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Differentiation of Soil Conditions over Low 
Relief Areas Using Feedback Dynamic Patterns

Pedology

The soil–landscape relationship theory relates diffi  cult-to-measure soil infor-
mation, which includes soil type and soil properties, with some easy-to-ob-

tain soil-forming environmental factors. Th is makes it possible to infer soil spatial 
variations from the easy-to-obtain environmental factors. In many areas, however, 
especially plains and gently undulating terrain, easy-to-observe factors such as 
landform characteristics and vegetation conditions cannot eff ectively refl ect spa-
tial variations of the soils (Logan, 1916; Ding et al., 1989; McKenzie and Austin, 
1993; Levine et al., 1994; Mendonca Santos et al., 1997, 2000; McKenzie and 
Ryan, 1999; Odeh and McBratney, 2000; Iqbal et al., 2005).

Some researchers have attempted to address this issue using remote sensing 
techniques, mainly including three types of methods. Th e fi rst type uses visual im-
age interpretation to retrieve soil spatial variation. Ding et al. (1989) used Landsat 
Multispectral Scanner images to create a 1:500,000 soil map for cultivated plain 
areas in Jiangsu Province, China. Ziadat et al. (2003) tried to discriminate soil 
mapping units based on Landsat Th ematic Mapper images across an area with level 
topography in the northern part of Jordan. Both eff orts failed to produce good re-
sults, however,  partially because of diffi  culties in visually interpreting soil-forming 
factors such as landform, lithology, vegetation, and hydrology. 

Th e second type of method identifi es soil diff erences through image classifi ca-
tion techniques using multiband and multidate remotely sensed data. Based on 
this approach, Dobos et al. (2000) attempted to map the spatial variation of soils 

A-Xing Zhu 
State Key Lab. of Resources and 
Environmental Information Systems
Institute of Geographical Sciences and
   Natural Resources Research
Chinese Academy of Sciences 
Beijing 100101, China

and
Dep. of Geography
Univ. of Wisconsin
Madison, WI 53706

Feng Liu*
State Key Lab. of Resources and 
Environmental Information Systems
Institute of Geographical Sciences and
   Natural Resources Research
Chinese Academy of Sciences
Beijing 100101, China

and
Graduate Univ.
Chinese Academy of Sciences
Beijing 100049, China

Baolin Li
Tao Pei
Chengzhi Qin
Gaohuan Liu
Yingjie Wang

State Key Lab. of Resources and 
Environmental Information Systems
Institute of Geographical Sciences and 
Natural Resources Research
Chinese Academy of Sciences
Beijing 100101, China

Yaning Chen
Key Lab. of Oasis Ecology and 
   Desert Environment
Xinjiang Inst. of Ecology and Geography
Chinese Academy of Sciences
Urumqi, Xinjiang 830011, China

Xingwang Ma
Institute of Soil and Fertilizer
Xinjiang Academy of Agric. Sciences
Urumqi, Xinjiang 830000, China

Feng Qi
Dep. of Geology and Meteorology
Kean Univ.
Union, NJ 07083

Chenghu Zhou
State Key Lab. of Resources and 
Environmental Information System
Institute of Geographical Sciences and 
Natural Resources Research
Chinese Academy of Sciences 
Beijing 100101, China

In many areas, such as plains and gently undulating terrain, easy-to-measure soil-forming factors such as landform 
and vegetation do not co-vary with soil conditions across space to the level that they can be eff ectively used in 
digital soil mapping. A challenging problem is how to develop a new environmental variable that co-varies with 
soil spatial variation under these situations. Th is study examined the idea that change patterns (dynamic feedback 
patterns) of the land surface, such as those captured daily by remote sensing images during a short period (6–7 d) aft er 
a major rain event, can be used to diff erentiate soil types. To examine this idea, we selected two study areas with 
diff erent climates: one in northeastern China and the other in northwestern China. Images from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) were used to capture land surface feedback. To measure 
feedback dynamics, we used spectral information divergence (SID). Results of an independent-samples t-test 
showed that there was a signifi cant diff erence in SID values between pixel pairs of the same soil subgroup and those 
of diff erent subgroups. Th is indicated that areas with diff erent soil types (subgroup level) exhibited signifi cantly 
diff erent dynamic feedback patterns, and areas within the same soil type have similar dynamic feedback patterns. 
It was also found that the more similar the soil types, the more similar the feedback patterns. Th ese fi ndings could 
lead to the development of a new environmental covariate that could be used to improve the accuracy of soil 
mapping in low-relief areas.

