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a b s t r a c t

Based on the catalytic etching of gold nanoparticles (AuNPs), a label-free colorimetric probe was
developed for the detection of Cu2+ in aqueous solutions. AuNPs were first stabilized by hexadecyl-
trimethylammonium bromide in NH3–NH4Cl (0.6 M/0.1 M) solutions. Then thiosulfate (S2O3

2−) ions were
introduced and AuNPs were gradually dissolved by dissolved oxygen. With the further addition of
Cu2+, Cu(NH3)4

2+ oxidized AuNPs to produce Au(S2O3)2
3− and Cu(S2O3)3

5−, while the later was oxid-
ized to Cu(NH3)42+ again by dissolved oxygen. The dissolving rate of AuNPs was thereby remarkably
promoted and Cu2+ acted as the catalyst. The process went on due to the sufficient supply of dissolved
oxygen and AuNPs were rapidly etched. Meanwhile, a visible color change from red to colorless was
observed. Subsequent tests confirmed such a non-aggregation-based method as a sensitive (LOD¼
5.0 nM or 0.32 ppb) and selective (at least 100-fold over other metal ions except for Pb2+ and Mn2+) way
for the detection of Cu2+ (linear range, 10–80 nM). Moreover, our results show that the color change
induced by 40 nM Cu2+ can be easily observed by naked eyes, which is particularly applicable to fast on-
site investigations.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

With the development of electronic technology, the global
demand of copper is being steadily on the increase. Environmental
pollutions resulting from inappropriate disposal of related wastes
(e.g. mining residue, smelting slag, electronic trash, etc.) have
aroused growing concern over the recent years. It has proven that
the excessive accumulation of Cu2+ in human bodies has great
threat to the nervous system or urinary system [1]. The concen-
tration of Cu2+ in drinking water, as recommended by U.S. Environ
mental Protection Agency (EPA), should be lower than 1.3 mg/kg
(∼20 μM) [2]. The detection of Cu2+ at such a level or the even
lower level, honestly speaking, could be simply achieved in the
laboratory by means of mass spectrometry [3], atomic spectro-
scopy [4], voltammetry [5], etc. However, due to the dependence
on sophisticated instruments or the lack of selectivity, none of
them could be simplified for the rapid onsite detection of Cu2+ in
environmental waters. The development of a cost-effective, reli-
able, and portable method was thus in an urgent need, especially
ll rights reserved.
for the environmental monitoring in developing countries and
rural regions.

As an easily handled method, the colorimetric method has
proven to be practical in the determination of copper in natural
waters and foods [6–9]. However, its detection limit was
relatively higher due to the low photoabsorption coefficients of
Cu-organic complexes. Recent researches show that nanoparticles-
based coorimetric assays can overcome the shortcoming of tradi-
tional colorimetric methods, since nanoparticles have much higher
molar extinction coefficients. Such methods have been succesively
developed for the selective and sensitive sensing of proteins [10
,11], cells [12,13], DNA[14,15], metal ions [16,17] and anions
[18,19]. Corresponding strategies could be divided into three types.
One of them was achieved based on the target induced AuNPs
aggregation [20,21], where target analytes form complexes with
ligands modified on AuNPs' surfaces. This strategy need compli-
cated modifying processes (i.e. label processes) as well as specific
equipment (e.g. high speed centrifuges). Another one was based
on the AuNPs aggregation resulting from the replacement of
stabilizers on AuNPs by target analytes [18,19]. The strategy is
relatively simple but suffers from low sensitivity and selectivity.
The third one was accomplished by the target induced or target
catalyzed etching of AuNPs [22–27]. Such a method is promising
due to its simplicity and excellent performance. As compared to
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the former two strategies, the last one has been less concerned
and applied to only a few analytes.

