any given NO3

− level (Table 3).

Effect of NO3
−-N supply on the concentration

and the estimated contribution of proline to Ψs
in twigs of T. laxa

Based on the assumption that proline was restricted to
the cytosol, and that that accounted for 10% of the
total cell volume, there was a significant increase in

Table 2 The effects of NO3
−-N on the contents of total N, organic N and NO3

−-N in twigs and roots of T. laxa which were treated
with 1 or 300 mM NaCl and 0.05, 1 or 10 mM NO3

−-N for 24 days

NaCl NO3
−-N Ntotal (mg·g−1 DW) Norg (mg·g−1 DW) N NO3

− (mg·g−1 DW)

(mM) (mM) Twig Root Twig Root Twig Root

1 0.05 20.88 cd 13.60b 20.34b 12.57b 0.54c 0.91b

1 37.80b 22.87a 32.11a 17.98a 5.69b 4.37a

10 43.50a 25.94a 34.72a 20.59a 8.79a 3.74a

Meane 34.06 Bf 20.80A 29.06B 17.05B 5.01A 3.01A

300 0.05 26.51b 16.26b 25.60b 15.38c 1.03c 0.87b

1 39.80a 25.25a 35.42a 19.82a 4.9b 5.44a

10 37.83a 22.75a 34.09a 17.48b 5.34a 5.27a

Mean 34.71A 21.42A 31.70A 17.56A 3.76B 3.86A

Analysis of Variance (F Values)

Salinity (S) 8.84b 1.27 NS 6.62a 1.47NS 10.96b 0.77 NS

NO3
−-N level (N) 15.85c 78.81c 67.05c 25.02c 15.85c 95.09c

S × N 3.69 NS 8.61NS 2.94NS 8.59NS 8.71b 4.03NS

a denotes significant difference at P=0.05, b denotes significant difference at P=0.01, c denotes significant difference at P=0.001, NS
denotes no significant difference. Data represent F values
dWithin each column, values with different letter are significantly different at P=0.05 level across all NO3

− -N levels
eMean value for each NaCl level
f Mean values with different capital letter are significantly different at P=0.05 level between NaCl levels
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proline concentration at 300 mM NaCl compared to
the low salinity treatment. Concentrations of proline
rose with increasing NO3

−-N supply at 1 mM NaCl;
However, at 300 mM NaCl, concentrations of proline
were maximum at 1 mM NO3

−-N supply, which
indicated that 1 mM NO3

−-N supply was enough for
structural growth; however, as the level of NO3

−-N
supply increased to 10 mM the concentration of
proline decreased as more NO3

− were being stored in
the vacuoles. The concentration of proline was the
lowest at 0.05 mM NO3

−-N which implied that the
proline synthesis was limited because of nitrogen
deficiency (Fig. 3a).

The estimated contribution of amino acids to
Ψs (Cpro) increased with increasing NO3

−-N at
1 mM NaCl. At 300 mM NaCl, it increased
significantly when the NO3

−-N supply was increased
from 0.05 to 1 mM, but then dropped at
10 mM NO3

−-N (Fig. 3b). In general, the estimated
contribution of proline to Ψs (Cpro) was considerably
lower at both salinities and all three NO3

−-N levels
compared with the inorganic solutes described above:
the maximum contribution of proline accounted for
only 3.6% of Ψs.

Discussion

Nitrogen is an essential nutrient for higher plants.
Salinity may suppress the uptake and assimilation of
nitrate in plants, which results in nutritional disorder
and growth inhibition (Dluzniewska et al. 2007;
Marschner 1986). In the present study, high salinity
reduced twig growth and the relative growth rate
(RGR) of T. laxa plants (Table 1). However, the
average total nitrogen or organic nitrogen contents in
plants grown under 300 mM NaCl were higher than
those grown under 1 mM NaCl, while the average
NO3

− concentration was lower at high NaCl (Table 2).
Such results indicated that the uptake and assimilation
of NO3

− in T. laxa were not suppressed by high
salinity. Increasing the nitrogen supply under either
level of NaCl supply improved the RGR of T. laxa
(Table 1), which can be partly attributed to the
nutritional role of N as many other researchers have
concluded (Irshad et al. 2008; Leidi et al. 1992).

