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Abstract In this paper, a data assimilation scheme based
on the adjoint free Four-Dimensional Variational(4DVar)
method is applied to an existing storm surge model of the
German North Sea. To avoid the need of an adjoint model,
an ensemble-like method to explicitly represent the linear
tangent equation is adopted. Results of twin experiments
have shown that the method is able to recover the contami-
nated low dimension model parameters to their true values.
The data assimilation scheme was applied to a severe storm
surge event which occurred in the North Sea in December
5, 2013. By adjusting wind drag coefficient, the predic-
tive ability of the model increased significantly. Preliminary
experiments have shown that an increase in the predictive
ability is attained by narrowing the data assimilation time
window.
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1 Introduction

Storm surges are exceptional water level changes caused
by the strong tangent wind on the sea surface. Storm surge
is one of the most destructive natural disasters in coastal
areas. On February of 1962, a severe storm swept the Ger-
man Bight, causing severe damage along the German North
Sea coast and costing more than 300 lives in Hamburg (Von
Storch et al. 2008). The hurricane Katrina hit the south coast
of the USA in August 2005. The total number of fatal-
ities directly related to the extreme event exceeded 1200
(Fritz et al. 2007). The Bay of Bengal is another coastal
area susceptible to tropical storm surges. The severe storm
in October 1999 killed more than 15,000 people and caused
enormous property losses (Dube et al. 2009). Although
much attention has been paid to coastal protection and
the number of casualties has decreased considerably, storm
surge remains the main natural hazard in coastal areas.
Thus, accurate forecast of such events is essential for early
warning. With the enhancement in computing power and
improvement in the accuracy of meteorological models, sys-
tems for the nowcasting and forecasting of storm surges are
at reach.

Storm surge is caused by strong meteorological forcing
due to wind and low air pressure. The effect of air pressure
is straightforward and easy to simulate. Proper specifica-
tions of wind shear stress is probably the most critical issue
for a storm surge model but may have the most uncertain-
ties (Bode and Hardy 1997). For most storm surge models,
the wind shear stress is expressed as a quadratic function of
wind speed as follows (Hydraulics 2011) :

τ = ρaCd |U10|U10 (1)
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where τ is the wind shear stress; ρa is the air density; U10

is the wind speed 10 m above the sea surface; Cd is the
wind drag coefficient. ρa is dependent on the air pressure,
temperature, and humidity. Abdalla and Cavaleri (2002)
studied the influences of ρa on the wave height and found
that the variations of wave height resulting from air den-
sity variability are usually smaller than 1 cm. Therefore,
air density is expected to have only minor effect on storm
surge. U10 is often obtained from meteorological models
for extratropical storms (Horsburgh and Wilson 2007) or
calculated by a tropical cyclone formula (Holland 1980).
There has been great progress in atmospheric modeling with
the development of measurements and computation abil-
ity. Although Cd has been studied over decades, there is
still no definite conclusion due to the complex mechanism
of air-sea interactions. Most storm surge models (Verboom
et al. 1992; Lowe et al. 2001; Weisberg and Zheng 2008)
apply a linear function of Cd with respect to U10 proposed
by many different authors (Smith and Banke 1975; Smith
1980; Wu 1980). However, these functions show major dis-
crepancies. Lin et al. (2002) pointed out that the variability
of Cd not explained by U10 is substantial. Weaver (2004)
used the advanced circulation hurricane storm surge model
(ADCIRC) to test the sensitivity of storm surges on seven
different Cd . He found differences in the peak surge of up
to 1.75 m, pointing to large uncertainties.

Data assimilation has been widely used in operational
weather forecast centers. By merging results from numeri-
cal models and observations, data assimilation can decrease
the uncertainties of the initial conditions and improve fore-
cast. This technique has also been used quite successfully
to obtain Cd and other model parameters for ocean mod-
els (Moore 1991; Marotzke et al. 1999; Zhang et al. 2003).
Since 1950s, the application of data assimilation in weather
forecast evolved from objective analysis, optimal inter-
polation to 3-dimensional and 4-dimensional variational
method. The first three methods combine model results
and observations at one given time. 4Dvar, on the other
hand, extends the assimilation from a given time to a period
(time window). 4Dvar is an attractive method as it takes
the model into account making data assimilation consis-
tent with model dynamic. Adjoint equations are powerful
tools in 4Dvar in that it facilitates the computation of gra-
dient of cost functions with respect to the control variables
with large dimension. Yu and O’Brien (1991) used 4Dvar
to estimate the Cd values; they found that after 11 iterations
Cd converges to 0.00126. Peng et al. (2013) used a three-
dimensional ocean model and its adjoint model to adjustCd ;
it was found that the adjustment of Cd can compensate for
the wind data errors and improve the simulation of storm
surges. Li et al. (2013) found that the optimization of ini-
tial conditions and Cd in storm surge model was better than
optimizing only one of them.

