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Charge and low-frequency response of normal-superconducting heterostructures
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Charge distribution is a basic aspect of electrical transport. In this work we investigate the self-consistent
charge response of normal-superconducting heterostructures. Of interest is the variation of the charge density
due to voltage changes at contacts and due to changes in the electrostatic potential. We present response
functions in terms of functional derivatives of the scattering matrix. We use these results to find the dynamic
conductance matrix to lowest order in frequency. We illustrate similarities and differences between normal
systems and heterostructures for specific examples such as a ballistic wire and a quantum point contact.
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I. INTRODUCTION

During the past decade mesoscopic systems consistin
both normal and superconducting parts have attracted
siderable attention. Microscopically, the interesting phys
stems from Andreev reflection. An incident particle is r
flected as a hole and a Cooper pair is generated in the su
conductor. This results in an effective charge transfer ofe
and correlations between Andreev-reflected electron-h
pairs~the proximity effect!. These effects have been inves
gated in many experimental and theoretical works1,2 focusing
mainly on the stationary transport regime~dc conductance!3,4

and the low-frequency noise~shot noise!.5,6 The ac regime
has attracted much less attention.7–10

In an Andreev process the electron and hole parts of
wave function contribute with opposite charge. It is therefo
interesting to investigate the low-frequency ac transport
normal-superconducting~NS! systems, since this problem re
quires an electrically self-consistent discussion of the cha
distribution in the sample. This self-consistency is of imp
tance not only for ac transport but also for the discussion
charge fluctuations and the nonlinear transport regime.11

In this work we have in mind the interplay of two ma
properties of hybrid structures. On one hand raising or lo
ering the voltage at a normal contact of the sample will
inject an additional charge into regions where the wave fu
tions contain electron and hole amplitudes of equal mag
tude. This is in strong contrast to a purely normal conduc
On the other hand screening is a property not only of
states at the Fermi surface but of the entire electron gas. T
the ability of a hybrid structure to screen an additional cha
is essentially the same as that of a normal conductor.

Our results show two main differences compared
purely normal systems. First, the coupling of carriers w
opposite charge reduces the interaction with nearby ga
Second, Andreev reflection increases the dwell time ins
the structure and this affects the ac response.

The paper is organized as follows. In Sec. II, we derive
expression of the charge density in terms of functional
rivatives of the scattering matrix. We next discuss the cha
density response to external and internal potential pertu
0163-1829/2002/65~4!/045321~8!/$20.00 65 0453
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tions. In Sec. IV we use these results to formulate a s
consistent theory of low-frequency ac response. To illustr
our results we consider in Sec. V two examples: a ballis
wire and the quantum point contact connected to a super
ductor.

II. CHARGE DENSITY

In this section we derive the general expression for
charge densitŷ r̂(r )& in the scattering problem sketched
Fig. 1. A scattering region is attached toN normal leads and
one superconducting lead. Every normal lead is charac
ized by its applied voltageVa , the superconducting lead b
its pair potentialD, and the biasVS . For all the calculations
we may chooseVS50. The fact that we only allow for one
superconducting terminal excludes all time-depend
Josephson-like effects. For an introduction to the applied
malism we refer the reader to Ref. 12. The whole system
described by its scattering matrix

sab5S sab
pp sab

ph

sab
hp sab

hh D . ~1!

FIG. 1. A mesoscopic scattering region is attached toN normal
reservoirs and one superconducting reservoir. It is described by
scattering matricessN describing the normal conducting region an
sA describing the Andreev reflection. Each terminal has its own b
voltage Va . The electrostatic potentialU inside the scatterer is
calculated self-consistently.
©2002 The American Physical Society21-1
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The elementsab
hp , for example, is the current amplitude of

hole that leaves through leada and has entered with un
current amplitude as a particle through leadb. We represent
each scattering channel by its own lead to save two indi

It is conceptually useful13 to imagine the scattering matri
s being assembled from a part that describes the reflec
and transmission in the normal region

sN,ab5S sN,ab
pp 0

0 sN,ab
hh D ~2!

and from a part that describes the Andreev processes a
interface between normal metal and superconductorsA .
Only this second matrix leads to coupling between the p
ticle and hole scattering states. However, the following d
vations do not depend on this assumption. For energieE
smaller than the gap energyuDu only reflection takes place a
the interface. The total scattering matrixs then has the di-
mension (2NN)2 where NN5(Na is the total number of
channels leading to normal reservoirs. Above the gap
must also include transmission processes, and therefore
dimension changes to (2N12NS)2. The superconducting
terminal addsNS more channels.

