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Abstract Soil salinization has increasingly become a serious
issue in coastal zone due to global climate changes and human
disturbances. Assessment of soil salinity, especially at the
landscape scale, is critical to coastal management and restora-
tion. Two data from OLI/TIRS and ETM+ sensors of Landsat
satellite were used to compare their ability to invert the spatial
pattern of soil salinity in both farmland and salt marsh land-
scapes in the Yellow River Delta, China, respectively. The
results showed that the in situ electrical conductivity (ECa)
of soil, representing soil salinity, were closely related with
spectral parameters and salinity indices calculated by the re-
mote sensing data. The results of multiple regression models
have showed that nearly all the spectral parameters and salin-
ity indices calculated by OLI/TRIS data were more sensitive
to soil salinity than those by ETM+ data. Therefore, the
models based on OLI/TIRS data are superior to those on
ETM+ data in estimating the spatial pattern of soil salinity in
farmland and salt marsh landscapes. Our results were very

helpful to evaluate the levels of soil salinization in the
Yellow River Delta.

Keywords Soil salinity . Electrical conductivity . Landsat
OLI/TIRS . Landsat ETM+ . the YellowRiver Delta

Introduction

Soil salinization is a form of soil degradation due to the buildup
of solute salts to deleterious levels at or near the surface of the
soil (Schofield et al. 2001). Solute salt accumulation is a com-
plex and dynamic process affected by natural (e.g. climate, hy-
drology, topography, and geology) and human-induced (e.g.
land use, irrigation) factors (Zhou et al. 2012). It is estimated
that the worldwide salt-affected areas are close to 932 million
ha, with more than 76 million ha as a consequence of human
activities (Abrol et al. 1988; Mensah and FitzGibbon 2013).

Remote sensing technology has a great advantage over the
traditional field investigation in monitoring soil salinity, partic-
ularly at the large areas due to its large coverage area, multiple
spectra information and constant observation (Ding and Yu
2014). Numerous remote sensing data have been used to quan-
tify the soil salinization, including the multispectral data ac-
quired from the satellite-borne sensors (e.g., Landsat and
SPOT series, Terra-ASTER, IRS-LISS, IKONIS, MODIS)
(Dwivedi et al. 2008; Schmid et al. 2008; Abbas et al. 2013;
Nawar et al. 2015), as well as hyperspectral data obtained from
the airborne sensors (e.g. AVIRIS, HyMap, EO-1) (Farifteh
et al. 2007; Weng et al. 2008; Whiting and Ustin 1999). The
multispectral images, especially of the Landsat Thematic
Mapper sensors (TM) or Enhanced Thematic Mapper Plus
(ETM+) which are carried on-board the Landsat series have
been widely used. A large number of studies have proved
Landsat TM/ETM+ as a useful tool in monitoring soil surface
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salinity (see. Sharma and Bhargava 1988; Metternicht and
Zinck 1997; Fernandez-Buces et al. 2006; Howari and
Goodell 2008; Wu et al. 2008; Arnous and Green 2015a).

In 2013, the Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) sensors were launched on-board of
Landsat-8, providing data consistent with previous Landsat
series (in terms of acquisition geometry, coverage characteris-
tics, and spectral characteristics) to make comparison for glob-
al and regional changes (Irons et al. 2012). Meanwhile, there
are some differences: (1) OLI/TIRS uses long and linear arrays
of detectors aligned across the instrument focal planes to col-
lect imagery in a Bpush broom^ manner, which improves the
signal-to-noise performance compared to traditional
Bwhiskbroom^ sensor carried by the Landsat-5/7. The signal-
to-noise of OLI/TIRS is three times higher than that of ETM+
data. The geometric stability and excellent image quality of the
OLI/TIRS data were also improved by this Bpush broom^ de-
sign (Irons et al. 2012) (Fig. 1.). (2) The OLI/TIRS also pro-
vide specific bandwidths besides the ETM+ shortwave bands
(Xu and Tang 2013). However, little is known about the appli-
cation of OLI/TIRS data on the mapping of soil salinization.