However, it is a huge undertaking to develop adjoint
models for ocean models (Lawless 2012). In this paper,
4Dvar will be used to an existing storm surge model for
the German Bight (Bruss et al. 2011). The proposed method
is structurally similar to adjoint methods. The advantage
is that it avoids the development of adjoint equations
facilitating implementation. In this paper, the model and
observations are described initially. This is followed by a
detailed description of the adjoint free 4Dvar proposed here.
Results of twin experiments carried out to validate the data
assimilation method are presented. The effectiveness of the
proposed method is demonstrated for a storm surge on the
German North Sea coast.

2 Model and data

The Delft3D model suite for simulation of hydrodynamics,
sediment transport, and morphodynamics in coastal waters
is adopted (Hydraulics 2011). Delft3D is widely used for
coastal studies (Elias et al. 2001; Mayerle and Zielke 2005;
Jiao 2014). The study area is the German Bight, located in
the southeast of the North Sea. Due to the coastline shape, it
is one of the most susceptible areas to storm surges. In order
to capture the storm surge adequately, the German Bight
Model (GBM) was nested to a larger scale model cover-
ing the whole Northwest European continental shelf (CSM).
The two model domains are shown in Fig. 1. The spatial res-
olution of the grid in the CSM is about 9 km and 0.5 ∼ 1.7
km in the GBM. The time step of the CSM and GBM is 3
and 2 min, respectively. Similar to most storm surge models,
Cd is determined by a linear function with respect to wind
speed 10 m above the sea surface as follows:

Cd = (a + bU10)10
−3 (2)

where a = 0.61, b = 0.063, which is proposed by (Smith
1980). In Eq. 2 , U10 is between 6 and 22 m/s. Cd is a con-
stant equal to 9.88 × 10−4 for wind speeds lower than 6.0
m/s; Cd is extrapolated for wind speeds exceeding 22 m/s.

2.1 Bathymetry data

The bathymetry of the North Sea is taken from the original
model provided by (Verboom et al. 1992). The bathymetry
near the German Bight coast has been updated by a
series of measurements by the Bundesamt für Seeschifffahrt
und Hydrographie (BSH), Wasser-und-Schiff fahrtsver-
waltung des Bundes (WSV), Kuratorium für Forschung
im Küsteningenieurwesen (KFKI), and Amt für ländliche
Räume (ALR) Husum. This bathymetrical information cov-
ers the German coast for the period 1969–2009. Fernandez
Jaramillo (2014).
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Fig. 1 Curvilinear grids of models. The left figure shows the CSM model and the right one the GBM model. Red stars mark the stations used in
this paper: Buesum(1), Helgoland(2), Husum(3), Cuxhaven(4), Esbjerg(5), Delfzijl(6), Wilhelmshaven(7), Huibertgat(8), Borkum(9), Sylt(10)

2.2 Wind and air pressure data

In this study wind and air pressure stem from the mete-
orological model Consortium for Small Scale Modeling
(COSMO-EU) operated by the German Weather Service
center(DWD) (COSMO 2007). The spatial grid resolution is
0.0625◦ and the time interval is 1 h. The model was assessed
on the basis of measurements at several stations along the

German North Sea coast. Figure 2 shows comparisons of
modeled and observed air pressure and wind speeds at the
Station Sylt in the north of Germany (Fig. 1). The root mean
square deviation of wind speed is about 1.62 m/s and the
correlation coefficient is 0.90. It was found that the mete-
orological model can capture the real wind field quite well
thus providing adequate meteorological forcing to the storm
surge model.

Fig. 2 Comparison of DWD
modeled data and observed data
in the early December 2013 at
the station Sylt (see Figure 1)
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2.3 Open boundary conditions

Nine dominating tide harmonics from TOPEX/Poseidon
(Egbert and Erofeeva 2002) were imposed at the open
boundaries of the CSM . The simulated water levels from
the CSM were then interpolated along the open boundaries
of the GBM for forcing.

2.4 Tidal gauges data

In this study, water level observations with 10-min interval
from several tidal gauges of the German Bight were used
(see Fig. 1 right). Quality control was performed to remove
the invalid data and fill out missing data.

3 Data assimilation method

3.1 4Dvar

Numerical models can be denoted in a general form as
follows:

xi+1 = Mi (xi, p) (3)

where xi ∈ Rn is the model state vector. Storm surge mod-
els are mainly 2D, and model state includes water level
and horizontal current velocity in two directions. Hence, the
dimension of state n is three times the number of model grid
points. i is the time index ranging from 0 to NT . p ∈ Rk is
the model parameter vector, consisting of initial conditions,
boundary conditions, and all other model parameters. Mi

is the model forward operator. Given the model parameters
p, the model state at ti is integrated to a new model state at
ti+1.

The analysis of direct observations offers another alter-
native to improve our understanding about the ocean. Obser-
vations of ocean state at time ti are denoted as yi ∈ Rm,
where i = 0, 1, · · · , NT . Normally, m is much smaller than
n due to the difficulty of installing instruments in the ocean.