In our previous work [28], we reported a sensitive and selective
colorimetric sensing platform for Cu2+ based on the catalytic
etching of Au@Ag nanoparticles. Despite its simplicity and perfor-
mance, the method is still time-consuming (60 min) and not
noticeable enough at the level of 100 nM Cu2+ for the absorption
band of Au@Ag nanoparticles is around 390 nm and very close to
the ultraviolet band. In this study, we brought out a much more
time-saving and more sensitive to naked-eyes method for the
sensing of Cu2+. It is based on the catalytic etching of AuNPs within
ammonia medium and the theory could be interpreted as

Au+Cu(NH3)42++5S2O3
2−-Au(S2O3)23−+Cu(S2O3)35− (1)

and

Cu(S2O3)35−+O2+16NH3+4H+-4Cu(NH3)42++5S2O3
2− (2)

Following the method, a noticeable color change induced by
40 nM Cu2+ would occur within 25 min.
2. Experimental

2.1. Chemicals and apparatus

Hydrogen tetrachloroaurate(III) dehydrate, trisodium citrate,
sodium thiosulfate and hexadecyltrimethylammonium bromide
(CTAB) were obtained from Sinopharms Chemical Reagent (China).
All other chemicals were analytical reagent grade or better. Solutions
were prepared with deionized water (18.2 MΩ, Palls Cascada).
Absorption spectra of AuNPs were scanned by the UV/visible spectro-
photometer (Beckman Coulters DU-800, USA). Images of dispersed
AuNPs were achieved by transmission electron microscopy (TEM,
JEOLs JEM-1230, Japan) operated at 100 kV. Dynamic light scattering
(DLS) tests were performed on a Zeta Potential/Particle Sizer (Mal-
vens Nano ZS-90, UK).

2.2. Methods

2.2.1. Gold nanoparticles synthesis
Citrate-capped gold nanoparticles were prepared according to

the Frens' method by means of the chemical reduction of HAuCl4
by citrate in the liquid phase [29]. Briefly, 200 mL aqueous solution
of 1 mM HAuCl4 was first brought to boil with vigorous stirring.
Then 20 mL trisodium citrate with a concentration of 38.8 mMwas
added rapidly and the mixture was heated under reflux for
another 10 min. During the process, the color changed from pale
yellow to deep red. Thereafter, the solution was cooled to room
temperature while being stirred continuously. The size of AuNPs,
as determined by TEM imaging, was 15 nm.
Scheme 1. Schematic illustration for the colorimetric s
2.2.2. Sensing procedure
To 200 μL AuNPs, 10 μL CTAB (0.1 M) was firstly added to ensure

AuNPs stable in a NH3–NH4Cl (0.6 M/0.1 M) solution. After thorough
mixing, the colloidal solution was further mixed with 800 μL NH3–

NH4Cl buffer solution containing different amount of Cu2+. Then 5 μL
Na2S2O3 with a concentration of 1.0 M was added and the solution
was incubated at 70 1C for 25 min. The absorption spectra of final
solutions were recorded.

2.2.3. Analysis of real samples
Local shellfish samples were wet digested for analyses. Briefly,

the tissues were washed with deionized water thoroughly and
then frozen at −28 1C. They were subsequently freeze-dried and
ground to powders for digestion. To 0.3 g powder sample, 10 mL
ultrapure HNO3 were added and the mixtures were digested in a
high pressure tank at 150 1C for 6 h. Digestive solutions were
further diluted to 50 mL for use.

For sample analysis, different volumes of above diluted samples,
tap water (obtained from our institute) or local drinking water, 5 mL
Na2S2O3 (1.0 M ), and 200 μL CTAB stabilized AuNPs were successively
added to 800 μL NH3–NH4Cl buffers. The solutions were incubated at
70 1C for 25 min before recording the absorption spectra. The
concentrations of Cu2+ were calculated by the calibration curve.

3. Results and discussion

3.1. Mechanism of the sensor

The ionic system of S2O3
2−–Cu2+ has been applied to extraction

of gold from ores for many years. In this system, Cu2+ first reacted
with NH3 to form Cu(NH3)42+ complexes. Then Cu(NH3)42+ oxidized
gold in the presence of S2O3

2− to produce water-soluble
Au(S2O3)23− and Cu(S2O3)35−. Cu(S2O3)35− was converted to Cu
(NH3)42+ again by dissolved oxygen. During the whole process,
Cu2+ acted as a catalyst and had not been consumed. The related
thermodynamic data are displayed as follows [30], where φθ

represents the standard potential.

