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Charge distribution is a basic aspect of electrical transport. In this work we investigate the self-consistent
charge response of normal-superconducting heterostructures. Of interest is the variation of the charge density
due to voltage changes at contacts and due to changes in the electrostatic potential. We present response
functions in terms of functional derivatives of the scattering matrix. We use these results to find the dynamic
conductance matrix to lowest order in frequency. We illustrate similarities and differences between normal
systems and heterostructures for specific examples such as a ballistic wire and a quantum point contact.
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[. INTRODUCTION tions. In Sec. IV we use these results to formulate a self-
consistent theory of low-frequency ac response. To illustrate

During the past decade mesoscopic systems consisting ofir results we consider in Sec. V two examples: a ballistic
both normal and superconducting parts have attracted comvire and the quantum point contact connected to a supercon-
siderable attention. Microscopically, the interesting physicgiuctor.
stems from Andreev reflection. An incident particle is re-
flected as a hole and a Cooper pair is generated in the super- Il. CHARGE DENSITY
conductor. This results in an effective charge transfer ef 2 In thi . deri h | ion for th
and correlations between Andreev-reflected electron-hole " S Se?“‘?” we. erive the g.enera expression or.t €
pairs (the proximity effect. These effects have been investi- charge densityp(r)) in the scattering problem sketched in
gated in many experimental and theoretical wofdscusing ~ Fig. 1. A scattering region is attachedonormal leads and
mainly on the stationary transport regirfue conductandé* one supercondyctmg lead. Every normal Iead. is character-
and the low-frequency nois@hot nois@>® The ac regime ized by its applied voltag¥ ,, the superconducting lead by
has attracted much less attentior® its pair potentialA, and the biad/g. For all the calculations

In an Andreev process the electron and hole parts of the may choos&/s=0. The fact that we only allow for one
wave function contribute with opposite charge. It is thereforesuperconducting terminal excludes all time-dependent
interesting to investigate the low-frequency ac transport ofosephson-like effects. For an introduction to the applied for-
norma|_superconductir@\jS) systems, since this prob|em re- malism we refer the reader to Ref. 12. The whole system is
quires an electrically self-consistent discussion of the chargéescribed by its scattering matrix

distribution in the sample. This self-consistency is of impor- o

. . PP
tance not only for ac transport but also for the discussion of s — ( Sep aﬁ) 1)
B~ | gh hh | -
" \sep Sap

charge fluctuations and the nonlinear transport redime.

In this work we have in mind the interplay of two main
properties of hybrid structures. On one hand raising or low-
ering the voltage at a normal contact of the sample will not
inject an additional charge into regions where the wave func-
tions contain electron and hole amplitudes of equal magni-
tude. This is in strong contrast to a purely normal conductor.
On the other hand screening is a property not only of the
states at the Fermi surface but of the entire electron gas. Thus
the ability of a hybrid structure to screen an additional charge
is essentially the same as that of a normal conductor.

Our results show two main differences compared to
purely normal systems. First, the coupling of carriers with
opposite charge reduces the interaction with nearby gates.
Second, Andreev reflection increases the dwell time inside [ G 1. A mesoscopic scattering region is attachedl toormal
the structure and this affects the ac response. reservoirs and one superconducting reservoir. It is described by two

The paper is organized as follows. In Sec. II, we derive anscattering matricesy describing the normal conducting region and
expression of the charge density in terms of functional des, describing the Andreev reflection. Each terminal has its own bias
rivatives of the scattering matrix. We next discuss the chargevoltage V,,. The electrostatic potentidl inside the scatterer is
density response to external and internal potential perturbaalculated self-consistently.
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The elemensg‘l’;, for example, is the current amplitude of a The bar denotes the opposite/ti=h/p). The reciprocity
hole that leaves through leadl and has entered with unit relations can be used to reduce the expense of the calcula-
current amplitude as a particle through lggdWe represent  tion. The examples of Sec. V show how the LPDOS can be
each scattering channel by its own lead to save two indicesvaluated in practice.