The Yellow River Delta (YRD) is a typical coastal delta
characterized by extensive soil salinization. It was reported
that 2.35 × 105 hm2 of the region have been salinized in
2000 (Liu et al. 2003), since then, the salinization process
has been accelerated because of the reduction of the Yellow
River discharge, seawater intrusion, frequent storm surges,
and coastal erosion (Zinck and Metternicht 2008). Mapping
and monitoring the spatial distribution and temporal behavior
of salt-affected soils in the YRD, therefore, is necessary to
coastal management and soil restoration.

A natural salt marsh landscape in the Dawenliu Nature
Reserve (DNR) and a farm landscape along the Yellow river
(YRF) were selected to compare the capability of ETM+ and
OLI/TIRS data to map soil salinity. Our main objectives were:
(1) to assess the ability of OLI/TIRS data to predict soil salin-
ity, compared with ETM+ data; (2) to develop a multi-
regression model for characterizing soil salinity using OLI/

TIRS data; and then (3) to realize the spatial mapping of the
soil salinization in the YRD.

Study area

The YRD is located at the northeast coast of the
Shandong Province, China (118°06′E-119°18′E, 36°55′
N-38°16′N) and at the southern coast of the Bohai Sea
(Qin et al. 2015), with an area of 6650 km2. The YRD
is one of the most active regions of land-ocean interaction
among the large river deltas in the world where massive
deposition of silt created a fast-growing natural delta be-
fore 1986 (Zhang and Hu 2007). The growth of the YRD
is mainly affected by water discharge and suspended sed-
iment load of Yellow River and subsequent changes of
river channel (Li et al. 2009). However, the progradation
process decreased and the coastal erosion increased due to
the reduced sediment discharge in last three decades (Chu
et al. 2006).

The area has temperate continental monsoon climate with
distinctive seasons (Cui et al. 2009a). The average annual
temperature here is around 11.7–12.6 °C, average annual po-
tential evaporation is about 1900–2400 mm and annual pre-
cipitation is 530–630 mm (in which 70% amasses in summer)
(Ye et al. 2004; Fang et al. 2005). The area of perennial wa-
terlogged wetlands is 964.8 km2, accounting for 63.06% of
total area of the Yellow River Delta. Every year, approximate-
ly 1.05×107 tons of sand and soil are carried by the river from
upstream and deposited in the delta, resulting in vast area of
floodplain and special wetland landscape (Xu et al. 2002;
Wang et al. 2004; Cui et al. 2009a).

There are completely different vegetation landscapes in the
two study areas. The DNR, near the mouth of the YellowRiver,
has an area of 54, 962 ha and is established to protect coastal
wetlands (Cui et al. 2009b). The area is dominated by the salt
marsh species, such as the Suaeda salsa, Tamarix chinensis,
Phragmites australis and Imperata cylindrical. The YRF,
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Fig. 1 Standard false color
images of OLI and ETM+ sensors
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southeast to Yellow River has an area of 45, 000 ha and is
characterized by farmland of cotton and corn (Fig. 2.).

Materials and methods

Remote sensing data

ETM+ data (May 6, 2013) and OLI/TIRS data (May 30, 2013)
were obtained from the U.S. Geological Survey (USGS)
website (http://glovis.usgs.gov/). First, bad lines due to the
Scan Lines Corrector (SLC) trouble of the ETM+ sensor were
removed using the kriging geo-statistical technique (Zhang
et al. 2007). Then the images were geo-referenced and geo-
metrically rectified based on a 1:100, 000 topographic map of
the study area (WGS 84 datum, UTM N 50 projection). An

improved image-based dark object subtraction model was
used to implement radiometric and atmospheric correction
(Chavez 1996; Lu et al. 2007). All the remote sensing data
was processed by the ENVI 4.7 software and the results were
visualized by ArcGIS 9.3 software.