Data assimilation can combine models and observa-
tions using the statistical estimate theory. Compared with
3Dvar, 4Dvar uses observations over a certain period; model
dynamics is also considered in the process of data assimi-
lation. Therefore, results of 4Dvar are more consistent with
model than 3Dvar or optimal interpolation. 4Dvar aims to
find a set of model parameters which are closest to their
first guess values and that generate model results closest to
the observations. To this end, 4Dvar solves a minimization
problem on a cost function:

J (p, xi) = 1
2 (p − pb)

T B−1(p − pb)+
1
2

NT∑

i=1
(Hixi − yi)

T Q−1(Hixi − yi)
(4)

where pb is the first guess or background values of p; B

and Q are weighting matrix of pb and yi , respectively. They
represent the uncertainties of pb and yi . Therefore, terms
with low uncertainties are weighted more heavily in the cost
function. NT is the number of time steps of observations.
The superscript T denotes transposing matrix or vectors.
Hi is the observation operator at time ti . In the rest part of
Section 3, it is assumed that observations are much more
accurate than first guess of parameters and all observations
have the same accuracy. As a result, only the observation
term is kept in the cost function in Eq. 4. The simplified cost
function is:

J (p, xi) = 1

2

NT∑

i=1

(Hixi − yi)
T (Hixi − yi) (5)

xi between i = 1 and NT are not independent but subject
to the model in Eq. 3. Therefore, 4Dvar is a constraint opti-
mization problem. It can be converted to an unconstrained
optimization problem by Lagrangian multiplier methods as
follows:

L(p, λi, xi) = 1
2

NT∑

i=1
(Hixi − yi)

T (Hixi − yi)+
NT∑

i=1
λT

i−1(xi − Mi−1(xi−1, p))

(6)

where λi ∈ Rn is the Lagrangian multiplier. The variation
of Eq. 6 is

δL =
NT∑

i=1
(Hixi − yi)

T Hiδxi+
NT∑

i=1
(xi − Mi (xi−1, p))T δλi−1+

NT∑

i=1
(λT

i−1δxi − λT
i−1

∂Mi−1
∂xi−1

δxi−1 − λT
i−1

∂Mi−1
∂p

δp)

(7)

To get the gradient of L with respect to p, the terms without
δp and δλi−1 are set to 0, giving:

λi−1 − (
∂Mi

∂xi

)T λi = −HT
i (Hixi − yi) (8)

Equation 8 is the so-called adjoint model. λi is the adjoint
variable. Given the first guess of model parameter p, the
ocean model integrates forward leading to model results.
λNT

is then set to zero. Equation 8 is integrated backward
forced by HT

i (Hixi − yi), which is the deviations between
observations and model results. All the λi can be solved.
After that λi are substituted into equation below:

∂L

∂p
=

∑
(−∂Mi

∂p
)T λi (9)

Note that the gradient ∇J
p = ∂L

∂p
. Once ∇J

p is cal-
culated, gradient-based optimization methods such as the
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BFGS quasi-Newton minimization algorithm (Nocedal and
Wright 2006) can be used to obtain the optimal p which
minimizes (5) . This is an iterative process, and it stops once
the termination condition is satisfied.

3.2 Incremental 4Dvar

4Dvar methods are extremely time-consuming and expen-
sive computationally. They were not implemented for oper-
ational weather forecast until the incremental 4Dvar was
developed. Incremental 4Dvar uses the increment of p, i.e.,
�p as the control variable instead of p. Assume that the
optimal p is close to the first guess of p = pb + �p. �xi

is the increment of xi due to increment of p. �xi+1 can be
represented by �p and �xi :

�xi+1 = Mi (x
b
i + �xi, pb + �p) − Mi (x

b
i , pb) (10)

Apply Taylor’s formula and only keep the terms of first
order:

Mi (x
b
i + �xi, pb + �p) = Mi (x

b
i , pb) + ∂Mi

∂xi

�xi + ∂Mi

∂p
�p

(11)

Substituting (11) into Eq. 10, the tangent linear equation can
be obtained:

�xi+1 = ∂Mi

∂xi

�xi + ∂Mi

∂p
�p (12)

where ∂Mi

∂xi
and ∂Mi

∂p
are linear operators. A new cost func-

tion with respect to �xi can be obtained by substituting
xi = xb

i + �xi into Eq. 6 as follows:

J1(�p, �xi) = 1

2

NT∑

i=1

(Hi�xi − di)
T (Hi�xi − di) (13)

di = yi − Hix
b
i . Equation 13 is minimized subject to the

Eq. 12, which is a linear model. Therefore, Eq. 13 has an
unique global minimum at �pa , which can be solved with
BFGS. The process that solves �pa represents a inner loop.
p is updated in an outer loop by p1 = pb + �pa and then
a new inner loop starts with the new first guess p1. The two
loops proceed until �pa is small enough.

The linear tangent (12) can be a simplified model or
solved on a coarser model grid. This can reduce the compu-
tation burden and enables to apply 4Dvar in large scale mod-
els. Operational weather forecast centers such as ECMWF
(Rabier et al. 2000), UKMet. office (Lorenc et al. 2000) and
the ocean model ROMS (Moore et al. 2011) use incremental
4Dvar in their operational models.