It is conceptually useftf to imagine the scattering matrix The charge density inside the normal-superconducting
s being assembled from a part that describes the reflectioneterostructure can be entirely expressed by the LPRO&

and transmission in the normal region therefore by the scattering matriand the occupation factors
of the attached reservoirs
Sﬁl?aﬁ 0
SN,ag™ 0 ghh 2 ~ *
N.aB <p(r)>=OIJ dE /32 (fa(E)v(e,,rp,Bu)
—® aBuv

and from a part that describes the Andreev processes at the
interfacg between normal metal and. supercondusior +[1-5(BE)]v(a, 1y, Bu)- (6)
Only this second matrix leads to coupling between the par- ) ) .

ticle and hole scattering states. However, the following deri-1 N€ QCCUp’;':}EOI’I factors InC/|'l1,lde the bias voltage of the normal
vations do not depend on this assumption. For energies terminalst;"(E)=f(E—q"Vy). Heref is the Fermi func-
smaller than the gap energy| only reflection takes place at tion. Note tha? the occupation factors vary in opposite direc-
the interface. The total scattering matsxhen has the di- tions for particles and holes. In E¢6) we have double
mension (Ny)2 where Ny=3N,, is the total number of counted the particle-hole excitations and hence drop a factor

channels leading to normal reservoirs. Above the gap w@f 2 for spin degeneracy. The derivation of this result is

must also include transmission processes, and therefore tiitlined in Appendix A.

dimension changes to [2+2Ng)2. The superconducting

terminal add-‘:j\]S more channels. Ill. CHARGE RESPONSE AND GAUGE INVARIANCE
For the following it is helpful to introduce local partial

" Given formula(6) we are now in a position to calculate
densities of stated PDOS,'* © P

the charge-density respongp(r) to both internal and exter-
nal potential variations,

(g 1B == ——im| (2" | (g
v(a,,r,B,)=———m| (s’ .
“ 2mge P 5Ux(r) _ dp(r) = ,
Sp(r)= >, v Ve | drii(rrsur).
This expression is valid for one channel per lead. A true p=S1..N Vg
multichannel expression would include a trace over the chan- )

nels. The value/(1y,rp,2,), for example, describes the den- The first contribution is the bare charge injected from the
sity of particles at location that entered as particles through leads due to the shift of the occupation factors, and is pro-
contact 2 and leave as holes through lead 1. In(Bgwe  portional to the injectivitiesip(r)/dV 4. The second contri-
denote the quasiparticle charge §§"=+q. The LPDOS  bution arises from the change of the internal potential due to
must be calculated as functional derivatives of the scatteringcreening(the potential itself will be determined in the fol-
matrix with respect to the electrostatic potential To gain  lowing subsectiop and involves the Lindhard function
the information about particles and holes separ&téiyhich fi(r,r'y=—38p(r)/8U(r").

is necessary because they contribute with opposite charge The injectivity from the normal leads can be calculated

we artificially split up the electrostatic potentidlin a part  strajghtforwardly from the charge densit§)
that acts on particledP and another that addresses h

The Bogoliubov-de Gennes Hamiltonian then takes the form ap(r) _f dE( of
JE

Ho+qUP(X)—Ex A Ng
A= _ and depends at low temperatures as expected only on prop-
A* (He 4 qUM(X) — Eo)* erties at the Fermi energy. The other quantities contained in
(Ho+qU(x)—E) 4 the balance equatidisee Eq(7)] need a more careful analy-
) sis. Their technical details are explained in Appendix B.
These equations have to be solved including a small varia- The procedure of calculating the nonlocal Lindhard func-
tion of the electrostatic potentials” andU" in order to get tion fi(r,r') leads to second-order functional derivatives

the scattering matrix and its functional derivatives. The sepagat cannot be simplified further. The expressions can be sim-

ration of U into UP and U" is a purely technical step that pjified if we assume the Lindhard function to be local,
helps to present the results in a symmetrized form. A physi=

. R o II(r,r")=6(r —r")II(r). This assumption is correct if the
cafll scalgrbpotﬁ nt|fal hars] alvxr/]ays tt)he p[jop;.emt%:tJPbg;s IS lectrostatic potential varies only slowly on the scale of the
re ected by the fact that t € above-define g are ncEermi wavelength\ ¢ . In a short calculation given in Appen-
independent—they obey reciprocity relations. This has beeaix B we find the local Lindhard function
investigated in Ref. 14. The particle-hole symmetry of the
Bogoliubov-de Gennes equation implies

V(alurkiﬁ,uvE):V(ajarzaﬁ;r_E)- (5)

> a‘a“v(a,,r..B,) (8

avuk

|A]