For the following it is helpful to introduce local partia
densities of states~LPDOS!,14

n~an ,r k ,bm!52
1

2pqk
ImF ~sab

nm !*
dsab

nm

dUk~r !
G . ~3!

This expression is valid for one channel per lead. A tr
multichannel expression would include a trace over the ch
nels. The valuen(1h ,r p,2p), for example, describes the de
sity of particles at locationr that entered as particles throug
contact 2 and leave as holes through lead 1. In Eq.~3! we
denote the quasiparticle charge byqp/h56q. The LPDOS
must be calculated as functional derivatives of the scatte
matrix with respect to the electrostatic potentialU. To gain
the information about particles and holes separately14 ~which
is necessary because they contribute with opposite cha!
we artificially split up the electrostatic potentialU in a part
that acts on particlesUp and another that addresses holesUh.
The Bogoliubov-de Gennes Hamiltonian then takes the fo

Ĥ5S H01qUp~x!2EF D

D* 2~H01qUh~x!2EF!*
D .

~4!

These equations have to be solved including a small va
tion of the electrostatic potentialsUp andUh in order to get
the scattering matrix and its functional derivatives. The se
ration of U into Up and Uh is a purely technical step tha
helps to present the results in a symmetrized form. A ph
cal scalar potential has always the propertyUp5Uh. This is
reflected by the fact that the above-defined LPDOS are
independent—they obey reciprocity relations. This has b
investigated in Ref. 14. The particle-hole symmetry of t
Bogoliubov-de Gennes equation implies

n~an ,r k ,bm ,E!5n~an̄ ,r k̄ ,bm̄ ,2E!. ~5!
04532
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The bar denotes the opposite (p/h5h̄/ p̄). The reciprocity
relations can be used to reduce the expense of the calc
tion. The examples of Sec. V show how the LPDOS can
evaluated in practice.

The charge density inside the normal-superconduc
heterostructure can be entirely expressed by the LPDOS~and
therefore by the scattering matrix! and the occupation factor
of the attached reservoirs

^r̂~r !&5qE
2`

`

dE (
abmn

~ f b
m~E!n~an ,r p ,bm!

1@12 f b
m~E!#n~an ,r h ,bm!!. ~6!

The occupation factors include the bias voltage of the nor
terminalsf b

p/h(E)5 f (E2qp/hVb). Heref is the Fermi func-
tion. Note that the occupation factors vary in opposite dir
tions for particles and holes. In Eq.~6! we have double
counted the particle-hole excitations and hence drop a fa
of 2 for spin degeneracy. The derivation of this result
outlined in Appendix A.

III. CHARGE RESPONSE AND GAUGE INVARIANCE

Given formula~6! we are now in a position to calculat
the charge-density responsedr(r ) to both internal and exter
nal potential variations,

dr~r !5 (
b5S,1 . . .N

]r~r !

]Vb
dVb2E dr8P̃~r ,r 8!dU~r 8!.

~7!

The first contribution is the bare charge injected from t
leads due to the shift of the occupation factors, and is p
portional to the injectivities]r(r )/]Vb . The second contri-
bution arises from the change of the internal potential due
screening~the potential itself will be determined in the fo
lowing subsection!, and involves the Lindhard function
P̃(r ,r 8)52dr(r )/dU(r 8).

The injectivity from the normal leads can be calculat
straightforwardly from the charge density~6!

]r~r !

]Vb
5E dES 2

] f

]ED (
anmk

qkqmn~an ,r k ,bm! ~8!

and depends at low temperatures as expected only on p
erties at the Fermi energy. The other quantities containe
the balance equation@see Eq.~7!# need a more careful analy
sis. Their technical details are explained in Appendix B.

The procedure of calculating the nonlocal Lindhard fun
tion P̃(r ,r 8) leads to second-order functional derivativ
that cannot be simplified further. The expressions can be s
plified if we assume the Lindhard function to be loca
P̃(r ,r 8)5d(r 2r 8)P(r ). This assumption is correct if the
electrostatic potential varies only slowly on the scale of
Fermi wavelengthlF . In a short calculation given in Appen
dix B we find the local Lindhard function

P~r !52q2(
ab

nN~a,r ,b,E50!1OS uDu
uE2qU~r !u D , ~9!
1-2
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which involves the following LPDOS,

nN~a,r ,b!52
1

2pqp
ImF ~sN,ab

pp !*
dsN,ab

pp

dUp~r !
G

52
1

2pqh
ImF ~sN,ab

hh !*
dsN,ab

hh

dUh~r !
G . ~10!