Abbreviations: MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI, normalized 
diff erence vegetation index; SID, spectral information divergence.
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in a fl oodplain area of northern Hungary. Five basic Advanced 
Very High Resolution Radiometer (AVHRR) channels and the 
normalized diff erence vegetation index (NDVI) of fi ve non-
consecutive dates were selected to represent diff erent stages of 
vegetative growth. Unfortunately, the approach was not eff ective 
because the selected imagery failed to capture information for 
distinguishing soil conditions. Kienast-Brown and Boettinger 
(2007) obtained land cover classes from supervised classifi cation 
of Landsat Enhanced Th ematic Mapper Plus images and then 
used these classes to discern the spatial variation of special soils 
(wet and saline soils) in a low-relief area in northern Utah. Wet 
and saline soils are special in that they have unique spectral signa-
tures and show up as diff erent land cover classes. Mapping other 
soil types over fl at areas is still a challenge. 

Th e third type of method incorporates remotely sensed im-
ages into spatial prediction models such as regression kriging for 
characterizing soil variation. Odeh and McBratney (2000) ef-
fectively predicted most of the soil spatial variation in the lower 
Namoi Valley of northwestern New South Wales in Australia 
using AVHRR images acquired in the absence of vegetation. 
Carré and Girard (2002) used both Système Pour l’Observation 
de la Terre (SPOT) images (three spectral bands and their de-
rivative indices) and some terrain variables to map soil types in 
a nearly fl at area situated in the south of the La Rochelle area 
on the French Atlantic seaboard. With this approach, however, 
a great deal of fi eld sampling is required to quantitatively defi ne 
the required spatial autocorrelation. Th is requirement makes this 
approach unsuitable for large areas.

In addition to the remote sensing methods described above, 
Bragato (2004) explored the combination of detailed fi eld soil 
sampling and spatial interpolation (linear regression and geo-
statistics) to obtain the soil spatial distribution across fl at fl ood-
plains. Again, the collection of a large number of fi eld samples is 
time consuming and expensive. Th e nonlinearity of soil-forming 
processes and heterogeneity of soil conditions may also make 
these statistical and geostatistical methods unsuitable for soil 
mapping across large areas.

We have developed an approach that derives a new envi-
ronmental variable that co-varies with soil spatial information 
across low-relief areas. Th e new variable is land surface feedback 

dynamics observed through multi-temporal satellite remote 
sensing data over a short period aft er a major rainstorm event.

MATERIALS AND METHODS
Method Overview

Suppose that there is a spatially uniform input to land surface; 
locations with diff erent soil conditions would have diff erent feedback 
to this input when other environmental conditions are the same. Th us, 
soil diff erences would be indicated by the diff erences in the land surface 
feedback patterns. Based on this idea, we used rainfall as the input to the 
land surface and assumed that the occurrence of the input event across 
a certain spatial extent is spatially uniform. Once the rainfall stops, the 
land surface starts to dry up. Th is drying process is the feedback of the 
land surface in response to the rainfall. Th e characteristics of this drying 
process at a given location during the next few days right aft er the rain 
event is referred to as the land surface feedback dynamic pattern for that 
location, which can be captured by remote sensors as changes in elec-
tromagnetic refl ectance with time. Th e land surface feedback dynamic 
pattern is dependent on the surface conditions (such as vegetation and 
topography) as well as the soil conditions, assuming uniform rainfall 
across the area in question. If the surface conditions are the same or 
very similar, then the feedback pattern should be largely dependent on 
only the soil conditions. Diff erences in the feedback dynamic patterns 
between two locations can then be related to diff erences in the soils be-
tween these locations. Th erefore, the spatial diff erence in the land sur-
face feedback dynamic patterns has a potential to be used for identifying soil 
spatial variation.

Figure 1 illustrates three stages for implementing this idea. Th e 
fi rst stage is to stimulate feedback. A major rainfall input is received by 
the land surface, and then during a short period aft er the rainfall event, 
the land surface produces dynamic feedback in response to this input. 
Th e second stage captures the stimulated feedback using the MODIS 
sensor and characterizes the feedback. Th e third stage relates diff erences 
in the feedback patterns to diff erences in soil types.

Study Areas
Two diff erent study areas were used in this research: one in the Hailun 

area in northeast China, representing a semihumid environment (referred 
to as the Hailun study area), and the other in the Ili watershed in northwest 
China, representing an arid environment (referred to as the Ili study area). 

Th e two areas were chosen mainly because 
their landform and vegetation conditions 
cannot be eff ectively used to capture soil 
spatial variation.