H(r)=2q2aEB VN(a,r,,B,E=0)+O(m), 9
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which involves the following LPDOS, which is valid in the presence of time-reversal symmetry.
The kernelg(r,r’) is given by fdr"4=II(r,r")g(r",r")

1 op s OSNeap —V2g(r,r')=4m8(r—r'). In a discretized model the
wn(a,r,B)=— quplm (SN,ap) SUP(r) Laplace operator may be replaced by a capacitance matrix.
To find the bare contributiof£®2'® to the emittance we
1 " 5Srﬁ1ha,3 proceed as in Ref. 16. We use the current operator at the
=— mUt (SN ap)” |- (10 normal conducting terminatk,
27q sU"(r)
These LPDOS correspond to a purely normal conducting |Aa:1 > qvf dEdE’e“(E*E')t’hé‘g’T(E)ég:(E’)
structure. The sum over, 3 in Eq. (9) gives the total local BB vww’
density of states at the Fermi energy-0. The first part of ! ,
Eq. (9) is therefore the expression for Thomas-Fermi screen- XAB,@'(“'U'E’E ), (14)

ing. If the condition|E—qU(r)[>[A] is fulfilled, the pres- i, 3 gimpiified form that is valid in the low-frequency limit.
ence of the superconductor does not affect the screeninghg 1| current operator has been given, for example, in Ref.
properties of the sample. This is the case for the examples; |, Eq.(14) the indicesa, 3,8’ denote leadgand chan-
presented in this paper. However, there are situations wheﬁle|s); v,w,w’ distinguish particle and hole states. The opera-

the corrections to Thomas-Fermi screening can become irq— A(EY f | t hole of incident
portant, i.e., when the scattering matrix shows strong reso’ a,(E), for example, creates a hole of energynciden

nances below the superconducting gap. In this case, the loctC éad 1. The matrix elemenssare given by
Lindhard function cannot be expressed through LPDOS at .. , oW e W )
E=0 only, but its calculation must directly start from Eq. Appr (ay BEB")=84580p Synbyw — (Sup(E))* S5 (E').
(6). (15
A simple argument allows us to get the injectivity from The ac conductivity can then be obtained from
the superconducting terminap(r)/dVg without any further
calculation. The Bogoliubov-de Gennes equations are gauge 1 (= 0ti18)/7 .
invariant; a simultaneous change of all external and internal Gaa':%fo dre ([Ta(7), 14 (0)]). (16)
potentials by the same amount will not lead to any charge
inside the system. Setting the left side of Ed@) to zero  The evaluation of the commutator is mostly straightforward.
gives therefore As in previous work!¥ we use the unitarity of the scattering
matrix and the thermal occupation of the reservoirs. As in the
ap(r) case of a purely normal system we are left with a doubled
(11 energy integral. We can evaluate this integral through a path
deformation in the upper complex plane where the scattering
SinceII(r) and the injectivities of all normal contacts are matrix is analytical. In the end we expand the result up to
known we can use this relation to find the injectivity first order in frequency. The result for the dc conductance
dp(r)/dVg of the superconducting contact.

H(r)=

p=S1..N Ng '

0 1 of 1z v
Gop=r | B[ — —5| 2 0“0'[8upd.,—Tapl (A7)
IV. LINEAR-RESPONSE CALCULATION lald

In order to get the low-frequency ac response of our sysiS identical to the one established in the literattr&13.19

tem it is necessary to distinguish two contributions to theThis serves as a check of our calculation. In Ej), T;z
current. On one hand we have the current fIO#© of non- = (Shp)* Sk is the transmission probability from channel
interacting particles which can be accessed by a linearto channekr. The bare emittance can be expressed by global
response theory. On the other hand we may not neglect theartial densities of states,

screening currents|*¢" due to interactions. The low-

. . 1 SZIL
frequency conductance matrix can be generally written as N(a,.B,)= , Im(syﬁ‘ % B, (18)
T JE
—a<|“>—G° —iwE 12 db

“ﬂ_a—vﬁ_ ap 10Eqp, (12  and becomes

. : . of
where the “emittance” matrixE consists of two parts bare__ - 4
— gbarey gscr. P 2 ECV.B f dE( O'IE)VE,M q q’uN(aV"BM)' (19

The scregning curren'ts may be calculated qgasistaticall¥his equation shows that the bare emittance may change its
solving a Poisson equation self-consistently. This procedur