In addition to original bands of ETM+ and OLI/TIRS, four
salinity indices (Table 1) were used to quantify the capability
of the remote sensing data to characterize soil salinity. For
instance, Salinity Index (SI) and Bright Index (BI) measured
the surface brightness of soils with high salinity (Khan et al.
2005). Combined spectral response index (COSRI) is a com-
bined spectral-response index derived from ETM+ which is
significantly correlated with soil electrical conductivity (ECa)
(Fernandez-Buces et al. 2006). Normalized Difference
Salinity Index (NDSI) is used to test relationship between
vegetation and soil salinity (Khan et al. 2005).

Fig. 2 Location of the study area: a. the Dawenliu Natural Reserve; and b. the Yellow River Farm
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Plot investigation and ECa measurement

42 plots in different vegetation types (15 in the DNR and 27 in
the YRF) were chosen in April, 2013 (Fig. 2). For each plot, 4
points in orthogonal grid (500×500 m) were designed. Overall,
there were 60 points in the DNR and 108 points in the YRF,
respectively. ECa was measured with the EM38 reader
(Geonics), horizontal to the soil surface which had the high
interpretation precision of the surface soil electrical conductivity
(Yao et al. 2008). The coordinates of each point were recorded
using a Global Positioning system (GPS, Garmin eTrex).

Statistical models and validation

Pearson correlation analysis was conducted between ECa and
spectral indices derived from ETM+ (7 original bands and 4
indices) and OLI/TIRS (10 original bands and 4 indices), re-
spectively (Table 2). Multi-linear regression model was con-
ducted to estimate soil ECa from ETM+ and OLI/TIRS indi-
ces, with stepwise forward estimation method. ECa data were
randomly divided into two groups: 80% of those were used for

constructing the multi-linear regression model and the other
20% for model validation. All statistical analysis was per-
formed using the SPSS 16.0 software (SPSS Inc. 2010).

Results

Correlation between ECa with spectrum information
and salinity indices

Results of correlation analysis between ECa and remote
sensing data were shown in Table 2. For the ETM+ data,
ECa was significantly correlated with all spectral indices
in YRF, and the whole study area (Overall). While in the
DNR, besides the band1, band 2 and SI, other indices also
matched well with ECa.

For the OLI/TIRS data, four salinity indices were
strongly correlated with ECa. Nearly all bands were insig-
nificantly related to ECa in the whole study area except
the NIR (band 5) and SWIR (band6, band7). In YRF and
DNR, almost all of spectral bands were strongly

Table 1 Salinity indices and spectral functions

Salinity indices Spectral Functions References

Salinity Index (SI) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
band1� band3

p (Khan et al. 2005)

Normalized Differential Salinity Index (NDSI) (band3 − band4)/(band3 + band4) (Khan et al. 2005)

Bright Index (BI) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
band3ð Þp

2 þ band4ð Þ 2
(Khan et al. 2005)

Combined Spectral Response Index (COSRI) ((band1 + band2)/(band3 + band4)) ×NDVI (Fernandez-Buces et al. 2006)

Table 2 Correlation coefficient
(R) between measured soil
electronic conductivity (ECa) and
individual spectral bands of
Landsat 7 ETM+ and 8 OLI/TRIS
for overall, the Yellow River
Farm (YRF), and the Dawenliu
Natural Reserve (DNR) datasets

Landsat 8 OLI/TRIS Landsat 7 ETM+

Overall YRF DNR Overall YRF DNR

Band 1 −0.12 −0.23* −0.78**
Band 2 −0.14 −0.32* −0.77** Band 1 −0.28* −0.26* −0.28
Band 3 −0.21* −0.38** −0.67** Band 2 −0.34** −0.38** −0.23
Band 4 −0.14 −0.37** −0.79** Band 3 −0.33** −0.41** −0.05*
Band 5 −0.61** −0.53** −0.79** Band 4 −0.65** −0.62** −0.75**
Band 6 −0.27** −0.32* 0.02 Band 5 −0.63** −0.64** −0.59**
Band 7 −0.21* −0.32* −0.56** Band 7 −0.53** −0.57** −0.46**
Band 9 0.04 0.01 0.08