Th e Hailun study area, approxi-
mately 1670 km2, is located in the central 
part of Heilongjiang Province, China 
(47.00–47.27° N and 126.50–127.25° E) 
(Fig. 2). It is a fl oodplain area with low re-
lief. Th e climate is semihumid, cold, tem-
perate continental with a monsoon infl u-
ence from the southeast. Th e mean an-
nual temperature is 1.6°C and the mean 
annual precipitation is about 550 mm. 

Fig. 1. Three stages for implementing the use of land surface feedback dynamic patterns to identify soil types.
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Th e elevation is between 160 and 250 m. Across most of the area, the 
slope gradient is <2°. Th e primary soil parent material is a loess-like sub-
clay. Th e major soil subgroups are Typical Black Soil, Typical Meadow 
Soil, and Calcareous Meadow Soil. (Th e Chinese Classifi cation System 
currently contains fi ve major soil categories: order, suborder, group, 
subgroup, family, and series [Chinese Soil Taxonomy Research Group, 
2001]. Categories at the subgroup level have been established for the 
entire nation. Categories at the family and series levels only exist at 
research sites, and are not available for broad coverage.) Th ey exhibit 
great spatial variation. Th e area is cultivated with crops such as wheat 
(Triticum aestivum L.), soybean [Glycine max (L.) Merr.], and maize 
(Zea mays L.).

Th e Ili study area is situated in the Ili River watershed, which is sur-
rounded by the Tianshan Mountains on three sides. It is about 35 km 
(north–south) by 82 km (east–west), and 470 km west of Ürümqi (43.78° 
N, 87.62° E), Xinjiang Uygur Autonomous Region, China (Fig. 3). Th e cli-
mate is arid, with a mean annual precipitation of 264 mm, a mean annual 
evaporation of 1630 mm, and a mean annual air temperature of 9.2°C. Th is 
study area is a portion of a pluvial-alluvial plain in the watershed and consists 
of several large, low-lying pluvial fans. Elevation in the area ranges from 533 
to 970 m. Slope gradient is oft en <2°, with a 
mean <1°. Th e parent materials for soil de-
velopment are characterized by Quaternary 
loess deposits. Th e area contains 14 distinct 
soil subgroups, including Irrigated Desert 
Soils, Meadow Solonchaks, Fluvo-Aquic 
soils, Light Sierozems, Typical Sierozems, 
Peat Bog Soils, Salinized Fluvo-Aquic Soils, 
Salinized Sierozems, Salinized Meadow Soils, 
Calcareous Meadow Soils, Meadow Bog Soils, 
Meadow Sierozems, Meadow Solonchaks, 
and Desert Aeolian soils. Th e main crops 
grown in this area include wheat, maize, cot-
ton (Gossypium hirsutum L.) and oilseed rape 
(Brassica napus L. var. napus).

Stimulating Feedback
To stimulate eff ectively feedback, 

the following three requirements need to 
be met. Th e fi rst is that the area of inter-
est needs to experience a long period (>1 
mo) of no to little rain so that the area is 
very dry and moisture becomes a limiting 
factor. Th e second is that the magnitude of 
the rainfall input should be large enough 
to force the land surface to produce a clear 
response. Th e third is that there can be 
no precipitation over the area in the 7 d 
or so immediately aft er the rainfall event 
(referred to as the observation period). Th e 
required rainfall events and observation 
periods were determined for each of the 
areas based on daily meteorological obser-
vations in the respective areas.

For the Hailun area, there was a heavy rainfall (18.9 mm) on 23 
Apr. 2001 (Fig. 4). Before that, the area had experienced a long and dry 
winter. Furthermore, the early spring was characterized by little precipi-
tation, dramatically increasing air temperature and evaporation. As a re-
sult, the land surface in the area was in a very dry state before the rainfall 
event. Aft er the rainstorm event, no rainfall occurred in the region for 
>1 wk. In addition, soils across much of the area were exposed due to 
the fact that the natural vegetation coverage in this area was very limited 
and crops had not yet emerged. Th erefore, the period from 24 April to 1 
May was selected as the observation period. 

Similarly, a major rainfall (11.5 mm) on 15 May 2001 was selected 
for the Ili area. At that time, crops in the area had just emerged and were 
still small and sparsely distributed. Hence, for this area, the period from 
16 to 31 May was chosen as the observation period.