) ; . . . gign. This simple calculation provides only the emittance
's described in detail in Ref. 15. Here we cite only the resur{’matrix elements between normal terminals. A direct calcula-

tion of the current at the superconducting reservoir would
’ (13  involve a self-consistent evaluation of the pair potential in
« Vg the superconductor. Its phase “carries” the supercurrent.

dp(r) dp(r’)
scr_ ’ ’
wp = fdrdr g(r,r’) EY;
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DOS at the Fermi level in the wire. Note thatis also the

local Lindhard function of Eq(9). The interaction in the
wire is modeled by a third gate termin@). It is coupled to

the wire by a geometrical capacitance per unit lerggind
assumed to be macroscopic. Thus we can replace the Laplace
operator in Eq(13) by —4c. For a detailed description of
this system see, for example Ref. 20. As a last parameter we
need the coherence length of the supercondudigr
=hvg/|A|. We neglect the self-consistency of its pair poten-
tial.

We indicate briefly the calculation for the wire connected
to one normal and one superconducting reservoir. The other
cases can be worked out similarly. The scattering matrix is
given by

(a)

1
W(ZEI—q5Up+q5Uh)—arcco$E/A)H,
F

FIG. 2. Examples(a) A one-channel ballistic wire is attached to sﬂ‘: exp{ i
a superconductor. Its length is denotedlpthe internal interaction

modeled by a capacitance per unit lengthetween wire and gate.

The emittance is enhanced by a factor of 4 compared to a purelysPP=s"=0, sP=gPll, (22)
normal wire.(b) The same geometry for a quantum point contact

which is described by an electrostatic dipole of capacita®geln  From this scattering matrix we calculate the partial density of
the low transparency limit the ac conductance is dominated by thetates(3), (10), and(18) at E=0 [for instance,v(1,,r . 1p)
geometric capacitandgy. In the (_)pposite Ii_mit the quantum point =0, \(1r,2)=1/hvE, andN(1p,1,) = 2(1+ &/2) [hog- - -]
contact shows enhanced inductive behavior. that can be used to find the injectivities and the Lindhard

. . function (see Sec. ),
Nevertheless, the missing elements of the emittance matrix

can be reconstructed from the conditions 2

ap ap . 4q

—=0, ——=a, II=a, with a=—. (22

(9V1 £7V2 hUF

Every electron that is injected from the normal lead comes
that express current and charge conservation. back as a hole that compensates its charge. Therefore the
Recapitulating, the calculation of the low-frequency con-injectivity from the normal sidep/dV, is zero.

ductance(12) includes the following steps: Eq$3), (10), Table | summarizes the results for the three cases. The

and (18) are used to obtain the partial densities of statesmissing elements of the emittance matrix can be recon-
These densities allow the calculation of the charge injectivistructed from Eq(20). We add some observations to explain
ties (8) and the Lindhard functiof9). The emittance matrix the differences between the results. The response of the dis-
then consists of two parts: we get the bare emittance frongonnected wire is purely capacitive, while the open wires act

Eqg. (19) and the screening currents from E3). inductively.
In the limit of charge neutralitg<a the inductive emit-
V. EXAMPLES tance of an open wird,; grows by a factor of 4 in the

Wi t imol lculati to illustrat presence of a superconductor. On one hand the bare emit-
€ now present some simplé caicuialions 10 1Mustral&ancq js doubled, because an incoming electron leaving as an
how the presence of a superconducting terminal affects thﬁndreev-reflected hole stays twice as long in the wire. On

a;}c propertlesl of a mes%scqplc jample.dV\lle emﬁ’.h"’.‘s'ze th e other hand the total emittance is not decreased by the
these examples are not designed to model a realistic Samp@nyipytion of the screened emittance, because the injectiv-
completely, but should exhibit qualitatively the main fea- ity from the normal lead into the wirép/ 3V, is zero. This

tures. leads to another factor of 2. Additionally, the evanescent qua-
o siparticle wave contributes to the bare emittance, and the
A. Ballistic wire wire acquires an effective length+ £,/2 (we use the as-