3.3 Adjoint free(AF) 4Dvar

Adjoint methods are very powerful tools for parameter esti-
mation. The gradients of cost functions with respect to the
model parameters can be calculated by integrating both for-
ward and adjoint models regardless of the dimension of the
model parameters. Although adjoint and forward models
have the same scale, the development and maintenance of
adjoint models for complex ocean models are very demand-
ing. Kalman filters are used in data assimilation for cases
where the dynamics are linear. The covariance of model
state evolves with model dynamics. When observations are
available, the updated covariance is then used to obtain an
updated model state with higher accuracy than both model
and measurements. However, due to the prohibitively large
dimension of the model state, they cannot be applied to
ocean models. Evensen (1994) combined a Monte Carlo
method with a Kalman filter method leading to the ensemble
Kalman filter(ENKF). ENKF propagates the model results
covariance from the spread of model results by integrating
models with different initial conditions. This can replace the
Kalman filter, and it is very simple to implement. Inspired
by the ensemble method, we proposed a method based on
the incremental 4Dvar but without an adjoint equation for
parameter estimate.

In Eq. 12,�xi+1 is calculated sequentially given�xi and
�p. �xi+1 can also be represented by a implicit function,
as follows:

�xi = Mi(�p) (14)

Substituting (14) into Eq. 13, a cost function with respect
to �p is obtained,

J2(�p) = 1

2

NT∑

i=1

(HiMi�p − di)
T (HiMi�p − di) (15)

To calculate the gradient ∇J2
�p, the essential step is to rep-

resent Mi explicitly. Mi represents the linear tangent model,
which converts perturbations of p to the perturbations of
model results at time ti . The idea is to add perturbations to
the parameters to be estimated just like adding perturbations
to the initial condition in ENKF. Then the ensemble models
are run and the perturbations of model results obtained.

Assume that the first guess of p is pb and the correspond-
ing model results are xb. Then N perturbations of p, stored
in a matrix P ∈ Rk×N are generated. Adding pb to each
column in P results in N models with different parameters
p. Running these models leads to an ensemble of model
results. The ensemble is denoted as Ei ∈ Rn×N at time ti .
Recall that n is the dimension of the model state. Subtracting
xb
i from each row of Ei , an ensemble perturbation of model
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state denoted as Xi ∈ Rn×N is obtained. Both Xi and P are
small perturbations, therefore,Xi ≈ MiP . Since both P and
Xi are available, Mi can be estimated with the least square
method. Once Mi is estimated explicitly, the cost function
(15) can be represented explicitly. It is an exact quadratic
equation. Therefore, the unique optimal �p can be solved
by BFGS. This is the inner loop in the incremental 4Dvar.
The outer loop is the same as in the incremental 4Dvar.

The difference between ENKF and the method proposed
here is the way perturbations are generated. Perturbations
for ENKF must follow a Gaussian distribution and the num-
ber of perturbations must be high enough for a proper
representation. In the adjoint free 4Dvar, perturbations of p

can be any relatively small value. However, if perturbations
are too small, the round-off errors become important in the
Xi and would affect the accuracy of the estimate of the lin-
ear tangent model. Therefore, it is necessary to calibrate the
perturbations before implementing the data assimilation.

The model state perturbation matrix Xi is the model gen-
erated responses to the perturbations of parameters. Thus,
it is consistent with model dynamic similar to 4Dvar and
Kalman filter. The proposed method is similar to Ensem-
ble Kalman filter concerning the easy implementation. It
does not need the adjoint model and is much easier than an
adjoint based 4Dvar.

To avoid the under-determined problem, the number of
perturbations N should be larger than the dimension of
model parameters k. For a high dimension model parameter
such as initial condition, it is impossible to run k models.
The possible way to resolve the under-determined problem
is by reducing the dimension of p. Singular value decompo-
sition of P = USV T is performed prior to the calculation of
Mi . The first r columns in U are r directions which account
for the largest variance of �p. A reduced parameter matrix
Pr is constructed by Pr = UT P , r ≤ N . �pr can reserve
most variance of �p but becomes a low dimension param-
eter. Optimal �pr can be calculated by optimizing the cost
function with respect to �pr . The optimal �p is obtained
by �p = U�pr .

The steps of implementation of the proposed adjoint free
4Dvar are listed :

1. Preparation of all the input files and reasonable model
parameters pb for the model which we name here
model 0.

2. Selection of the model parameters to be considered as
the control variable in the data assimilation.

3. Run model 0 .
4. Generation of N sets of perturbations of control vari-

ables and add the perturbations to the pb in the
model 0 and form N sets of models with different
parameters.

5. Run the N models.

6. Estimation of the tangent linear equation by perturba-
tions of control variables and model results and get the
explicit expression of cost function.