Cu(NH3)42++3S2O3
2−+e-Cu(S2O3)35−+4NH3 φθ¼0.22 V vs NHE(3)

Au(S2O3)23−+e-Au+2S2O3
2− φθ¼0.15V vs NHE (4)

O2+H2O+4e-4OH− φθ¼0.40 V vs NHE (5)

Scheme 1 outlines the sensing mechanism of this study. When
CTAB stabilized AuNPs reacted with S2O3

2−, Au(S2O3)23− complexes
were formed and AuNPs were partly dissolved (gold can be leached
slowly by O2 in the presence of S2O3

2− [31]). The SPR absorption of
AuNPs thereby decreased. Once Cu2+ was introduced, the dissolving
process was greatly accelerated and the color of solution faded rapidly.

To verify the role of Cu2+ as a catalyst in the etching of AuNPs,
the SPR absorption spectra of AuNPs were monitored (Fig. 1).
Curve a displayed the absorption spectrum of CTAB stabilized
ensing of Cu2+ based on etching of AuNPs .



Fig. 1. The absorption spectra of CTAB stabilized AuNPs (a) and after incubation
with 5.0 mM S2O3

2− (b), 5.0 mM S2O3
2−+0.04 μM Cu2+ (c), 5.0 mM S2O3

2−+0.1 μM
Cu2+ (d), respectively.

Fig. 2. Absorbance of AuNPs at 527 nm after incubationwith 5.0 mM S2O3
2− (curve a),

5.0 mM S2O3
2−+0.1 μM Cu2+ (b), and ΔA (c) in different concentration of NH3 at 70 1C

for 30 min.

Fig. 3. Absorbance of AuNPs at 527 nm after incubation with NH4Cl–NH3 (0.1/
0.6 M) buffer solution containing different concentration of S2O3

2− with the
absence (a), presence of 0.1 μM Cu2+ (b) and ΔA (c) at 70 1C for 30 min.
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AuNPs and the strongest SPR absorption appeared at 521 nm. The
addition of S2O3

2− caused the absorption at 521 deceased to ∼2/3
(curve b), accompanied by a slight red-shift of the absorption peak
from 521 to 527 nm. The DLS results showed that the diameters of
CTAB stabilized AuNPs before and after addition of S2O3

2− were
16.15 and 15.14 nm, respectively. Hence, the intensity decrease of
the SPR absorption could be attributed to the shrink of particles
sizes. The SPR absorption spectra of AuNPs decreased dramatically
in the presence of Cu2+ (Fig. 1, curve c and d). The DLS results
revealed that Cu2+ at the level of 0.04 and 0.1 μMwould reduce the
diameters of CTAB stabilized AuNPs to 12.09 and 11.64 nm,
respectively. It suggests that the etching of AuNPs were acceler-
ated by the co-work of Cu2+ and S2O3

2−. It is noteworthy that
almost no AuNPs o8 nm were found in the remaining solution,
since such AuNPs are even easier to be leached by oxidants such as
dissolved oxygen and Cu2+.

3.2. Optimize the sensing conditions

Since our method is based on the catalytic leaching of AuNPs,
the optimization of experimental conditions is very necessary.
Factors to be tested include the concentrations of NH3 and S2O3

2−,
the incubation temperature and time. With respect to the fact that
AuNPs would also be etched by dissolved oxygen in the absence of
Cu2+, the difference between the absorbance of AuNPs before and
after addition of Cu2+ (ΔA¼Asample−Ablank) was chosen as a refer-
ence for optimization.
3.2.1. Effect of the concentration of NH3

The effect of NH3 on the leaching of AuNPs was investigated in the
absence and presence of Cu2+ (0.1 μM), while other factors were fixed
(NH4Cl¼0.1 M, S2O3