As a first example we discuss briefly the emittance of asumption that the Fermi velocities are the same on both sides
ballistic wire with one open channel at zero temperature. Thef the NS interfacke The emittanc 3= EI5'«dp/9V,=0 is
results can be easily generalized to more than one channellways zero in the presence of a superconductor. The gate
The geometry of the sample is shown in Fig. 2. The wire isand the normal terminal are only connected via the capaci-
attached to two reservoird and 2. Reservoir 1 is always tance. But this capacitance cannot be charged from the nor-
normal conducting. The second may be normal conductingnal side 1 because the above-mentioned injectigjiyoV,
superconducting, or completely disconnected from the wirgs zero. Vice versa, the capacitive elemEnf becomes twice
for comparison. The wire is described by its leng#ind the  as big because of a doubled injectivity/ 9V in the limit of
dimensionless parametar=4q%/hve which describes the potential neutralityc> a.

045321-4



CHARGE AND LOW-FREQUENCY RESPONSER. . . PHYSICAL REVIEW B 65 045321

TABLE |. Comparison of the emittance elements of a ballistic wire connected to two normal reservoirs,
a normal and a superconducting reservoir, and to one normal reservoir only.cHgrthe capacitance
between an additional gate and the wirdts length, &,=%uvg/|A| the coherence length of the supercon-
ductor, anda=4q?% v a parameter proportional to the density of states.

Normal conducting Superconducting Disconnected
Ebare 0 —a(l+&)/2) al
Ebare al/2 a(l+&/2) 0
Ebare 0 —aéyl2 0
Eiir _ a2I 0 _ a2I
4(c+a) (c+a)
2
EsS' __ & 0 0
4(c+a)
Egtz:r _ a2I . a2I 0
4(c+a) (c+a)
2
Eu __al —a(l+£&/2) _acl
4(c+a) (c+a)
Ex al(a+2c) a(l+&/2) 0
4(cta)
2| a®l
E2 __at 7 0
4(c+a) (c+a) agol2

B. Quantum point contact
Q P a6P 9P PR R maNe

Jub  auB guP  gub 4

The low-frequency conductance of a quantum point con- (24)

tact (QPO connecting two normal leads has been studied in
Ref. 21. We adapt this procedure to our situation sketched ilVe denote the local electrostatic potentials on the dipole by
Fig. 2. In a first step we only consider one transmissiond; and U,. Relations similar to Eq(24) hold for the hole
channel. We assume the QPC is described by a symmetrigart of the scattering matrigy". The Andreev reflection can
equilibrium potential. At equilibrium the only asymmetry be described by the matrix

stems from the presence of the superconducting lead. Polar-

ization of the QPC due to an applied voltage leads to a di- ) 1

pole. (Chargingvis-avis the gates is neglected. See, how- sa=exd i arcco$E/A)]( 1 ol (25
ever, Ref. 22. The size of this dipole is described by one

single capacitanc€,. Furthermore, we limit ourselves to a  As shown in Ref. 21 the electrochemical capacitance and
semiclassical treatment which essentially means that the cothe emittance in the purely normal system are

fining potential is sufficiently expanded in space. As a sec-

ond parameter we need the total density of states at the Fermi C,DN N N DN )

level (over a region in which the charge is not screened C :Rm’ E"=RC _TT : (26)
fully), when the system is entirely normBIN=g2Ng. In 0

addition, scattering at the QPC is characterized by its transFhis result uses the fact that the semiclassical injectivities
mission probability T and its reflection probabilitR=1 may be written as
—T. Under these assumptions the scattering matrix of the

N N N

N
normal part takes the form dQr D Q; D
- = + - = _ .
v, - g (R o= (R (@)
op —i R+ R ﬁe“ﬁp For example, the responﬁ@’flavl originates from all the
SN = . . , (23 right-going electrons in region 1 plus the left-going ones that
P —iJRd(4"—¢a .
JTe i VRN have been reflected at the barrier.

It is clear that this picture will change drastically in the
where ¢P is the phase accumulated during transmission, angresence of a superconductor. We denote Rpy=4R/(1
$P+ ¢R are the phases accumulated during reflection fromt+ R)? the probability that an electron is scattered back as an
the left and right. The symmetry of the point contact and theelectron. The probability for Andreev reflection we cRl\
restriction to a semiclassical treatment lead to the following=1—Ry=T%(1+R)2. The dc conductance is of course
relations, 4R,0%/h. The injectivities now turn out to be
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interface. If such a capacitance would be present it would
decrease the inductive behavior at high transparency.