These LPDOS correspond to a purely normal conduc
structure. The sum overa,b in Eq. ~9! gives the total local
density of states at the Fermi energyE50. The first part of
Eq. ~9! is therefore the expression for Thomas-Fermi scre
ing. If the conditionuE2qU(r )u@uDu is fulfilled, the pres-
ence of the superconductor does not affect the scree
properties of the sample. This is the case for the exam
presented in this paper. However, there are situations w
the corrections to Thomas-Fermi screening can become
portant, i.e., when the scattering matrix shows strong re
nances below the superconducting gap. In this case, the
Lindhard function cannot be expressed through LPDOS
E50 only, but its calculation must directly start from E
~6!.

A simple argument allows us to get the injectivity fro
the superconducting terminal]r(r )/]VS without any further
calculation. The Bogoliubov-de Gennes equations are ga
invariant; a simultaneous change of all external and inte
potentials by the same amount will not lead to any cha
inside the system. Setting the left side of Eq.~7! to zero
gives therefore

P~r !5 (
b5S,1 . . .N

]r~r !

]Vb
. ~11!

SinceP(r ) and the injectivities of all normal contacts a
known we can use this relation to find the injectivi
]r(r )/]VS of the superconducting contact.

IV. LINEAR-RESPONSE CALCULATION

In order to get the low-frequency ac response of our s
tem it is necessary to distinguish two contributions to
current. On one hand we have the current flowI bare of non-
interacting particles which can be accessed by a line
response theory. On the other hand we may not neglec
screening currentsI scr due to interactions. The low
frequency conductance matrix can be generally written a

Gab5
]^I a&
]Vb

5Gab
0 2 ivEab , ~12!

where the ‘‘emittance’’ matrixE consists of two parts,E
5Ebare1Escr.

The screening currents may be calculated quasistatic
solving a Poisson equation self-consistently. This proced
is described in detail in Ref. 15. Here we cite only the res

Eab
scr52E drdr8g~r ,r 8!

]r~r !

]Va

]r~r 8!

]Vb
, ~13!
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which is valid in the presence of time-reversal symmet
The kernel g(r ,r 8) is given by *dr94pP̃(r ,r 9)g(r 9,r 8)
2¹ r

2g(r ,r 8)54pd(r 2r 8). In a discretized model the
Laplace operator may be replaced by a capacitance mat

To find the bare contributionEbare to the emittance we
proceed as in Ref. 16. We use the current operator at
normal conducting terminala,

Î a5
1

h (
bb8vww8

qvE dEdE8e1 i (E2E8)t/\âb
w†~E!âb8

w8~E8!

3Abb8
ww8~a,v,E,E8!, ~14!

in a simplified form that is valid in the low-frequency limit
The full current operator has been given, for example, in R
17. In Eq.~14! the indicesa,b,b8 denote leads~and chan-
nels!; v,w,w8 distinguish particle and hole states. The ope
tor â1

h(E), for example, creates a hole of energyE incident
into lead 1. The matrix elementsA are given by

Abb8
ww8~av ,E,E8!5dabdab8dvwdvw82~sab

vw~E!!* sab8
vw8~E8!.

~15!

The ac conductivity can then be obtained from

Gaa85
1

\vE0

`

dtei (v1 id)t^@ Î a~t!, Î a8~0!#&. ~16!

The evaluation of the commutator is mostly straightforwa
As in previous works16 we use the unitarity of the scatterin
matrix and the thermal occupation of the reservoirs. As in
case of a purely normal system we are left with a doub
energy integral. We can evaluate this integral through a p
deformation in the upper complex plane where the scatte
matrix is analytical. In the end we expand the result up
first order in frequency. The result for the dc conductanc

Gab
0 5

1

hE dES 2
] f

]ED(
mn

qmqn@dabdmn2Tab
mn# ~17!

is identical to the one established in the literature.17,18,13,19

This serves as a check of our calculation. In Eq.~17!, Tab
mn

5(sab
mn)* sab

mn is the transmission probability from channelb
to channela. The bare emittance can be expressed by glo
partial densities of states,

N~an ,bm!5
1

2p
Im~sab

nm !*
]sab

nm

]E
, ~18!

and becomes

Eab
bare5E dES 2

] f

]ED(
nm

qnqmN~an ,bm!. ~19!