Band 10 −0.21 −0.34* 0.14 Band 6 −0.23* −0.56** −0.02
Band 11 −0.23* −0.37** 0.17

SI −0.14 −0.35** −0.79** SI −0.31** −0.36** −0.13
NDSI 0.30* 0.13 0.86** NDSI 0.39** 0.30* 0.79**

BI −0.56** −0.51** −0.70** BI −0.47** −0.51** −0.51**
COSRI −0.26** −0.05 −0.89** COSRI −0.47** −0.41** −0.81**

*P< 0.05; **P< 0.01
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correlated with ECa except some SWIR (band 6 and band
9) and TIR (band 10 and band 11). Above all, COSRI had
the highest correlation with salinity of coastal marsh in
DNR (R=−0.89), while BI was closely related to ECa in
YRM (R=−0.51).

Regression models

For the whole study area (Overall), the SWIR (band 7), the
COSRI and the NDSI of ETM+ image were selected in the
predict model with the R2 value of 0.682 (Eq. 1), and the
SWIR (band 5) of OLI/TIRS data was selected in the model
with R2 of 0.351 (Eq. 2). The Multi-linear regression model
based on OLI/TIRS image had lower prediction ability than
that on ETM+ data.

Predicted soil salinity ¼ −3:946band7−15712:014COSRI

−15152:893band6

þ 351:784 R2 ¼ 0:682;P ¼ 0:0364
� �

ð1Þ
Predicted soil salinity ¼ −0:041band5

þ 953:283 R2 ¼ 0:351;P ¼ 0:001
� �

ð2Þ

However, in the YRF, the SWIR (band 5), TIR (band 6)
and COSRI of ETM+ image were selected in the model with
R2 of 0.648 (Eq. 3). For OLI/TIRS image, the NIR (band 5),
SWIR (band 6), blue (band 1, band 2) and COSIR were se-
lected with R2 of 0.656 (Eq. 4). OLI/TIRS based model would
result in slightly better prediction to soil salinity than ETM+
based model.

Predicted soil salinity ¼ −8:281band5−1868:624COSRI

−13:574band6

þ 2609:880 R2 ¼ 0:648;P ¼ 0:001
� �

ð3Þ
Predicted soil salinity ¼ −0:129band5þ 1186:969COSRI

þ 0:066band6þ 1:290band1−1:005band2

−2739:350 R2 ¼ 0:656;P ¼ 0:001
� �

ð4Þ

In the DNR, for ETM+ image, the COSRI, NDSI and
the TIR band (band 6) were selected (Eq. 5). While for
OLI/TRIS image, the COSIR, NDSI, the TIR bands (band
10, band11), green (band 3) and dark blue (band 1) were
selected (Eq. 6). Both the two models had high

predictions of ECa (with the R2 = 0.944 for OLI/TRIS,
R2 = 0.819 for ETM+, respectively).

Predicted soil salinity ¼ −28707:924COSRI−29271:124NDSI

þ 14:089band6

−1901:499 R2 ¼ 0:819;P ¼ 0:013
� �

ð5Þ
Predicted soil salinity ¼ −8728:336COSRI−3835:755NDSI

−0:277band3þ 0:654band11

−0:436band10þ 0:381band1

−5745:807 R2 ¼ 0:944;P ¼ 0:001
� �

ð6Þ

Model validation

Predicted soil EC was computed using OLI/TIRS data based
on the Eqs. (4) and (6). ECa versus predicted EC were plotted
in Fig. 3, indicating that there was a high consistency between
predicted and measured values in both the YRF(R2=0.65)
and the DNR(R2 = 0.82). The prediction accuracy of the
models based on OLI/TIRS image could meet our need of
retrieving different salt classes, despite of underestimation of
ECa outcome.