7. Solve the cost function by BFGS and get the optimal
increments for the first guess of control variables.

8. Update the control variables by adding the optimal
increments to the first guess of control variables.

9. Run model 0 with updated parameters to obtain new
model results.

10. Check whether the termination condition is satisfied.
If true, exit from the outer loop; otherwise repeat the
sequence from step 4.

In this paper, the value of cost function in Eq. 5 was used
as the termination condition. If abs(Ji+1 − Ji)/Ji+1 < 0.01
(i is the index of the outer loop), the outer loop will exit.

4 Twin experiments

Prior to implementing the data assimilation to the storm
surge model of the German Bight, several numerical twin
experiments were carried out. The aimwas to verify whether
the method is able to improve model parameters and to
check whether it is appropriate to real world cases. A typical
twin experiment consists of:

Nature run: A model which represents the nature. Its
parameters and model results play the role of the true
values.

Pseudo observations: Sampled from the true values and
added with perturbations to mimic the observations.

Control model: A model with wrong model parameters to
be calibrated.

Data assimilation: A data assimilation method to
improve the control model by bringing the results closer
to the nature run.

Assessment of data assimilation: Assess the model results
or parameters in the control model on the basis of obser-
vations and nature run.

4Dvar is a general data assimilation method and in the-
ory, it can be used for any model parameter estimate. In
this study, the CSM is adopted to the twin experiments. The
observation stations are chosen arbitrarily along the coast of
the German Bight. The parameters of nature run are those
shown in Section 2. The aim is to improve Cd by assim-
ilating pseudo observations of water levels. Two types of
control runs were carried out. One is obtained by perturbing
only a and b in Equation 2 from the nature run; the other
comprising of three experiments is obtained by perturbing
both Chezy coefficient(uniform bottom drag coefficient) and
Cd . See Table 1 for more detailed settings. In control run 1,
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Table 1 Parameters used in
nature run and control runs Nature run Control run 1 Control run 2 Control run 3 Control run 4

ChezyU 65 65 70 80 100

ChezyV 65 65 70 80 100

a 0.61 0.71 0.71 0.71 0.71

b 0.063 0.083 0.083 0.083 0.083

ChezyU and ChezyV denote the Chezy coefficient(m1/2s−1) in the U and V direction respectively;
a and b are the coefficients in Eq. 2

two experiments were carried out; in the first, only one sta-
tion was used for data assimilation whereas the second used
two stations. The aim was to test the effect of the number
of observations. The observations are water level extracted
from the nature run without adding perturbations. This is
done as it is easier to test the ability of the data assimilation
to recover a and b from the control runs back to the nature
run.

4.1 Control run 1

In control run 1, model parameters that are responsible
for the errors are known and data assimilation is used
to improve the respective parameters. Figure 3 show the
changes in the cost function obtained in the two control runs.
It can be seen that both cost functions have a sharp decrease
at the first and second iteration. Then they level off at zero. a
and b are recovered to 0.61 and 0.063 exactly. This confirms
the adequacy of the proposed data assimilation method for
parameter estimate. It also shows that if the error sources
of one model are exactly known and the observations have
no error, the model parameters can be recovered to the true
values even if only one observation station is used.

Fig. 3 Variation of cost function value in the outer loop in control
run 1

4.2 Control runs 2 , 3 and 4

In control runs 2 , 3, and 4, onlyCd is adjusted in spite of the
fact that there are errors in both Cd and Chezy coefficients.
Observations at two stations were used. The control runs
represent more realistic situations. The difference between
control runs 2, 3, and 4 is that the Chezy coefficients in con-
trol run 2 is the closest to the true value whereas in control
run 4 is the deviation to the true value is largest. This led to
different converged values of cost functions. They decreased
to 4062, 34,770 and 168,115, respectively, (Fig. 4). The
adjusted a and b coefficients in those control runs are shown
in Fig. 5. It is found that the functions of Cd with respect to
the wind speed were improved to some extent but not recov-
ered to the true values as in control run 1. How much data
assimilation to improve wind drag coefficient depends on
the accuracy of Chezy coefficients, which were not adjusted
in those control runs. The improved Cd is closer to the true
value in the control run with Chezy coefficients closer to the
true value. In control run 4, the updated a got even worse
than its first guess, but Cd still got closer to the true value.
These experiments indicate that 4Dvar can improve model
results by adjusting some model parameters. However, it

Fig. 4 Variation of cost function value in the outer loop in control runs
2 , 3 and 4
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Fig. 5 Wind drag coefficient in the twin experiments

could lead to parameters that are out of the range. There-
fore, it is recommended to adjust those model parameters
with large uncertainties.

5 Data assimilation on the storm surge model

The strong storm Xaver in early December 2013 was chosen
to conduct the experiments in this study. It was regarded as
the largest storm in the North Sea since 1953 in terms of

the wind speed. The storm cyclone started to the south of
Greenland in December 4 and began to affect the North Sea
on December 5, 2013.