This equation shows that the bare emittance may chang
sign. This simple calculation provides only the emittan
matrix elements between normal terminals. A direct calcu
tion of the current at the superconducting reservoir wo
involve a self-consistent evaluation of the pair potential
the superconductor. Its phase ‘‘carries’’ the supercurre
1-3
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Nevertheless, the missing elements of the emittance ma
can be reconstructed from the conditions

(
a

Eab5(
b

Eab50 ~20!

that express current and charge conservation.
Recapitulating, the calculation of the low-frequency co

ductance~12! includes the following steps: Eqs.~3!, ~10!,
and ~18! are used to obtain the partial densities of stat
These densities allow the calculation of the charge inject
ties ~8! and the Lindhard function~9!. The emittance matrix
then consists of two parts: we get the bare emittance f
Eq. ~19! and the screening currents from Eq.~13!.

V. EXAMPLES

We now present some simple calculations to illustr
how the presence of a superconducting terminal affects
ac properties of a mesoscopic sample. We emphasize
these examples are not designed to model a realistic sa
completely, but should exhibit qualitatively the main fe
tures.

A. Ballistic wire

As a first example we discuss briefly the emittance o
ballistic wire with one open channel at zero temperature. T
results can be easily generalized to more than one chan
The geometry of the sample is shown in Fig. 2. The wire
attached to two reservoirs~1 and 2!. Reservoir 1 is always
normal conducting. The second may be normal conduct
superconducting, or completely disconnected from the w
for comparison. The wire is described by its lengthl and the
dimensionless parametera54q2/hvF which describes the

FIG. 2. Examples:~a! A one-channel ballistic wire is attached t
a superconductor. Its length is denoted byl, the internal interaction
modeled by a capacitance per unit lengthc between wire and gate
The emittance is enhanced by a factor of 4 compared to a pu
normal wire.~b! The same geometry for a quantum point cont
which is described by an electrostatic dipole of capacitanceC0. In
the low transparency limit the ac conductance is dominated by
geometric capacitanceC0. In the opposite limit the quantum poin
contact shows enhanced inductive behavior.
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DOS at the Fermi level in the wire. Note thata is also the
local Lindhard function of Eq.~9!. The interaction in the
wire is modeled by a third gate terminal~3!. It is coupled to
the wire by a geometrical capacitance per unit lengthc and
assumed to be macroscopic. Thus we can replace the Lap
operator in Eq.~13! by 24pc. For a detailed description o
this system see, for example Ref. 20. As a last paramete
need the coherence length of the superconductorj0
5\vF /uDu. We neglect the self-consistency of its pair pote
tial.

We indicate briefly the calculation for the wire connect
to one normal and one superconducting reservoir. The o
cases can be worked out similarly. The scattering matrix
given by

s11
ph5expH i F 1

\vF
~2El2qdUp1qdUh!2arccos~E/D!G J ,

s11
pp5s11

hh50, s11
hp5s11

ph . ~21!

From this scattering matrix we calculate the partial density
states~3!, ~10!, and~18! at E50 @for instance,n(1p ,r p,1p)
50, nN(1,r ,2)51/hvF , andN(1p,1h)52(l 1j0/2)/hvF•••#
that can be used to find the injectivities and the Lindha
function ~see Sec. III!,

]r

]V1
50,

]r

]V2
5a, P5a, with a5

4q2

hvF
. ~22!

Every electron that is injected from the normal lead com
back as a hole that compensates its charge. Therefore
injectivity from the normal side]r/]V1 is zero.

Table I summarizes the results for the three cases.
missing elements of the emittance matrix can be rec
structed from Eq.~20!. We add some observations to expla
the differences between the results. The response of the
connected wire is purely capacitive, while the open wires
inductively.

