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ABSTRACT

Gao, M.; Liu, S.; Zhao, G.; Yuan, H.; Wei, C.; Wu, Y., and Tang, J., 2014. Vulnerability of eco-hydrological environment in
the Yellow River delta wetland. Journal of Coastal Research, 30(2), 344–350. Coconut Creek (Florida), ISSN 0749-0208.

We investigated the relationship between groundwater head and oceanic tidal fluctuations in the Yellow River Delta
wetland through on-site hydrological monitoring. Shallow groundwater heads were obviously affected by oceanic tide
along the coastal zone. The ranges of the wetland zone can be readily assessed by measuring fluctuation amplitudes or
lags. The results show that the influence radius is approximately 12 km to 18 km (when the correlation coefficient is 0.7
to 0.8) under the joint actions of oceanic tide and shallow groundwater seepage flow in clayey silt coastal wetland. A
cross-sectional sketch of the coastal wetland model is developed based on monitoring data of groundwater and oceanic
tidal fluctuations to study the vulnerability of the eco-hydrological environment in the Yellow River Delta wetland. The
coastal wetland consists of three zones (the groundwater seepage zone, the tidal-induced transitional zone, and the tidal
zone) with distinctly different hydraulic properties. Analytical solutions are used to estimate the vulnerability of the eco-
hydrological environment in the wetland aquifer located in the NE part of the Yellow River Delta wetland, Shandong
Province, China. Our results show that changes in the shallow groundwater quality of the wetland are significantly
affected by natural factors, such as strong cutoff in the lower reaches, storm tides, and human engineering activities. The
northern coastal wetland may be submerged without damp proof when the height of a storm tide reaches 2.4 m. The
depth of shallow groundwater and the salinity gradient are key factors that contribute to the vulnerability of the
ecological environment. The vulnerability of the eco-hydrological environment is derived from the joint actions of
groundwater dynamics, hydrochemistry, and tidal-induced processes under sedimentary stress and water pressure.

ADDITIONAL INDEX WORDS: Coastal wetland, groundwater head fluctuation, tidal fluctuation, correlation
coefficient, vulnerability.

INTRODUCTION
The Yellow River delta is located in the NE of the Shandong

Peninsula in China. The delta has formed eight overlaid

distributary lobes since 1855 (Cheng, 1991; Xue, 1994). The

developing lobes in the Yellow River delta are defined by the

distribution range of distributary channels formed in 1976.

These distributary channels are still active now because of

human initiatives such as the water-sediment regulation

scheme (WSRS) implemented by the Yellow River Conservancy

Committee (YRCC). The Yellow River delta, spreading over an

area of 4500 km2, has become the youngest and most vulnerable

wetland coastal zone in the world (Pang, Jing, and Li, 2000).

Coastal wetlands are important transition zones between

land and ocean with water depth no more than 6 m. They are

mainly composed of distributary channels, crevasse splays,

natural levees, floodplains, and sedimentary depressions.

Coastal wetlands provide an ideal place for reeds growth since

their clay sand or clay surface is permeable. During the wet

season, rainwater can easily permeate deeply and irrigate the

reeds. Since the 1980s, a number of changes (such as the Yellow

River cutoff, storm tide, aggravated salinization, and coastal

engineering activities) have altered the natural conditions of

the Yellow River delta. As a result, the ecological functions of

the wetland have been exhausted and reeds have degraded or

disappeared. Since 2000, the Chinese government has contin-

ually enhanced the protection of the wetland ecological

environment, including annual water–sediment regulation in

the Yellow River. Therefore, the degraded wetland ecological

system has been partially restored. However, numerous

vulnerability problems still exist (Cao et al., 2007; Wang and

Zhang, 1998).

Since the 1950s, a large number of analytical studies have

been conducted on how groundwater responds to tidal

fluctuation (Jacob, 1950; Jiao and Tang, 1999; Li et al., 2002,

2007; Nielsen et al., 1997; Sun, 1997; Townley, 1995; Trefry and

Bekele, 2004). Most of these studies assumed that the aquifer is

homogeneous. However, this assumption may be invalid

because coastal aquifers consist of zones with different

hydraulic properties. Such zonation may be caused by facies

changes in stratigraphy and delta aggradation and/or distrib-
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utary channel swing. Trefry (1999) presented comprehensive

solutions for a finite aquifer consisting of arbitrary numbers of

adjacent homogeneous zones and subject to sinusoidal linear

boundary conditions. Trefry indicated that the complexity of

resulting expressions, even for simple composite aquifers, can

distract attention from the underlying physics. Trefry and

Bekele (2004) evaluated the suitability of various simple

models of tidal propagation by using a set of groundwater

head time series data collected along a transect in a

sedimentary island aquifer near Perth, Western Australia.