Capturing and Characterizing Feedback
Capturing Feedback

Due to high temporal resolution (1 d or less), MODIS sensors 
on board the polar orbiting satellites Terra and Aqua of the National 
Aeronautics and Space Administration provide a good platform for 

Fig. 2. Location of the Hailun study area and selected MODIS pixels with a relief map background.
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capturing the land surface dynamic feedback. Th eir moderate spatial 
resolution (250 m for Bands 1–2, 500 m for Bands 3–7, and 1000 m 
for Bands 8–36) and high geo-location precision are also suitable for 
land surface observations ( Justice, 1998; Barnes et al., 1998, 2002; 
Salomonson et al., 2002; Wolfe et al., 1998, 2002). Th e following 
seven observation windows, mainly designed for land surface observation 

and research (Vermote and Vermeulen, 1999, 
p. 11–50), were selected for capturing feed-
back patterns: blue (459–479 nm), green 
(545–565 nm), red (620–670 nm), near 
infrared (NIR1: 841–876 nm, NIR2: 
1230–1250 nm), and shortwave infrared 
(SWIR1: 1628–1652 nm; SWIR2: 2105–
2155 nm). Th e MODIS daily surface re-
fl ectance (MOD09GHK, v004) at 500-m 
spatial resolution was used in this study. 
Th e data sets were obtained though the 
NASA Warehouse Inventory Search Tool 
(WIST, https://wist.echo.nasa.gov/api/).

Th e MODIS data are delivered in tiles, 
each covering an area of 10° latitude by 10° 
longitude. Th e Hailun area is covered by 
the tile H26V04. We acquired daily Terra 
MODIS land surface refl ectance data with-
in the selected observation period for this 
area. Due to the infl uence of cloud coverage, 
images acquired on 24 April, 30 April, and 1 
May were of poor quality and not used. Th e 
daily Terra MODIS surface refl ectance data 
for the period from 25 to 29 April (Day of 
the Year 115–119) in 2001 were ultimately 
used in our study. Similarly, the Ili area falls 
into tile H23V04 and thus images of this 
tile were obtained for the following dates: 
16, 17, 18, 22, 23, 25, 27, and 31 May, for 
which good quality images were available.

 Characterizing Differences in 
Feedback Dynamic Patterns

Th e captured feedback for each pixel contain spectral responses 
from multiple bands (n) over multiple dates (m). Th ey were represented 
as a line, referred to as the spectral-temporal response line (Fig. 5). With 
the line format, the feedback were organized by date, and for each date 

the response (refl ectance) was ordered by wave-
length. Mathematically, the spectral-temporal 
response line can be expressed as

( ), ,SR ,x y x yf t λ=  [1]

where SR denotes the spectral response, which 
can be the digital number, surface refl ectance, 
or surface radiance—we used surface refl ec-
tance in this study; t is time, corresponding to 
a series of dates during the observation period; 
λ is the wavelength of the electromagnetic wave, 
corresponding to a series of bands (seven in this 
study); and x and y are the coordinates in geo-
graphic space.

We used SID in this study to quantify the 
diff erence between the spectral-temporal re-
sponse lines of any two MODIS pixels. Spectral 

Fig. 3. Location of the Ili study area and selected MODIS pixels with a relief map background. 

Fig. 4. Selection of observation period for the Hailun study area: 24 Apr. to 1 May 2001.
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information divergence has been designed for quantita-
tive analysis of spectral patterns organized in the line 
format. It can be defi ned in following way. Each pixel 
is considered to be a random variable, and its spectral 
histogram can be treated as its probability distribution. 
Th e discrepancy of probabilistic behaviors between 
the spectra of two pixels is the SID, which is used for 
characterizing spectral similarity and discrimination 
ability (Chang, 2000, 2003;Qin, 2009). We calculated 
the SID values of any two MODIS pixels within each 
study area using the following equations (Chang, 1999; 
van der Meer, 2006):

( ) ( ) ( )SID , || ||X Y D X Y D Y X= +  [2]
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where X and Y represent the feedback pattern at Pixels X and Y, respec-
tively; D(X||Y) is the relative entropy of Y with respect to X, which is 
also known as the Kullack–Leibler information function, directed 
divergence, or cross entropy (indicated with the || symbol); similarly, 
D(Y||X) is the relative entropy of X with respect to Y; xij and yij are 
response elements for the ith band on the jth date for Pixels X and Y, 
respectively. Natural logarithms were used here; the measurement unit 
of SID is the nat. (A nat is a logarithmic unit of information or entropy, 
based on natural logarithms and powers of e; it is the fundamental unit 
of information using base e, while bit is the fundamental unit using base 
2.) Th e values of SID range from zero to ∞. Th e more similar the spec-
tral-temporal response lines between two MODIS pixels, the closer the 
SID is to zero. When the response lines are exactly the same, the SID is 
equal to zero.