In the limit of charge neutralityc!a the inductive emit-
tance of an open wireE11 grows by a factor of 4 in the
presence of a superconductor. On one hand the bare e
tance is doubled, because an incoming electron leaving a
Andreev-reflected hole stays twice as long in the wire.
the other hand the total emittance is not decreased by
contribution of the screened emittance, because the injec
ity from the normal lead into the wire]r/]V1 is zero. This
leads to another factor of 2. Additionally, the evanescent q
siparticle wave contributes to the bare emittance, and
wire acquires an effective lengthl 1j0/2 ~we use the as-
sumption that the Fermi velocities are the same on both s
of the NS interface!. The emittanceE135E13

scr}]r/]V150 is
always zero in the presence of a superconductor. The
and the normal terminal are only connected via the cap
tance. But this capacitance cannot be charged from the
mal side 1 because the above-mentioned injectivity]r/]V1
is zero. Vice versa, the capacitive elementE23 becomes twice
as big because of a doubled injectivity]r/]V2 in the limit of
potential neutralityc@a.

ly
t

e
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TABLE I. Comparison of the emittance elements of a ballistic wire connected to two normal reser
a normal and a superconducting reservoir, and to one normal reservoir only. Herec is the capacitance
between an additional gate and the wire,l its length,j05\vF /uDu the coherence length of the superco
ductor, anda54q2/\vF a parameter proportional to the density of states.

Normal conducting Superconducting Disconnected

E11
bare 0 2a( l 1j0/2) al

E12
bare al/2 a( l 1j0/2) 0

E22
bare 0 2aj0/2 0

E11
scr

2
a2l

4(c1a)
0 2

a2l

(c1a)

E12
scr

2
a2l

4(c1a)
0 0

E22
scr

2
a2l

4(c1a)
2

a2l

(c1a)
0

E11 2
a2l

4(c1a)
2a( l 1j0/2) acl

(c1a)

E12
al(a12c)
4(c1a)

a( l 1j0/2) 0

E22 2
a2l

4(c1a)
2

a2l

(c1a)
2aj0/2 0
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B. Quantum point contact

The low-frequency conductance of a quantum point c
tact ~QPC! connecting two normal leads has been studied
Ref. 21. We adapt this procedure to our situation sketche
Fig. 2. In a first step we only consider one transmiss
channel. We assume the QPC is described by a symm
equilibrium potential. At equilibrium the only asymmetr
stems from the presence of the superconducting lead. P
ization of the QPC due to an applied voltage leads to a
pole. ~Chargingvis-à-vis the gates is neglected. See, ho
ever, Ref. 22.! The size of this dipole is described by on
single capacitanceC0. Furthermore, we limit ourselves to
semiclassical treatment which essentially means that the
fining potential is sufficiently expanded in space. As a s
ond parameter we need the total density of states at the F
level ~over a region in which the charge is not screen
fully !, when the system is entirely normalDN5q2NF . In
addition, scattering at the QPC is characterized by its tra
mission probabilityT and its reflection probabilityR51
2T. Under these assumptions the scattering matrix of
normal part takes the form

sN
pp5S 2 iARei (fp1fA

p) ATeifp

ATeifp
2 iARei (fp2fA

p)D , ~23!

wherefp is the phase accumulated during transmission,
fp6fA

p are the phases accumulated during reflection fr
the left and right. The symmetry of the point contact and
restriction to a semiclassical treatment lead to the follow
relations,
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]fp

]U1
p

5
]fp

]U2
p

5
]fA

p

]U1
p

52
]fA

p

]U2
p

52
pqNF

4
. ~24!

We denote the local electrostatic potentials on the dipole
U1 and U2. Relations similar to Eq.~24! hold for the hole
part of the scattering matrixSN

hh . The Andreev reflection can
be described by the matrix

sA5exp@2 i arccos~E/D!#S 0 1

1 0D . ~25!

As shown in Ref. 21 the electrochemical capacitance
the emittance in the purely normal system are

CN5R
C0DN

4C01DN
, EN5RCN2

DN

4
T2. ~26!

This result uses the fact that the semiclassical injectivi
may be written as

]Q1
N

]V1
5

DN

4
~11R!,

]Q2
N

]V1
5

DN

4
~12R!. ~27!

For example, the response]Q1
N/]V1 originates from all the

right-going electrons in region 1 plus the left-going ones t
have been reflected at the barrier.

It is clear that this picture will change drastically in th
presence of a superconductor. We denote byRN54R/(1
1R)2 the probability that an electron is scattered back as
electron. The probability for Andreev reflection we callRA
512RN5T2/(11R)2. The dc conductance is of cours
4RAq2/h. The injectivities now turn out to be
1-5
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]Q1
S

]V1
5

DN

2
RN ,

]Q2
S

]V1
50, ~28!