These researchers concluded that the model that involves

composite heterogeneity coincides well with the observed

spatial bias in the well responses (attenuations and lags),

which cannot be modeled by a homogeneous aquifer theory.

Winter et al. (1998) discussed correlativity of the river, wetland

groundwater, landform, and climate. By studying wetland

vegetation, water depth, and permeability, Cevza et al. (2008)

presented wetland environmental conditions by modeling to

control surface water and groundwater. Other researchers

conducted numerical studies on saltwater intrusion in a coastal

aquifer using a three-dimensional (3D) model (Feseker, 2007;

Li et al., 2002; Oude Essink, 2001; Restrepo, Montoya, and

Obevsekera, 1998). This model can be effectively used for

hydrological restoration to reduce wetland surface water runoff

and improve water quality (Gao and Swarzenski, 2011;

Swarzenski et al., 2008).

METHODS
Monitoring data were obtained from three representative

wells (a total of 10 observing wells) in the modern Yellow River

delta for a Mass Land Resource Investigation Project (No.

1212010611402) from 2006 to 2009. The ZK1 well (37845026 00 N,

11885602300 E) is located in Estuary Town, south of the Yellow

River; the ZK2 well (3785304900 N, 11884005100 E) in Gudao Town,

north of the river; and the ZK10 well (3784904300 N, 118857013 00 E)

east of the river. The monitoring sites are shown in Figure 1.

Gao, Yuan, and Zhao (2012) calculated the compaction subsi-

dence since 1855 under continuous deposition conditions in the

modern Yellow River delta: ZK1, ZK2, and ZK10.

Localization groundwater automatic monitors (domestic

type) were installed in the three wells, and groundwater

dynamic monitoring intervals were set every 1 hour. Figure 2

shows continuous monitoring data of ZK1, ZK2, and ZK10 wells

from 17 August 2007 to 09 August 2008. In all cases,

groundwater heads underwent several seasonal changes

caused by local precipitation, evaporation, oceanic tide, and

side permeability of the Yellow River.

The assessment started on 23 February 2008 (an astronom-

ical spring-tide day, 1–2 days after a full moon) and lasted for

358 continuous days. February falls during the dry season in

this part of China. According to the measurement of the local

meteorological department, the monitoring day was sunny

(rainfall was zero). Thus, the influence of groundwater head

fluctuation affected by rainfall infiltration was neglected.

Average groundwater heads were low on 23 February 2008,

with 0.72 m in ZK1, 1.017 m in ZK2, and 0.634 m in ZK10. In

order to observe the tidal cycles, a local tide test point

(37855042.72 00 N, 119803042.99 00 E) was set up to the NE of

ZK10, and 25 measurements were obtained on 23 February.

Based on our observations, the tidal range in the study area

was about 120 cm, with a mean of�31.2 cm. High tide occurred

at 0900 with a tidal height of 23 cm, and low tide occurred at

2200 with a tidal height of �97 cm. Table 1 shows the

correlation of monitoring data between shallow groundwater

head and oceanic tide height.

The daily distribution curve of the shallow groundwater head

in ZK10 and oceanic tide heights is shown in Figure 3. In well

ZK10, the amplitude of the groundwater was about 1/13 of

oceanic tide level, and the peak groundwater head lagged 3

hours behind the tidal wave. Positive correlation was shown

between the groundwater head and oceanic tide in ZK10

(Figure 4). The correlation coefficient of groundwater heads in

ZK1 and oceanic tide heights is 0.57 (Figure 5), while the

corresponding value in ZK2 was only 0.38 (Figure 6).

The correlation coefficient in ZK10 was 0.85 between

groundwater head and tide level, 0.949 during high tide, and

0.62 during low tide. According to this result, periodic

groundwater changes are mainly connected to the ebb tide.

The distributary lobe of the modern Yellow River delta was 15

m thick before it was abandoned, and the compaction process

was basically terminated in the past 30 years (Gao, Yuan, and

Zhao, 2012). No direct hydraulic connection was observed

between shallow groundwater and ocean tide in the coast.