VI. CONCLUSIONS

In this work we have extended the ac-response theory of
normal mesoscopic conductors to hybrid normal and super-
conducting structures. This requires an investigation of

. [ N RSN screening and a discussion of the charge-density response to
“*J o e ~J external lead voltages in the presence of Andreev scattering.
i‘ ~ : N Emittance [C;) Global gauge invariance is valid also for the hybrid struc-
-10 i D ' tures investigated here. This leads necessarily to the exis-
0 Barrier Height V,, / E, 1 tence of arinjectivity of the superconductor into the normal

_ ) _part of the structure. The charge injectivity of the supercon-
FIG. 3. Comparison between transport properties of a multi-qyctor compensates for the suppression of the charge injec-
channel quantum point contact either attached to a normal leaﬂvity from a normal contact.
(narrow ling or a superconducting ledtroad ling. In the presence Screening in hybrid structures is, up to small corrections,
of the superconductor, its dc conductance is doubled and the lowy . <~ .« o< in normal conductors. Nevertheless. the ac re-
frquency ac response is enhanced.by a factor of 4 ".1 the. tranSIDa§bonse of hybrid structures exhibits marked differénces from
ent limit. The curves are Cfi!cu'z.ited In & WKB approximation. Thethat of a purely normal system. For a ballistic wire at one end
parameters used are specified in the tex. connected to a superconducting reservoir, the emittance is
four times as large as that of a purely normal wire. Further-

S N S
9Q1 _ D_ 9Q3 _ more, the displacement current induced into a nearby gate in

- = v = =0, 28 e
Ny 2 N vy 8 response to an oscillating voltage at the normal corlet
S S scribed by an off-diagonal capacitance elemasthighly
dQ; DN dQ, DN suppressed compared to the purely normal structure. A quan-

N, TRA' N, 2° 29 ym point contact attached to a superconductor shows the
s . same capacitive behavior as its normal conducting analog in
For example indQ;/dV,, we recognize that only the elec- the |imit of small transmission. For high transmission the
trons that return as electrons contribute to the injectivity. Weamittance is enhanced as in the case of a ballistic wire.
see also that the normal terminal cannot inject charge into the Eqr the ac-conductance problem screening is necessary if
right side of the QPC, which is also intuitively clear. we want to find a response that depends only on voltage
Now we use these ingredients to find the capacitance angifferences and which conserves current. We have focused
emittance of the whole QPC. For simplicity, we cite the re-on geometries with a single NS interface but similar consid-
sults without the length renormalization due to a fiffiein  erations should apply if we deal with superconducting NS
the superconductdisee example We find structures or more complicated geometries. Electrical self-
N consistency is relevant not only for dynamic problems but
CoD (30) also if we are interested in nonlinear transport or even just in
N4C0+ DN’ the gate voltage dependence of stationary transport quanti-
ties. Therefore, the considerations presented should be useful
for a wide range of geometries and for the investigation of
(31)  many different physical problems.

CS=R

T(1-4R-R%)

S_ S
E=RiC (1+R)*

In the low transparency limitR=1) the result is the
same as for the purely normal conducting syst&6). In the
high transparency limitR=0) we recover the inductive be-  We thank Wolfgang Belzig for an important discussion.
havior of the example in Sec. V A. Again the emittance isThis work was supported by the Swiss National Science
increased by a factor of 4 in comparison to the re&2. Foundation and by the RTN network on “Nanoscale Dynam-

Figure 3 shows a qualitative comparison of the conducics, Coherence, and Computation.”
tance, capacitance, and emittance of a multichannel QPC in
the two geometries. We use a capacitanc€gpf 1fF and a
potential U (x) = maxVy(A\2—x%),0} whereA=500 nm. The
constriction in they direction allows up to five open channels
with equidistant spacing through the contact. This is an outline of the derivation of formul@). We

What are the restrictions of the results obtained for ouexpress the expectation value of the charge-density operator
simple model system? The assumption that the NS interfaceith help of the normalized solutions[wg(r,E)]T
is a perfect Andreev mirror seems to play the most important={[uj(r,E)]*,[vj(r,E)]*} of the Bogoliubov-de Gennes
role. In this case we may neglect the capacitance of the NSquatior?
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. fg 0 APPENDIX B: LINDHARD FUNCTION
N\ — myt M
(p) q% jfoc dE(wp) ( 0 1—fg)wﬁ' (A1) In this Appendix we explain the derivation of the local
Lindhard function (LLF) given in Eg. (9). The nonlocal