]Q1
S

]V2
5

DN

2
RA ,

]Q2
S

]V2
5

DN

2
. ~29!

For example in]Q1
S/]V1, we recognize that only the elec

trons that return as electrons contribute to the injectivity.
see also that the normal terminal cannot inject charge into
right side of the QPC, which is also intuitively clear.

Now we use these ingredients to find the capacitance
emittance of the whole QPC. For simplicity, we cite the
sults without the length renormalization due to a finitej0 in
the superconductor~see example!. We find

CS5RN

C0DN

4C01DN
, ~30!

ES5RNCS2
T~124R2R2!

~11R!4
DN. ~31!

In the low transparency limit (R.1) the result is the
same as for the purely normal conducting system~26!. In the
high transparency limit (R.0) we recover the inductive be
havior of the example in Sec. V A. Again the emittance
increased by a factor of 4 in comparison to the result~26!.

Figure 3 shows a qualitative comparison of the cond
tance, capacitance, and emittance of a multichannel QP
the two geometries. We use a capacitance ofC051 f F and a
potentialU(x)5max$V0(l

22x2),0% wherel5500 nm. The
constriction in they direction allows up to five open channe
with equidistant spacing through the contact.

What are the restrictions of the results obtained for
simple model system? The assumption that the NS inter
is a perfect Andreev mirror seems to play the most import
role. In this case we may neglect the capacitance of the

FIG. 3. Comparison between transport properties of a mu
channel quantum point contact either attached to a normal
~narrow line! or a superconducting lead~broad line!. In the presence
of the superconductor, its dc conductance is doubled and the
frequency ac response is enhanced by a factor of 4 in the tran
ent limit. The curves are calculated in a WKB approximation. T
parameters used are specified in the text.
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interface. If such a capacitance would be present it wo
decrease the inductive behavior at high transparency.

VI. CONCLUSIONS

In this work we have extended the ac-response theor
normal mesoscopic conductors to hybrid normal and sup
conducting structures. This requires an investigation
screening and a discussion of the charge-density respon
external lead voltages in the presence of Andreev scatter
Global gauge invariance is valid also for the hybrid stru
tures investigated here. This leads necessarily to the e
tence of aninjectivity of the superconductor into the norm
part of the structure. The charge injectivity of the superco
ductor compensates for the suppression of the charge in
tivity from a normal contact.

Screening in hybrid structures is, up to small correctio
the same as in normal conductors. Nevertheless, the a
sponse of hybrid structures exhibits marked differences fr
that of a purely normal system. For a ballistic wire at one e
connected to a superconducting reservoir, the emittanc
four times as large as that of a purely normal wire. Furth
more, the displacement current induced into a nearby gat
response to an oscillating voltage at the normal contact~de-
scribed by an off-diagonal capacitance element! is highly
suppressed compared to the purely normal structure. A qu
tum point contact attached to a superconductor shows
same capacitive behavior as its normal conducting analo
the limit of small transmission. For high transmission t
emittance is enhanced as in the case of a ballistic wire.

For the ac-conductance problem screening is necessa
we want to find a response that depends only on volt
differences and which conserves current. We have focu
on geometries with a single NS interface but similar cons
erations should apply if we deal with superconducting N
structures or more complicated geometries. Electrical s
consistency is relevant not only for dynamic problems b
also if we are interested in nonlinear transport or even jus
the gate voltage dependence of stationary transport qu
ties. Therefore, the considerations presented should be u
for a wide range of geometries and for the investigation
many different physical problems.
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APPENDIX A: CHARGE DENSITY

This is an outline of the derivation of formula~6!. We
express the expectation value of the charge-density ope
with help of the normalized solutions@wb

m(r ,E)#†

5$@ub
m(r ,E)#* ,@vb

m(r ,E)#* % of the Bogoliubov-de Genne
equation12
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^r̂&5q(
bm

E
2`

1`

dE~wb
m!†S f b

m 0

0 12 f b
mD wb

m . ~A1!

The solutions of the Bogoliubov-de Gennes equation
scattering states in our case. We include the usual prefac
containing the group velocities in the normalization facto
of the wave functions. Their mean occupation number can
expressed by the Fermi functions of the reservoirsf b

p/h(E)
5 f (E2qp/hVb) depending on whether they describe an
coming particlep or hole h. qp/h56q denotes their quasi
particle charge.