2−¼5.0 mM, incubation temperature¼70 1C and
time¼30 min). As shown in Fig. 2, in the absence of Cu2+, the
absorbance of AuNPs at 527 nm decreased slightly with the increase
of NH3 (curve a). The slight decrease can be attributed to the increase
of conditional stability constant of Au(S2O3)23− with pH increasing
and consequent decrease of the practical redox potential of Au
(S2O3)23−/Au. However, in the presence of Cu2+ (curve b), the
absorbance of AuNPs at 527 nm decreased dramatically with the
increase of NH3 from 0.2 to 0.6 M, since more Cu(NH3)42+ were
formed in the solution. Further addition of NH340.6 M almost
yielded no more effects. The ΔA reached its lowest value and kept
stable when the concentration of NH3 was set at 0.6 M. To achieve
high sensitivity, a concentration of 0.6 M was selected in following
experiments.
3.2.2. Effect of the concentration of S2O3
2−

Fig. 3 showed the effect of S2O3
2− on the leaching of AuNPs. In

the absence of Cu2+ (curve a), the absorbance of AuNPs at 527 nm
decreased slightly with the increase of S2O3

2−. In the presence of
Cu2+ (curve b), the absorbance decreased sharply with the increase
of S2O3

2− from 1.0 to 5.0 mM. It should be attributed to both the
decrease in practical redox potential of Au(S2O3)23−/Au and the
increase in the redox potential of Cu(NH3)42−/Cu(S2O3)35−. How-
ever, the effect would not be remarkably promoted when S2O3

2−

exceeded 5.0 mM. The ΔA reached its lowest value when the
concentration of S2O3

2− was set at 5.0 mM (curve c). As a result,
S2O3

2− with a concentration of 5.0 mM was chosen in following
experiments.
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3.2.3. Effect of the incubation temperature and time
Figs. 4 and 5 showed the effects of incubation temperature and

time. In the absence of Cu2+ (curve a in two figures), both of them
showed insignificant effects. As compare, the absorbance of AuNPs
at 527 nm would decrease sharply with the increase of tempera-
ture (within 70 1C) or time (within 25 min). The incubation
temperature of 70 1C and the incubation time of 25 min were
thereby selected.
3.3. Selectivity of the sensor

To test the selectivity of our sensor, various environmentally
relevant ions were added to the solution separately. The inset in
Fig. 6 shows the presence of Cu2+ (0.1 μM) turned the AuNPs to
almost colorless and a remarkable decrease of the absorbance at
527 nm was observed (Fig. 6). As compare, the existence of about
100-fold excess of Mg2+, Ag+, Li+, Na+, Hg2+, As(V), Co2+, Cd2+, Fe3
Fig. 4. Absorbance of AuNPs at 527 nm after incubation with NH4Cl–NH3 (0.1/
0.6 M) buffer solution containing 5.0 mM S2O3

2− with the absence (a), presence of
0.1 μM Cu2+ (b) and ΔA (c) at different temperature for 30 min.

Fig. 5. Absorbance of AuNPs at 527 nm after incubation with NH4Cl–NH3 (0.1/
0.6 M) buffer solution containing 5.0 mM S2O3

2− with the absence (a), presence of
0.1 μM Cu2+ (b) and ΔA (c) at 70 1C for different time.

Fig. 6. Absorbance at 527 nm and color of AuNPs after incubation with NH4Cl–NH3

(0.1/0.6 M) buffer solution in the presence of common ions with a concentration of
10 μM (except 0.1 μM Cu2+, 0.1 μM Mn2+ and 1 μM Pb2+) containing 5.0 mM S2O3

2−

at 70 1C for 25 min.