5.1 Tide validation

Tide-surge interaction is very important for storm surge sim-
ulations (Horsburgh and Wilson 2007). Therefore, before
modeling the storm surge, the model was validated in its
ability to capture the tide. The calibrated Chezy coefficient
69.88 is used for the calculation of bottom shear stress.
T tide (Pawlowicz et al. 2002) was used for tidal harmonic
analysis of modeled and observed water level. Figure 6
shows the comparisons of the amplitudes and phases of
the dominating harmonics from model results and tidal
gauges. M2 is the largest tidal component at all the five tidal
gauges, and the model can capture the observations very
well. S2 and O1 also have good agreement between model
and observations.

5.2 Adjustment of wind drag coefficient

5.2.1 Data assimilation setting

Storm surge is mainly caused by strong wind shear stress on
the sea surface. The estimate of wind shear stress is essential
to skill of storm surge models. As mentioned in Section 1,
wind drag coefficient Cd is still poorly understood and

Fig. 6 Comparison of measured
and modeled amplitude and
phase at stations Buesum,
Helgoland(Helgo), Husum,
Wittduen(Witt),
Bremerhaven(Brem)



Ocean Dynamics (2016) 66:1037–1050 1045

could affect storm surge model skill significantly. The initial
conditions is less important than wind shear stress and open
boundary in a 2D storm surge model. Sensitivity tests show
that models with cold start give almost the same results if the
initial simulation time is two days before the surge period.
Therefore, the parameter to be improved by data assimila-
tion is Cd . There are two control variables, i.e., a and b in
Eq. 2. Normally, the accuracy of tidal gauges is very high.
According to Woodworth and Smith (2003), the accuracy of
a new radar tidal gauge and a conventional bubbler pressure
gauge are comparable and in the order of 0.01 m. The water
level data used in this paper were resampled every 10 min.
This may decrease the accuracy of the data. Therefore, an
accuracy of 0.03 m was specified for all the observations
used for data assimilation. It is more difficult to specify the
accuracy of a and b. There is a brief review on the derivation
of the linear relation between Cd and U10 in the Appendix.
For more details, see Guan and Xie (2004).

Wind drag coefficient Cd is not only related to wind
speed, but also closely related with sea state. In a storm, the
sea state becomes much more complex than under a nor-
mal weather condition. According to the derivation in the
Appendix, more uncertainties are brought to the value of
b due to the uncertainties of Charnock coefficient α. a is
independent of wave state according to the Eq. A.6. Smith
(1980) mentioned that the increase in his formula is statisti-
cally significant and well above 99.9%, indicating that a has
a higher accuracy. Therefore, 0.03 and 0.01 were adopted
for the accuracies of a and b, respectively.

The water level data from the tidal gauges Helgoland and
Buesum were used for data assimilation purposes. The tidal
gauge Cuxhaven, Husum, Huibertgat, and Delfzijl were
used for validation of data assimilation. The time window of
data assimilation covers the period of the storm surge in the
German Bight from 2013-12-05 12:00 UTC to 2013-12-06
12:00 UTC.

Initial conditions are not in the control variables. In order
to properly estimate Mi in Eq. 14 for a and b , the storm
surge model should run before the time window. The period
between the starting time of storm surge model and start-
ing time of time window is a warm-up period for Mi .
Sensitivity tests show that Mi can converge if warm-up
period is long enough. In this paper, the storm surge model
starts 4 days before 2013-12-05 12:00 UTC with cold start.
Figure 7 shows a flow chart of the data assimilation scheme
implemented in the storm surge model.

5.2.2 Results and discussions

Figure 8 shows the variation of the cost function. It can be
seen that in the data assimilation time windows the mod-
eled water level got closer to the observations at the stations
Helgoland and Buesum. The time series of the water level

Fig. 7 Adopted data assimilation scheme

at the six stations are shown in Fig. 9. Compared with tidal
gauges measured data, the storm surge model with Smith
formula underestimates the water level at all the six sta-
tions. Data assimilation made the model results closer to
the observations. Table 2 shows the root mean square devi-
ations (RMSD) between modeled and observed water level.
The relative RMSD reductions at the six stations range from

Fig. 8 Cost function of data assimilation with time window from
2013-12-05 12:00 UTC to 2013-12-06 12:00 UTC
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Fig. 9 Time series of water level(m) in the storm. The solid line represents the tidal gauge measured water level; the dotted line the model results
with first guess of Cd ; the dashed line the model results with the improved Cd

30.6 to 63.1 % in the period of time window. More improve-
ments occurred at the stations Buesum, Helgoland, Husum
and Cuxhaven between 2013-12-05 20:00 UTC and 2013-
12-06 06:00 UTC. However, the peak is overestimated at the
four stations at about 2013-12-05 14:00 UTC. This means
the updated Cd is too high for this period. The wind coef-
ficient over the sea surface has a very complicated relation
with wind, sea state, and atmospheric structures. Cd is sim-
ply parameterized as a linear function of wind speed and
it is uniform spatially and constant in time. This param-
eterization scheme can work well under normal weather
conditions. However, in a stormy weather, the high wave
makes the sea surface very rough and the sea state changes
more rapidly. Hence, the 24-h time window used here may
be too long for the data assimilation of Cd .