Relating Differences in Feedback to 
Differences in Soils

Th e objective of this study was to examine whether a diff erence in land 
surface dynamic feedback patterns can be related to a diff erence in soils be-
tween the pixels. Th us, in this study we did not cover the entire study areas 
but focused on dozens of individual MODIS pixels in each of the two areas.

We selected the MODIS pixels where the land cover was homo-
geneous within each pixel and its surrounding area. In the Hailun area, 
we collected 37 MODIS pixels with bare soil. Th ese pixels involved four 
diff erent soil subgroups (Fig. 2). Th e soil subgroup data of the selected 
pixels in this area were obtained from the Soil Database of China, pro-
vided by the Institute of Soil Science, Chinese Academy of Sciences. 

For the Ili area, 28 fi eld soil sampling points were collected and the soil 
subgroups of the 28 points were identifi ed by local soil experts based on 
data from laboratory analyses (Yu, 2008, p. 8–18). We selected MODIS 
pixels that contained the 28 fi eld sampling points (Fig. 3).

Th ese selected MODIS pixels still had clear diff erences in land-
forms or vegetation even though they were from low-relief areas. To 
minimize the diff erence in feedback patterns due to diff erences in land-
forms or vegetation, it was necessary to organize the MODIS pixels into 
diff erent groups according to elevation, slope gradient, east–west (EW) 
aspect, north–south (NS) aspect, and NDVI. All MODIS pixels within 
the same group were assumed to have very similar landforms and veg-
etation, while MODIS pixels from diff erent groups had diff erent land-
forms and vegetation. 

For the Hailun area, with no signifi cant vegetation cover during 
the selected observation period, the 37 MODIS pixels were grouped 
into 15 diff erent groups based on elevation, slope gradient, EW aspect, 
and NS aspect. Th e terrain attribute values were derived from a Shuttle 
Radar Topography Mission digital elevation model at 90-m resolution. 
We labeled the 15 groups with letters from A to O. Each MODIS pixel 
was then labeled by the group label plus a number (Fig. 2). For example, 
A1 refers to MODIS pixel no. 1 in Group A. Eight of the 37 MODIS 
pixels (G1, G2, I1, I2, I3, J1, J2, and J3) had to be excluded due to the in-
fl uence of clouds. Th e remaining 29 pixels, involving 12 diff erent groups 
(Table 1), were used in our analysis. 

For the Ili study area, with very sparse crops during the selected pe-
riod, the 28 MODIS pixels were grouped according to elevation, slope 
gradient, EW aspect, NS aspect, and NDVI. Some of groups had only 
one pixel in them. Th ese groups were excluded from further analysis. 
Th e remaining seven groups were labeled with letters from P to V. Table 
2 shows the average landform and vegetation attributes of the seven 
groups. Th e MODIS pixels within these groups were coded as P1, P2, 
Q1, Q2, R1, R2, S1, S2, T1, T2, U1, U2, V1, and V2 (Fig. 3).

Clearly, the landform and vegetation within each group are very 
similar and diff erences in land surface feedback dynamic patterns can be 
assumed to be largely due to the diff erences in soil conditions. Based on 
this assumption, we related the diff erences in feedback patterns to the 
diff erences in soils. Th en, with the purpose of examining the ability of 
land surface dynamic feedback patterns to diff erentiate soil subgroups, 
we analyzed the relationships between the SID values of any two 
MODIS pixels and their diff erences in soil subgroups.

Fig. 5. Spectral-temporal response line. The captured feedback at a pixel are listed by 
date (Day of the Year 115–119) and for each date the responses (refl ectance values) are 
organized by wavelength (NIR, near infrared; SWIR, shortwave infrared). For convenience, 
the surface refl ectance is scaled by a factor of 10000.
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RESULTS AND DISCUSSION
Differences in Feedback Patterns between Areas 
of Different Soil Subgroups and Areas of the Same 
Subgroup

Tables 3 and 4 show SID values and soil subgroups of 
MODIS pixel pairs from diff erent landform–vegetation groups 
for the Hailun area, while Tables 5 and 6 show the same kinds of 
information for the Ili area. Tables 3 and 5 contain the pairs of 
pixels belonging to a same soil subgroup. Tables 4 and 6 contain 
the pairs of pixels from diff erent soil subgroups. Th e two kinds 
of pixel pairs were classifi ed as same soil subgroup and diff erent soil 
subgroups, as shown in Table 7. An independent-samples t-test 
(Pallant, 2007) was used to compare SID values in the two classes. 
Th e SID values were normalized for this test.