The solutions of the Bogoliubov-de Gennes equation ardindhard fur)cnon (NLF) is given by TI(r,r')=
scattering states in our case. We include the usual prefactors 2P(1)/8U(r"). We define functional potential derivatives
containing the group velocities in the normalization factors®! the LPDOS(3) as follows:
of the wave functions. Their mean occupation number can be
expressed by the Fermi functions of the reservég‘g(E)
=f(E—q”"V,) depending on whether they describe an in-
coming particlep or holeh. g°"= +q denotes their quasi-
particle charge.

The starting point of the calculation is the Bogoliubov-de

ov(a,,re,B,)
SUMr")

Using this definition and Eq6) we can write the NLF as

Xap(Fe i) = (B1)

Gennes Eq(4). For the moment we allow the electrostatic = —qf dE 2 [f(E)Xﬁ:g(rp,r)’\)
potentialsUP'" to be complex. The continuity equation for —e aBur
the quasiparticle current,; then reads +f(—E)x“4(ry 1 (B2)

) The NLF is not a Fermi-surface quantity but depends on all

: q energies within the conduction band. The LLF is a good

7 — p y2 2+ h w2 g g

Vik f [Im(UP)uj] ™+ Im(UP o[- (A2) approximation if the electrostatic potentidl varies slowly

on the scale of the Fermi wavelength. Under these circum-
ances the spatial integration appearing, for example, in Eq.

The complex potentials generate source terms on the rig ) can be simplified:

side of Eq.(A2). As a next step we integrate this equation
over the volume of the scatterer. To this end we choose the
potentials to vary likeJP"=UBM+iTP"s(x—x,). We then f dr'T(r,r")su(r’)= 5U(r)J dr'fi(r,r")
get for the current

=8U(r)II(r). (B3)

To get the LLF we must therefore integrate the NLF over its
second spatial variable'. Because of particle-hole symme-
try it is sufficient to keep the first part of EqB2). We may
thus write the LLF in the following way:

2q
15 .0u™V.in =7 [TPlUB(X0) 2+ TM05(x0) [?].  (A3)

In this equation we call;,;o,; the total current flow into and
out of the scattering region. Their difference is not zero be- +oo
cause of the source term in E@\2). The ratio of both quan- I(r)= —ZqI dEf(E) >, dr' x5e(re.ry).

tities can be expressed by the scattering magrix apvu (B4)
. This integral is cut off at the higher bound by the Fermi
I'B'Om=2 (SVH)* sPh (Ad) factor f(E). Far outside the superconducting gap the
|1 < \Jap) Sap: Andreev-reflection probability decays as|A|?/E? and the

B,in .
sample behaves as a normal conductor. In this energy range

. o : the response function,sgg(rk,r)’\) vanish, if they contain
The_ s_cattermg matrix is a functional of the sm_all Complexboth particle and hole indices. We may therefore write
variationI",;, and thus can be expanded up to first order. To

evaluate the incoming curreht, we use the normalization of oo
the wave functionsv/; and getls ;,= 1/h. Finally we man- 1= —ZQJ dEf(E) Y, f dr' xE5(rp.rp)
age to express the square of the wave functions by the o op

LPDOS given in definition(3) |A|
+0| — |- B5
E-qU| (59
> v(a,,r,,B )=|ug(r)|2, (A5)  In the same range of validity we may replace the integral
av g over the LPDOS of the hybrid structuteby its equivalent
for the purely normal structurey
=|p™(r)|2. A6 +o , +oo ovn(a,r,B)
2, v, B =vp(r)] (AB) J, dEf(E)Xg%(rp-rp):j7 dEf(E)—————
o % Su(r’)
These quantities can be inserted into E¥l) to get the final Lo A (B6)
result(6) given at the beginning of the paper. |[E—qU|/
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The spatial integration over’ of the functional derivative Equation(B5) therefore becomes
with respect to the potenti&l(r’) is equivalent to an energy
—vaUunB)+C% A )

derivative with opposite sign, _— —2qf+wdEf(E)E o
— o af

|E—qU]|
(B8)
f drIL:_ i (B7) Applying partial integration we get the result presented in
qsu(r’) dE Eq. (9).
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