Discussion

Soil reflectance from a remote sensing platform is often the
mixed results of surface components such as: mineralogy, or-
ganic matter content, moisture content, particle size, iron ox-
ide content, and surface conditions (Farifteh et al. 2006).
Therefore, correlation analysis between spectral variables
and electrical conductivity should consider the characteristics
of soil surface.

The YRF is generally covered by bare soil with low mois-
ture content. The main factors affecting the reflectance of bare
soil are the mineralogy of salts, color and roughness of soils
(Metternicht and Zinck 2003). The soil in this delta is rich in
sodium, calcium, chlorides and sulphates (Weng and Gong
2006). In our case, the NIR and SWIR of ETM+were strongly
correlated with ECa, which is consistent with Farifteh’s work.
He found the potentially useful spectral bands in the NIR and
SWIR regions of TM data for salinity discrimination using the
2-D correlograms analysis (Farifteh et al. 2007). Band 6’s
performance could be attributed to the high content of soil
carbonates in this area. Metternicht and Zinck (1997) found
that salt-affected lands had high spectral reflectance, particu-
larly in the blue and red range of the spectrum. However, the
visible spectra (band 1–3) were found to have negative and
low correlation in our analysis, probably due to the large cov-
erage of low-saline soil.
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Salt soils were often characterized by salt efflorescence
accumulated on soil surface, so the salinity index BI
which measured brightness from the soil surface was
found to have significant relationship with soil salinity.
Both NDSI and COSIR were not reliable indicators in
the YRF considering the inhibitory effect of salt on the
vegetation. The insignificant correlation of SI was in
agreement with Setia’s research. He has attributed the ap-
parent lack of relationship of SI to the fragmented agri-
culture landscape (Setia et al. 2013). The OLI is required
to collect data for all of the ETM+ shortwave bands to
partially fulfill the data continuity mandate (Irons et al.
2012) and the spectral wavelength of OLI/TRIS in visible
(band 2–5), NIR (band 4), SWIR (band 6, band 7) and
thermal spectral (band 10, band11) is very similar to that
of the ETM+, so the correlation between OLI bands and
ECa should be consistent with the ETM+ theoretically,
but, in our research, the OLI/TIRS had been found poorly
correlation with soil salinity. Surface condition, soil prop-
erties and environmental conditions could distribute the
spectral signatures of salinity (Ben-Dor et al. 2009; Setia
et al. 2013), thus, the factor influencing soil reflectance
might be attributed to the change in environmental condi-
tion of the YRF. For instance, there was a large amount of
precipitation during May 26–29, 2013, resulting in a low-
er correlation between visible bands (ETM+ band 1
(0.06), band 2 (0.00), band 3 (−0.04)) and NIR (band 4
(−0.10)), and a higher one for SWIR (ETM+ band 5
(−0.32), band 7 (−0.25)). This hypothesis could be proved
by the measurements of reflected shortwave radiation
(400–2500 nm) under changing moisture condition.

Lobell and Asner have founded the absorption ability
went up with the increase of wavelength from the visible
bands, NIR to the SWIR (Lobell and Asner 2002).

The DNR was covered by halophytic plants which were all
dry in our investigation. The vegetation coverage decreased
with the increase of soil salinity. For ETM+ data, the
vegetation-sensitive wavelength, i.e., NIR (band4), SWIR
(band 5, band 7) and NDSI had relatively high correlation
coefficient. COSRI was found to have the highest correlation
withECa, which was in agreement with the other researches in
the former lake Texcoco, Mexico, where the surface feature
was similar to that of the DNR (Fernandez-Buces et al. 2006).
The negative and low correlation of visible band and SI could
be explained by the similar spectral reflection characteristic of
the vegetation in the dry season. For OLI/TIRS data, nearly all
variables except the thermal bands derived from the Landsat-8
had high correlation coefficient which was consistent with
other results that it is also found the spectral bands of the
OLI were sensitive to the salt-affected lands (Arnous et al.
2015b). But, the correlation coefficient from OLI/TIRS data
was much higher than that obtained from the ETM+ data,
which was in contrast with the results obtained in the YRF.
We attributed the poor performance of OLI/TIRS data in the
YRF to the increased soil moisture as mentioned above.
However, OLI/TIRS’s good performance in the DNR was
contributed to the following reasons: (1) the surface of the
DNR was generally covered with halophytic plants, mean-
while, the soil moisture was always in the supersaturated state
here due to the high groundwater depth. Therefore, the pre-
cipitation could not influence the ground feature’s reflectance;
(2) since the OLI/TIRS data were obtained in growing season,