In order to lower water potential, halophytes
accumulate large amounts of inorganic ions in the
vacuole and synthesize a relatively small amount of
low molecular weight organic compounds to balance

Table 3 The effects of NO3
−-N on the osmotic potential (Ψs), water content (WC), the estimated contribution of Na+ (CNa+), K+

(CK+), Cl− (CCl−) and NO3
− (C NO3

−) to osmotic potential in twigs of T. laxa which were treated with 1 or 300 mM NaCl and 0.05, 1
or 10 mM NO3

−-N for 24 days

NaCl NO3
−-N Ψs WC CNa+ CCl− CK+ C NO3

−

(mM) (mM) (MPa) (ml·g−1 DW) (%) (%) (%) (%)

1 0.05 −1.30ad 3.03c 7.52a 54.2a 20.72a 2.4b

1 −1.25a 3.81b 7.85a 28.94b 21.77a 29.2a

10 −1.61a 4.14a 6.32a 11.89c 16.47b 29.47a

Meane −1.39Af 3.66A 7.23B 24.00B 19.46A 15.44A

300 0.05 −1.71a 3.87a 42.16a 46.61a 12.57a 2.29c

1 −1.48a 3.96a 34.03b 27.4b 15.99a 10.72b

10 −1.55a 3.90a 31.14b 27.08b 14.12a 19.93a

Mean −1.58B 3.91A 35.78A 33.7A 14.22B 10.31B

Analysis of Variance (F Values)

Salinity (S) 0.16 NS 10.67a 83.77c 56.07c 41.03c 35.53b

NO3
−-N level (N) 0.68 NS 17.2c 1.37NS 4.20a 6.08a 61.01c

S × N 0.03 NS 14.51b 0.97NS 0.7 NS 3.96NS 10.04c

a denotes significant difference at P=0.05, b denotes significant difference at P=0.01, c denotes significant difference at P=0.001, NS
denotes not significant difference. Data represent F values
dWithin each column, values with different letter are significantly different at P=-0.05 level across all NO3

− -N levels
eMean value for each NaCl level
f Mean values with different capital letter are significantly different at P=0.05 level between NaCl levels

Table 3 The effects of NO3
−-N on the osmotic potential (Ψs),

water content (WC), the estimated contribution of Na+ (CNa+),
K+ (CK+), Cl− (CCl−) and NO3

− (C NO3
−) to osmotic potential

in twigs of T. laxa which were treated with 1 or 300 mM NaCl
and 0.05, 1 or 10 mM NO3

−-N for 24 days
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the osmotic pressure in the cytoplasm (Hasegawa et
al. 2000; Zhao et al. 2003). Song et al. (2006b)
demonstrated that euhalophyte Suaeda physophora
is able to compartmentalize inorganic ions, especially
Na+ in the vacuole, and synthesize a relatively small
amount of organic solutes to balance the osmotic
pressure in the cytoplasm. In the present study, T. laxa
accumulated Na+ and Cl− in twigs under high salinity
(Figs. 1, 2), which would lower osmotic potential in
the twigs (Table 3). However, it is difficult to directly
test the real concentration of the solutes: it was as-
sumed that inorganic solutes were mainly distributed
in vacuole and that organic solutes entirely accumu-
lated in cytoplasm. In the present study, we estimated
the concentrations of inorganic or organic solutes by
tissue water volume and the general ratio of vacuole to
cytoplasm. The distribution was based on the assump-
tion, justified by anatomical studies, that the vacuole
accounted for 90% and the cytoplasm and organelles
for 10% of the overall cell volume (Di Martino et al.
2003). Therefore the relative estimated-contribution of
the inorganic or organic solutes to osmotic potential
can be quantified (Silveira et al. 2009).