However, ocean discharge and recharge occurred in the clay silt

coast, and the resulting sedimentary stress effect would deliver

seawater into the permeable silt aquifer. This submarine

groundwater exchange process may cause the shallow ground-

water head to rise or fall periodically at a certain period.

Moreover, oceanic tide and tide-induced shallow groundwater

have complicated periodical and trend patterns.

As a result of the joint actions of sedimentary stress and

groundwater head pressure, the ocean influenced area is

Figure 1. Location of monitoring wells in study area.
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about 12 km to 18 km landward, based on the evidence of the

correlation coefficient between 0.7 and 0.8. In this area,

shallow groundwater seepage flows in silt coastal wetland.

Beyond 18 km, oceanic tidal influence is too weak to be

observed due to the poor connection in the aquifer, where the

seepage flow is controlled by lateral infiltration, precipita-

tion, evaporation, and groundwater exploitation. The move-

ment of wetland shallow groundwater fits the linear seepage

law (Darcy, 1856).

WETLAND MODEL
Cross-Sectional Sketch of Coastal Wetland Model

According to the change of groundwater head and density,

the coastal wetland would be divided into three zones:

groundwater seepage zone, tidal-induced transitional zone,

and tidal zone. A cross-sectional sketch of the coastal wetland

model (Figure 7) was established, which represents several

heterogeneity features without involving a very complicated

presentation. There is an obvious vegetation zonation along the

wetland coast: the reed zone; reed and tamarix chinensis zone;

tamarix chinensis and seepweed zone; and seepweed zone.

Assuming that pressure of seawater is equal to pressure of

wetland groundwater, one can define an interface between

seawater and saline groundwater. The underlying mechanisms

of the tide-induced groundwater head fluctuation in the three

zones are shown in Figure 7. The algorithms could be expressed

as in Equation 1.

qseawaterðH1 þH2Þg ¼ qgroundwaterðhþH1 þH2Þg ð1Þ

Where qseawater represents the density of seawater, qgroundwater

represents the density of groundwater, h represents buried

depth of the groundwater in high tidal level, H1 represents the

changing level of groundwater, H2 represents level of the

groundwater in low tide, and g represents the acceleration of

gravity.

Model Calculation and Debugging
Through calculation and debugging, the gridding of the study

area is divided into 200 3 200 cells for 400 m 3 500 m. The

effective number of elements is 60,834, excluding invalid cells.

The simulation started on 10 April 2007. The start flow is

shown in Figure 8. Shallow groundwater exhibited slow flow

from land to the coastal area, accompanied by scalloped and

radial flow. Side seepage of the Yellow River was obviously

toward wetland groundwater.

Based on the flow model, flow data were converted into a

modular 3D multispecies transport model (MT3DMS) as

Figure 2. Curve of groundwater regime in monitoring wells.

Table 1. Correlativity between shallow groundwater and oceanic tide.

Monitoring Site Distance (km)

High Water Level Low Water Level

Amplitude (m) CorrelativityTime of Day Water Level (m) Time of Day Water Level (m)

Tide test point 0 0900 0.23 2200 �0.97 1.2 1

ZK1 28 0100–0200 0.74 1100–1300 0.71 0.03 0.57

ZK2 32 0000 1.04 0900–1200 1.0 0.04 0.38

ZK10 7.0 1200 0.69 0000–0100 0.6 0.09 0.85
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water quality parameters. Chlorine and dispersion degree

were considered to be the main parameters in the water

quality model. The main reason is that chlorine is one of the

most important factors that leads to degrees of salinity.

Through calibration and verification, the longitudinal dis-

persion degree was determined to be 20 m, whereas the

transverse dispersion degree value was found to be 2 m.

Based on groundwater quality monitoring data from 2007 to

2010, the model was corrected and the validity of chlorine

migration was evaluated. The modeling result (Figure 9)

shows that data between calculated and monitoring values of

chlorine are matched very well. The uncertainty is smaller

than 10%.

MODEL RESULT
The changing trend in wetland groundwater for the past 20

years was analyzed by the MT3DMS subroutine package.

Under normal conditions, the heads of wetland groundwater

were slightly raised (Figure 10), whereas local low-lying areas

were flooded. The depth of shallow groundwater (1 m to 3 m)

resulted in a strong vertical permeability. Precipitation and

evaporation led to a Cl� increase, leading to numerous of

saltwater distributions.