It assumes that within a short period the sea state does
not change much and that it can be represented by the linear
function of wind speed. Another four data assimilation were

carried out with time windows of 6 h.The time windows
are 0512–0518, 0518–0600, 0600–0606, and 0606–0612,
respectively. The first two digits represent the day and the
last two the hour. For convenience, we named the model
with first guess of Cd as model I, the model with 24-h data
assimilation time window as model II and the model with
6-h time window model III. Figure 10 shows the time series
of water level at stations Buesum and Husum. Compared
to model I, both model II and III improved the simulations
significantly. Notably model III relieved the overestimated
water level peak at about 2013-12-05 14:00 UTC. Besides
better results were obtained between 2013-12-06 02:00
UTC and 2013-12-06 06:00 UTC. The root mean square
deviations of water level at the six stations in the three
models are listed in Table 3. At Buesum and Helgoland,
which are the stations used for data assimilation, the 6-h
time window improves the predictions quite clearly in the
time windows 0512–0518 and 0600–0606; in another two

Table 2 Root mean square
deviation of water level(m)
between 2013-12-05 12:00
UTC and 2013-12-06 12:00
UTC before and after data
assimilation

Before DA After DA Relative change

Buesum 0.619 0.264 57.3 %

Helgoland 0.319 0.176 45.0 %

Delfzijl 0.708 0.447 36.9 %

Cuxhaven 0.613 0.249 59.4 %

Huibertgat 0.325 0.225 30.6 %

Husum 0.650 0.240 63.1 %
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Table 3 Root mean square
deviations (RMSD) between
measured and modeled water
levels

Time window Model Buesum Helgoland Delfzijl Husum Cuxhaven Huibertgat

0512-0518 I 0.514 0.337 0.721 0.661 0.516 0.399

II 0.198 0.162 0.373 0.177 0.168 0.172

III 0.101 0.098 0.462 0.162 0.139 0.223

0518-0600 I 0.757 0.290 0.491 0.818 0.703 0.127

II 0.272 0.138 0.226 0.210 0.193 0.171

III 0.240 0.141 0.182 0.162 0.162 0.186

0600-0606 I 0.724 0.401 1.068 0.665 0.759 0.469

II 0.337 0.166 0.747 0.275 0.346 0.321

III 0.209 0.090 0.558 0.225 0.200 0.238

0606-0612 I 0.416 0.228 0.315 0.378 0.419 0.135

II 0.233 0.222 0.203 0.279 0.249 0.194

III 0.218 0.209 0.213 0.226 0.226 0.178

time windows, the improvements were only minor. At sta-
tion Husum and Cuxhaven, improvements happened in all
the four time windows using 6-h time window and the rela-
tive changes from 24- to 6-h time window ranged between 8
and 42.2 %. However, in the station Delfzijl and Huibertgat,
which are far from the stations used for data assimilation,
obvious improvements are only in the time window 0600–
0606; this may be due to the spatial variability of wind drag
coefficient.

The adjusted values of a and b in the different time win-
dows are shown in the Table 4. The a values changed around
its first guess 0.61 in Smith formula. However, the updated
b values are much larger than in the Smith formula. They
can give larger wind stress to the model during a strong
wind and improve the storm surge simulation. In model III,
a and b were different in the various time windows, indi-
cating the temporal variability of the wind drag coefficient.
Johnson and Vested (1992) proposed a hybrid wind drag
coefficient model by taking wave state into account. They
performed wave simulations for a constant winds of 24 m/s

from west over the North Sea. Based on the simulated wave,
a distribution of Cd is resulted over the North Sea. Wind
drag coefficients ranging from 0.0026 to 0.0032 resulted.
Figure 2 shows that in the period between 2013-12-05 12:00
UTC and 2013-12-06 12:00 UTC the wind speeds on the
German Bight was around 22 to 25 m/s. Our results are
comparable to Johnson and Vested (1992). For wind speed
of 24 m/s, Cd calculated from Smith formula is 0.0021 and
equal to 0.0033 updated frommodel II. It is found that Smith
formula underestimates Cd and data assimilation can update
Cd in a more reasonable way.

Li et al. (2013) used 4Dvar to improve Cd in the South
China Sea in the period of typhoon Hagupit; they also got
a set of different updated values for a and b for different
time windows. The largest one is equal to 0.946 and 0.145.
Peng et al. (2013) also studied the wind drag coefficient in
typhoon Hagupit with 4Dvar; the updated a and b values
also varied significantly depending on the data assimilation
time window, model resolution, and error sources. As men-
tioned above, the transfer of momentum and energy from