The starting point of the calculation is the Bogoliubov-
Gennes Eq.~4!. For the moment we allow the electrostat
potentialsUp/h to be complex. The continuity equation fo
the quasiparticle currentj ab

m then reads

¹ j b
m5

2q

\
@ Im~Up!uub

mu21Im~Uh!uvb
mu2#. ~A2!

The complex potentials generate source terms on the r
side of Eq.~A2!. As a next step we integrate this equati
over the volume of the scatterer. To this end we choose
potentials to vary likeUp/h5U0

p/h1 iGp/hd(x2x0). We then
get for the current

I b,out
m 2I b,in

m 5
2q

\
@Gpuub

m~x0!u21Ghuvb
m~x0!u2#. ~A3!

In this equation we callI in/out the total current flow into and
out of the scattering region. Their difference is not zero
cause of the source term in Eq.~A2!. The ratio of both quan-
tities can be expressed by the scattering matrixs,

I b,out
m

I b,in
m

5(
an

~sab
nm !* sab

nm . ~A4!

The scattering matrix is a functional of the small compl
variationGp/h and thus can be expanded up to first order.
evaluate the incoming currentI in we use the normalization o
the wave functionswb

m and getI b,in
m 51/h. Finally we man-

age to express the square of the wave functions by
LPDOS given in definition~3!

(
an

n~an ,r p ,bm!5uub
m~r !u2, ~A5!

(
an

n~an ,r h ,bm!5uvb
m~r !u2. ~A6!

These quantities can be inserted into Eq.~A1! to get the final
result ~6! given at the beginning of the paper.
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APPENDIX B: LINDHARD FUNCTION

In this Appendix we explain the derivation of the loc
Lindhard function ~LLF! given in Eq. ~9!. The nonlocal
Lindhard function ~NLF! is given by P̃(r ,r 8)5
2dr(r )/dU(r 8). We define functional potential derivative
of the LPDOS~3! as follows:

xab
mn~r k ,r l8 !5

dn~an ,r k ,bm!

dUl~r 8!
. ~B1!

Using this definition and Eq.~6! we can write the NLF as

P̃52qE
2`

`

dE (
abmnl

@ f ~E!xab
mn~r p ,r l8 !

1 f ~2E!xab
mn~r h ,r l8 !#. ~B2!

The NLF is not a Fermi-surface quantity but depends on
energies within the conduction band. The LLF is a go
approximation if the electrostatic potentialU varies slowly
on the scale of the Fermi wavelength. Under these circu
stances the spatial integration appearing, for example, in
~7! can be simplified:

E dr8P̃~r ,r 8!dU~r 8!5dU~r !E dr8P̃~r ,r 8!

5dU~r !P~r !. ~B3!

To get the LLF we must therefore integrate the NLF over
second spatial variabler 8. Because of particle-hole symme
try it is sufficient to keep the first part of Eq.~B2!. We may
thus write the LLF in the following way:

P~r !522qE
2`

1`

dE f~E! (
abnml

E dr8xab
mn~r p ,r l8 !.

~B4!

This integral is cut off at the higher bound by the Fer
factor f (E). Far outside the superconducting gap t
Andreev-reflection probability decays as;uDu2/E2 and the
sample behaves as a normal conductor. In this energy ra
the response functionsxab

mn(r k ,r l8) vanish, if they contain
both particle and hole indices. We may therefore write

P522qE
2`

1`

dE f~E!(
ab

E dr8xab
pp~r p ,r p8!

1OS uDu
uE2qUu D . ~B5!

In the same range of validity we may replace the integ
over the LPDOS of the hybrid structuren by its equivalent
for the purely normal structurenN

E
2`

1`

dE f~E!xab
pp~r p ,r p8!5E

2`

1`

dE f~E!
dnN~a,r ,b!

dU~r 8!

1OS uDu
uE2qUu D . ~B6!
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The spatial integration overr 8 of the functional derivative
with respect to the potentialU(r 8) is equivalent to an energ
derivative with opposite sign,

E dr8
d

qdU~r 8!
52

d

dE
. ~B7!
ct.
ity

jk,

B.

C

ev

04532
Equation~B5! therefore becomes

P522qE
2`

1`

dE f~E!(
ab

2dnN~a,r ,b!

dE
1OS uDu

uE2qUu D .

~B8!

Applying partial integration we get the result presented
Eq. ~9!.
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