Fig. 3 Comparison between model predicted EC and measured apparent electronic conductivity (ECa) at: a the Yellow River Farm; and b the Dawenliu
Natural Reserve
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it was mainly the reflection of the halophytic vegetation’s
spectral property. It was reported that halophytic plants (S.
salsa, T. chinensis and P. australis) could reflectance peaks
at the green and near- infrared band and absorption features at
blue and red band, which had strong correlation with soil
salinity (Zhang et al. 2012); (3) OLI/TIRS data has excellent
image quality and high radiation resolution (Irons et al. 2012).

In the whole study area, however, our results showed that
the model derived from the Landsat-8 data had poor ability to
estimate soil salinity compared to the ETM+ data due to the
interference of precipitation. When model suited to the YRF

and the DNR, prediction accuracy resulted from the OLI/TIRS
image was higher than those obtained from the ETM+ data,
even if its accuracy reduced by the precipitation. Better radi-
ation resolution and more detailed band wavelength set were
certainly the main reasons for this difference. The results also
indicated that the prediction models should consider the re-
gional difference.

Mapping of salt soil had practical application for the two
areas (Figs. 4 and 5). The degree of soil salinization was rel-
atively weak in the YRF, with EC low than 300ms/m for most
of areas (Fig. 4). The spatial distribution was not obvious due

Fig. 4 Predicted EC of the
Yellow River Farm. Values of
predicted EC are calculated from
Landsat OLI data using Eq. 4

Fig. 5 Predicted EC of the
Dawenliu Natural Reserve.
Values of predicted EC are
calculated from Landsat OLI data
using Eq. 6
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to the human intervention, with lower soil salinity near the
Yellow River, reservoir and some canals and higher salinity
near sea, which was attributed to the diluting effects of the
fresh water obtained from the Yellow River, reservoir and
some canals. However, the degree of the soil salinity was more
severe in the DNR, with EC above 500ms/m for more than
50% of areas (Fig. 5). And it has a regular pattern, exhibiting a
significant increasing trend from the inland to shore, and also
an increase far from the Yellow River, reservoir and some
canals. This was mainly due to seawater intrusion and extreme
tidal surges, as well as diluting effects of the fresh water to
some extent. According to our work, the spatial assessment of
soil salinity condition in the Yellow River Delta can help local
soil manager to make practical measurement for soil
conservation.

Conclusions

The capability of OLI/TRIS data (Landsat-8) and ETM+ data
(Landsat-7) for inverting soil salinity in a coastal marsh
(DNR) and irrigated farm land (YRF) in the Yellow River
Delta, China was compared through analyzing the relationship
between their band characters with soil electrical conductivity
(ECa). Statistical models indicated that OLI/TIRS and ETM+
spectral bands and derived indices have significantly negative
correlation with soil ECa. There was a significant difference in
soil salinization between the two sites because of the different
land cover types. Regression model based on OLI/TIRS data
had higher accuracy in predicting soil salinization of these two
different sites, with the coefficient of determination (R2) of
0.656 in YRF and 0.944 in DNR, respectively. Our results
had demonstrated that the Landsat OLI/TIRS had some ad-
vantage over the Landsat ETM+ for mapping and monitoring
soil salinity. This work was helpful to soil management and
soil restoration in coastal wetland.
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