Due to diff erences in land surface conditions and rainfall 
events, the magnitudes of the SID values for the two study areas 
were not at the same level. To consider MODIS pixels from the 
two areas together, SID values in Tables 3 to 6 were normalized 
using the standard score method (Pallant, 2007). Th is method 
considers every SID value as a score. A standard score, also called 
a Z score, is a dimensionless quantity derived by subtracting the 
population mean from an individual raw score and then dividing 
the diff erence by the population standard deviation. Th e mean 
and standard deviation of the SID values of all selected MODIS 
pixel pairs in each area were assumed to be those of the popula-

tion for the area. As a result, all the SID values were converted 
into standard scores (Table 7).

Based on the data in Table 7, an independent-samples t-test 
was conducted. Levene’s test for equality of variances resulted in 
an F value of 20.410 and a P value of 0.000. At a signifi cance level 
of 0.05, the variances of the standard scores for the two classes 

Table 1. Average landform attributes of each landform–vegetation 
group within the Hailun area.

Landform-vegetation 
group

Elevation
Slope 

gradient
East–west 
aspect†

North–south 
aspect†

m °
A 213.6 0.840 −0.590 0.365

B 210.4 1.075 0.100 0.820

C 215.0 1.100 0.000 0.755

D 199.2 1.140 −0.330 0.690

E 190.8 1.340 0.220 0.790

F 202.5 1.545 −0.675 0.665

H 195.0 1.565 0.855 0.080

K 204.2 1.065 −0.100 0.705

L 212.3 1.300 −0.130 0.720

M 202.7 1.085 0.630 0.675

N 205.5 0.760 −0.595 0.715
O 201.0 0.000 −0.015 0.950
† East–west aspect = sin(aspect); north–south aspect = cos(aspect).

Table 2. Average landform and vegetation attributes of each land-
form–vegetation group within the Ili area.

Landform–vegetation 
group

Elevation
Slope 

gradient
East–west 

aspect
North–south 

aspect
NDVI†

m degree
P 574.0 0.374 0.224 −0.020 0.299

Q 606.5 0.691 0.103 −0.041 0.398

R 675.0 0.419 −0.075 −0.888 0.348

S 679.0 0.685 −0.430 0.898 0.276

T 767.5 0.869 0.462 0.621 0.306

U 641.5 1.227 −0.184 −0.908 0.266
V 814.5 1.419 −0.105 0.967 0.230
† Normalized difference vegetation index.

Table 4. Spectral information divergence (SID) values 
of MODIS pixel pairs with different soil subgroups and 
under several landform–vegetation conditions in the 
Hailun area; the mean SID ± SD are 0.0082 ± 0.0049.

Landform–vegetation 
group

Soil subgroup
Pixel 
pair

SID

nat

A

Calcareous Meadow Soil A1
0.0015

Typical Meadow Soil A3

Calcareous Meadow Soil A2
0.0014

Typical Meadow Soil A3

Calcareous Meadow Soil A1
0.0084

Typical Black Soil A4

Calcareous Meadow Soil A2
0.0074

Typical Black Soil A4

Typical Meadow Soil A3
0.0090

Typical Black Soil A4

B
Typical Meadow Soil B1

0.0062
Typical Black Soil B2

C
Typical Meadow Soil C1

0.0159
Typical Black Soil C2

D
Typical Meadow Soil D1

0.0043
Typical Black Soil D2

E
Typical Meadow Soil E1

0.0113
Typical Black Soil E2

F

Calcareous Meadow Soil F1
0.0039

Typical Meadow Soil F2

Calcareous Meadow Soil F1
0.0044

Typical Meadow Soil F3

L
Typical Meadow Soil L1

0.0063
Typical Black Soil L2

M
Typical Meadow Soil M1

0.0160
Typical Black Soil M2

N

Typical Meadow Soil N1
0.0117

Typical Black Soil N3

Typical Meadow Soil N2
0.0147

Typical Black Soil N3

Table 3. Spectral information divergence (SID) of MODIS 
pixel pairs with the same soil subgroups and under several 
landform–vegetation conditions in the Hailun area; the mean 
SID ± SD are 0.0009 ± 0.0005.