Fig. 10 Time series of water
level(m) in the storm at Buesum
and Husum. The red line is the
observations, The solid black
line the model results with first
guess of Cd ; the dotted black
line the model results with Cd

updated with 6-hour time
windows; the dashed black line
the model results with Cd

updated with 24-hour time
windows
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Table 4 Updated a and b

coefficients for within the
different time windows

Time window Model II Model III

a b a b

0512–0518 0.6244 0.1131 0.6066 0.1006

0518–0600 0.6244 0.1131 0.6475 0.1222

0600–0606 0.6244 0.1131 0.5726 0.1473

0606–0612 0.6244 0.1131 0.5497 0.1051

air to the ocean is a very complicated process. The linear
relation between the Cd and the wind speed is an approx-
imation. In a super strong storm, the linear function of Cd

may become invalid; then a and b will lose their physical
meanings and become just ordinary parameters of the storm
surge models. Liu and Lv (2011) studied the spatially vary-
ing drag coefficients in a typhoon storm and found that the
relation between the wind drag coefficient and wind speed is
not clear. A more meaningful way is to use a flow-wave-air
coupled model with proper wind drag coefficient parame-
terization schemes for storm surge simulations. Bruss and
Mayerle (2009) found that it was much better to use Cd

from a wave model than from the linear function of Cd with
respect to wind speed. The data assimilation cannot repair
the flaws in the storm surge model, but it can improve the
model results by adjusting a and b. The smaller improve-
ments at the station Delfzijl and Huibertgat indicated that
the improvements are limited to the surrounding areas of
the data assimilation stations due to the local effects of Cd .
Therefore, more stations are necessary for a large study area.

6 Conclusion

Combining the ideas of ensemble Kalman filter and incre-
mental 4Dvar, a data assimilation method was developed for
the parameter estimate in the storm surge models. An iter-
ative processes to find the global minimum solution for a
cost function is proposed. The method is similar to incre-
mental 4Dvar but uses a set of perturbations to estimate
the tangent linear equation and therefore represents the tan-
gent linear equation and adjoint equation explicitly. This can
avoid the development of the adjoint model, which is highly
difficult and time-consuming for an ocean model. The twin
experiments proved the effectiveness of the data assimi-
lation method. A more realistic twin experiment revealed
that the method can also improve model results even if
the error sources in a given model are not well known.
In order to avoid the unreasonable adjustment, it is better
to choose model parameters with more uncertainty as the
control variables. The adjoint free 4Dvar is very easy to
implement on any ocean models. The models with perturbed
parameters can run in parallel independently. Therefore, the
computation time is comparable to an adjoint based 4Dvar.

In a storm surge model, Cd is widely recognized as the
most uncertain model parameter. The Smith formula for Cd

works well under normal weather conditions, but leads to
underestimates of water levels in a strong storm as shown
in this paper. This is most probably caused by the invalidity
of Smith formula in an extremely storm due to the shortage
of wind stress measurements during strong storm. We used
the AF 4Dvar to adjust the linear relation between the wind
speed and Cd . The updated wind drag can improve the sim-
ulation very effectively. The data assimilation time window
is important for the wind drag data assimilation due to the
large temporal variability in a storm. A short time window
may improve the estimate of Cd . In the future, data assimi-
lation will be used to test Cd for more storms to improve the
relation between Cd and wind speed. The proposed adjoint
free method will also be used to high dimension parameters,
such as initial conditions of a 3D baroclinic ocean model,
in which errors of initial conditions play much greater roles
than in a storm surge model.

Acknowledgments This study has been conducted using the tidal
gauges data of Copernicus Marine Service Products

Appendix

The wind profile follows approximately a logarithm curve
with height in the atmospheric boundary layer which can be
expressed as:

U(z) = u∗
κ
ln(

z

z0
) (A.1)

where U(z) is the wind speed at the height of z; z0 is the
aerodynamic surface roughness; κ = 0.4 is the von Karman
constant; u∗ is the wind friction velocity defined by:

u∗ =
√

τ

ρa

(A.2)

Combining Eqs. 1 and A.2, a relation between u∗ and Cd

can be obtained as follows:

u2∗ = CdU2
10 (A.3)

Combining (A.1) and Eq. A.3 yields the relation between z0
and Cd ,

z0 = z10exp(−κ/C
1/2
d ) (A.4)
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where z10 = 10m. Charnock (1955) proposed a relation
between z0 and u∗ , i.e., gz0/u

2∗ = α, where g is the
gravitational acceleration and α is the Charnock coefficient.
Charnock (1955) took it as a constant. Combining all the
above equations, a relation between Cd and U10 is obtained
as below,

α1/2U10/(gz10)
1/2 = C

−1/2
d exp(−κ

2
C

−1/2
d ) (A.5)

Equation A.5 is almost a linear function for Cd values in the
range of 1.0×10−3 to 4.0×10−3,

Cd = (a + bU10) (A.6)

where b = 0.475α1/2. Several values of α have been pro-
posed; α = 0.012 (Charnock 1955); α = 0.0144 (Garratt
1977) ; α = 0.035 (Kitaigorodskii and Volkov 1965).
Stewart (1974) suggested a dependency of α with the wave
state. Hsu (1974) related α to the wave steepness and
Donelan et al. (1993) to the wave age.
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