Although Marschner (1986) had hypothesized that
NO3

− stored in vacuoles might play a role in osmotic
regulation when plants were growing in osmotic
stress, whether or not NO3

− plays this role and
directly contributes to salt resistance of plants is still
poorly understood. As noted in the introduction, the

answer may depend on the species being considered.
Our present study showed that NO3

−-N supply
significantly enhanced the contribution of NO3

− to
osmotic potential, from 2% to 20% in twigs of T. laxa
under high NaCl (Table 3). Such result suggested that
in addition to the nutritional role, NO3

− accumulation
in the vacuoles could play an important role in
balancing the osmotic potential in T. laxa under high
salinity with adequate NO3

−-N supply.
The interaction between Cl− and NO3

− may
strongly affect the contribution of both anions to
osmotic regulation in plant. The use of more NO3

−

but less Cl− ions for osmotic adjustment may prevent
Cl− toxicity in Suaeda physophora (Song et al. 2006a).
Cl− present in the expanded leaves of certain species
is associated with chlorosis and death, and these
injuries occur even when the Na+ concentration is low
in the leaves (Greenway and Munns 1983). However,
in our present study, more NO3

− but less Cl− or Na+

might be accumulated in the vacuole for osmotic
adjustment at higher NO3

− supply, compared with
1 mM NO3

−. As NO3
− supply increased, the decrease

in the estimated contribution of Cl− to osmotic
potential in T. laxa was compensated by an increase
in that of NO3

− (Table 3). This can be attributed to
competition between NO3

− and Cl− for transport
systems, which are proposed to play significant roles
in uptake or the xylem loading of NO3

− and Cl−

(Cerezo et al. 1997; Köhler and Raschke 2000).
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Many studies have shown that some N-containing
organic compounds, like proline, glycinebetaine and
other free amino acids, play crucial roles in osmotic
balance in cytoplasm of plants under saline stress
(Khedr et al. 2003; Parida and Das 2005). The
accumulation of these organic osmolytes is believed
to constitute “osmotic adjustment”, as they promote
water uptake from a hyperosmotic environment
(Hasegawa et al. 2000; Maggio et al. 2002). In many
species, the concentration of proline can also be used
as a biomarker to indicate the extent of salinity stress
(Bar-Nun and Poljaoff-Mayber 1977). It is assumed
that accumulating organic solutes in the cytoplasm
demands more energy than accumulating inorganic
ions (Greenway and Munns 1983; Munns 2002).
Accumulation of the salt ions in the vacuole to attain
the cell osmotic balance under salt stress is a
successful mechanism. Cells, in fact, strongly reduce
their need to invest valuable metabolites in the
synthesis of organic osmolytes (Di Martino et al.
2003). In the present study, the concentrations of
proline increased significantly with increased NaCl
level under adequate nitrate supply. However, the
biosynthesis of proline decreased when NO3

− supply
increased to 10 mM NO3

−-N at 300 mM NaCl
(Fig. 3). The contribution of proline to the Ψs under
300 mM NaCl declined as NO3

−-N supply increased
from 1 to 10 mM, while the contribution of nitrate to
the Ψs was enhanced (Table 3). Such results suggested
that proline may not play an important role in
osmoregulation, and higher accumulation of nitrate in
the vacuole alleviated the effects of salinity stress on
the plant by balancing the osmotic potential.

Saline soils are affected by the presence of soluble
salts, with or without high amounts of exchangeable
sodium. Different types of saline soils contain
different cations (e.g. Na+, K+, Ca2+, Mg2+) and
anions (Cl−, SO4

2−, CO3
2−, HCO3

−). Nitrate has been
considered as a factor in the salinity of some soils
(Caldwell 1974). However, some saline soils contain
much higher nitrate levels (2–8 g / kg in 0–100 cm),
and many plant species grow in these soils (Wang et
al. 1993; Xi et al. 2006; Yang 1999). Our findings
might partially explain the adaptation strategy taken
by plants growing in such ‘nitric saline soils’. In
conclusion, an adequate NO3

−-N supply might have
an important role to play in osmotic adjustment by
the recretohalophyte T. laxa exposed into high
salinity.
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