Landform–vegetation 
group

Soil subgroup
Pixel 
pair

SID

nat
A Calcareous Meadow Soil A1–A2 0.0004

F Typical Meadow Soil F2–F3 0.0008

H Calcareous Meadow Soil H1–H2 0.0018

K Typical Meadow Soil K1–K2 0.0009

N Typical Meadow Soil N1–N2 0.0007

O Typical Black Soil
O1–O2 0.0002

O1–O3 0.0015
O2–O3 0.0009
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were assumed to be unequal because the P value was <<0.05. 
Consequently, an unequal-variance t-test was used. Th e results of 
the t-test showed that t = −6.878 and P = 0.000. Th e value of P is 
<<0.05. Due to this, it can be considered that there is signifi cant 
diff erence in the standard scores between the same soil subgroup 
class (mean = −0.925 and SD = 0.106) and the diff erent soil sub-
groups class (mean = 0.463 and SD = 0.890). Th is indicates that 
the SID values between the two classes are signifi cantly diff erent.

Specifi cally, for the Hailun area, the SID values of pixel pairs 
from the same soil subgroup class (Table 3) ranged from 0.0002 
to 0.0018, with the mean and SD being 0.0009 and 0.0005, 
respectively. Pixel pairs from the diff erent soil subgroups class 
(Table 4), however, showed higher SID values between 0.0014 
and 0.0160, with a mean of 0.0082 and a SD of 0.0049. Th e pat-
tern repeated itself for the Ili area. Th e SID values in Table 6 are 
much higher than those in Table 5. Th erefore, pixels belonging 
to diff erent soil subgroups show signifi cantly larger SID values, 
while pixels within the same soil subgroup have obviously small-
er SID values. Th is means that areas with diff erent soil subgroups 
exhibit signifi cantly diff erent dynamic feedback patterns, while 
areas within the same soil subgroup have obviously similar dy-
namic feedback patterns.

Change in Differences of Feedback Patterns with 
Differences in Soil Types

In Fig. 6, 7, and 8, the vertical axis represents the SID be-
tween the land surface feedback dynamic patterns of MODIS 
pixel pairs, and the horizontal axis denotes MODIS pixel pairs 
that are ordered according to the degree of diff erence between 
soil subgroups. Th ese fi gures indicate that SID values increase 
with the degree of diff erence in soil types.

Specifi cally, within Landform–Vegetation Group A (see 
Fig. 6), the MODIS pixel pair A1–A2 belongs to the same soil 
subgroup (Calcareous Meadow Soil); pairs A1–A3 and A2–A3 
both are from diff erent soil subgroups (Calcareous Meadow 
Soil and Typical Meadow Soil) but within the same soil group 
(Meadow Soil); and pairs A1–A4, A2–A4, and A3–A4 are from 
diff erent soil groups (Meadow Soil and Black Soil). From the left  
of the horizontal axis to the right in Fig. 6, there is an obvious 
increase with diff erence between soil types. Correspondingly, 
for the pixel pair A1–A2, the SID is fairly low at only 0.0004. 
Moving from A1–A2 to the pairs A1–A3 and A2–A3, SID 
values rise markedly to 0.0015 and 0.0014. For pairs A1–A4, 
A2–A4, and A3–A4, SID values climb farther dramatically to 
0.0084, 0.0074, and 0.0090, respectively. Th e same trend can be 
seen in Landform–Vegetation Groups F and N (see Fig. 7 and 

8). In addition, it should be noted that the MODIS pixels from 
diff erent landform–vegetation groups are not comparable be-
cause they have diff erent landforms and vegetation. Th erefore, 
there is remarkable consistency between the diff erences in land 
surface feedback dynamic patterns and those of soil subgroups. 
Th e more similar the soil types are, the more similar their dynamic 
feedback patterns.

Table 5. Spectral information divergence (SID) values of 
MODIS pixel pairs with the same soil subgroups and under 
several landform-vegetation conditions in the Ili area; the 
mean SID ± SD are 0.0016 ± 0.0020.

Landform–vegetation group Soil subgroup Pixel pair SID

nat
U irrigated desert soilU1–U2 0.0030
V light Sierozem V1–V2 0.0002

Table 6. Spectral information divergence (SID) values of 
MODIS pixel pairs with different soil subgroups and under 
several landform–vegetation conditions in the Ili area; the 
mean SID ± SD are 0.0462 ± 0.0269.

Landform–vegetation group Soil subgroup
Pixel 
pair SID

P Irrigated Desert Soil P1
0.0301

Typical Sierozem P2

Q Fluvo-Aquic Soil Q1
0.0130

Salinized Sierozems Q2

R Calcareous Meadow Soil R1
0.0416

Fluvo-Aquic Soil R2

S Fluvo-Aquic Soil S1
0.0792

Meadow Solonchak S2

T Light Sierozem T1
0.0670

Typical Sierozem T2

Table 7. Standard scores derived from normalizing spectral 
information divergence (SID) values in Tables 3 to 6.