Several changes were identified in freshwater and

saltwater/brine along the distributary channel, crevasse

splays, natural levees, floodplains, and sedimentary de-

pressions. The distribution of wetland freshwater is

limited. The saline water desalination phenomenon occurs

only near the estuarine coastal line. The main driving

force is the shallow groundwater and salinity gradients in

the coastal wetland, and thus changes the hydrological

conditions in the wetland.

DISCUSSION
Adding Rainfall

According to local meteorology data, annual precipitation in

the Yellow River delta varied from 310.1 mm to 946 mm. To

simulate strong rainfall infiltration effects on wetland water

environment, every simulation unit was distributed according

to annual maximum precipitation, especially during high flow

periods (from July to September every year). Model results

show that wetland groundwater rose by an average of 0.3 m,

Figure 3. Curve of tide and groundwater in ZK10.

Figure 4. Curve of correlativity between coastal tide and shallow ground-

water level in ZK10.

Figure 5. Curve of tide and groundwater in ZK1.

Figure 6. Curve of tide and groundwater in ZK2.
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together with the following phenomena: groundwater upwell-

ing surface; obvious water recharging in low-lying floodplains

or depressions; and significant decrease of Cl� concentration

(dropped below 1500 mg/L in most of the cells). The closer

measurements were to inland decline, the more the Cl� was

reduced.

River Cutoff
The cutoff of the lower Yellow River (in the Shandong

province) occurred from 1972 to 2001. The number of cutoff

days increased dramatically and reached the longest cutoff

record of 226 days in 1997. Remediation was begun in 2002 as a

result of the regulation measurements for unified water-

sediments usage and supply.

Assuming the cutoff time of the Yellow River is 20 days per

year, the wetland groundwater head would be modeled to

decrease by 10 cm/y. In contrast, groundwater flow remains

basically unchanged because of the effects of low permeability

and because there is no unified aquitard in wetland clayey

sediments. Assuming the cutoff time of the Yellow River is 200

days per year for three consecutive years, the wetland

groundwater head would be decreased by 100 cm/y. The cutoff

of the lower Yellow River directly affects freshwater resources

in the wetland. The increasing salinization and decreasing

plant coverage caused serious degradation and reduction of the

wetland eco-geological system.

Storm Tide
According to the model, tidal height will be 2.4 m higher than

the normal tidal height during a storm surge. The underground

water head will simultaneously increase rapidly. Moreover,

storm surges will flood coastal lowland areas because of the

low-lying wetland, and the salinity of shallow groundwater

within the 2 km to 12 km region from the coastline will

obviously increase. Such phenomenon can be attributed to the

construction of coastal dams, which weaken coastal erosion of

seawater.

CONCLUSIONS
Shallow groundwater heads are obviously affected by oceanic

tide in the Yellow River delta wetland along the coastal zone.

Ranges of the wetland zone must be readily assessed by

measuring fluctuation amplitudes or lags. The influence radius

is approximately 12 km to 18 km (when the correlation

coefficient is 0.7 to 0.8) under joint actions of oceanic tide and

shallow groundwater seepage flow in the clayey silt coastal

wetland.

Figure 7. A cross-sectional sketch of coastal wetland model.

Figure 8. Start groundwater flow in Yellow River delta wetland.
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The coastal wetland consists of three zones (groundwater

seepage zone, tidal-induced transitional zone, and tidal zone)

with distinctly different hydraulic properties for a limited

width in coastal zone and an infinite width in wetland.

A cross-sectional sketch of the coastal wetland model is

constructed by zones of local vegetation (the reed, reed and

tamarix chinensis, tamarix chinensis and seepweed, and

seepweed), shallow groundwater head and quality, seawater

(tide and density), and river flow, which are the controlled

factors for coastal wetland eco-hydrologic environment. Next,

the model will be modified and verified by the conductive effect

of sedimentary stratum stress. Moreover, it can be considered

by other factors such as oceanic storm, wave, and submarine

groundwater discharge.

The coastal wetland is very young, and its evolution time is

short. It possesses natural intrinsic vulnerability that controls

occurrence, development, and succession by external ecological

and environmental factors (delta abandoned lobes in erosion

and compactional subsidence, wetland water storage condition,

surface clayey silt sediment). As one of the most disturbed

regions, coastal wetlands are vulnerable aquifer systems of

physical/chemical equilibrium. The application of coastal zone

modeling is urgently necessary for the coastal wetland eco-

hydrologic environment.
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