Fig. 7. Influence of common ions with a concentration of 10 μM (except 0.1 μMMn2

+ and 1 μM Pb2+) on the determination of 0.1 μM Cu2+. Blue bare: absorbance
response of the probe to blank; green bar: absorbance response of the probe to
0.1 μM Cu2+; black bar: absorbance response of the probe to 0.1 μM Cu2+ in the
presence of other ions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
+, K+, Ni2+, Cr3+, Zn2+, Al3+, NO3
−, SO4

2−, ClO4
− and NO2

−, 10-fold of
Pb2+ and same concentration of Mn2+ caused almost no noticeable
color change. The absorbance of AuNPs at 527 nm (A527 nm) with
the addition of above ions remained similar to that yielded by the
blank. The proposed method was confirmed with excellent selec-
tivity toward Cu2+.
3.4. Interference

The interference of other environmentally relevant ions were
also investigated by addition of relevant ions separately to Cu2
+-containing solution before incubation under 70 1C. As shown in
Fig. 7, the coexistence of 100-fold excess of Mg2+, Ag+, Li+, Na+, Hg2
+, As(V), Co2+, Cd2+, Fe3+, K+, Ni2+, Cr3+, Zn2+, Al3+, NO3

−, SO4
2−,

ClO4
− and NO2

−, PO4
3−, CO3

2−, AsO2
−, 10-fold of Pb2+ and same

concentration of Mn2+ had little effect on the determination of Cu2+.



Fig. 8. Absorption spectra of AuNPs after incubation with different concentrations
of Cu2+ in NH4Cl–NH3 (0.1/0.6 M) buffer solution containing 5.0 mM S2O3

2− at 70 1C
for 25 min. Insets show the absorbance response to different concentrations of Cu2+

and the color change with the increase of Cu2+ concentration from left to right. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Comparison of the sample analysis results obtained by ICP-MS and proposed
method.

Shellfish samples Found by
ICP-MS/μM

Found by proposed
method/μM

Recoveries (%)

Shellfish samples 1 6.70 8.370.3 12473.6
Shellfish samples 2 2.15 2.670.1 12174.7
Shellfish samples 3 10.0 7.570.2 7572.0
Shellfish samples 4 7.18 7.170.4 9975.6
Shellfish samples 5 3.58 3.370.2 9275.6
Tap water 2.06 1.8970.2 91.7710
Drinking water 4.12 3.7670.5 91.3712
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The result was also confirmed by the digital photo (the inset in
Fig. 7).

3.5. Sensitivity of the sensor

To evaluate the sensitivity of the sensor, the UV–vis spectra of
AuNPs solutions in the presence of various concentrations of Cu2+

under the optimized conditions were recorded. The absorbance at
527 nm versus the concentration of Cu2+ was plotted as Fig. 8 It is
obvious that the A527 nm value gradually decreased with the
increase of Cu2+. A good linear relationship between the A527 nm

and Cu2+ concentrations was obtained within the range of 10.0 to
80 nM (R2¼0.990). The detection limit was calculated to be
5.0 nM, which is far below the maximum containment level as
recommended by U.S. EPA (∼20 μM). The digital photo in the inset
of Fig. 7 indicates that a containment level of 40 nM Cu2+

(∼2.6 ppb) can be easily read out by naked eyes.

3.6. Sample analysis

The practical performance of proposed method was further
tested by sensing of Cu2+ in digested shellfish, tap and drinking
water samples. The results were consistent with those obtained by
ICP-MS, indicating the method is applicable to the quantification
of Cu2+ in real samples. The applicability was also supported by
similar comparative analyses of digested water samples (Table 1).
4. Conclusions

In summary, we developed a new rapid colorimetric assay for
the sensitive and selective detection of Cu2+ based on the catalytic
etching of AuNPs. The changes in the SPR absorptions of AuNPs
yield a rapid method for the inspection of Cu2+ in aqueous
solutions. Under the optimized conditions, the Cu2+-specific probe
exhibits high sensitivity towards Cu2+ but also high selectivity
over other possible interference ions. The method is also high-
lighted by its simplicity and rapidity as compared to many other
nanoparticles-based colorimetric methods [32–41]. Compared
with our former research [28], the present work is more time-
saving and sensitive to naked-eyes. The color change induced by
Cu2+ as low as 40 nM is remarkable enough to be observed by
naked eyes. With respect to above advantages, we consider that
the proposed the sensing system of Cu2+ has considerable applic-
ability to field investigations, especially for the preparation of
economical Cu2+ test papers
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