Class Pixel pair Standard SID score 

Same soil subgroup A1–A2 −0.9946
Same soil subgroup F2–F3 −0.9186

Same soil subgroup H1–H2 −0.7286

Same soil subgroup K1–K2 −0.8996

Same soil subgroup N1–N2 −0.9376

Same soil subgroup O1–O2 −1.0326

Same soil subgroup O1–O3 −0.7856

Same soil subgroup O2–O3 −0.8996

Same soil subgroup U1–U2 −0.9836

Same soil subgroup V1–V2 −1.0741

Different soil subgroups A1–A3 −0.7856

Different soil subgroups A2–A3 −0.8046

Different soil subgroups A1–A4 0.5254

Different soil subgroups A2–A4 0.3354

Different soil subgroups A3–A4 0.6394

Different soil subgroups B1–B2 0.1074

Different soil subgroups C1–C2 1.9505

Different soil subgroups D1–D2 −0.2536

Different soil subgroups E1–E2 1.0764

Different soil subgroups F1–F2 −0.3296

Different soil subgroups F1–F3 −0.2346

Different soil subgroups L1–L2 0.1264

Different soil subgroups M1–M2 1.9695

Different soil subgroups N1–N3 1.1524

Different soil subgroups N2–N3 1.7225

Different soil subgroups P1–P2 −0.1080

Different soil subgroups Q1–Q2 −0.6605

Different soil subgroups R1–R2 0.2636

Different soil subgroups S1–S2 1.4784
Different soil subgroups T1–T2 1.0843
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Based on the results and analyses above, it can be concluded 
that the diff erences observed between land surface feedback dy-
namics have the ability to capture eff ectively the diff erences in 
soil conditions between diff erent pixels. Th e MODIS land surface 
observation data capable of providing this information are only avail-
able at spatial resolutions of 250 m (Bands 1–2) and 500 m (Bands 
3–7), thereby making MODIS only suitable for digital soil map-
ping at coarse levels. Th e concept presented here, however, off ers 
the potential for detailed mapping when remote sensing data be-
come available at higher spatial and temporal resolutions.

CONCLUSIONS
We presented an idea of relating the diff erence in land sur-

face feedback dynamic patterns aft er a major event to the diff er-
ence in soil conditions at diff erent locations. Land surface feed-
back dynamic patterns are defi ned as the pattern of change in 
refl ectance captured by MODIS images during a short period at 
a daily interval aft er a major rain event. Th e diff erence in land 
surface feedback dynamic patterns between pixels was hypoth-

esized to be highly related to the diff erence in soil 
conditions at these pixels, given that other surface 
conditions (mainly landform and vegetation) are 
the same.

Studies in the Hailun area of Heilongjiang 
Province and the Ili area of Xinjiang Province 
were conducted to evaluate this hypothesis and 
the associated methods. Th e results from the two 
areas indicated that areas with diff erent soil sub-
groups exhibit signifi cantly diff erent dynamic 
feedback patterns and that areas belonging to the 
same soil subgroup have similar patterns. It was 
also found that the more similar the soil types, the 
more similar their response patterns. Th is leads 
to the conclusion that the land surface feedback 
dynamic patterns can be used to diff erentiate soil 
types eff ectively.

Th e fi ndings reported here are encouraging 
and promising, and could lead to the development of a new 
environmental covariate that refl ects soil spatial variations. In 
particular, this new covariate could be used to improve the ac-
curacy of digital soil mapping over areas, such as fl at terrain, 
where easy-to-measure soil-forming factors (such as topo-
graphic and vegetation information) are ineff ective in revealing 
soil spatial variation.

Th is research provides another way to apply remote sensing 
data in environmental studies, such as natural resource mapping, 
habitat mapping, and delineation of areas sensitive to man-
agement plans. It must be noted, however, that future work is 
needed to examine these fi ndings in the context of other land-
scape settings such as those with diff erent vegetation cover den-
sities and diff erent climatic conditions. New metrics also need to be 

Fig. 6. Spectral information divergence (SID) values of MODIS pixel pairs within 
Landform–Vegetation Group A.

Fig. 7. Spectral information divergence (SID) values of MODIS pixel 
pairs within Landform–Vegetation Group F.

Fig. 8. Spectral information divergence (SID) values of MODIS pixel 
pairs within Landform–Vegetation Group N.
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developed to assess the diff erence in land surface feedback dynamic 
patterns organized in the spectral-temporal surface format.
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